JPH02262306A - Soft magnetic thin film and its manufacture - Google Patents

Soft magnetic thin film and its manufacture

Info

Publication number
JPH02262306A
JPH02262306A JP8160589A JP8160589A JPH02262306A JP H02262306 A JPH02262306 A JP H02262306A JP 8160589 A JP8160589 A JP 8160589A JP 8160589 A JP8160589 A JP 8160589A JP H02262306 A JPH02262306 A JP H02262306A
Authority
JP
Japan
Prior art keywords
thin film
soft magnetic
atomic
magnetic thin
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8160589A
Other languages
Japanese (ja)
Inventor
Osamu Shimizu
治 清水
Kanji Nakanishi
中西 寛次
Ryuji Shirahata
龍司 白幡
Satoshi Yoshida
敏 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP8160589A priority Critical patent/JPH02262306A/en
Publication of JPH02262306A publication Critical patent/JPH02262306A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain desirable core material having high magnetic flux saturation density, low coersive force, and large permeability at high frequency, by using material having uniaxial anisotropy whose main component is one or more kinds of a specified amount of Si and Mo, a specified amount of N, and rest part Fe. CONSTITUTION:A soft magnetic thin film having uniaxial anisotropy whose main component is one or more kinds of Si and Mo equat to or less than 4atomic%, N equal to or less than 5atomic%, and the rest part Fe. An amorphous thin film composed of the above composition is heat-treated at 220 to 450 deg.C and crystallized, thereby manufacturing a soft magnetic thin film. The composition of the above soft magnetic thin film is preferably set is a range (a range EFGHI in figure) in which the following are satisfied; in the above composition range (a range ABCD in figure), one or more kinds of Si and Mo are 0.1 to 4atomic%, N is 2 to 5atomic%, Fe is 93.8 to 97.9atomic%, and the total of them becomes 100atomic%. The above amorphous thin film having the specified composition can be formed by vapor phase deposition method like, e.g., RF sputtering method.

Description

【発明の詳細な説明】 6[産業上の利用分野] 本発明は磁気ヘッドの材料等として好適な軟磁性薄膜に
関する。
Detailed Description of the Invention 6 [Field of Industrial Application] The present invention relates to a soft magnetic thin film suitable as a material for a magnetic head.

[発明の背景] 例えばオーディオテープレコーダやVTR(ビデオテー
プレコーダ)等の磁気記録再生装置においては、記録信
号の高密度化や高品質化等が進められており、この高記
録密度化に対応して、磁気記録媒体として磁性粉にFe
、Co、Ni等の金属あるいは合金からなる粉末を用い
た。いわゆるメタルテープや5強磁性金属材料を真空薄
膜形成技術によりベースフィルム上に直接被着した。い
わゆる蒸着テープ等が開発され、各分野で実用化されて
いる。
[Background of the Invention] For example, in magnetic recording and reproducing devices such as audio tape recorders and VTRs (video tape recorders), the density and quality of recording signals are increasing, and it is necessary to cope with this increase in recording density. Fe is added to magnetic powder as a magnetic recording medium.
, Co, Ni, or other metals or alloys were used. A so-called metal tape or 5 ferromagnetic metal material was deposited directly onto the base film by vacuum thin film formation technology. So-called vapor deposition tapes have been developed and put into practical use in various fields.

[従来の技術及び発明が解決しようとする課題]ところ
で、このような所定の保磁力を釘する磁気記録媒体の特
性を発揮せしめるためには、磁気ヘッドのコア材料の特
性として、高い飽和磁束密度を有するとともに、同一の
磁気ヘッドで再生を行なおうとする場合においては、高
透磁率を併せて有することが要求される。ところが1例
えば。
[Prior art and problems to be solved by the invention] By the way, in order to exhibit the characteristics of a magnetic recording medium that achieves a predetermined coercive force, a high saturation magnetic flux density is required as a characteristic of the core material of the magnetic head. In addition to having a high magnetic permeability, if reproduction is to be performed using the same magnetic head, it is also required to have a high magnetic permeability. However, for example.

従来の磁気ヘッドのコア材料として多用されているフェ
ライト材では飽和磁束密度が低く、また。
Ferrite material, which is often used as the core material of conventional magnetic heads, has a low saturation magnetic flux density.

