JP2554444B2 - Uniaxial magnetic anisotropic thin film - Google Patents

Uniaxial magnetic anisotropic thin film

Info

Publication number
JP2554444B2
JP2554444B2 JP5224439A JP22443993A JP2554444B2 JP 2554444 B2 JP2554444 B2 JP 2554444B2 JP 5224439 A JP5224439 A JP 5224439A JP 22443993 A JP22443993 A JP 22443993A JP 2554444 B2 JP2554444 B2 JP 2554444B2
Authority
JP
Japan
Prior art keywords
film
thin film
magnetic
magnetic field
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5224439A
Other languages
Japanese (ja)
Other versions
JPH0786035A (en
Inventor
伸治 古川
繁弘 大沼
文夫 松本
啓安 藤森
健 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMORUFUASU DENSHI DEBAISU KENKYUSHO KK
Original Assignee
AMORUFUASU DENSHI DEBAISU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AMORUFUASU DENSHI DEBAISU KENKYUSHO KK filed Critical AMORUFUASU DENSHI DEBAISU KENKYUSHO KK
Priority to JP5224439A priority Critical patent/JP2554444B2/en
Publication of JPH0786035A publication Critical patent/JPH0786035A/en
Application granted granted Critical
Publication of JP2554444B2 publication Critical patent/JP2554444B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高周波域で優れた軟磁気
特性を有する電気比抵抗および飽和磁化の大きな一軸磁
気異方性薄膜に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a uniaxial magnetic anisotropic thin film having excellent soft magnetic characteristics in a high frequency range and having a large electric resistivity and saturation magnetization.

【0002】[0002]

【従来の技術】近年、電子機器の動作周波数を高める努
力が盛んに行われている。しかし、トランスやインダク
ターあるいは磁気ヘッドなどに用いられている既知の磁
性材料には高周波域で充分な特性を有するものはなく、
従ってこれら部品の高周波域での使用には制限が多かっ
た。一般に、1MHz以上の高周波域になると磁性材料
自体を流れる渦電流により大きな損失が発生する。金属
系の磁性材料は電気抵抗が小さいために渦電流損が大き
く高周波域で使用することは困難であった。一方、フェ
ライトおよびガーネットなどの酸化物系磁性材料は材料
自体の電気抵抗が非常に高いため、渦電流による損失は
比較的発生しにくい。しかし、透磁率の大きなものが得
にくく、かつ飽和磁束密度が小さいために自然共鳴周波
数が低く、高周波域での使用には制限が多かった。
2. Description of the Related Art In recent years, efforts have been actively made to increase the operating frequency of electronic equipment. However, there are no known magnetic materials used in transformers, inductors, magnetic heads, etc. that have sufficient characteristics in the high frequency range.
Therefore, there are many restrictions on the use of these components in the high frequency range. Generally, in the high frequency region of 1 MHz or more, a large loss occurs due to the eddy current flowing through the magnetic material itself. Since the metal-based magnetic material has a small electric resistance, it has a large eddy current loss and is difficult to use in a high frequency range. On the other hand, oxide-based magnetic materials such as ferrite and garnet have a very high electric resistance, so that loss due to eddy current is relatively unlikely to occur. However, it is difficult to obtain a high magnetic permeability, and the saturation magnetic flux density is small, so that the natural resonance frequency is low, and there are many restrictions on use in a high frequency range.

【0003】飽和磁束密度が高く、かつ高周波特性の良
好な磁性材料に対する期待は大きく、これまでに金属系
磁性材料の電気抵抗を高くする方法が提案されている。
例えば,金属とセラミクスの同時スパッタリングにより
セラミクスが分散した非晶質合金膜を得る方法が特開昭
60−152651号公報により提案され,さらに,J.
Appl.Phys.63(8),15 April 1988 にFe−B4 C系分散
膜が、J.AppL.Phys.67(9),1 May 1990にCo0.4 Fe
0.40.2 −SiO2 系分散膜が高い比抵抗と軟磁気特
性を両立するものとして示されている。また、厚い単層
膜では良好な軟磁気特性が得られないCo0.95Fe0.05
−BN系分散膜を0.1μm以下の磁性層とすることで
軟磁気特性が得られ、この薄い膜を非磁性中間層を挟ん
で積層することにより厚い膜でも軟磁気特性が得られる
ことが特開平4ー142710号公報に示されている。
There is great expectation for a magnetic material having a high saturation magnetic flux density and good high-frequency characteristics, and methods for increasing the electric resistance of a metallic magnetic material have been proposed.
For example, a method for obtaining an amorphous alloy film in which ceramics are dispersed by co-sputtering of metal and ceramics has been proposed in JP-A-60-152651, and further, J.
Appl.Phys.63 (8), 15 April 1988, Fe-B 4 C based dispersion film, J.AppL.Phys.67 (9), 1 May 1990 Co 0.4 Fe.
It is shown that the 0.4 B 0.2 -SiO 2 -based dispersion film has both high specific resistance and soft magnetic properties. Further, good soft magnetic characteristics cannot be obtained with a thick single-layer film. Co 0.95 Fe 0.05
-By using a BN-based dispersion film as a magnetic layer having a thickness of 0.1 μm or less, soft magnetic properties can be obtained, and by stacking thin films with a non-magnetic intermediate layer interposed, soft magnetic properties can be obtained even with a thick film. It is disclosed in Japanese Patent Application Laid-Open No. 4-142710.

【0004】一方,N2 やO2 ガスによる反応性スパッ
タリングにより電気比抵抗の高い非晶質合金膜を得る方
法が特開昭54ー94428号公報に開示されている。
また,薄膜の作成時にN2 ガスを添加すると,軟磁気特
性の改善に効果があることが多くの合金系で見いだされ
ており,例えばIEEE TRANS. ON MAG. MAG-20 1451 (198
4)に開示されている。
On the other hand, a method of obtaining an amorphous alloy film having a high electric resistivity by reactive sputtering with N 2 or O 2 gas is disclosed in JP-A-54-94428.
In addition, it has been found in many alloy systems that the addition of N 2 gas at the time of forming a thin film is effective in improving the soft magnetic properties. For example, IEEE TRANS. ON MAG. MAG-20 1451 (198
It is disclosed in 4).

