JPS62263945A - Soft-magnetic alloy - Google Patents

Soft-magnetic alloy

Info

Publication number
JPS62263945A
JPS62263945A JP61104668A JP10466886A JPS62263945A JP S62263945 A JPS62263945 A JP S62263945A JP 61104668 A JP61104668 A JP 61104668A JP 10466886 A JP10466886 A JP 10466886A JP S62263945 A JPS62263945 A JP S62263945A
Authority
JP
Japan
Prior art keywords
soft
low
magnetic
alloy
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61104668A
Other languages
Japanese (ja)
Inventor
Kazuo Kimura
一雄 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP61104668A priority Critical patent/JPS62263945A/en
Publication of JPS62263945A publication Critical patent/JPS62263945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain a soft-magnetic alloy combining low magnetostriction with high saturation magnetic flux density and excellent in thermal stability, corrosion resistance, and wear resistance, by providing a Co-Zr-Nb-Ta alloy having a specific composition. CONSTITUTION:The soft-magnetic alloy has a composition consisting of, by atom, 3-6% Zr, 1-4% Nb, 6-9% Ta, and the balance Co with inevitable impurities. In the above composition, the proportion of Co contained as the principal component of this soft-magnetic alloy is regulated to 84-87atom% (particularly 85-86atom%) because, when its proportion is too high, crystallization temp. becomes too low and, on the other hand, when its proportion is too low, saturation magnetic flux density becomes too low.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、例えば薄膜磁気ヘッド又は垂直磁気ヘット等
の磁気ヘッド、又は垂直磁気記録媒体における軟磁性下
地層として利用することができる軟m性合金に関するも
のである。
The present invention relates to a soft magnetic alloy that can be used as a soft magnetic underlayer in a magnetic head such as a thin film magnetic head or a perpendicular magnetic head, or a perpendicular magnetic recording medium.

【従来技術とその問題点】[Prior art and its problems]

従来より、高透磁率の軟磁性き金として鉄 −ニッケル
系よりなるパーマロイや鉄−シリコン−アルミ系よりな
るセンダスト合金が提案されている。 ところが、これらパーマロイやセンダスト合金を例えば
磁気ヘッドのコア材料として利用しようとする場合には
、パーマロイやセンタスl−q金はその電気抵抗が低い
ことから、渦電流損失を少なくする為に薄帯化するか、
又はスバ・ンタリ〉グ等の薄膜技術を応用しなければな
らないちび)であるが、充分な透磁率を得ようとすると
104m以下の厚さにしなければならない。 しかし、このような薄帯化は加工が極めて困難であり、
又、スパッタリング等の薄膜技術を応用した場合、パー
マロイやセンラス1〜合金は共に結晶質であることより
、基板の熱膨張係数をほぼ同しにしなければ膜の剥離や
基板の破壊等が起きる欠点かある。 そこで、これらパーマロイやセンタス1へ合金に代る軟
磁性合金の研究開発が盛んに行なわれており、このよう
な研究開発の成果としてス、1<ンタリング等の薄膜波
t4iiを用いて祠たCo−Zr系薄膜合金か提案され
ている。 すなわち、このCo−Zr系薄膜合金は、高い飽和磁束
密度及び高い透磁率を有しており、しかもアモルファス
なものであることより基板付着性も良好なものであるこ
とか知られている。 なお、このCo−Zr系薄膜合金は薄膜形成時点ての透
磁率は低いものであるが、キュリ一温度Tc以十の温度
て熱処理を行なうことによ−)て透磁率を高いムのにで
きる。 しかし、この透磁率向上の為の熱処理温度TWが、アモ
ルフ7・スの結晶化温度Txを越えたものになると、結
晶化による著しい特性低下が起きるから、この熱処理温
度Tll1は結晶化温度Txより低くなけれはならず、
この熱処理温度TWは一般的に約300〜500℃の範
囲で行なわれていた。 促−)で、このCo−Zr系薄膜a金を磁気ヘッドに応
用した場aには、その磁気ヘッド製造工程中におけるカ
ラスモールト工程において、500℃以上とな−〕で、
膜の結晶化温度Tx以」−にさらされるため、これまて
のCo−Zr系Wl膜合金では満足てきないものてあっ
た。
Conventionally, permalloy made of iron-nickel system and sendust alloy made of iron-silicon-aluminum system have been proposed as soft magnetic alloys with high magnetic permeability. However, when trying to use these Permalloy and Sendust alloys as core materials for magnetic heads, for example, since Permalloy and Centus l-q gold have low electrical resistance, they must be made into thin strips to reduce eddy current loss. Or,
However, in order to obtain sufficient magnetic permeability, the thickness must be 104 m or less. However, it is extremely difficult to process this kind of thin ribbon.
In addition, when thin film technology such as sputtering is applied, permalloy and Cenrus 1~alloy are both crystalline, so unless the thermal expansion coefficients of the substrates are made approximately the same, film peeling or substrate destruction may occur. There is. Therefore, research and development of soft magnetic alloys to replace these Permalloy and Centus 1 alloys has been actively conducted, and as a result of such research and development, Co -Zr-based thin film alloys have been proposed. That is, this Co--Zr based thin film alloy has a high saturation magnetic flux density and high magnetic permeability, and is also known to have good adhesion to substrates because it is amorphous. Although this Co-Zr thin film alloy has a low magnetic permeability at the time of thin film formation, it can be made to have a high magnetic permeability by performing heat treatment at a temperature higher than the Curie temperature Tc. . However, if the heat treatment temperature TW for improving magnetic permeability exceeds the crystallization temperature Tx of amorph 7.s, a significant deterioration of properties will occur due to crystallization. Must be low;
This heat treatment temperature TW is generally in the range of about 300 to 500°C. When this Co-Zr thin film a gold is applied to a magnetic head, the temperature is not less than 500°C in the crow molding process in the magnetic head manufacturing process.
Since the film is exposed to temperatures higher than the crystallization temperature Tx, conventional Co-Zr based Wl film alloys have not been satisfactory.

