JPS63311613A - Thin film magnetic head - Google Patents

Thin film magnetic head

Info

Publication number
JPS63311613A
JPS63311613A JP14605887A JP14605887A JPS63311613A JP S63311613 A JPS63311613 A JP S63311613A JP 14605887 A JP14605887 A JP 14605887A JP 14605887 A JP14605887 A JP 14605887A JP S63311613 A JPS63311613 A JP S63311613A
Authority
JP
Japan
Prior art keywords
magnetic
film
alloy
crystal grain
coercive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14605887A
Other languages
Japanese (ja)
Other versions
JPH083883B2 (en
Inventor
Takao Imagawa
尊雄 今川
Masaaki Sano
雅章 佐野
Katsuya Mitsuoka
光岡 勝也
Shinji Narushige
成重 真治
Koichi Nishioka
浩一 西岡
Masanobu Hanazono
雅信 華園
Tetsuo Kobayashi
哲夫 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP62146058A priority Critical patent/JPH083883B2/en
Publication of JPS63311613A publication Critical patent/JPS63311613A/en
Publication of JPH083883B2 publication Critical patent/JPH083883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)
  • Magnetic Heads (AREA)

Abstract

PURPOSE:To obtain a good reproduction characteristic by consisting a magnetic film layer of CoFe or CoNiFe which is a magnetic alloy and specifying the average value of the crystal grain sizes of the magnetic alloy. CONSTITUTION:The magnetic film layer is partly or wholly formed of the CoFe or CoNiFe which is the magnetic alloy and the average value of the crystal grain sizes of the magnetic alloy is specified to <=0.06mum. There is a method of forming the magnetic alloy layer by a sputtering method and specifying the substrate temp. at the time of film formation at <=100 deg.C as the method of specifying the average value of the crystal grain sizes of the magnetic alloy to <=0.06mum. Coercive force can be greatly lowered and heat resistance improves when the crystal grain size is <=0.06mum. As a result, the magnetic characteristics are not deteriorated by the heat treatment to which the film is subjected during the process of forming the thin film magnetic head. An increase in the coercive force is prevented as well.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度磁記録に適する薄膜磁気ヘッドに係り
、特に書込特性のよい薄v!、磁気ヘッドに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin-film magnetic head suitable for high-density magnetic recording, and particularly to a thin-film magnetic head with good writing characteristics. , relating to magnetic heads.

〔従来の技術〕[Conventional technology]

1等膜磁気ヘッドは、半導体プロセスにより基板上に形
成したコイル、絶M層、磁極から構成される。すなわち
、薄膜磁気ヘッドの縦断面構成を示した第2図のように
、下部磁性Jll上に絶R層2が積層されている。この
絶縁層2上には、複数のコイル5を内蔵する絶縁層3が
積層されている。
A uniform film magnetic head is composed of a coil, an absolute M layer, and a magnetic pole formed on a substrate by a semiconductor process. That is, as shown in FIG. 2, which shows the vertical cross-sectional structure of the thin film magnetic head, the absolute R layer 2 is laminated on the lower magnetic Jll. On this insulating layer 2, an insulating layer 3 containing a plurality of coils 5 is laminated.

この絶縁層3上には、上記磁性層6が積層されている。On this insulating layer 3, the magnetic layer 6 is laminated.