【0005】[0005]

【発明が解決しようとする課題】高周波域で用いられる
磁性材料は、電気抵抗と飽和磁化がともに高いことが求
められる。また、加工歪みなどによる軟磁気特性の劣下
を最小限にするために、素材の磁歪定数ができるだけ零
に近いことが望ましい。しかし、従来から報告されてい
るFe/B4 C系分散膜、Co0.4 Fe0.40.2 /S
iO2 系分散膜はいずれも非晶質相の場合に軟磁気特性
が優れていることが示されているが、10ー5以上の非常
に大きな正磁歪を有していた。一方、零磁歪と高抵抗を
両立する目的でCo0.95Fe0.05/BN系分散膜が開発
されたが、この系は0.1μm以上の厚い単層膜では飽
和磁界および保磁力が大きく軟磁性を示さなかった。そ
こで、非磁性層を介して積層することにより軟磁性が得
られることが示されているが、このことは反面で膜全体
の飽和磁化を減少させることになり、また工程も複雑に
なるといった問題点を含んでいた。
A magnetic material used in a high frequency range is required to have high electric resistance and high saturation magnetization. In addition, it is desirable that the magnetostriction constant of the material be as close to zero as possible in order to minimize deterioration of the soft magnetic characteristics due to processing strain. However, the previously reported Fe / B 4 C based dispersion film, Co 0.4 Fe 0.4 B 0.2 / S
It has been shown that all of the iO 2 -based dispersion films have excellent soft magnetic characteristics when they are in the amorphous phase, but they have a very large positive magnetostriction of 10 −5 or more. On the other hand, a Co 0.95 Fe 0.05 / BN dispersion film was developed for the purpose of achieving both zero magnetostriction and high resistance. This system has a large saturation magnetic field and a large coercive force in a thick single layer film of 0.1 μm or more and has a soft magnetic property. Not shown. Therefore, it has been shown that soft magnetic properties can be obtained by stacking via a non-magnetic layer, but on the other hand, this means that the saturation magnetization of the entire film is reduced and the process becomes complicated. Included points.

【0006】一方、近年、Fe基合金の結晶粒を微細化
することにより磁歪定数の小さな軟磁性材料を開発する
ことが盛んに検討されている。例えば、特開平3−11
2104号公報にはスパッタリングによって作製された
非晶質相を結晶化熱処理することにより、ZrやTaの
炭化物が分散したFe合金が得られ、飽和磁歪が小さく
軟磁気特性にも優れていることが示されている。この合
金薄膜にさらにAlを添加することにより100〜20
0μΩcmの比抵抗が得られることが示されているが、高
周波域での渦電流損失を抑制するためには充分とは言え
ず、また高比抵抗のものは飽和磁束密度が小さいという
問題点もあった。さらに、これらの薄膜は非晶質合金薄
膜を結晶化熱処理する工程を経て使用に供せられるが、
この熱処理温度が500℃以上と高温なため、耐熱性の
ない基板や高温に晒せない素子などには用いることがで
きなかった。
On the other hand, in recent years, it has been actively studied to develop a soft magnetic material having a small magnetostriction constant by refining the crystal grains of an Fe-based alloy. For example, Japanese Patent Laid-Open No. 3-11
In Japanese Patent No. 2104, a Fe alloy in which Zr or Ta carbide is dispersed is obtained by subjecting an amorphous phase produced by sputtering to crystallization heat treatment, and the saturation magnetostriction is small and the soft magnetic property is excellent. It is shown. By further adding Al to this alloy thin film, 100 to 20
It has been shown that a specific resistance of 0 μΩcm can be obtained, but it cannot be said to be sufficient to suppress eddy current loss in the high frequency range, and a high specific resistance has a problem that the saturation magnetic flux density is small. there were. In addition, these thin films can be used after undergoing a crystallization heat treatment of an amorphous alloy thin film.
Since this heat treatment temperature is as high as 500 ° C. or higher, it cannot be used for a substrate having no heat resistance or an element which is not exposed to high temperature.

【0007】一方、成膜直後の状態で微細な結晶粒を得
るために、NやOを含む雰囲気中でFe基合金を成膜す
る方法が特開平3−120339号公報などに開示され
ている。しかし、これらの方法で得られる薄膜の電気比
抵抗は高周波域での渦電流損失を抑制し得るほど大きな
ものではなかった。また、1993年第112回日本金
属学会春期大会講演概要集p84(143)にはFeH
f合金をO2 を含む雰囲気中でスパッタリングすること
により電気比抵抗が高く軟磁気特性に優れた非晶質合金
薄膜が作製され得ることが示されているが、磁歪に関す
る記載はなかった。
On the other hand, a method of forming a Fe-based alloy in an atmosphere containing N or O in order to obtain fine crystal grains immediately after film formation is disclosed in Japanese Patent Laid-Open No. 3-120339. . However, the electrical resistivity of the thin films obtained by these methods was not large enough to suppress eddy current loss in the high frequency range. FeH is also included in the summary of lectures at the 112th Spring Meeting of the Japan Institute of Metals, 1993, p84 (143).
It has been shown that an amorphous alloy thin film having a high electric resistivity and an excellent soft magnetic property can be produced by sputtering the f alloy in an atmosphere containing O 2 , but there is no description regarding magnetostriction.

【0008】ところで、高周波域で磁芯損失を発生させ
る大きな原因は、上述したような渦電流損の他に共鳴損
がある。この共鳴損失は,飽和磁束密度と異方性磁界が
高いほど抑制される。この点から、飽和磁束密度の大き
なFe基合金は高周波用磁芯として有望であったが、C
o基などと比べて異方性磁界を大きくすることが困難で
あったことから、十分な高周波特性を有する材料は、こ
れまで報告されていなかった。
By the way, a major cause of magnetic core loss in the high frequency range is resonance loss in addition to the above-mentioned eddy current loss. This resonance loss is suppressed as the saturation magnetic flux density and the anisotropic magnetic field are higher. From this point, an Fe-based alloy having a large saturation magnetic flux density was promising as a high-frequency magnetic core, but C
Since it was difficult to increase the anisotropic magnetic field as compared with the case of using an o-group or the like, a material having sufficient high frequency characteristics has not been reported so far.

【0009】以上のように、電気比抵抗が大きく、磁歪
が小さく、厚い単層膜でも良好な軟磁気特性を有する高
周波用磁性薄膜材料が求められていた。本発明は上記の
点に鑑みてなされたもので、高周波域で優れた軟磁気特
性を有する電気比抵抗および飽和磁化の大きな一軸磁気
異方性薄膜を提供することを目的とする。
As described above, there has been a demand for a high-frequency magnetic thin film material having a large electric resistivity, a small magnetostriction, and a good soft magnetic property even in a thick single layer film. The present invention has been made in view of the above points, and an object of the present invention is to provide a uniaxial magnetic anisotropic thin film having excellent soft magnetic characteristics in a high frequency range and large electric resistivity and saturation magnetization.