【発明力開示】[Disclosure of inventiveness]

本発明者は、前記の問題点に対する研究を押し進めてい
くうちに、すなわち低磁歪てありながら、高い飽和磁束
密度や極めて強い熱安定性、耐食性、耐摩耗性を併せも
つ軟磁性材1パ[であるCoを1としたアモルファスh
余についての研究を進めていくうちに、Zrか約3〜6
原子%と、旧」が約1〜/1涼了?5;と、Taが約O
〜91G〔了;oと、ソ&’、)他下町避不純物をaみ
残余COとからなるC o −Z r −N b ′r
a系ご金は、高い飽和磁束密度及び高い透磁率を看し、
又、磁気ヘッド等の加工に際して用いられる低融点カラ
スの使用に耐え得る強い熱安定性を有し、さらには基板
接3応力下の使用に耐え得る低磁歪なものであり、そし
てキュリ一温度Tcより結晶化温度T×が高いたけでな
く、この結晶fヒ温度Txが低融点ガラスの軟化温度よ
りがなり高いものであることを見い出した。 ここで、特にTaの含有割合を約6へ0原子%グ)もの
としているのは、Taの含有qHf1音が少なずさると
結晶化温度Txを高くする効果が弱く、又、透磁率を高
くする効果も小さいからであり、逆にTaの含有割きが
多ずき゛ても結晶化温度Txを高ぐする効果が弱く、又
、透磁率を高くする効果ム小さいが一3= らてあり、そしてこのTaの含有割合は約7〜8,5原
T%のものであることがより一層好ましい。 又、Zrの含有割合を約3〜6原子%のものとしている
のは、Zrの大有割合が少なすぎたり、逆にZrの含有
割合が多くなりすぎると、磁歪が大となり、透磁率が低
くなるためである。そして、このZrの含有割合は約4
〜5原子%のものであることがより一層好ましい。 又、Nbの含有割きを約1〜4原子%のものとしている
のは、旧〕の含有割きが少なすぎると、結晶1ヒ温度T
xを高くする効果が弱く、又、透磁率を高くする効果も
小さく、逆に旧〕の含有割合が多くなりtぎると、結晶
化温度Txを高くする効果が弱く、又、透磁率を高くす
る効果も小さいがらであり、そしてこの旧)の含有割合
は約1.5〜3原子%のものであることがより一層好ま
しい。 ぞして、本発明の軟磁性合金の主成分であるC。 は、その含有割合が多くなりすぎると結晶化温度Txが
低くなりすぎ、逆にその含有割合が少なすぎると飽和磁
束密度が低くなりすぎることがら、c。 の含有割合は約84〜87原子%のものであることが望
ましく、より一層安了ましくは約85・〜86原子96
のムのが望ましい。
While proceeding with research on the above-mentioned problems, the present inventor discovered that a soft magnetic material with low magnetostriction, high saturation magnetic flux density, extremely strong thermal stability, corrosion resistance, and abrasion resistance. Amorphous h with Co as 1
As I continued my research, I found that Zr or about 3 to 6
Atomic % and "old" is about 1~/1 cool? 5; and Ta is about O
〜91G [Complete; o, so &',) Other downtown area impurities are removed and the remaining CO is Co - Z r - N b 'r
A-series gold has high saturation magnetic flux density and high magnetic permeability,
In addition, it has strong thermal stability that can withstand the use of low-melting glass used in processing magnetic heads, etc., and low magnetostriction that can withstand use under stress in contact with substrates. It has been found that not only the crystallization temperature Tx is higher, but also the crystallization temperature Tx is much higher than the softening temperature of low melting point glass. Here, the reason why the Ta content is set at about 6 to 0 at. This is because the effect of increasing the Ta content is small, and conversely, even if the Ta content is high, the effect of