薄膜磁気ヘッド磁極に適用される磁性膜としては、厚さ
1〜2μmのN1atFezs(パーマロイ)合金が一
般的に用いられている。パーマロイは、磁歪定数λSが
小さく、−軸異方性の付与が容易で困難軸方向保磁力H
CHを1エルステツド以下とすることができ、しかも化
学的、熱的安定性がよい利点がある。一方、パーマロイ
の飽和磁束密度Bsは約10000ガウスであり、薄膜
磁気ヘッド磁極厚さを減少させて、記録密度を上昇させ
るには限界があった。すなわち、第2図に示す薄膜磁気
ヘッド下部磁性厚1および上部磁性層6の厚さし、1お
よびtgzを減少させることにより、書込磁界9の空間
分布を急峻にし、記録媒体12に書き込まれる記録ビッ
ト11の長さを短かくすることで記録密度の増大が可能
であるが、書込磁界強度は低下する。これを補うため、
コイル5に流す電流を増加させるが、パーマロイは前述
のとと<Bsが低く磁極が飽和して、書込磁界が十分発
生しない、したがって、磁極部分に飽和磁束密度の高い
非晶質Co系合金(Bs =13000〜15000ガ
ウス)、結晶質Fe系合金(Bs =18000〜21
000ガウス)等を過分することが考えられる。しかし
、非晶質Co系合金は蔑安定性に問題があり、また結晶
質Fe系合金は耐食性に問題があり、これらの問題は未
だ解決されていない。
As a magnetic film applied to the magnetic pole of a thin-film magnetic head, a N1atFezs (permalloy) alloy having a thickness of 1 to 2 μm is generally used. Permalloy has a small magnetostriction constant λS, making it easy to impart −axis anisotropy and difficult to impart axial coercive force H.
It has the advantage of being able to reduce CH to 1 oersted or less and having good chemical and thermal stability. On the other hand, the saturation magnetic flux density Bs of permalloy is about 10,000 Gauss, and there is a limit to increasing the recording density by decreasing the thickness of the thin film magnetic head pole. That is, by decreasing the lower magnetic thickness 1 and the upper magnetic layer 6 thickness 1 and tgz of the thin film magnetic head shown in FIG. Although it is possible to increase the recording density by shortening the length of the recording bits 11, the write magnetic field strength decreases. To compensate for this,
Although the current flowing through the coil 5 is increased, permalloy has a low Bs as described above and the magnetic pole is saturated and a sufficient write magnetic field is not generated. Therefore, an amorphous Co-based alloy with a high saturation magnetic flux density is (Bs = 13000-15000 Gauss), crystalline Fe-based alloy (Bs = 18000-21
000 Gauss) etc. may be overestimated. However, amorphous Co-based alloys have a problem with stability, and crystalline Fe-based alloys have a problem with corrosion resistance, and these problems have not been solved yet.

フエロマグネテイズム(ホゾルス著、ファンノストラン
ド出版、1951年)  (Feromagnetis
m。
Feromagnetism (by Hosols, Van Nostrand Publishing, 1951)
m.

R,M、 Bozorth、 Van No5tran
dl 951 ) 165頁および675頁によれば、
Co−Fe−Ni三元系状態図におけるCO主成分領域
において、磁歪定数がほぼ零、かつ飽和磁束密度120
00ガウス以上の領域が存在することが明らかである。
R, M, Bozorth, Van No5tran
dl 951) on pages 165 and 675,
In the CO main component region in the Co-Fe-Ni ternary system phase diagram, the magnetostriction constant is almost zero and the saturation magnetic flux density is 120.
It is clear that a region of 0.00 Gauss or higher exists.

しかし、この領域の合金系は、磁気異方性定数Klが大
きく(〜10’erg/d) 、当該合金をそのまま磁
気ヘッド磁極として用いても、透磁率が低く実用となら
ない。従来より、透磁率を高めるため、例えばアイ・イ
ー・イー・イー トランザクション・オン・マグネティ
クス エム・ニー・ジー13゜1521 (1977年
) I E E E 、 Trans、 Magn。
However, the alloy system in this region has a large magnetic anisotropy constant Kl (~10'erg/d), and even if the alloy is used as it is as a magnetic head pole, the magnetic permeability is low and it is not practical. Conventionally, in order to increase magnetic permeability, for example, IEE Transactions on Magnetics MNE 13° 1521 (1977) IEE, Trans, Magn.