【0010】[0010]

【課題を解決するための手段及び作用】本発明者らは、
上記の事情を鑑みて鋭意努力した結果、酸化物系のセラ
ミクスとbcc−Feとの複合分散膜により、電気比抵
抗が高く、磁歪が小さく、かつ0.1μm 以上の厚い単
層膜でも良好な軟磁気特性が得られることを見いだし
た。さらに、これらの薄膜を直流磁界のもとで成膜する
ことにより、一軸磁気異方性を付与し得ることを見いだ
した。この時の異方性磁界は従来のFe系磁性薄膜では
考えられないほど大きく、100Oeを超えるものもあ
った。これらの膜は、大きな異方性磁界のために自然共
鳴周波数が非常に高く、数100MHz以上でも軟磁気
特性が劣下しないという優れた特徴を有していることを
見いだし、本発明に至ったものである。
Means and Action for Solving the Problems The present inventors have
As a result of diligent efforts in view of the above circumstances, a composite dispersion film of oxide-based ceramics and bcc-Fe has a high electric resistivity, a small magnetostriction, and a single-layer film having a thickness of 0.1 μm or more is good. It was found that soft magnetic characteristics can be obtained. Furthermore, they have found that uniaxial magnetic anisotropy can be imparted by forming these thin films under a DC magnetic field. The anisotropic magnetic field at this time was so large as to be unthinkable with the conventional Fe-based magnetic thin film, and sometimes exceeded 100 Oe. It was found that these films have an extremely high natural resonance frequency due to a large anisotropic magnetic field, and have an excellent feature that soft magnetic characteristics do not deteriorate even at several 100 MHz or more, and the present invention has been completed. It is a thing.

【0011】[0011]

【実施例】以下、従来の複合分散膜などとの比較を加え
ながら、本発明の実施例を説明する。BN,SiC,S
iO2 などのセラミクスとFe,Fe合金などの金属を
同時にスパッタリングして作製される膜には、透過電子
顕微鏡などで詳細に観察すると、成膜後そのままの状態
で特有のネットワーク状の結晶組織が見いだされる。こ
れは金属を主とする非晶質あるいは結晶質のクラスター
をセラミックを主とする粒界相が覆ったものであり、こ
れらの膜が通常の金属薄膜に比べて2〜104倍高い電
気比抵抗を示すのはこの組織が主因となっている。本発
明者らはFeとセラミクスの組み合わせが膜の結晶構造
や磁気特性に及ぼす影響について詳細に検討した。その
結果以下のことが新たに見いだされた。成膜後のクラス
ターが非晶質である膜は、高電気比抵抗と軟磁性および
10-5上の大きな正磁歪を示し、この傾向はセラミクス
の種類には依らない。一方、クラスターが結晶質であっ
た場合には、セラミクスの種類が磁気特性に大きく影響
する。すなわち、BNやSiCなどの窒化物や炭化物か
らなる複合分散膜の場合は、成膜した状態で結晶質であ
る膜は軟磁性を示さない。一方、非晶質相を熱処理して
クラスターがbcc−Fe相に結晶化した薄膜は軟磁性
を示し、結晶化とともに飽和磁歪定数が減少し、10-6
台に改善されるが、1kOe以上の大きな磁界中で熱処
理しても一軸磁気異方性を付与しにくく、そのために高
周波特性は充分ではない。例えば、Fe−Si34
では非晶質から結晶化する過程で一軸異方性を失う。ま
た、Fe−AlN系薄膜は非晶質でも熱処理後の結晶膜
でも共に等方的な膜しか得られない。数10MHz以上
の高周波域では一軸磁気異方性は電気比抵抗以上に重大
な役割を担う。すなわち、異方性磁界の小さなものは自
然共鳴周波数が低く、また異方性磁界の分散も大きくな
りやすいために高損失となり高周波域での使用には適さ
ない。
EXAMPLES Examples of the present invention will be described below with comparison with a conventional composite dispersion film and the like. BN, SiC, S
A film made by simultaneously sputtering ceramics such as io 2 and metals such as Fe and Fe alloys has a unique network-like crystal structure when observed in detail with a transmission electron microscope. To be found. This is an amorphous or crystalline cluster mainly composed of a metal covered with a grain boundary phase mainly composed of a ceramic, and these films have an electrical ratio 2 to 10 4 times higher than that of an ordinary metal thin film. This organization is the main reason for the resistance. The present inventors have examined in detail the effect of the combination of Fe and ceramics on the crystal structure and magnetic properties of the film. As a result, the following was newly found. The film in which the clusters after film formation are amorphous exhibits high electric resistivity and soft magnetism and large positive magnetostriction of 10 −5 , and this tendency does not depend on the type of ceramics. On the other hand, when the clusters are crystalline, the type of ceramics greatly affects the magnetic properties. That is, in the case of a composite dispersion film made of a nitride or a carbide such as BN or SiC, the film that is crystalline in the formed state does not exhibit soft magnetism. On the other hand, a thin film in which the amorphous phase is heat-treated and the clusters are crystallized into the bcc-Fe phase exhibits soft magnetism, and the saturation magnetostriction constant decreases with crystallization, and 10 -6
However, even if heat treatment is performed in a large magnetic field of 1 kOe or more, it is difficult to impart uniaxial magnetic anisotropy, and therefore high frequency characteristics are not sufficient. For example, Fe—Si 3 N 4 system loses uniaxial anisotropy in the process of crystallization from amorphous. Further, the Fe-AlN-based thin film is either an amorphous film or a crystal film after heat treatment, and only an isotropic film can be obtained. The uniaxial magnetic anisotropy plays a more important role than the electrical resistivity in the high frequency range of several tens of MHz or more. That is, a material having a small anisotropic magnetic field has a low natural resonance frequency and tends to have a large dispersion of the anisotropic magnetic field, resulting in high loss and not suitable for use in a high frequency range.