パーマロイでは耐摩耗性に問題があった。Permalloy had problems with wear resistance.

従来、かかる諸要求を満たすコア材料としてFe−A1
−5i系合金からなるセンダスト合金が好適であると考
えられ、すでに実用に供されている。
Conventionally, Fe-A1 has been used as a core material that satisfies these requirements.
A Sendust alloy consisting of a -5i alloy is considered suitable and has already been put into practical use.

しかしながら、このセンダスト合金のように軟磁気特性
に優れた材料においては、磁歪λSと結晶磁気異方性K
が共に零付近であることが望ましく、磁気ヘッドに使用
可能な材料組成はこれら両者の値を考慮して決められる
。したがって、飽和磁束密度もこの組成に対応して一義
的に決まり。
However, in materials with excellent soft magnetic properties such as this Sendust alloy, magnetostriction λS and magnetocrystalline anisotropy K
It is desirable that both of these values be around zero, and the material composition that can be used in the magnetic head is determined by taking these two values into consideration. Therefore, the saturation magnetic flux density is also uniquely determined according to this composition.

センダスト合金の場合、10〜Ilkガウスが限界であ
る。
For Sendust alloys, the limit is 10 to Ilk Gauss.

そのため、上記センダスト合金にかわり、高周波数領域
での透磁率の低下が少なく高い飽和磁束密度を有するC
o系非晶質磁性合金材料(いわゆるアモルファス磁性合
金材料)も開発されているが、この非晶質磁性合金材料
でも飽和磁束密度は14にガウス程度である。
Therefore, in place of the above-mentioned Sendust alloy, C is used, which has a high saturation magnetic flux density with little decrease in magnetic permeability in the high frequency range.
An o-based amorphous magnetic alloy material (so-called amorphous magnetic alloy material) has also been developed, but even this amorphous magnetic alloy material has a saturation magnetic flux density of about 14 Gauss.

一方、特開昭63−299219号公報には1次の軟磁
性薄膜が記載されている。
On the other hand, Japanese Patent Laid-Open No. 63-299219 describes a primary soft magnetic thin film.

rFe  N  A  (ただし、x、y、zは各々x
   y   z 組成比を原子%として表し、AはSi、A、p。
rFe N A (However, x, y, z are each x
y z Composition ratio is expressed as atomic %, A is Si, A, p.

Ta、B、Mg、Ca、Sr、Ba、Cr。Ta, B, Mg, Ca, Sr, Ba, Cr.

Mn、Z r、Nb、T i、Mo、V、W、HfGa
、Ge、希土類元素の少なくとも1種を表す。)なる組
成式で示され、その組成範囲が0.5≦y≦ 5.0 0.5≦2≦7,5 x+y+z−1o。
Mn, Zr, Nb, Ti, Mo, V, W, HfGa
, Ge, and at least one rare earth element. ), and the composition range is 0.5≦y≦5.0 0.5≦2≦7,5 x+y+z−1o.

であることを特徴とする軟磁性薄膜。」前記軟磁性薄膜
は、前記Aで表わされた元素と鉄との合金を調製し、該
合金をターゲットとして窒素を含む雰囲気中でのスパッ
タリングにより形成される。アルカリ土類金属等の鉄と
固溶しない金属については、そのチップを作成し該チッ
プを鉄ターゲツト上に置いてスパッタリングを行なつQ しかし、特開昭63−299219号公報に記載の方法
で製造された軟磁性薄膜は、−軸異方性を有していない
ため高周波における透磁率を高くすることができないと
いう欠点がある。
A soft magnetic thin film characterized by: The soft magnetic thin film is formed by preparing an alloy of the element represented by A and iron, and sputtering the alloy as a target in an atmosphere containing nitrogen. For metals that do not form a solid solution with iron, such as alkaline earth metals, chips are prepared and sputtering is performed by placing the chips on an iron target. The soft magnetic thin film produced by the above method has a drawback in that it cannot have high magnetic permeability at high frequencies because it does not have -axis anisotropy.