MAG−13,1521(1977)に示されるごとく
、パーマロイとAQzOa等の誘電体を用い多層膜とし
、数10ミクロン幅の短冊状に加工することにより、高
周波領域での誘磁率が増大することは知られている。こ
れは、高周波励磁時、パーマロイ内に発生する渦電流に
よるエネルギー損失が、薄膜化と短冊状加工という次元
形状の限定によって減少することによる。したがって、
本質的に異方性の大きいCoNiFe系金属は、そのま
ま多層化しても誘導率は向上しない。一方、アイ・イー
・イー・イー トランザクション オブ マグネティク
ス エム・ニー・ジ−166頁(1961年)、IEE
E  Trans、 Magn、 MAG−1,66゜
(1961)によれば、パーマロイの蒸着中、互いに直
交し、交播する磁界を基板に印加することにより、パー
マロイの一軸異方性定数を制御し得ることが知られてい
る。これを、CoNiFe合金の電着法による形状に適
用した例が、特開昭61−76642号公報に開示され
ている。この従来例によれば、CoNiFeの合金の異
方性磁界Hには約176に低減される。
As shown in MAG-13, 1521 (1977), by forming a multilayer film using dielectrics such as permalloy and AQzOa and processing it into a strip shape with a width of several tens of microns, the dielectric constant in the high frequency range can be increased. Are known. This is because energy loss due to eddy currents generated in permalloy during high-frequency excitation is reduced by thinning the film and limiting the dimensional shape by processing it into a rectangular shape. therefore,
CoNiFe-based metal, which inherently has high anisotropy, does not improve its dielectric constant even if it is multilayered as it is. On the other hand, IEE Transactions of Magnetics, M.N.G., page 166 (1961), IEE
According to E Trans, Magn, MAG-1, 66° (1961), the uniaxial anisotropy constant of permalloy can be controlled by applying orthogonal to each other and alternating magnetic fields to the substrate during the deposition of permalloy. It is known. An example in which this is applied to the shape of a CoNiFe alloy by electrodeposition is disclosed in Japanese Patent Application Laid-open No. 76642/1983. According to this conventional example, the anisotropic magnetic field H of the CoNiFe alloy is reduced to about 176.

また、CoNlFo合金を真空蒸着等の方法により形成
することが、特公昭60−82638号公報に開示され
ている。
Further, Japanese Patent Publication No. 60-82638 discloses that a CoNlFo alloy is formed by a method such as vacuum evaporation.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、上記特開昭61−76642号公報に記載され
た従来例では、電着法により形成された磁性収は、薄膜
磁気ヘッド形成プロセス中に膜が受ける熱処理により磁
気特性が劣化することにより、保磁力が増大する難点が
ある。
However, in the conventional example described in Japanese Unexamined Patent Publication No. 61-76642, the magnetic properties formed by the electrodeposition method deteriorate due to the heat treatment that the film undergoes during the thin-film magnetic head forming process. The problem is that the coercive force increases.

また、特公昭60−82638号公報記載の形成条件で
ある基板温度350℃、膜堆積速度18人/秒では、飽
和磁束密度の高い高Co領域、すなわちCo濃度70重
量%以上の合金の保磁力を低下させることはできない。
Furthermore, under the formation conditions described in Japanese Patent Publication No. 60-82638, where the substrate temperature is 350°C and the film deposition rate is 18 people/sec, the coercive force of the alloy is in the high Co region with high saturation magnetic flux density, that is, the Co concentration is 70% by weight or more. cannot be lowered.

すなわち、上記従来技術では、高飽和磁束密度を有する
CoFeまたはCoNiFe合金が高速磁率すなわち保
磁力が小さく形成される点について考慮されておらず、
これらの合金を薄膜磁気ヘッド用磁極として用いるには
難点があった。
That is, the above-mentioned conventional technology does not take into consideration the fact that CoFe or CoNiFe alloy having a high saturation magnetic flux density is formed with a small high-speed magnetic rate, that is, a small coercive force.
There are some difficulties in using these alloys as magnetic poles for thin film magnetic heads.

このような問題点を解決するために、本発明は。The present invention aims to solve these problems.

上記CoFeまたはCoNiFe合金が保磁力を小さく
形成されてなり、再生特性のよい薄膜磁気ヘッドを提供
することを目的とする。
It is an object of the present invention to provide a thin film magnetic head with good reproduction characteristics, which is made of CoFe or CoNiFe alloy and has a small coercive force.

〔問題点を解決するための手段〕[Means for solving problems]

問題点を解決するための手段について述べる前に、本発
明を完成するに至った経緯について説明する。
Before describing the means for solving the problems, the circumstances that led to the completion of the present invention will be explained.

耐熱性のよう磁性薄膜を実用する手段として、スパッタ
リング法が知られている。本発明者らは、CO濃度70
%以上のCoNiFe合金をカソードして、ガラス基板
上へのスパッタリング膜形成を試みた。
A sputtering method is known as a means for practical application of heat-resistant magnetic thin films. The inventors found that CO concentration 70
% or more of CoNiFe alloy was used as a cathode, and an attempt was made to form a sputtering film on a glass substrate.