【0012】それに対して、Feと酸化物またはフッ化
物からなる複合分散膜は、クラスターがbcc−Fe相
となった膜は成膜したままでも良好な軟磁性を示す。以
下、Fe−SiO2 系を例として説明する。SiO2
多い膜は、炭化物系や窒化物系と同様に非晶質となり、
軟磁気特性を示す。また、SiO2 が少ない膜は結晶質
となるが、それらのうちで主にbcc−Fe相からなる
膜は、成膜したままの状態で軟磁性を示す。これらの膜
の飽和磁歪は、ともに+10-6のオーダーで炭化物系や
窒化物の非晶質膜に比べて小さく、特にbcc−Feを
主相とする膜は+3×10-6程度と十分小さい。また、
窒化物系や炭化物系とは異なり、これらの膜では成膜中
に静磁界を加えることで一軸磁気異方性を容易に付加す
ることができ、このときの異方性磁界は非晶質の膜では
15 Oe程度と特に大きなものではないが、bcc−
Feを主相とする膜では非常に大きく、100 Oeを
超えるものもある。これほどの大きな飽和磁界が優れた
軟磁気特性とともに得られた例はこれまで報告されたこ
とはなかった。この膜の飽和磁束密度は10〜18kG
と大きいため、理論上の自然共鳴周波数は2GHz以上
にもなり、電気比抵抗も100〜1000μΩcmと大
きいため渦電流損失も少なく、非常に高周波特性に優れ
たものである。このように、bcc−Feを主相とする
膜が軟磁性と大きな異方性を示すことは、Fe−SiO
2 系に限られたものではなく、Feと酸化物系あるいは
フッ化物系のセラミクスからなる複合分散膜に全般に認
められるものである。本発明は以上の知見によりもたら
されたものであり、『一般式 Fe100-x-y-zxy
z (原子%)で示され、MはBe,B,Mg,Al,
Si,Ca,Ti,Y,Zr,Mo,In,Sn,C
s,Ba,La,Hf,Ta,Bi,Pb,Wのうちか
ら選択される1種または2種以上の元素であり、Lは
O、Fのうちから選択される1種または2種の元素であ
り、それぞれの原子比率が、 5≦ x ≦25 0≦ y ≦15 15≦ z ≦35 28≦x+y+z≦50 であり、その結晶構造が主にbcc−Fe構造とMの酸
化物相あるいはフッ化物相からなり、異方性磁界が25
Oe以上であることを特徴とする高抵抗な軟磁性薄
膜。』をその主旨とするものである。
On the other hand, the composite dispersion film composed of Fe and an oxide or fluoride shows good soft magnetism even when the film in which the clusters are in the bcc-Fe phase is formed. Hereinafter, it will be explained as an example Fe-SiO 2 system. A film containing a large amount of SiO 2 becomes amorphous like a carbide-based or nitride-based film,
It exhibits soft magnetic properties. Further, a film containing less SiO 2 becomes crystalline, but among them, a film mainly composed of the bcc-Fe phase exhibits soft magnetism in the as-formed state. The saturation magnetostriction of these films is on the order of +10 -6 , which is smaller than that of carbide-based or nitride-based amorphous films. In particular, the film containing bcc-Fe as the main phase is about + 3 × 10 -6, which is sufficiently small. . Also,
Unlike nitride-based and carbide-based films, uniaxial magnetic anisotropy can be easily added to these films by applying a static magnetic field during film formation. The film is not so large as about 15 Oe, but bcc-
Films containing Fe as the main phase are very large, and some of them exceed 100 Oe. No case has been reported so far in which such a large saturation magnetic field was obtained with excellent soft magnetic properties. The saturation magnetic flux density of this film is 10-18 kG
Therefore, the theoretical natural resonance frequency is 2 GHz or more, and the electrical resistivity is also as large as 100 to 1000 μΩcm, so that the eddy current loss is small and the high frequency characteristics are excellent. Thus, the fact that the film containing bcc-Fe as the main phase exhibits soft magnetism and large anisotropy means that Fe-SiO
It is not limited to the two types, but is generally found in composite dispersion films composed of Fe and oxide-based or fluoride-based ceramics. The present invention has been made based on the above findings, and is described in "General formula Fe 100-xyz M x N y
L z (atomic%), M is Be, B, Mg, Al,
Si, Ca, Ti, Y, Zr, Mo, In, Sn, C
s, Ba, La, Hf, Ta, Bi, Pb, W is one or more elements selected, and L is one or two elements selected from O and F And the respective atomic ratios are 5 ≦ x ≦ 250 0 ≦ y ≦ 15 15 ≦ z ≦ 35 28 ≦ x + y + z ≦ 50, and their crystal structures are mainly bcc-Fe structure and M oxide phase or fluorine. Compound phase, and an anisotropic magnetic field of 25
A high-resistance soft magnetic thin film having Oe or more. 』Is the main idea.