また、製膜条件にもよるが、一般的に結晶質材料は、膜
を付着する過程でセルフシャドウィング効果によって柱
状晶になり易く1粒界部にボイドが形成されるために磁
気的に不連続になり軟磁気特性が劣化してしまう傾向が
ある。このセルフシャドウィング効果は、磁気ヘッドを
作製する際の様に下地に段差がある場合や厚膜化する場
合に特に顕著となり、充分な特性が得られないという難
点があった。
Although it depends on the film forming conditions, crystalline materials generally tend to become columnar crystals due to self-shadowing effect during the film deposition process, and voids are formed at one grain boundary, making them magnetically inefficient. It tends to become continuous and the soft magnetic properties deteriorate. This self-shadowing effect becomes particularly noticeable when there are steps on the base or when the film is thick, such as when manufacturing a magnetic head, and there is a problem in that sufficient characteristics cannot be obtained.

本発明は上記従来の技術の欠点を改良した軟磁性薄膜及
びその製造方法を提供することを目的とする。
An object of the present invention is to provide a soft magnetic thin film and a method for manufacturing the same, which improve the drawbacks of the above-mentioned conventional techniques.

[課題を解決するための手段] 本発明によれば1次の軟磁性薄膜及びその製造方法によ
り上記目的を達成することができる。
[Means for Solving the Problems] According to the present invention, the above objects can be achieved using a primary soft magnetic thin film and a method for manufacturing the same.

■ 4原子%以下のSi及びMoの1種以上と5原子%
以下のNと残部Feとを主成分として成り一軸異方性を
有する軟磁性薄膜。
■ 4 at% or less of one or more of Si and Mo and 5 at%
A soft magnetic thin film mainly composed of the following N and the remainder Fe and having uniaxial anisotropy.

■ 4原子%以下のSi及びMoの1種以上と5原子9
6以下のNと残部Feとを主成分として成る非晶質薄膜
を220〜450℃で熱処理して前記非晶質薄膜を結晶
化させることを特徴とする軟磁性薄膜の製造方法。
■ 4 at% or less of one or more of Si and Mo and 5 atoms9
1. A method for producing a soft magnetic thin film, which comprises heat-treating an amorphous thin film mainly composed of 6 or less N and the remainder Fe at 220 to 450° C. to crystallize the amorphous thin film.

軟磁性薄膜及び非晶質薄膜は、好ましくは。Soft magnetic thin films and amorphous thin films are preferred.

0.1〜4原子%のSi及びMoの1種以上と2〜5原
子%のNと93.8〜97.9原子%のFeとを主成分
として成る。
The main components are 0.1 to 4 atomic % of one or more of Si and Mo, 2 to 5 atomic % of N, and 93.8 to 97.9 atomic % of Fe.

好ましくは、熱処理を磁界中で行ない一軸異方性を有す
る軟磁性薄膜を得る。
Preferably, the heat treatment is performed in a magnetic field to obtain a soft magnetic thin film having uniaxial anisotropy.

[好適な実施態様及び作用] 本発明の軟磁性薄膜は、4原子%(at%)以下のSi
及びMoの1種以上(即ち、Si及びMoの一方、又は
これらの双方)と、5原子%以下のNと、残部Feとを
主成分として成り、−軸異方性を有する。この組成範囲
を点A、B、C,Dにより第1図に示す。
[Preferred Embodiments and Effects] The soft magnetic thin film of the present invention contains 4 atomic % (at%) or less of Si.
and Mo (i.e., one or both of Si and Mo), 5 atomic % or less of N, and the balance Fe, and has -axis anisotropy. This composition range is shown in FIG. 1 by points A, B, C, and D.

前記特定の存在率のSi及びMoの1種以上とNにより
、飽和磁束密度Bsを所定の値より低下させることなく
保磁力Heを低下させることができ。
By using one or more of Si and Mo and N at the specific abundance ratio, the coercive force He can be lowered without lowering the saturation magnetic flux density Bs below a predetermined value.

また、耐食性を向上させ硬度を大きくすることができる
。Si及びMoの1種以上は3例えば0.1原子%存在
すれば有意の効果を示す。Nは1例えば0.1原子%存
在すれば有意の効果を示す。
Moreover, corrosion resistance can be improved and hardness can be increased. One or more of Si and Mo exhibits a significant effect when present in an amount of, for example, 0.1 atomic %. N exhibits a significant effect when present at 1, for example, 0.1 atomic %.