その結果、薄膜磁気ヘッド磁極に適用される、厚さ約1
μm程度のスパッタリング膜は、合金組成を変化させ、
またはスパッタリング電力、Arガス圧を変化させても
保磁力Haは300eと大きく、膜には一軸磁気異方性
も誘起されなかった。しかし、スパッタリング膜厚を減
少させた場合は、困難軸方向保磁力HCHは、0.5 
μm以下で息下に低下することがわかった。また、スパ
ッタリング時の基板温度を膜表面で100’C以下に保
つことにより、1〜1.5 μmの膜厚でも困難軸方向
保磁力を20e以下とすることができた。
As a result, the thickness of approximately 1
A sputtered film with a size of about μm changes the alloy composition,
Even when the sputtering power and Ar gas pressure were changed, the coercive force Ha was as large as 300e, and no uniaxial magnetic anisotropy was induced in the film. However, when the sputtering film thickness is decreased, the hard axial coercive force HCH becomes 0.5
It was found that the value decreases with breathing below μm. Furthermore, by keeping the substrate temperature during sputtering at 100'C or less at the film surface, the coercive force in the difficult axial direction could be kept at 20e or less even with a film thickness of 1 to 1.5 μm.

すなわち、基板温度を低く保ち形成した合金膜あるいは
膜厚の小さい膜では、その平均結晶粒径が0.06  
μm以下とすることができる。その結果、困難軸方向保
磁力が低下したものと考えられる。
In other words, an alloy film or a thin film formed while keeping the substrate temperature low has an average crystal grain size of 0.06.
It can be less than μm. As a result, it is thought that the coercive force in the hard axis direction decreased.

本発明は、かかる知見によりなされたものであり、その
内容は、基板上に第1の絶縁層を有し、当該絶縁層上に
下部磁性膜層、第2の絶縁層および上部磁性膜層が順に
積層され、下部および上部磁性膜層が一部分で接しかつ
同時分を巻回するコイルを第2の絶縁層内に有する薄膜
磁気ヘッドにおいて、前記磁性膜層の一部または全部は
磁性合金である。CoFeまたはCoNiFeからなり
、当該磁性合金の結晶粒径の平均値がo、o e  ミ
クロンメートル以下であることを特徴とする薄膜磁気ヘ
ッドである。
The present invention has been made based on this knowledge, and its contents include a first insulating layer on a substrate, and a lower magnetic film layer, a second insulating layer, and an upper magnetic film layer on the insulating layer. In a thin film magnetic head having a coil in a second insulating layer which is laminated in sequence, the lower and upper magnetic film layers are partially in contact with each other, and the coils are wound at the same time, wherein part or all of the magnetic film layers are made of a magnetic alloy. . The present invention is a thin film magnetic head made of CoFe or CoNiFe, characterized in that the average crystal grain size of the magnetic alloy is not more than o, o e micrometers.

上記本発明において、磁性合金の結晶粒径の平均値が0
.06 μm以下にする方法として、例えば次の方法が
ある。まず、磁性合金層をスパッタリング法により形成
し、11作成時の基板温度を100℃以下とする方法h
vある。その他、磁性合金層厚さを0.5 μm以下と
し、磁性合金層間に別な金属の合金、誘電体を挟み込み
、多層化する方法である。
In the present invention, the average value of the crystal grain size of the magnetic alloy is 0.
.. For example, the following method is available as a method for reducing the thickness to 0.06 μm or less. First, a method in which a magnetic alloy layer is formed by a sputtering method and the substrate temperature at the time of 11 creation is 100°C or lessh
There is v. Another method is to set the thickness of the magnetic alloy layer to 0.5 μm or less and sandwich another metal alloy or dielectric material between the magnetic alloy layers to form a multilayer structure.

この方法により、低保磁力で厚いCoNiFe合金膜が
得られることがわかった。この方法は、基板が冷却でき
ない量産形のスパッタリング装置を用いた。 CoNi
Fe膜の形成に有利である。
It was found that by this method, a thick CoNiFe alloy film with low coercive force can be obtained. This method used a mass-produced sputtering device in which the substrate could not be cooled. CoNi
This is advantageous for forming an Fe film.