【0013】本発明の薄膜は、金属的な結晶質のクラス
ターをセラミックを主とする粒界相が覆ったネットワー
ク構造となっている。XPSなどの状態分析により、こ
の粒界の組成はセラミクスターゲットの組成に強く依存
しており、また金属クラスターもFe単体ではなく、セ
ラミクスターゲットから与えられたM元素とFeの合金
であることが明らかになっている。すなわち、セラミク
スターゲットを変えると、金属クラスター相も粒界相も
組成が大きく変化する。しかし、本発明においてはMは
Be,B,Mg,Al,Si,Ca,Ti,Y,Zr,
Mo,In,Sn,Cs,Ba,La,Hf,Ta,B
i,Pb,Wのうちから選択されるものであれば軟磁気
特性を得ることができる。このことは、本発明の薄膜に
おける軟磁気特性の原因を次のように説明すると理解で
きるであろう。すなわち、高い結晶対称性を有するbc
c−Fe相は、セラミクス粒界のネットワーク構造のた
めに粒成長を妨げられて微結晶となっている。適度の大
きさの微結晶からなるbcc- Fe合金が、個々の微結
晶の磁気異方性がキャンセルされるため軟磁気特性を示
すことは、FeNbCuSiB合金などでもよく知られ
ている。本発明の薄膜では、粒界相は主にbcc相を収
容する『枠』として働いており、金属相の合金化もbc
c相が維持される限りは軟磁気特性が発現すると考える
と、組成依存性がないことも理解できる。従って、本発
明においては、MとLの組成は主に粒界のネットワーク
構造の形成により規定される。ネットワーク構造を作る
ためには、Mは5原子%以上必要であり、5%未満の場
合は軟磁性を得ることができず、25原子%を超えた場
合は飽和磁束密度が小さくなりすぎるために好ましくな
い。LはMの量とその種類により量が変化するが、15
原子%未満ではネットワーク構造を作り得ないために好
ましくなく、また35原子%を超えると軟磁性が劣下し
たり高周波域で異常な損失が発生するために好ましくは
ない。一方、クラスターはbcc−Fe構造を維持でき
ていれば他の元素を固溶していても問題はない。このこ
とはセラミクスターゲットの種類を制限しないととも
に、FeターゲットをFe合金ターゲットに変えても、
軟磁気特性が得られることを示している。実際、Feを
Coで置換してもその置換量がbcc構造を維持できる
70%以内であれば軟磁気特性が得られ、飽和磁束密度
を大きくすることができる。同様の理由により他の元素
であってもbcc構造を阻害しない範囲であれば、Fe
に添加することは本発明の範囲に含まれるものである。
一方、本発明において、Nは他の元素にはない非常に重
要な作用を及ぼす。その1つとして、Nは非晶質形成元
素としても作用するため、25原子%を超える添加で非
晶質化することが挙げられる。この場合、飽和磁歪定数
が10-5こえる大きなものとなるばかりか、垂直磁気異
方性が発生するために軟磁性を失う。また、軟磁性が維
持される25原子%以下の範囲で、Nの量が増えるに従
って異方性磁界が減少する。そのために、本発明の薄膜
では膜中のNの組成により異方性磁界の大きさを制御す
ることができる。高周波帯域では主として回転磁化によ
る磁化過程が支配的であり、その際透磁率は異方性磁界
に反比例する。そのため、異方性磁界を適当な大きさに
調節できることは非常に有効である。ただしNが15原
子%を超えると、等方膜となり、本発明の特徴を失うた
めに適当ではない。本発明において25Oe以上の大き
な一軸磁気異方性を得るためには、膜中のN濃度は13
原子%以下にすることが好ましい。膜中のNの添加は、
窒化物のターゲットを追加しても行なうことができる
が、スパッタガスにNを含むガスを加えることによって
も調節することができる。本発明において前述したNの
添加以外にも、成膜時の基板温度やスパッタ圧、印加磁
界などにより異方性磁界を調整することができ、使用す
る周波数や透磁率を考慮しながら成膜条件を適宜選択す
ればよい。
The thin film of the present invention has a network structure in which a metallic crystalline cluster is covered with a grain boundary phase mainly composed of ceramics. From the state analysis such as XPS, it is clear that the composition of this grain boundary strongly depends on the composition of the ceramic target, and the metal cluster is not an elemental Fe but an alloy of M element and Fe given from the ceramic target. It has become. That is, when the ceramic target is changed, the composition of both the metal cluster phase and the grain boundary phase changes greatly. However, in the present invention, M is Be, B, Mg, Al, Si, Ca, Ti, Y, Zr,
Mo, In, Sn, Cs, Ba, La, Hf, Ta, B
Soft magnetic characteristics can be obtained as long as it is selected from i, Pb, and W. This can be understood by explaining the cause of the soft magnetic property in the thin film of the present invention as follows. That is, bc having high crystal symmetry
The c-Fe phase is disturbed by grain growth due to the network structure of the ceramic grain boundaries and becomes fine crystals. It is well known that FeNbCuSiB alloy and the like show that a bcc-Fe alloy composed of microcrystals of an appropriate size exhibits soft magnetic characteristics because the magnetic anisotropy of each microcrystal is canceled. In the thin film of the present invention, the grain boundary phase mainly acts as a “frame” for accommodating the bcc phase, and the alloying of the metal phase is also bc.
It can be understood that there is no composition dependence, considering that the soft magnetic properties are exhibited as long as the c phase is maintained. Therefore, in the present invention, the composition of M and L is mainly defined by the formation of the network structure of grain boundaries. In order to form a network structure, M needs to be 5 atomic% or more. If it is less than 5%, soft magnetism cannot be obtained, and if it exceeds 25 atomic%, the saturation magnetic flux density becomes too small. Not preferable. The amount of L varies depending on the amount of M and its type.
If it is less than atomic%, a network structure cannot be formed, and if it exceeds 35 atomic%, it is not preferable because the soft magnetism is deteriorated or an abnormal loss occurs in a high frequency range. On the other hand, as long as the cluster can maintain the bcc-Fe structure, there is no problem even if other elements form a solid solution. This does not limit the type of ceramic target, and even if the Fe target is changed to the Fe alloy target,
It is shown that soft magnetic characteristics can be obtained. In fact, even if Fe is replaced with Co, if the amount of replacement is within 70% that can maintain the bcc structure, soft magnetic characteristics can be obtained and the saturation magnetic flux density can be increased. For the same reason, other elements may be Fe as long as they do not hinder the bcc structure.
Addition to is included in the scope of the present invention.
On the other hand, in the present invention, N exerts a very important action which is not present in other elements. One of them is that N also acts as an amorphous forming element, so that N is made amorphous when added in excess of 25 atom%. In this case, the saturation magnetostriction constant exceeds 10 −5 and becomes large, and the perpendicular magnetic anisotropy is generated, so that the soft magnetism is lost. In addition, the anisotropic magnetic field decreases as the amount of N increases in the range of 25 atomic% or less where soft magnetism is maintained. Therefore, in the thin film of the present invention, the magnitude of the anisotropic magnetic field can be controlled by the composition of N in the film. In the high frequency band, the magnetization process due to rotational magnetization is dominant, and the permeability is inversely proportional to the anisotropic magnetic field. Therefore, it is very effective that the anisotropic magnetic field can be adjusted to an appropriate level. However, when N exceeds 15 atomic%, an isotropic film is formed, and the characteristics of the present invention are lost, which is not suitable. In order to obtain a large uniaxial magnetic anisotropy of 25 Oe or more in the present invention, the N concentration in the film is 13
It is preferably at most atomic%. The addition of N in the film is
This can be performed by adding a nitride target, but can also be adjusted by adding a gas containing N to the sputtering gas. In addition to the addition of N described above in the present invention, the anisotropic magnetic field can be adjusted by the substrate temperature, the sputtering pressure, the applied magnetic field, etc. during film formation, and the film forming conditions can be adjusted by considering the frequency to be used and the magnetic permeability. May be selected appropriately.

【0014】以下、本発明を具体的実施例を用いてさら
に詳しく説明する。 [実施例−1]直径4インチで純度が99.9%のFe
円盤上に、被覆率が30%となるように純度が99.9
%のSiO2 板を扇状に設置した複合ターゲットを、高
周波スパッタリングすることによりFe−SiO2 薄膜
を作製した。成膜条件は以下の表−1のように設定し
た。
Hereinafter, the present invention will be described in more detail with reference to specific examples. [Example-1] Fe having a diameter of 4 inches and a purity of 99.9%
On the disk, the purity is 99.9 so that the coverage is 30%.
% Of a SiO 2 plate in a fan shape to produce a Fe—SiO 2 thin film by high frequency sputtering. The film forming conditions were set as shown in Table 1 below.