本発明の軟磁性薄膜は、−軸異方性を有するので1例え
ば、薄膜の困難軸方向を磁化方向とすることによって、
IMHzより高い周波数での透磁率を充分高くすること
ができる。このため磁気ヘッドのコア材料として好適で
ある。高周波において高い透磁率を得るには、異方性磁
界の強さ1 Oe程度以上の一軸異方性が必要であり、
好ましくは。
Since the soft magnetic thin film of the present invention has -axis anisotropy, for example, by setting the hard axis direction of the thin film as the magnetization direction,
Magnetic permeability at frequencies higher than IMHz can be made sufficiently high. Therefore, it is suitable as a core material for magnetic heads. In order to obtain high magnetic permeability at high frequencies, uniaxial anisotropy with an anisotropic magnetic field strength of approximately 1 Oe or higher is required.
Preferably.

異方性磁界の強さ2〜5 Oe程度である。例えば10
M1lz以上において高い透磁率を得たい場合、より好
ましくは3〜5 Oe程度である。
The strength of the anisotropic magnetic field is about 2 to 5 Oe. For example 10
When it is desired to obtain high magnetic permeability at M1lz or higher, it is more preferably about 3 to 5 Oe.

軟磁性薄膜の好ましい組成範囲は、Si及びMoの1種
以上が0.1〜4原子%であり、Nが2〜5(より好ま
しくは2.5〜5)原子%であり。
A preferable composition range of the soft magnetic thin film is that one or more of Si and Mo is 0.1 to 4 atomic %, and N is 2 to 5 (more preferably 2.5 to 5) atomic %.

Feが93.8〜97.9原子%であり、これらの合計
が100原子%になる範囲である。この組成範囲を点E
、F、G、H,Iにより第1図に示す。この組成範囲で
は保磁力lieが小さい(およそ10e以下)ので、磁
気ヘッドのコア材料として特に好適である。
Fe is in a range of 93.8 to 97.9 atomic %, and the total thereof is 100 atomic %. This composition range is the point E
, F, G, H, I in FIG. In this composition range, the coercive force lie is small (approximately 10e or less), so it is particularly suitable as a core material for a magnetic head.

本発明の軟磁性薄膜の製造方法は、前記特定組成の非晶
質薄膜を220〜450℃で熱処理して前記非晶質薄膜
を結晶化させて軟磁性薄膜を得る。
In the method for manufacturing a soft magnetic thin film of the present invention, the amorphous thin film having the specific composition is heat-treated at 220 to 450° C. to crystallize the amorphous thin film to obtain a soft magnetic thin film.

前記特定組成の非晶質薄膜は9段差のある下地に形成さ
れた場合の下地被覆性(いわゆるステップカバレッジ)
は良好であるが、良好な軟磁性は示さない。しかし、こ
の非晶質薄膜を220〜450°Cで熱処理して、非晶
質薄膜を結晶化させることにより良好な軟磁性薄膜(例
えば、保磁力Heが40e以下の薄膜)を得ることがで
きる。そのため。
The amorphous thin film with the above-mentioned specific composition has a good base coverage when formed on a base with 9 steps (so-called step coverage).
is good, but does not show good soft magnetism. However, by heat-treating this amorphous thin film at 220 to 450°C to crystallize the amorphous thin film, a good soft magnetic thin film (for example, a thin film with a coercive force He of 40e or less) can be obtained. . Therefore.

例えば、磁気ヘッド製造の際のように1段差のある下地
に製膜しなければならない場合でも、被覆性の良好な軟
磁性薄膜を製膜することができる。
For example, even when a film must be formed on a base with a one-step difference, such as when manufacturing a magnetic head, a soft magnetic thin film with good coverage can be formed.

前記熱処理を220℃未満又は450℃を越える温度で
行なうと、保磁力Haを所望の値(40e以下)に低下
させることができない。好ましい熱処理温度範囲は、お
よそ、250〜400℃である。
If the heat treatment is performed at a temperature lower than 220°C or higher than 450°C, the coercive force Ha cannot be lowered to the desired value (40e or less). A preferred heat treatment temperature range is approximately 250-400°C.

結晶粒径は、好ましくは、500Å以下、より好ましく
は300Å以下にする。
The crystal grain size is preferably 500 Å or less, more preferably 300 Å or less.

前記特定組成の非晶質薄膜は1例えばRFスパッタ法等
の気相析着法により形成できる。
The amorphous thin film having the specific composition can be formed by, for example, a vapor deposition method such as RF sputtering.