increasing the crystallization temperature Tx is weak, and the effect of increasing magnetic permeability is small. It is even more preferable that the content of Ta is about 7 to 8.5% of original T. Also, the reason why the Zr content is about 3 to 6 atomic % is because if the Zr content is too small or if the Zr content is too large, the magnetostriction will increase and the magnetic permeability will decrease. This is because it becomes lower. And the content ratio of this Zr is about 4
It is even more preferable that the content be 5 atomic %. Also, the reason why the Nb content is set at about 1 to 4 atomic % is because if the Nb content is too small, the crystal temperature T
The effect of increasing x is weak, and the effect of increasing magnetic permeability is also small; conversely, if the content ratio of [old] becomes too large, the effect of increasing crystallization temperature Tx is weak, and the effect of increasing magnetic permeability is small. Although the effect is small, it is even more preferable that the content of this former) is about 1.5 to 3 atom %. Therefore, C is the main component of the soft magnetic alloy of the present invention. If the content ratio is too high, the crystallization temperature Tx will become too low, and conversely, if the content ratio is too low, the saturation magnetic flux density will become too low. It is desirable that the content is about 84 to 87 atomic percent, and even more preferably about 85 to 86 atoms 96
It is preferable that the

【実施例】【Example】

Co−Zr−N1+−Ta系合金薄膜を形成する為に、
マクネトロンスパッタ装置を用い、又、タータントとし
て126 tn mφのCo板上にZr、Ta及びNb
のペレッI・を配置したものを用い、そして到達真空度
的1O−77orr、Arカス圧1ミリTorr、ター
ゲラ1〜と基板間の距離110 Ill 1o、基板は
結晶化カラス(P E G :1100.10 Ill
 m X 10 m m )、基板水冷、投入電力10
0QI11、スパッタレート約0.1μ+n / m 
i nの条件てマクネトロンスパッタを行ない、結晶化
ガラス基板上に約4.5μ
In order to form a Co-Zr-N1+-Ta alloy thin film,
Zr, Ta and Nb were deposited on a Co plate of 126 tn mφ as a tartant using a Macnetron sputtering device.
The final vacuum level was 10-77 orr, the Ar gas pressure was 1 mm Torr, the distance between Targetera 1 and the substrate was 110 mm, and the substrate was crystallized glass (PEG: 1100 mm). .10 Ill
m x 10 mm), board water cooling, input power 10
0QI11, sputter rate approximately 0.1μ+n/m
Macnetron sputtering was performed under the conditions of i.