【0015】表−1 スパッタ圧力 1.0×10-2 Torr 投入電力 90W 基板温度 20℃(水冷) 基板 コーニング#7059 厚さ0.
5mm 膜厚 2.4μm スパッタガス流量 Ar 10CCM 印加磁界 1対の永久磁石 (40 Oe) 得られた試料は理学電気社製X線回折装置RAD−3A
により組織を同定した。結果を図2に示す。2θが44
゜付近にbcc−Feの(110)面に対応するブロー
ドな回折ピークが観察される。次に、次に日立製作所社
製透過電子顕微鏡H-9000 NARで薄膜の微細組織を観
察した結果を図3に示す。粒径が約50オングストロー
ムのクラスターと厚さが数オングストロームの粒界から
なるネットワーク状の組織が見られ、この薄膜が2相か
らなることが認められる。さらに、電子線回折図形から
これらはbcc−Fe相とSiO2 に似た化合物相であ
ることが確認された。膜全体の組成をラザフォード後方
散乱法で分析したところ、組成はFe64Si1124(原
子%)であった。次に、アルバックファイ社製X線分光
分析装置ESCA−5600により各元素の状態分析を
行なった。Si2pの結合エネルギーのピークプロファイ
ルから、Siには、Feと結合して金属相を形成してい
るものとOと結合してSiOx 相を形成しているものの
2種類の状態があることがわかった。このように得られ
た薄膜は、bcc結晶構造となるFeSiを主とする金
属相が非晶質的なSiOx 相により覆われた微細組織で
あることが確認された。次に、直流磁気特性を理研電子
社製試料振動型磁力計BHV−30SSにより測定し
た。結果を図4に示す。図中の2つのデーターは、成膜
時の磁界の印加方向に平行( // )、垂直(|)に励磁
して測定した結果を表わしている。試料は、成膜時に印
加した磁界方向が磁化容易軸が平行となる一軸磁気異方
性を有しており、その異方性磁界(Hk)は83 Oe
と非常に大きいものであった。試料の保磁力(Hc)
は、容易軸方向(Hce)が2.0 Oe、困難軸方向
(Hch)は0.4 Oeと十分小さく、ヒステリシス
曲線の直線性が良いことからも異方性分散の少ないもの
であることがわかる。また、飽和磁束密度(Bs)も1
5.2kGと十分に大きい。この膜の電気比抵抗(ρ)
を直流4端子法により測定したところ、285μΩcm
と通常の非晶質合金に比べても2〜3倍高いものであっ
た。次に、困難軸方向の透磁率の周波数特性を横河ヒュ
ーレットパッカード社製ネットワークアナライザー41
95Aにより、パラレルライン法で測定した。同方法に
ついての詳細な説明は、日本応用磁気学会誌, Vol.
17,No.2,p497 (1993)に開示されて
いる。結果を図5に示した。膜がかなり厚いにもかかわ
らず500MHzまで劣下しない良好な周波数特性を示
した。これはこの薄膜が、飽和磁束密度と異方性磁界お
よび電気比抵抗が高く、かつ乱れが少なく均質であるこ
とから得られるものである。これらの特性は、日本応用
磁気学会誌, Vol.15,No.2,p327(19
91)に開示されている方法でBs、Hk、ρ、膜厚か
ら求めた理論値に近いものであった。
Table-1 Sputtering pressure 1.0 × 10 -2 Torr Input power 90 W Substrate temperature 20 ° C. (water cooling) Substrate Corning # 7059 Thickness 0.
5 mm Film thickness 2.4 μm Sputtering gas flow rate Ar 10 CCM Applied magnetic field 1 pair of permanent magnets (40 Oe) The obtained sample is an X-ray diffractometer RAD-3A manufactured by Rigaku Denki Co., Ltd.
The tissue was identified by. The results are shown in Figure 2. 2θ is 44
A broad diffraction peak corresponding to the (110) plane of bcc-Fe is observed in the vicinity of °. Next, FIG. 3 shows the results of observing the microstructure of the thin film with a transmission electron microscope H-9000 NAR manufactured by Hitachi Ltd. A network-like structure consisting of clusters having a grain size of about 50 angstroms and grain boundaries having a thickness of several angstroms is observed, and it is recognized that this thin film is composed of two phases. Further, it was confirmed from the electron diffraction pattern that these were a bcc-Fe phase and a compound phase similar to SiO 2 . When the composition of the entire film was analyzed by Rutherford backscattering, the composition was Fe 64 Si 11 O 24 (atomic%). Next, the state of each element was analyzed by an X-ray spectroscopic analyzer ESCA-5600 manufactured by ULVAC-PHI. From the peak profile of the binding energy of Si 2p , it can be seen that Si has two states, one that forms a metal phase by binding with Fe and one that forms a SiO x phase by binding with O. all right. It was confirmed that the thin film thus obtained had a fine structure in which the metallic phase mainly composed of FeSi having the bcc crystal structure was covered with the amorphous SiO x phase. Next, the DC magnetic characteristics were measured with a sample vibration type magnetometer BHV-30SS manufactured by Riken Denshi Co., Ltd. FIG. 4 shows the results. The two data in the figure represent the results measured by exciting in parallel (//) and perpendicular (|) to the magnetic field application direction during film formation. The sample has a uniaxial magnetic anisotropy in which the direction of the magnetic field applied during film formation is parallel to the easy axis of magnetization, and its anisotropic magnetic field (Hk) is 83 Oe.
And was a very big one. Coercive force of sample (Hc)
Is sufficiently small as 2.0 Oe in the easy axis direction (Hce) and 0.4 Oe in the hard axis direction (Hch), and has a small anisotropy dispersion because the linearity of the hysteresis curve is good. Recognize. The saturation magnetic flux density (Bs) is also 1
It is sufficiently large as 5.2 kG. Electric resistivity of this film (ρ)
Was measured by the DC 4-terminal method to obtain 285 μΩcm
It was 2-3 times higher than that of a normal amorphous alloy. Next, the frequency characteristics of the magnetic permeability in the direction of the hard axis are analyzed by the Yokogawa Hewlett-Packard network analyzer 41.
It was measured by the parallel line method with 95A. For a detailed explanation of this method, see the Applied Magnetics Society of Japan, Vol.
17, No. 2, p497 (1993). The results are shown in Fig. 5. Despite the fact that the film was quite thick, it showed good frequency characteristics that did not deteriorate up to 500 MHz. This is because this thin film has a high saturation magnetic flux density, an anisotropic magnetic field, and a high electrical resistivity, and is homogeneous with little disorder. These characteristics are described in Journal of Applied Magnetics of Japan, Vol. 15, No. 2, p327 (19
It was close to the theoretical value obtained from Bs, Hk, ρ, and film thickness by the method disclosed in 91).

【0016】次に、この膜の飽和磁歪定数を成瀬科学器
械社製光てこ型飽和磁歪測定装置MS−7により100
Oeの磁場下で測定した。今回の測定では、膜のヤン
グ率を実測することが非常に困難であったため、その値
としてFeSiB薄帯の12×103 kg/mm2 を採用し
計算した。その結果、磁歪は+3.0×10-6と従来の
Fe基の非晶質合金などに比べると1/5〜1/10の
非常に小さな値を示した。 [比較例−1]直径4インチで純度が99.9%のFe
円盤上に被覆率が40%となるようにSi34 板を扇
状に設置した複合ターゲットを用いて高周波スパッタリ
ングすることにより薄膜を作製した。その他の成膜条件
は以下の表−2のように設定した。
Next, the saturation magnetostriction constant of this film was measured by an optical lever type saturation magnetostriction measuring device MS-7 manufactured by Naruse Kagaku Kikai Co., Ltd.
It measured under the magnetic field of Oe. In this measurement, since it was very difficult to actually measure the Young's modulus of the film, the value of 12 × 10 3 kg / mm 2 of FeSiB ribbon was adopted and calculated. As a result, the magnetostriction was + 3.0 × 10 −6, which was a very small value of 1/5 to 1/10 of the conventional Fe-based amorphous alloy. [Comparative Example-1] Fe having a diameter of 4 inches and a purity of 99.9%
A thin film was produced by high frequency sputtering using a composite target in which a Si 3 N 4 plate was installed in a fan shape so that the coverage rate was 40% on the disk. Other film forming conditions were set as shown in Table 2 below.