非晶質薄膜の好ましい組成範囲は、Si及びMoの1種
以上が0.1〜4原子%であり、Nが2〜5(より好ま
しくは2.5〜5)原子%であり。
A preferable composition range of the amorphous thin film is that one or more of Si and Mo is 0.1 to 4 atomic %, and N is 2 to 5 (more preferably 2.5 to 5) atomic %.

Feが93.8〜97.9原子%であり、これらの合計
が100原子%になる範囲である。この組成範囲の非晶
質薄膜を用いると保磁力Heが小さい(およそ10e以
下)軟磁性薄膜を製造できる。
Fe is in a range of 93.8 to 97.9 atomic %, and the total thereof is 100 atomic %. By using an amorphous thin film in this composition range, a soft magnetic thin film with a small coercive force He (approximately 10e or less) can be manufactured.

より好ましくは、前記熱処理を磁界中において行ない、
−軸磁気異方性を誘導し前記非晶質薄膜の一部ないし全
部を結晶化させて製造することができる。前記磁界は、
好ましくは、前記非晶質薄膜の反磁界よりも充分大きな
磁界とする。
More preferably, the heat treatment is performed in a magnetic field,
- The amorphous thin film can be manufactured by inducing axial magnetic anisotropy and crystallizing part or all of the amorphous thin film. The magnetic field is
Preferably, the magnetic field is sufficiently larger than the demagnetizing field of the amorphous thin film.

[実施例] 実施例1・〜20 Fe−SL金合金ターゲットを用い雰囲気ガスとしてA
rとN2を用いてRFスパッタ法により、サファイーア
基板上に種々の組成の非晶質薄膜を製膜した。膜組成の
変更は、前記ターゲットのSi含有量及び雰囲気ガス中
のN2分圧を変化させることにより行なった。前記スパ
ッタ条件は。
[Example] Examples 1 to 20 A Fe-SL gold alloy target was used as the atmospheric gas.
Amorphous thin films of various compositions were formed on sapphire substrates by RF sputtering using r and N2. The film composition was changed by changing the Si content of the target and the N2 partial pressure in the atmospheric gas. The sputtering conditions are as follows.

陰極電力200W 、全ガス(A r + N 2 )
圧2.0Paであった。前記非晶質薄膜を1kOeの磁
界中で350℃1時間熱処理して本発明の実施例1〜2
oの軟磁性薄膜を得てB−HカーブuJ定を行なった。
Cathode power 200W, total gas (A r + N 2 )
The pressure was 2.0 Pa. Examples 1 and 2 of the present invention were obtained by heat-treating the amorphous thin film at 350° C. for 1 hour in a magnetic field of 1 kOe.
A soft magnetic thin film of o was obtained and the B-H curve uJ was determined.

B−Hカーブは、測定磁界llm=25 (Oe) 、
周波数5011 zで測定し保磁力!!c(容易軸方向
の値)及び磁界250eをかけた時の磁束密度B25を
求めた。これらの結果を第1表に示す。実施例1〜20
の軟磁性薄膜は、  B 25> 18KGであり、か
ツtlc< 40eである。また、異方性磁界の強さは
2〜50e程度である。
The B-H curve is measured magnetic field llm=25 (Oe),
Coercive force measured at frequency 5011z! ! c (value in the easy axis direction) and magnetic flux density B25 when a magnetic field of 250e was applied. These results are shown in Table 1. Examples 1-20
The soft magnetic thin film has B25>18KG and tlc<40e. Further, the strength of the anisotropic magnetic field is about 2 to 50 e.

実施例21〜24 Fe−8i合金のターゲットをF e −M o合金の
ターゲットに変更する以外は前記実施例1〜20と同様
にして軟磁性薄膜(実施例21〜24)を製造した。こ
れらの軟磁性薄膜の保磁力11c(容易軸方向の値)及
び磁束密度B25を前記実施例1〜20と同様にして求
めた。これらの結果を第2表に示す。また、これらの軟
磁性薄膜の異方性磁界の強さは、2〜50e程度である
Examples 21-24 Soft magnetic thin films (Examples 21-24) were produced in the same manner as Examples 1-20 except that the Fe-8i alloy target was changed to a Fe-Mo alloy target. The coercive force 11c (value in the easy axis direction) and magnetic flux density B25 of these soft magnetic thin films were determined in the same manner as in Examples 1 to 20 above. These results are shown in Table 2. Moreover, the strength of the anisotropic magnetic field of these soft magnetic thin films is about 2 to 50 e.