上記本発明におけるCoNiFeまたはCoFe磁性合
金の組成は、Co1−x−ツN1Jeアと表記したとき
、O≦X≦0.2 かつO≦X≦0.1である。
The composition of CoNiFe or CoFe magnetic alloy in the present invention is expressed as Co1-x-N1Je, and satisfies O≦X≦0.2 and O≦X≦0.1.

〔作用〕[Effect]

CoNiFeまたはCoFe磁性合金層の平均結晶粒径
を保磁力との関係を第1図に示し、基板温度と磁性合金
層の平均結晶粒径との関係を第3図に示し、磁性合金層
の膜厚と保磁力との関係を第4図に示す。
Figure 1 shows the relationship between the average grain size of the CoNiFe or CoFe magnetic alloy layer and the coercive force, and Figure 3 shows the relationship between the substrate temperature and the average grain size of the magnetic alloy layer. Figure 4 shows the relationship between thickness and coercive force.

第1図かられかるように、結晶粒径が0.06μm以下
のとき、保磁力を大幅に低下することができる。結晶粒
径を0.06μm以下にすることにより、磁性合金膜の
保磁力が低下する理由について説明する。
As can be seen from FIG. 1, when the crystal grain size is 0.06 μm or less, the coercive force can be significantly reduced. The reason why the coercive force of the magnetic alloy film decreases by setting the crystal grain size to 0.06 μm or less will be explained.

多結晶磁性合金の磁化は、平均容易軸方向に沿って結晶
粒ごとにばらついた微小な磁化の和であることが知られ
ている。この合金の平均磁化方向を回転させるため、外
部磁界を印加したとき、個々の結晶粒は、その結晶方位
により安定していた磁化を、よりエネルギーの高い方向
へ向けることになる。この回転のしやすさを表わすのが
、結晶磁気異方性エネルギーKlであり、高Co濃度の
・CoNiFeまたは、CoFe合金のに1は10 ’
〜10 ’erg/ajとパーマロイ(10”erg/
 el+? )の100〜1000倍である。粗大な結
晶粒と、それと同体積の微細な結晶粒では、各結晶粒間
の結晶方位が異なるため、磁気異方性エネルギーが低下
する。すなわち、結晶粒径がより微細であるほど、個々
の結晶磁気異方性は小さくなる。このことが細かい結晶
粒径のCoNiFeまたはCoFe膜でのみ低い困難軸
方向保磁力を実現できる理由と考えられる。
It is known that the magnetization of a polycrystalline magnetic alloy is the sum of minute magnetizations that vary from grain to grain along the mean easy axis direction. When an external magnetic field is applied to rotate the average magnetization direction of this alloy, individual crystal grains will direct their magnetization, which had been stable due to its crystal orientation, in a direction with higher energy. The ease of this rotation is expressed by the magnetocrystalline anisotropy energy Kl, and 1 is 10' for CoNiFe or CoFe alloy with a high Co concentration.
~10’erg/aj and permalloy (10”erg/
el+? ) is 100 to 1000 times. Since the crystal orientations between coarse crystal grains and fine crystal grains having the same volume differ, the magnetic anisotropy energy decreases. That is, the finer the crystal grain size, the smaller the individual magnetocrystalline anisotropy. This is considered to be the reason why only a CoNiFe or CoFe film with a fine crystal grain size can realize a low coercive force in the hard axis direction.

平均結晶粒径を0.06 μm以下とすることにより耐
熱性が向上し、その結果、薄膜磁気ヘッド形成プロセス
中、膜が受けるも処理により磁性特性が劣化することな
く、保磁力が増大することもない、これは、平均結晶粒
径が十分小さいと、粒成長しないからである。
Heat resistance is improved by setting the average crystal grain size to 0.06 μm or less, and as a result, the coercive force increases without deteriorating the magnetic properties even though the film is subjected to treatment during the process of forming a thin film magnetic head. No, because if the average crystal grain size is sufficiently small, grain growth will not occur.

次に、基板温度と平均結晶粒径との関係については、第
3図に示すように、基板温度が゛低く(100℃以下)
保たれて形成された合金膜では、その平均結晶粒径が0
□06 μm以下となっていることがわかる。
Next, regarding the relationship between substrate temperature and average crystal grain size, as shown in Figure 3, the substrate temperature is low (below 100°C).
In the alloy film formed by maintaining the average grain size of 0
It can be seen that the diameter is □06 μm or less.