【n厚のCoa5 Zr、N
b1o、、x Tax(数字は原子%)自余薄膜を形成
しな。 このようにして得た Co−Zr−Nb−Ta系合金薄
膜を回転磁界中熱処理炉でもって、磁界強度1000エ
ルステツド、回転数2000 r p tn、真空中で
60分間の熱処理を行ない、透磁率の回復処理を行なっ
た結果、この実効透磁率μ’5MHiは図面中グラフに
示す通りであり、充分に高いものである。 尚、この実効透磁率は、+44φ2PEG3100リン
クに成膜し、マニL′Nア絶縁し、φ0.08のワイア
ーを20ターンし、ベクl〜ルインピーダンスメータに
よるイエ2タタンスより求めたものである。 又、飽和磁束密度を測定すると、co含有量が多い程高
いものとなるが、本実施例の如くCoが85原T−5゛
6程度の賜金には、そグ)他の成分の割合が変動しても
それ程変化ゼす、約8500ガウスもあり、飽和磁束密
度も実用には充分に高いものである。 なお、飽和磁束密度は、振動試料型磁力計(\7SM)
を用いてl KOe励磁にて測定したものて、らる9 又、Aユリ一温度Tc及び結晶化温度T×を測定すると
、図面中グラフに示ず通りてあり、Taの含有割合か約
6〜9原子%の場3、Tx>Tcてあり、しかも結晶1
ヒ温度1゛×は充分に高いものである。 なお、Tc、Txは、振動試料型磁力計(V S M 
)を用い、磁化量dの温度変化から読み取ったものであ
り、Tcについては分子場近似より求めたものである。 【効果】 本発明に係る軟磁性8−金は、It約’−1−(J h
C’T’ /Llと、旧)約1−1原子゛36と、Ta
約cノ〜(>原了九と、その他不内丁避不純物を含み残
余Coとがl゛、なるもので、高い飽和磁束密度及び高
い透磁率をムも、又、熱安定性及び耐摩耗性にも優れ、
そして1.(板接合応力下の使用に耐え得る低磁歪なも
のであり、結晶化温度Txを大幅に高くでき、従ってこ
の軟磁性合金を用いての磁気ヘッド等の製造条刊が緩や
かなものとなり、磁気ヘット等の性1jヒが向上し、し
かも製造歩留りも良くなる等のilY長を存する。 、・1 図面の節fitな説明 図面は、CoasZI’S旧1+o−X TIIXにゎ
けるXど実効透磁率μ′511に、、¥Jり一温度1゛
(二及び結晶(L温度Txとの関係を示J”クラ7であ
る。 −8〜
[n thickness Coa5 Zr, N
b1o,, x Tax (numbers are atomic %) Do not form extra thin film. The Co-Zr-Nb-Ta alloy thin film obtained in this way was heat-treated in a rotating magnetic field heat treatment furnace at a magnetic field strength of 1000 oersted and a rotational speed of 2000 rpm for 60 minutes in vacuum to reduce the magnetic permeability. As a result of the recovery process, this effective magnetic permeability μ'5MHi is as shown in the graph in the drawing, and is sufficiently high. This effective magnetic permeability was determined by forming a film on a +44φ2 PEG3100 link, insulating the manifold L'NA, and making 20 turns of a wire with a diameter of φ0.08, and using a vector impedance meter. In addition, when measuring the saturation magnetic flux density, the higher the Co content, the higher it is, but in a case where the Co content is about 85 T-5゛6 as in this example, the ratio of other components is Even if it fluctuates, it does not change that much, it is about 8500 Gauss, and the saturation magnetic flux density is also high enough for practical use. Note that the saturation magnetic flux density is measured using a vibrating sample magnetometer (\7SM).
In addition, when the A lily temperature Tc and the crystallization temperature Tx were measured using lKOe excitation, they were not shown in the graph in the drawing, and the Ta content was approximately 6. ~9 atom% field 3, Tx>Tc, and crystal 1
A temperature of 1× is sufficiently high. Note that Tc and Tx are vibrating sample magnetometers (V S M
) was read from the temperature change in the magnetization amount d, and Tc was determined from molecular field approximation. [Effect] The soft magnetic 8-gold according to the present invention has It about '-1-(J h
C'T'/Ll, old) about 1-1 atoms ゛36, and Ta
It is made of approximately C (> 9) and residual Co including other unavoidable impurities, and has high saturation magnetic flux density and high magnetic permeability, as well as thermal stability and wear resistance. Excellent in sex,
And 1. (It has a low magnetostriction that can withstand use under plate bonding stress, and the crystallization temperature Tx can be significantly increased. Therefore, the manufacturing regulations for magnetic heads etc. using this soft magnetic alloy will be relaxed, and the magnetic There is an improvement in the quality of the head etc., and the production yield is also improved. ,・1 The explanatory drawing that fits the section of the drawing shows the effective transparency of the Magnetic coefficient μ' 511, ¥ J 1 temperature 1 ゛ (2 and crystal (L temperature Tx) shows the relationship with J'' 7. -8~