比較例1〜7 また、比較例として、SiとNの双方、又はどちらか一
方を含まないもの(比較例1〜5)。
Comparative Examples 1 to 7 Comparative Examples include those that do not contain both Si and N, or either one (Comparative Examples 1 to 5).

Fe−3i−Nから成りSiが4原子%を越えるもの(
比較例6)及びFe−8i−Nから成りNが5原子%を
越えるもの(比較例7)のHe及びB25を前記と同様
にして求めた。これらの結果を第3表に示す。
Composed of Fe-3i-N and containing more than 4 atomic % of Si (
He and B25 of Comparative Example 6) and Fe-8i-N containing more than 5 atom % of N (Comparative Example 7) were determined in the same manner as above. These results are shown in Table 3.

第1〜3表によれば、Si及びNをFeに特定量添加す
ることにより、著しい軟磁性の向上(lieの低下)が
あるということがわかる。
According to Tables 1 to 3, it can be seen that by adding specific amounts of Si and N to Fe, there is a significant improvement in soft magnetism (reduction in lie).

熱処理温度と保磁力との関係 種々の温度でFe   Si   N   の非晶質9
5.9  1.0 3.1 薄膜の磁界中熱処理(1時間)を行なった。熱処理後の
これら薄膜の保磁力1ie(容易軸方向の値)を前記方
法と同様にして求めた。この結果を第2図に示す。第2
図によれば、220〜450℃で熱処理を行なった場合
、低保持力の軟磁性薄膜を得ることができるということ
がわかる。
Relationship between heat treatment temperature and coercive force
5.9 1.0 3.1 The thin film was heat treated in a magnetic field (1 hour). The coercive force 1ie (value in the easy axis direction) of these thin films after heat treatment was determined in the same manner as above. The results are shown in FIG. Second
According to the figure, it can be seen that a soft magnetic thin film with low coercive force can be obtained when heat treatment is performed at 220 to 450°C.

(以下余白) 第  1 表 第  2 表 第  3 表 結晶の平均粒径と保磁力の関係 Fe   Si   のターゲットを用い、N2分9g
、0    2.0 率を0. 2.5. 4.0及び6.0%に変化してR
Fスパンタ法により薄膜を製膜した。これらの薄膜を3
50’CI時間で熱処理して、夫々サンプルab、c及
びdとした。また−N2分率6.0%で製膜され前記熱
処理を行なりでいない薄膜をサンプルeとした。サンプ
ルaは、Nを含んでいない。
(Left below) Table 1 Table 2 Table 3 Relationship between average crystal grain size and coercive force Using a Fe Si target, 9 g of N2
, 0 2.0 rate 0. 2.5. R changes to 4.0 and 6.0%
A thin film was formed by the F-spanter method. These thin films are
The samples were heat-treated for 50' CI time and designated as samples ab, c and d, respectively. A thin film formed with a -N2 fraction of 6.0% and not subjected to the heat treatment was designated as sample e. Sample a does not contain N.

サンプルb、c、d及びeの組成は1本発明で特定する
範囲内に含まれ、Nの含有率はb<c<dである。
The compositions of samples b, c, d, and e are within the range specified by the present invention, and the N content satisfies b<c<d.

なお、N2分率とは、スパッタガス中の全圧(Ar+N
  )に対するN2分圧の割合であり次式で示される。
Note that the N2 fraction refers to the total pressure in the sputtering gas (Ar+N
) is the ratio of N2 partial pressure to

これらサンプルa −dの結晶の平均粒径及び保磁力1
1cを求めた。平均粒径は、第3図に示されている各サ
ンプルのX線回折の(110)ピークの半値幅より求め
た。なお、第3図のSは、半値幅の基準サンプルとした
鉄(バルク)のX線回折結果である。保磁力は、B−H
カーブトレーサー(50fiz、 250e)で測定し
た。これらの結果を第4表に示す。
Average grain size and coercive force 1 of the crystals of these samples a - d
I found 1c. The average particle size was determined from the half width of the (110) peak of the X-ray diffraction of each sample shown in FIG. Note that S in FIG. 3 is the result of X-ray diffraction of iron (bulk) used as a reference sample of half width. The coercive force is B-H
It was measured with a curve tracer (50fiz, 250e). These results are shown in Table 4.