次に、膜厚と保磁力の関係については、第4図に示すよ
うに、膜厚が0.5 μm以下で、保磁力が小さいこと
がわかる。これは、次の理由による。
Next, regarding the relationship between film thickness and coercive force, as shown in FIG. 4, it can be seen that when the film thickness is 0.5 μm or less, the coercive force is small. This is due to the following reason.

高い基板温度で、厚いCoNiFe合金膜を形成した場
合、その膜厚方向の結晶粒径は、基板側が細かく、膜表
面に向って粗大化していることがわかった。
It was found that when a thick CoNiFe alloy film is formed at a high substrate temperature, the crystal grain size in the film thickness direction is finer on the substrate side and becomes coarser toward the film surface.

そこで、第3図に示した層膜と保磁力の関係から、層厚
を0.5 μm以下とすればよい、この場合、磁性合金
層間に別な金属2合金、誘電体を挟み込み、多層膜化で
きる。多層膜とするこで保磁力が低下するのも、CoN
1Fo結晶粒の成長を別な層によって断ち切ることによ
り、磁性層結晶粒径を0.06μm以下としている効果
によると考えられる。
Therefore, from the relationship between the layer film and the coercive force shown in Figure 3, the layer thickness should be 0.5 μm or less. In this case, two different metal alloys and a dielectric material are sandwiched between the magnetic alloy layers, and a multilayer film can be converted into The reason why the coercive force decreases due to the multilayer film is that CoN
This is thought to be due to the effect of cutting off the growth of 1Fo crystal grains with another layer, thereby reducing the magnetic layer crystal grain size to 0.06 μm or less.

〔実施例〕〔Example〕

以下、本発明の実施例について説明する。第1表に、C
oNiFe合金のスパッタリング条件を示す。
Examples of the present invention will be described below. In Table 1, C
The sputtering conditions for oNiFe alloy are shown below.

第1表 第1M!Jとし、NiFe、 A Q 203および5
i(hを第2層として積層膜を形成し、その磁気特性を
各膜厚と各第2表に示す。
Table 1, 1st M! J, NiFe, AQ 203 and 5
A laminated film was formed using i(h as the second layer), and its magnetic properties are shown in Table 2 along with each film thickness.

第2表 表中、NiFe、 A Q 203.5iOz、は、い
ずれもCoN iFeと同一スパッタ装置内で、別なカ
ソードを用い、スパッタリングした。この条件を、第3
表に示す。
In Table 2, NiFe and AQ 203.5iOz were both sputtered using different cathodes in the same sputtering apparatus as CoN iFe. This condition is the third
Shown in the table.

第3表 本実施例によけば、飽和磁束密度がパーマロイ(too
ooガウス)より大きく、かつ保磁力の小さいCoNi
Fe多層膜が得られた。
Table 3 According to this example, the saturation magnetic flux density is permalloy (too much).
CoNi which is larger than oo Gauss and has a small coercive force
A Fe multilayer film was obtained.

本発明の他の実施例について説明する。第1表に示した
負性で、基板を水冷しスパッタリングしたところ、第4
表に示す結果を得た。このときの基板温度は、50〜6
0”Cであった。
Other embodiments of the present invention will be described. When the substrate was water-cooled and sputtered with the negativity shown in Table 1, the fourth
The results shown in the table were obtained. The substrate temperature at this time is 50 to 6
It was 0''C.

第4表 この実施例によれば、膜厚が0.5μm以下で、保磁力
が小さいことがわかる。
Table 4 According to this example, it can be seen that the film thickness is 0.5 μm or less and the coercive force is small.

また、本発明の第3の実施例について説明する。Further, a third embodiment of the present invention will be described.