【0017】表−2 スパッタ圧力 1.0×10-2 Torr 投入電力 90W 基板温度 20℃ 基板 コーニング#7059 厚さ0.
5mm 膜厚 0.8μm スパッタガス流量 Ar 10CCM 印加磁界 1対の永久磁石 (40 Oe) 得られた薄膜は、図6に示したように実施例−1と同様
にbcc−Fe相であった。膜の組成をラザフォード後
方散乱法で分析したところ、Fe65Si2114(原子
%)であった。この薄膜のVSMによる直流磁気履歴曲
線を図7に示す。試料は保磁力が14 Oeと大きく、
軟磁気特性も一軸磁気異方性も示さなかった。なお、1
00 Oeで磁化が飽和しないため飽和磁歪定数は測定
できなかった。 [実施例−2]実施例−1の成膜条件で、スパッタガス
にN2 を添加しながらFe−SiO2−N膜を作成し
た。得られた膜の結晶構造と電磁気特性の測定を実施例
−1と同様におこなった。膜の組成分析は、ラザフォー
ド後方散乱法で分析した。膜中のNはN2 ガス流量比が
大きくなるにつれて増大した。膜中のN濃度と異方性磁
界Hkとの関係を図1に示す。HkはN濃度が増えるに
従い減少し、15原子%を超えると等方的になった。 [比較例−2]実施例−2と同様の条件で、スパッタガ
スのN2 添加比を10%として膜を作成した。得られた
膜のX線回折図形を図8に示す。ラザフォード後方散乱
法で分析した膜の組成はFe49Si91526(原子
%)であった。約40゜付近にブロードなハローが見ら
れ、他にピークがないことから非晶質構造であることが
わかる。この膜の直流磁気履歴曲線を図9に示す。保磁
力は18 Oeで飽和磁界が252 Oeと非常に大き
く軟磁気特性は得られなかった。さらにこの膜に500
℃までの磁界中熱処理を施したが、磁気特性は改善され
なかった。
Table-2 Sputtering pressure 1.0 × 10 -2 Torr Input power 90 W Substrate temperature 20 ° C. Substrate Corning # 7059 Thickness 0.
5 mm Film thickness 0.8 μm Sputtering gas flow rate Ar 10 CCM Applied magnetic field 1 pair of permanent magnets (40 Oe) The obtained thin film was in the bcc-Fe phase as in Example 1 as shown in FIG. When the composition of the film was analyzed by Rutherford backscattering, it was Fe 65 Si 21 N 14 (atomic%). The DC magnetic hysteresis curve of this thin film by VSM is shown in FIG. The sample has a large coercive force of 14 Oe,
It showed neither soft magnetic properties nor uniaxial magnetic anisotropy. In addition, 1
Since the magnetization was not saturated at 00 Oe, the saturation magnetostriction constant could not be measured. In the film formation conditions of Example -2 Example -1 was prepared and Fe-SiO 2 -N film while adding N 2 to the sputtering gas. The crystal structure and electromagnetic characteristics of the obtained film were measured in the same manner as in Example-1. The composition analysis of the film was performed by Rutherford backscattering method. N in the film increased as the N 2 gas flow rate ratio increased. FIG. 1 shows the relationship between the N concentration in the film and the anisotropic magnetic field Hk. Hk decreased as the N concentration increased and became isotropic when it exceeded 15 atom%. [Comparative Example-2] A film was formed under the same conditions as in Example-2 with the N 2 addition ratio of the sputtering gas being 10%. The X-ray diffraction pattern of the obtained film is shown in FIG. The composition of the film analyzed by Rutherford backscattering method was Fe 49 Si 9 O 15 N 26 (atomic%). A broad halo is seen around 40 °, and there are no other peaks, indicating that the structure is amorphous. The DC magnetic hysteresis curve of this film is shown in FIG. The coercive force was 18 Oe and the saturation magnetic field was 252 Oe, which was very large and soft magnetic characteristics could not be obtained. In addition to this film 500
The magnetic properties were not improved by heat treatment in a magnetic field up to ℃.

【0018】[0018]

【発明の効果】以上述べたように、本発明によれば電気
抵抗と飽和磁化が共に高い軟磁性薄膜で、高周波特性の
優れた薄膜材料を提供することができる。本発明の薄膜
は、その異方性磁界が大きいために共鳴周波数が高く、
非常に高い周波数まで良好な特性を維持することができ
る。また、透磁率の値が異方性磁界まで変化しないこと
から恒透磁率特性を示し、直流重畳特性に優れたものを
提供できる。さらに飽和磁歪定数は10-6台で小さいた
め、加工歪などの影響を小さなものにすることができ、
その工業的意義は大きい。
As described above, according to the present invention, it is possible to provide a thin film material which is a soft magnetic thin film having both high electric resistance and high saturation magnetization and excellent high frequency characteristics. The thin film of the present invention has a high resonance frequency because of its large anisotropic magnetic field,
Good characteristics can be maintained up to very high frequencies. Further, since the value of the magnetic permeability does not change up to the anisotropic magnetic field, a constant magnetic permeability characteristic is exhibited and an excellent direct current superposition characteristic can be provided. Furthermore, since the saturation magnetostriction constant is as small as 10 −6 , it is possible to reduce the influence of processing strain and the like.
Its industrial significance is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の合金薄膜において、膜中のN濃度と異
方性磁界の関係を示す特性図である。
FIG. 1 is a characteristic diagram showing a relationship between an N concentration in a thin film and an anisotropic magnetic field in an alloy thin film of the present invention.

【図2】本発明の合金薄膜の結晶構造を示すX線回折図
である。
FIG. 2 is an X-ray diffraction diagram showing a crystal structure of an alloy thin film of the present invention.

【図3】本発明の合金薄膜の微細構造を示す透過電子顕
微鏡の明視野像図である。
FIG. 3 is a bright field image diagram of a transmission electron microscope showing the fine structure of the alloy thin film of the present invention.

【図4】本発明の合金薄膜の直流磁気特性を説明するた
めの特性図である。
FIG. 4 is a characteristic diagram for explaining DC magnetic characteristics of the alloy thin film of the present invention.

【図5】本発明の透磁率の周波数特性を説明するための
特性図である。
FIG. 5 is a characteristic diagram for explaining frequency characteristics of magnetic permeability of the present invention.

【図6】合金薄膜の結晶構造を示すX線回折図である。FIG. 6 is an X-ray diffraction diagram showing a crystal structure of an alloy thin film.

【図7】合金薄膜の直流磁気特性を示す特性図である。FIG. 7 is a characteristic diagram showing DC magnetic characteristics of an alloy thin film.

【図8】合金薄膜の結晶構造を示すX線回折図である。FIG. 8 is an X-ray diffraction diagram showing a crystal structure of an alloy thin film.