一方、サンプルeについても上記と同様にして求めよう
と試みた。しかし、X線回折の(110)ピークは現わ
れず(第3図のe参照)、Ha+(!P1定磁界) −
90(Oe)を印加してもほとんど磁化しなかった。
On the other hand, an attempt was made to obtain sample e in the same manner as above. However, the (110) peak of X-ray diffraction did not appear (see e in Figure 3), and Ha + (!P1 constant magnetic field) -
Even when 90 (Oe) was applied, there was almost no magnetization.

以上の結果によれば、熱処理前(サンプルe)はアモル
ファスであり(第3図のe参照)、全く軟磁性を示して
いなかったのであるが、前記熱処理によってアモルファ
スが微結晶化して(第3図のb−d参照)、軟磁性が出
現したことがわかる。
According to the above results, before the heat treatment (sample e), it was amorphous (see e in Figure 3) and did not exhibit any soft magnetism, but as a result of the heat treatment, the amorphous became microcrystallized (sample e). (see b-d in the figure), it can be seen that soft magnetism appeared.

また、第3図のa−dを比較すると窒素添加にともなっ
て急激に結晶の平均粒径が小さ(なっており(結晶が微
細化している)、同時に保磁力Heも低下(軟磁性の向
上)していることがわかる。
In addition, when comparing a to d in Figure 3, the average grain size of the crystals suddenly becomes smaller with the addition of nitrogen (crystals become finer), and at the same time the coercive force He also decreases (improvement of soft magnetism). ).

第  4  表 [発明の効果] 本発明の軟磁性薄膜は、4原子%以下のSi及びMoの
1種以上と5原子%以下のNと残部Feとを主成分とし
て成るので、高飽和磁束密度Bs(例えばB 25> 
16KG)及び低保磁力lie (He< 40e)を
得ることができるとともに高耐声性高硬度を有すること
ができる。飽和磁束密度Bsは、  FeAJ!−5i
系及びFe−Ga−31−Ru系軟磁性材料よりも大き
い。
Table 4 [Effects of the Invention] The soft magnetic thin film of the present invention has a high saturation magnetic flux density because the soft magnetic thin film of the present invention is mainly composed of 4 atomic % or less of one or more of Si and Mo, 5 atomic % or less of N, and the balance Fe. Bs (e.g. B25>
16KG) and low coercive force lie (He < 40e), as well as high voice resistance and high hardness. The saturation magnetic flux density Bs is FeAJ! -5i
and Fe-Ga-31-Ru based soft magnetic materials.

また1本発明の軟磁性薄膜は一軸異方性を有するので1
例えば、薄膜の困難軸方向を磁化方向とすることによっ
て、IMIlzより高い周波数での透磁率を充分高くす
ることができる。
In addition, since the soft magnetic thin film of the present invention has uniaxial anisotropy,
For example, by setting the difficult axis direction of the thin film as the magnetization direction, the magnetic permeability at frequencies higher than IMIlz can be made sufficiently high.

したがって1本発明の軟磁性薄膜は2例えば磁気ヘッド
のコア材料として好適である。
Therefore, the soft magnetic thin film of the present invention is suitable as, for example, a core material for a magnetic head.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は1本発明の軟磁性薄膜の組成範囲を示す図であ
る。 第2図は、非晶質薄膜(Fe   5i95.9 1.
O N  )の熱処理温度TAと、前記熱処理によっ3.1 て得られた軟磁性薄膜の保磁力Heとの関係を示す図で
ある。 第3図は、X線回折結果を示す図である。
FIG. 1 is a diagram showing the composition range of the soft magnetic thin film of the present invention. Figure 2 shows an amorphous thin film (Fe 5i95.9 1.
3.1 is a diagram showing the relationship between the heat treatment temperature TA of O N ) and the coercive force He of the soft magnetic thin film obtained by the heat treatment. FIG. 3 is a diagram showing the results of X-ray diffraction.