第1表により形成したCoNiFe合金(層厚0.1μ
m)とArtzOs (7J/!X0.01 μm) 
多NWA (11WJ’%1.1μm)を磁極として用
い、第2図に示す構造の1嘆磁気ヘッドを作製し、一方
パーマロイ(f!A厚1.1μm)を用いた薄膜磁気ヘ
ッドを作製し、両者の記録、再生特性を比較した。記録
媒体には、γ−FezOa膜を用いた。多層膜を用い作
製した薄膜磁気ヘッドは、パーマロイ使用のものに比べ
記録後再生出力は約1.3倍となった。本実施例により
、磁極厚を減少させることにより、分解能を嘉めた薄膜
磁気ヘッドを作製できることがわかる。
CoNiFe alloy formed according to Table 1 (layer thickness 0.1μ
m) and ArtzOs (7J/!X0.01 μm)
A single magnetic head with the structure shown in Fig. 2 was fabricated using multi-NWA (11WJ'% 1.1 μm) as a magnetic pole, and a thin film magnetic head using Permalloy (f!A thickness 1.1 μm) was fabricated. The recording and playback characteristics of the two were compared. A γ-FezOa film was used as the recording medium. The thin-film magnetic head fabricated using the multilayer film had approximately 1.3 times the readout output after recording compared to the one using permalloy. This example shows that a thin film magnetic head with improved resolution can be manufactured by reducing the magnetic pole thickness.

さらに、本発明の第4の実施例について説明する。第1
表によるCoNiFe合金作製時、基板に対し互いに直
交する方向に順に磁界を印加し、成膜を行った。第5表
に条件を示す。
Furthermore, a fourth embodiment of the present invention will be described. 1st
When producing the CoNiFe alloy according to the table, magnetic fields were sequentially applied to the substrate in directions orthogonal to each other to form a film. Table 5 shows the conditions.

第5表 このスイッチング磁界中スパッタリングによりCoNi
Feの合金の異方性磁界を20エルステツドから12エ
ルステツドへ減少することができ、膜単体の透磁率を向
上させることができる。
Table 5: By sputtering in this switching magnetic field, CoNi
The anisotropic magnetic field of the Fe alloy can be reduced from 20 oersted to 12 oersted, and the magnetic permeability of the film alone can be improved.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、パーマロイ単層
膜より飽和磁束密度が大きく、保磁力が小さく、かつ耐
熱性のよい磁性薄膜を作製できるので、これを適用した
薄膜磁気ヘッドの分解能を高め、再生特性の良好な高記
録密度磁気記録用薄膜磁気ヘッドを提供できる効果があ
る。
As explained above, according to the present invention, it is possible to fabricate a magnetic thin film that has a higher saturation magnetic flux density, lower coercive force, and better heat resistance than a permalloy single-layer film. This has the effect of providing a thin-film magnetic head for high-density magnetic recording with high recording density and good reproduction characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCoNiFe結晶粒径と保磁力の関係を示すグ
ラフ、第2図は薄膜磁気ヘッド縦断面図および記録、再
生原理を示す図、第3図は結晶粒径と保磁力の関係を示
すグラフ、第4図はCoNiFe膜厚と保磁力の関係を
示すグラフである。 1・・・下部磁性体、2・・・ギャップ部、5・・・コ
イル、6・・・上部磁性体、9・・・書込磁界、10・
・・媒体よりの記録磁界、12・・・記録媒体。
Figure 1 is a graph showing the relationship between CoNiFe crystal grain size and coercive force, Figure 2 is a longitudinal cross-sectional view of a thin film magnetic head and a diagram showing the recording and reproducing principle, and Figure 3 is a graph showing the relationship between crystal grain size and coercive force. The graph shown in FIG. 4 is a graph showing the relationship between CoNiFe film thickness and coercive force. DESCRIPTION OF SYMBOLS 1... Lower magnetic body, 2... Gap part, 5... Coil, 6... Upper magnetic body, 9... Write magnetic field, 10...
... Recording magnetic field from the medium, 12... Recording medium.

Claims (1)