Claims (1)

【特許請求の範囲】[Claims]  Zr約3〜6原子%と、Nb約1〜4原子%と、Ta
約6〜9原子%と、その他不可避不純物を含み残余Co
とからなることを特徴とする軟磁性合金。
Zr about 3-6 at%, Nb about 1-4 at%, Ta
The remaining Co contains approximately 6 to 9 at% and other unavoidable impurities.
A soft magnetic alloy characterized by consisting of.
JP61104668A 1986-05-09 1986-05-09 Soft-magnetic alloy Pending JPS62263945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61104668A JPS62263945A (en) 1986-05-09 1986-05-09 Soft-magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61104668A JPS62263945A (en) 1986-05-09 1986-05-09 Soft-magnetic alloy

Publications (1)

Publication Number Publication Date
JPS62263945A true JPS62263945A (en) 1987-11-16

Family

ID=14386843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61104668A Pending JPS62263945A (en) 1986-05-09 1986-05-09 Soft-magnetic alloy

Country Status (1)

Country Link
JP (1) JPS62263945A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057087A1 (en) * 2010-10-26 2012-05-03 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057087A1 (en) * 2010-10-26 2012-05-03 山陽特殊製鋼株式会社 Soft magnetic alloy for magnetic recording, sputtering target material, and magnetic recording medium

Similar Documents

Publication Publication Date Title
JPH0268906A (en) Highly saturated flux density soft magnetic film and magnetic head
JPS62263945A (en) Soft-magnetic alloy
JPS6129105A (en) Magnetic alloy thin film
US5663006A (en) Corrosion-resistant magnetic film and magnetic head using the same
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPS6252907A (en) Magnetically soft thin film
JP3279591B2 (en) Ferromagnetic thin film and manufacturing method thereof
JP2991478B2 (en) Soft magnetic thin film material
JPS60194037A (en) Amorphous alloy for magnetic head
JPS6044383B2 (en) Amorphous alloy for magnetic heads
JPH04296008A (en) Magnetic metal thin film for magnetic head
JPS62104110A (en) Soft magnetic thin film
JPS62120460A (en) Material for soft magnetic thin film
JPS62104107A (en) Soft magnetic thin film
JPS60238435A (en) Thin amorphous alloy film for magnetic head
JPS6240710A (en) Magnetically soft thin film
JPH08107036A (en) Soft magnetic thin film magnetic recording equipment using that film
JPS62104111A (en) Soft magnetic thin film
JPS6089522A (en) Manufacture of thin film of soft-magnetic material
JPS6265308A (en) Softly magnetized thin film
JPH0693391A (en) Amorphous alloy having thermal stability and high magnetic flux density
JPS62120459A (en) Material for soft magnetic thin film
JPS61240612A (en) Soft magnetic thin film
JPH04229606A (en) Magnetically soft thin film
JPH0789527B2 (en) Crystalline soft magnetic thin film