Claims (5)

【特許請求の範囲】[Claims] (1)4原子%以下のSi及びMoの1種以上と5原子
%以下のNと残部Feとを主成分として成り一軸異方性
を有する軟磁性薄膜。
(1) A soft magnetic thin film having uniaxial anisotropy and consisting mainly of one or more of Si and Mo at 4 atomic % or less, N at 5 atomic % or less, and the balance Fe.
(2)0.1〜4原子%のSi及びMoの1種以上と2
〜5原子%のNと93.8〜97.9原子%のFeとを
主成分として成ることを特徴とする請求項1記載の軟磁
性薄膜。
(2) 0.1 to 4 at% of one or more of Si and Mo and 2
2. The soft magnetic thin film according to claim 1, characterized in that the main components are ~5 atomic % of N and 93.8 to 97.9 atomic % of Fe.
(3)4原子%以下のSi及びMoの1種以上と5原子
%以下のNと残部Feとを主成分として成る非晶質薄膜
を220〜450℃で熱処理して前記非晶質薄膜を結晶
化させることを特徴とする軟磁性薄膜の製造方法。
(3) An amorphous thin film mainly composed of 4 atomic % or less of one or more of Si and Mo, 5 atomic % or less of N, and the balance Fe is heat-treated at 220 to 450°C to form the amorphous thin film. A method for producing a soft magnetic thin film characterized by crystallization.
(4)前記非晶質薄膜は、0.1〜4原子%のSi及び
Moの1種以上と2〜5原子%のNと93.8〜97.
9原子%のFeとを主成分として成ることを特徴とする
請求項3記載の軟磁性薄膜の製造方法。
(4) The amorphous thin film contains 0.1 to 4 atomic % of one or more of Si and Mo, 2 to 5 atomic % of N, and 93.8 to 97 atomic %.
4. The method of manufacturing a soft magnetic thin film according to claim 3, wherein the main component is 9 atomic % of Fe.
(5)前記熱処理を磁界中で行ない一軸異方性を有する
軟磁性薄膜を得ることを特徴とする請求項3又は4記載
の軟磁性薄膜の製造方法。
(5) The method of manufacturing a soft magnetic thin film according to claim 3 or 4, wherein the heat treatment is performed in a magnetic field to obtain a soft magnetic thin film having uniaxial anisotropy.
JP8160589A 1989-04-03 1989-04-03 Soft magnetic thin film and its manufacture Pending JPH02262306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8160589A JPH02262306A (en) 1989-04-03 1989-04-03 Soft magnetic thin film and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8160589A JPH02262306A (en) 1989-04-03 1989-04-03 Soft magnetic thin film and its manufacture

Publications (1)

Publication Number Publication Date
JPH02262306A true JPH02262306A (en) 1990-10-25

Family

ID=13750950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8160589A Pending JPH02262306A (en) 1989-04-03 1989-04-03 Soft magnetic thin film and its manufacture

Country Status (1)

Country Link
JP (1) JPH02262306A (en)

Similar Documents

Publication Publication Date Title
US5104464A (en) Soft magnetic alloy film
US4748000A (en) Soft magnetic thin film
JP2963003B2 (en) Soft magnetic alloy thin film and method of manufacturing the same
JP2698814B2 (en) Soft magnetic thin film
JPH0320444A (en) Soft magnetic alloy film
JPH02275605A (en) Soft magnetic thin film
JPH0484403A (en) Soft magnetic thin film
JPH043905A (en) Magnetic material film
JP2698813B2 (en) Soft magnetic thin film
JPH02262306A (en) Soft magnetic thin film and its manufacture
JPH03263306A (en) Magnetic film and magnetic head
JPH03265104A (en) Soft magnetic alloy film
Katori et al. Soft magnetic properties for Fe-Al-Nb-NO films
JP2784105B2 (en) Soft magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JP2584687B2 (en) Method for manufacturing soft magnetic thin film
JP2979557B2 (en) Soft magnetic film
JPH031513A (en) Manufacture of soft magnetic thin film
JP2771664B2 (en) Soft magnetic alloy film
JP2522284B2 (en) Soft magnetic thin film
JPH0416517A (en) Soft magnetic thin film
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPH0439905A (en) Magnetically soft alloy film
JPH0489606A (en) Production of soft magnetic thin film
JPS63146417A (en) Soft magnetic thin film