【特許請求の範囲】[Claims] 1、基板上に第1の絶縁層を有し、当該絶縁層上に下部
磁性膜層、第2の絶縁層および上部磁性膜層が順に積層
され、下部および上部磁性層が一部分で接しかつ同部分
を巻回するコイルを第2の絶縁層内に有する薄膜磁気ヘ
ッドにおいて、前記磁性膜層の一部または全部は磁性合
金であるCoFeまたは、CoNiFeからなり、当該
磁性合金の結晶粒径の平均値が0.06ミクロンメート
ル以下であることを特徴とする薄膜磁気ヘッド。
1. A first insulating layer is provided on the substrate, and a lower magnetic film layer, a second insulating layer, and an upper magnetic film layer are laminated in this order on the insulating layer, and the lower and upper magnetic layers partially touch and are the same. In a thin film magnetic head having a coil wound around a second insulating layer in a second insulating layer, part or all of the magnetic film layer is made of a magnetic alloy such as CoFe or CoNiFe, and the average crystal grain size of the magnetic alloy is A thin film magnetic head characterized in that the magnetic head has a magnetic flux of 0.06 micrometers or less.
JP62146058A 1987-06-11 1987-06-11 Thin film magnetic head Expired - Lifetime JPH083883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146058A JPH083883B2 (en) 1987-06-11 1987-06-11 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146058A JPH083883B2 (en) 1987-06-11 1987-06-11 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPS63311613A true JPS63311613A (en) 1988-12-20
JPH083883B2 JPH083883B2 (en) 1996-01-17

Family

ID=15399132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146058A Expired - Lifetime JPH083883B2 (en) 1987-06-11 1987-06-11 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JPH083883B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240972A (en) * 1988-07-29 1990-02-09 Nec Corp Magnetoresistance effect thin film
JPH05235435A (en) * 1992-02-21 1993-09-10 Ckd Corp Magnetoresistance element
JP2014010880A (en) * 2012-06-29 2014-01-20 Seagate Technology Llc Data storage unit, magnetic writing element, and method
US9378760B2 (en) 2014-07-31 2016-06-28 Seagate Technology Llc Data reader with tuned microstructure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661216A (en) * 1986-04-21 1987-04-28 International Business Machines Corporation Electrodepositing CoNiFe alloys for thin film heads

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4661216A (en) * 1986-04-21 1987-04-28 International Business Machines Corporation Electrodepositing CoNiFe alloys for thin film heads

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0240972A (en) * 1988-07-29 1990-02-09 Nec Corp Magnetoresistance effect thin film
JPH05235435A (en) * 1992-02-21 1993-09-10 Ckd Corp Magnetoresistance element
JP2014010880A (en) * 2012-06-29 2014-01-20 Seagate Technology Llc Data storage unit, magnetic writing element, and method
US9142226B2 (en) 2012-06-29 2015-09-22 Seagate Technology Llc Thin film with tuned grain size
US9378760B2 (en) 2014-07-31 2016-06-28 Seagate Technology Llc Data reader with tuned microstructure

Also Published As

Publication number Publication date
JPH083883B2 (en) 1996-01-17

Similar Documents

Publication Publication Date Title
JPS6035813B2 (en) Method for manufacturing magnetic thin film structure
JP3229718B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP2001101645A (en) High density information recording medium and method for manufacturing the medium
JPH11340037A (en) Soft magnetic film, soft magnetic multi-layer film, manufacture thereof, and magnetic body element using same
JP2002309353A (en) Soft-magnetic membrane and magnetic head for recording using the membrane
JPH0744110B2 (en) High saturation magnetic flux density soft magnetic film and magnetic head
JPH1196514A (en) Thin-film magnetic head and its production
JPH1154325A (en) Soft magnetic film and mr/inductive composite thin film magnetic head using the soft magnetic film
US5385637A (en) Stabilizing domains in inductive thin film heads
JPS63311613A (en) Thin film magnetic head
JP2007335788A (en) Magnetic shield and manufacturing method thereof, and thin-film magnetic head
JPH0553852B2 (en)
Morisako et al. Sputtered Mn-Al-Cu films for magnetic recording media
JPS60132305A (en) Iron-nitrogen laminated magnetic film and magnetic head using the same
JP3127074B2 (en) Magnetic head
JP2002352403A (en) Thin film magnetic head and its manufacturing method
JP2000150233A (en) Magnetic film and its manufacture
JP2853923B2 (en) Soft magnetic alloy film
JP3232592B2 (en) Magnetic head
JPH0845035A (en) Thin film magnetic head
JP2834359B2 (en) Soft magnetic alloy film
JP2752199B2 (en) Magnetic head
JP2001015339A (en) Soft magnetic laminate film and thin-film magnetic head
JP2574901B2 (en) Thin film magnetic head and method of manufacturing the same
JP3132254B2 (en) Soft magnetic film and method for manufacturing soft magnetic multilayer film

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080117

Year of fee payment: 12