【図9】合金薄膜の直流磁気特性を示す特性図である。FIG. 9 is a characteristic diagram showing DC magnetic characteristics of an alloy thin film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松本 文夫 宮城県仙台市青葉区南吉成6丁目6番地 の3 株式会社アモルファス・電子デバ イス研究所内 (72)発明者 藤森 啓安 宮城県仙台市青葉区吉成2丁目20番3号 (72)発明者 増本 健 宮城県仙台市青葉区上杉3丁目8番22号 (56)参考文献 特開 平2−65106(JP,A) 特開 平3−203307(JP,A) 特開 平3−132004(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Matsumoto 3-6-6 Minamiyoshinari, Aoba-ku, Sendai-shi, Miyagi Amorphous Electronic Devices Laboratory Co., Ltd. (72) Keian Fujimori Yoshinari, Aoba-ku, Sendai-shi, Miyagi 2-20-3 (72) Inventor Ken Masumoto 3-8-22 Uesugi, Aoba-ku, Sendai-shi, Miyagi (56) Reference JP-A-2-65106 (JP, A) JP-A-3-203307 (JP , A) JP-A-3-132004 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式 Fe100-x-y-zxyz
(原子%)で示され、MはBe,B,Mg,Al,S
i,Ca,Ti,Y,Zr,Mo,In,Sn,Cs,
Ba,La,Hf,Ta,Bi,Pb,Wのうちから選
択される1種または2種以上の元素であり、LはO、F
のうちから選択される1種または2種の元素であり、そ
れぞれの原子比率が、 5≦ x ≦25 0≦ y ≦15 15≦ z ≦35 28≦x+y+z≦50 であり、その結晶構造が主にbcc−Fe構造とMの酸
化物相あるいはフッ化物相からなることを特徴とする一
軸磁気異方性薄膜。
1. A general formula: Fe 100-xyz M x N y L z
(Atomic%), M is Be, B, Mg, Al, S
i, Ca, Ti, Y, Zr, Mo, In, Sn, Cs,
One or more elements selected from Ba, La, Hf, Ta, Bi, Pb, W, and L is O, F
Is one or two elements selected from among, and the atomic ratio of each is 5 ≦ x ≦ 250 0 ≦ y ≦ 15 15 ≦ z ≦ 35 28 ≦ x + y + z ≦ 50, and its crystal structure is mainly A uniaxial magnetic anisotropic thin film comprising a bcc-Fe structure and an M oxide phase or a fluoride phase.
【請求項2】 Feの70%未満がCoで置換されてい
ることを特徴とする請求項1記載の一軸磁気異方性薄
膜。
2. The uniaxial magnetic anisotropic thin film according to claim 1, wherein less than 70% of Fe is replaced with Co.
【請求項3】 上記膜がネットワーク状の微細組織を有
することを特徴とする請求項1記載の一軸磁気異方性薄
膜。
3. The uniaxial magnetic anisotropic thin film according to claim 1, wherein the film has a network-like fine structure.
【請求項4】 上記膜が成膜後そのままで結晶質である
ことを特徴とする請求項1記載の一軸磁気異方性薄膜。
4. The uniaxial magnetic anisotropic thin film according to claim 1, wherein the film is crystalline as it is after being formed.
【請求項5】 上記膜の異方性磁界が25Oe以上であ
ることを特徴とする請求項1記載の一軸磁気異方性薄
膜。
5. The uniaxial magnetic anisotropic thin film according to claim 1, wherein the anisotropic magnetic field of the film is 25 Oe or more.
JP5224439A 1993-09-09 1993-09-09 Uniaxial magnetic anisotropic thin film Expired - Lifetime JP2554444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5224439A JP2554444B2 (en) 1993-09-09 1993-09-09 Uniaxial magnetic anisotropic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5224439A JP2554444B2 (en) 1993-09-09 1993-09-09 Uniaxial magnetic anisotropic thin film

Publications (2)

Publication Number Publication Date
JPH0786035A JPH0786035A (en) 1995-03-31
JP2554444B2 true JP2554444B2 (en) 1996-11-13

Family

ID=16813793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5224439A Expired - Lifetime JP2554444B2 (en) 1993-09-09 1993-09-09 Uniaxial magnetic anisotropic thin film

Country Status (1)

Country Link
JP (1) JP2554444B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60006594T2 (en) 1999-01-18 2004-09-23 Matsushita Electric Industrial Co., Ltd., Kadoma Magnetic film with high electrical resistance
WO2001039219A1 (en) 1999-11-26 2001-05-31 Fujitsu Limited Magnetic thin film, method for forming magnetic thin film, and recording head
JP2006012250A (en) 2004-06-23 2006-01-12 Tdk Corp Magnetic head for perpendicular magnetic recording
FR2873849A1 (en) * 2004-07-27 2006-02-03 St Microelectronics Sa PROCESS FOR OBTAINING SOFT MAGNETIC THIN FILM, WITH HIGH MAGNET, INSULATION, INTEGRATED FILM AND INTEGRATED CIRCUIT
JP4630882B2 (en) * 2007-03-09 2011-02-09 財団法人電気磁気材料研究所 Uniaxial magnetic anisotropic film
JP6210401B2 (en) * 2013-03-12 2017-10-11 公益財団法人電磁材料研究所 High electrical resistance ferromagnetic thin film

Also Published As

Publication number Publication date
JPH0786035A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
KR930012182B1 (en) Magnetic grains and method of producing same
JP3759191B2 (en) Thin film magnetic element
Hasegawa et al. Structural and soft magnetic properties of nanocrystalline (Fe, Co, Ni)-Ta-C films with high thermal stability
JP2554444B2 (en) Uniaxial magnetic anisotropic thin film
JP2721562B2 (en) Soft magnetic alloy film
JP2694110B2 (en) Magnetic thin film and method of manufacturing the same
JP3392444B2 (en) Magnetic artificial lattice film
JP2554445B2 (en) Magnetic thin film and method of manufacturing the same
JP2950917B2 (en) Soft magnetic thin film
JPH10270246A (en) Magnetic thin film
JP2710440B2 (en) Soft magnetic alloy film
JP3866266B2 (en) Amorphous magnetic thin film and planar magnetic element using the same
JP3058675B2 (en) Ultra-microcrystalline magnetic alloy
JP3810881B2 (en) High frequency soft magnetic film
JP2675178B2 (en) Soft magnetic alloy film
JP2635416B2 (en) Soft magnetic alloy film
JP3232592B2 (en) Magnetic head
JP2635421B2 (en) Soft magnetic alloy film
JP2774702B2 (en) Soft magnetic thin film and thin film magnetic head using the same
JP2774708B2 (en) Soft magnetic thin film and thin film magnetic head using the same
JPH0982522A (en) Uniaxial magnetic anisotropic film
JP2784105B2 (en) Soft magnetic thin film
JP3056401B2 (en) Soft magnetic alloy film
JPH06132125A (en) Fe base soft magnetic thin film
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy