JPS62120460A - Material for soft magnetic thin film - Google Patents

Material for soft magnetic thin film

Info

Publication number
JPS62120460A
JPS62120460A JP25761585A JP25761585A JPS62120460A JP S62120460 A JPS62120460 A JP S62120460A JP 25761585 A JP25761585 A JP 25761585A JP 25761585 A JP25761585 A JP 25761585A JP S62120460 A JPS62120460 A JP S62120460A
Authority
JP
Japan
Prior art keywords
thin film
thermal expansion
magnetic
coefficient
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25761585A
Other languages
Japanese (ja)
Inventor
Koichi Tamaki
玉城 幸一
Kaoru Katsumata
勝亦 薫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP25761585A priority Critical patent/JPS62120460A/en
Publication of JPS62120460A publication Critical patent/JPS62120460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To lower the coefft. of thermal expansion of a thin Fe-Si-Al alloy film and to improve the magnetic characteristics by adding specified amounts of Nb and a rare earth element to a material for the alloy film. CONSTITUTION:The alloy composition of a material for a soft magnetic thin film is composed of, by weight, 2-8% Si, 0.5-2.5% Al, 0.5-6% Nb, 0.01-2% rare earth element and the balance Fe. Ce may be selected as the rare earth element. A thin alloy film made of the material has a low coefft. of thermal expansion, so it has superior adhesion to a substrate and increased mechanical strength. The film also has high magnetic permeability and superior corrosion resistance.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は薄膜磁性素子、例えば薄膜磁気ヘッド、薄膜磁
気センサー等に用いられるFe−8i−Al系合金から
なる軟磁性薄膜用材料の改良に係シ、特に熱膨張係数が
小さくしかも磁気特性に優れた軟磁性薄膜用材料に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention is directed to the improvement of soft magnetic thin film materials made of Fe-8i-Al alloy used in thin film magnetic elements, such as thin film magnetic heads and thin film magnetic sensors. In particular, the present invention relates to a soft magnetic thin film material that has a small coefficient of thermal expansion and excellent magnetic properties.

〈従来技術〉 近年、磁気応用分野では磁心が小型化、高周波化、高密
度化する傾向にあり、特に磁気記録分野では、例えば、
固定ヘッド型デジタルオーディオ、PCM、垂直磁気記
録等に見られるように、高記録密度化に伴い、狭トラツ
ク、短波長、高周波帯域の方向に進んでいる。
<Prior art> In recent years, in the field of magnetic applications, magnetic cores have tended to become smaller, have higher frequencies, and have higher densities.Especially in the field of magnetic recording, for example,
As seen in fixed head digital audio, PCM, perpendicular magnetic recording, etc., as recording density increases, the trend is toward narrower tracks, shorter wavelengths, and higher frequency bands.

磁性素子の小型化、高周波化に対しては、軟磁性材料の
薄板、薄帯が利用されつつあるが、十分に対応できる材
料であるとはいえない。そこで注目されているのが、ス
・ぐツタ法、蒸着法、メッキ法等により製造される軟磁
性薄膜である。この薄膜は保磁力、透磁率の点で低周波
領域では劣るがその形状の有利さから高周波領域では格
段に優れている。すなわち薄膜は、電気抵抗の低い金属
材料に特有のうず電流損失金著しく低減することが可能
であるために、高周波帯域における透磁率の低下をおさ
えることができる。
Thin plates and ribbons of soft magnetic materials are being used to reduce the size and increase the frequency of magnetic elements, but these materials cannot be said to be sufficiently compatible. Therefore, soft magnetic thin films manufactured by the suction method, vapor deposition method, plating method, etc. are attracting attention. Although this thin film is inferior in coercive force and magnetic permeability in the low frequency range, it is significantly superior in the high frequency range due to its advantageous shape. That is, the thin film can significantly reduce the eddy current loss characteristic of metal materials with low electrical resistance, and therefore can suppress the decrease in magnetic permeability in the high frequency band.

一般に、薄膜は薄膜磁性素子の主要構成要素であり、そ
の中でも軟磁性薄膜は磁性素子の性能を決定するもので
ある。これには、Ni−Fe系合金、Fe−8i−At
系合金、さらにはCo−Zr系合金に代表されるような
アモルファス系磁性薄膜が試作、検討されている。
Generally, a thin film is a main component of a thin film magnetic element, and among them, a soft magnetic thin film determines the performance of the magnetic element. This includes Ni-Fe alloy, Fe-8i-At
Prototypes of amorphous magnetic thin films such as Co--Zr alloys and Co--Zr alloys have been produced and studied.

〈発明が解決しようとする問題点〉 ところで、上記軟磁性薄膜にはそれぞれ一長一短があシ
、これまでの報告では必ずしも満足のできる結果が得ら
れていない。なかでも、Fe−5t −AA系合金は、
媒体の高抗磁力化に対応できる飽和磁束密度の高い材料
として期待されているにもかかわらず、薄膜にすると透
磁率が低くなるという問題がある。これは後述するよう
に薄膜と基板との熱膨張係数差に起因するものである。
<Problems to be Solved by the Invention> By the way, each of the above-mentioned soft magnetic thin films has advantages and disadvantages, and reports to date have not necessarily yielded satisfactory results. Among them, Fe-5t-AA alloy is
Although it is expected to be a material with a high saturation magnetic flux density that can be used to increase the coercive force of media, it has the problem of low magnetic permeability when made into a thin film. This is due to the difference in thermal expansion coefficient between the thin film and the substrate, as will be described later.

また、この合金は機械的強度は高いが、薄膜素子、特に
薄膜ヘッドとして用いる場合には膜形成後に微細加工を
施す必要があシ、取シ扱いの容易さ、加工の容易さの面
より一層機械的強度を高くする必要がある。
In addition, although this alloy has high mechanical strength, when used as a thin film element, especially a thin film head, it is necessary to perform microfabrication after film formation, making it more difficult to handle and process. It is necessary to increase mechanical strength.

更に、この磁性薄膜はそのもの単体で用いられることは
殆んどなく、磁性材料あるいは非磁性材料からなる基板
上に前記の各種の方法で合金膜を形成し、多方面にわた
る部品として利用されている。この基板材料としてはM
n−Zn系フェライト、結晶質ガラス等が用いられてい
る。この基板材料の熱膨張係数は100〜120 X 
10−7.’Cテあり、最も大きいものでも140〜1
・15X10  、/’C程度である。一方、Fe −
81−Al系合金のなかでも最も代表的な合金組成領域
であるFe−9〜11 %Si−5〜7%At合金(係
は重量比を表す、以下同じ)の熱膨張係数は約175 
X I F7./’Cであり、基板のそれに比べて30
〜75 X 10−7.’Cだけ犬きくなっている。
Furthermore, this magnetic thin film is rarely used on its own; rather, alloy films are formed on substrates made of magnetic or non-magnetic materials by the various methods mentioned above, and used as components in a wide range of fields. . This substrate material is M
n-Zn ferrite, crystalline glass, etc. are used. The coefficient of thermal expansion of this substrate material is 100-120
10-7. 'C Te, the largest one is 140~1
- Approximately 15X10 /'C. On the other hand, Fe −
The coefficient of thermal expansion of the Fe-9~11%Si-5~7% At alloy (the ratio represents the weight ratio, the same applies hereinafter), which is the most typical alloy composition range among the 81-Al alloys, is approximately 175.
X I F7. /'C and 30 compared to that of the board.
~75 X 10-7. 'C is the only one who is acting like a dog.

(ここでの熱膨張係数は40〜6oo℃の温度範囲にお
ける値である。以下特に断らない限り同じ温度範囲とす
る。)磁歪を介した熱応力の磁気特性への寄与を最小に
するために基板と磁性薄膜の熱膨張係数を一致させるか
、もしくは近づけた方がよい。ここで、基板と磁性薄膜
の熱膨張係数が異なっていると次のような問題が生じる
(The coefficient of thermal expansion here is a value in the temperature range of 40 to 60°C. The same temperature range will be used hereinafter unless otherwise specified.) In order to minimize the contribution of thermal stress via magnetostriction to magnetic properties. It is better to make the thermal expansion coefficients of the substrate and the magnetic thin film the same or close to each other. Here, if the thermal expansion coefficients of the substrate and the magnetic thin film are different, the following problem occurs.

1)薄膜を形成する際に透磁率を改善する1」的で基板
を200〜400℃に加熱することがある。この場合、
成膜後に薄膜を基板ごと冷却するが、このときに熱収縮
による歪が薄膜に導入され、このために透磁率が低下す
る。
1) To improve magnetic permeability when forming a thin film, the substrate may be heated to 200 to 400°C. in this case,
After the film is formed, the thin film is cooled together with the substrate, but at this time, strain due to thermal contraction is introduced into the thin film, resulting in a decrease in magnetic permeability.

この導入された歪はいがなる処理を行っても容易には解
放されない。
This introduced distortion cannot be easily released even if some processing is performed.

2)基板を加熱しない場合でも、成膜時に機械的な歪が
導入されるのでこの解放と結晶構造の改善を兼ねて40
0℃以上の温度で熱処理が行われる。このとき基板と薄
膜の熱膨張係数が異なっていると、加熱あるいは冷却時
に薄膜に熱応力が導入されてしまい透磁率の低下をまね
く。
2) Even if the substrate is not heated, mechanical strain will be introduced during film formation, so 40
Heat treatment is performed at a temperature of 0° C. or higher. At this time, if the substrate and the thin film have different coefficients of thermal expansion, thermal stress will be introduced into the thin film during heating or cooling, leading to a decrease in magnetic permeability.

3)上記の熱収縮あるいは熱応力にょシ薄膜にクラック
が発生し、軟磁性薄膜としての機能を失なう。
3) Due to the above-mentioned thermal contraction or thermal stress, cracks occur in the thin film and it loses its function as a soft magnetic thin film.

以上のような問題点があるにもかかわらず、熱膨張係数
の大きな基板材料が工業的にはまだ得られていない。
Despite the above-mentioned problems, a substrate material with a large coefficient of thermal expansion has not yet been obtained industrially.

ここで、先に特願昭60−179318で熱膨張係数の
低いFe−8i−At合金軟磁性薄膜を得るためには、
そのSiとAtの合量を3〜10%に限定すれば良いこ
とを開示しだ。この時に熱膨張係数として150〜14
1 X 10−7./’Cが得られた。しかし、さらに
熱膨張係数の低い軟磁性薄膜用材料が実現できれば、基
板材料に制約されることも少なくなり、磁性薄膜素子、
特に薄膜磁気ヘッドの実用化に大きく貢献できるもので
ある。
Here, in order to obtain a Fe-8i-At alloy soft magnetic thin film with a low coefficient of thermal expansion, previously disclosed in Japanese Patent Application No. 60-179318,
It is disclosed that the total amount of Si and At may be limited to 3 to 10%. At this time, the thermal expansion coefficient is 150 to 14
1 x 10-7. /'C was obtained. However, if materials for soft magnetic thin films with even lower coefficients of thermal expansion can be realized, there will be fewer restrictions on substrate materials, and magnetic thin film elements,
In particular, it can greatly contribute to the practical application of thin-film magnetic heads.

従って本発明はこのような実状に鑑みなされたもので、
その主たる目的は熱膨張係数が小さく、しかも透磁率、
耐蝕性、機械的強度に優れ、基板とよく密着し、しかも
薄膜の諸物件を向」二させた軟磁性薄膜を提供すること
にある。
Therefore, the present invention was made in view of these circumstances.
The main purpose is to have a small coefficient of thermal expansion, and also to have a low magnetic permeability.
The object of the present invention is to provide a soft magnetic thin film that has excellent corrosion resistance and mechanical strength, has good adhesion to a substrate, and has various properties of the thin film.

く問題点を解決するための手段〉 上記目的は軟磁性薄膜用材料の合金組成を、Si2〜8
チ、AtO,5〜2.5%、Nb0.5〜6チ、希土類
元素0.01〜2チおよび残部Feとすることにより達
成される。
Means for Solving the Problems> The above purpose is to change the alloy composition of the soft magnetic thin film material to Si2-8
This is achieved by using 5% to 2.5% AtO, 0.5% to 6% Nb, 0.01% to 2% rare earth element, and the balance Fe.

すなわちFe−8t−Ata元系合金の熱膨張係数はF
e含有量に大きく依存しFe量が多くなるにつれて熱膨
張係数は小さくなる。換言すれば(Si+At)量が少
なくなれば熱膨張係数は小さくなる(特願昭6O−17
9318)。これにNbを添加するとさらに熱膨張係数
が小さくなることを見い出した。この−例としてFe9
1J−xS17”i、5CeO,2合金にNb  をX
%添加した場合の熱膨張係数の変化を図−1に示す。
In other words, the thermal expansion coefficient of the Fe-8t-Ata alloy is F
The coefficient of thermal expansion largely depends on the e content, and as the amount of Fe increases, the coefficient of thermal expansion decreases. In other words, as the amount of (Si+At) decreases, the coefficient of thermal expansion decreases (Japanese Patent Application No. 6O-17
9318). It has been found that when Nb is added to this, the coefficient of thermal expansion is further reduced. This - as an example Fe9
1J-xS17”i, 5CeO, 2 alloy with Nb
Figure 1 shows the change in the coefficient of thermal expansion when % is added.

(ここでは希土類元素としてCeを選んだ。)図−1よ
シNbの添加量が増えるに従い熱膨張係数が小さくなっ
ており、例えばNb2%添加でlXl0/Cだけ小さく
なっていることがわかる。また、6チを越えて添加して
も熱膨張係数はほとんど変化していない。一方、0.5
チ未満の場合は熱膨張係数の変化はわずかであり、その
添加効果は明らかでない。なお、Nbを添加する主たる
目的は熱膨張係数を小さくすることであるが、他の効果
として耐蝕性、機械的強度、透磁率の向上がある。
(Here, Ce was selected as the rare earth element.) From Figure 1, it can be seen that the coefficient of thermal expansion decreases as the amount of Nb added increases, and for example, when 2% Nb is added, it decreases by 1X10/C. Moreover, even if more than 6 inches are added, the coefficient of thermal expansion hardly changes. On the other hand, 0.5
When the amount is less than 1, the change in the coefficient of thermal expansion is slight, and the effect of its addition is not clear. The main purpose of adding Nb is to reduce the coefficient of thermal expansion, but other effects include improvements in corrosion resistance, mechanical strength, and magnetic permeability.

希土類元素は主として機械的強度の向上のために添加す
るものであるが、他に耐蝕性、透磁率を改善する効果が
ある。この添加量が0.01チ未満ではその効果が明確
でなく、2チを越えて添加しても機械的強度の飛躍的な
向上は認められない。
Rare earth elements are added primarily to improve mechanical strength, but they also have the effect of improving corrosion resistance and magnetic permeability. If the amount added is less than 0.01 inch, the effect will not be clear, and even if it is added in excess of 2 inches, no dramatic improvement in mechanical strength will be observed.

耐蝕性、透過率についても同様である。また、この希土
類元素の添加は熱膨張係数の変化にはほとんど寄与しな
い。
The same applies to corrosion resistance and transmittance. Further, the addition of this rare earth element hardly contributes to a change in the coefficient of thermal expansion.

Si 2〜8チ、At 0.5〜2.5%の範囲では熱
1形張係数はSi量に大きく依存l−1At量にはほと
んど関係しない。しかしAtの添加により磁気異方性を
小さくし、透磁率の改善が可能である。すなわち、Si
量とNb量で熱膨張係数を設定し、これに熱膨張係数に
はほとんど寄与しないAtおよび希土類元素で透磁率の
改善を因ることができる。Si2〜8チとしたのは2%
未満では透磁率が低く8%を越えるとAt、Nb、希土
類元素の添加によっても熱膨張係数が小さくしかも透磁
率の高い材料が得られないためである。一方、At0.
5〜2.5チとしたのは0.5%未満では磁気異方性を
小さくさせる効果が小さく、2.5係を越えるとSi2
〜8%の範囲では透磁率を低下させるためである。
In the range of 2 to 8% Si and 0.5 to 2.5% At, the thermal tensile modulus largely depends on the amount of Si and has little relation to the amount of At. However, by adding At, it is possible to reduce the magnetic anisotropy and improve the magnetic permeability. That is, Si
The coefficient of thermal expansion is set by the amount of Nb and the amount of Nb, and the magnetic permeability can be improved by At and rare earth elements, which hardly contribute to the coefficient of thermal expansion. 2% for Si2~8ch
This is because if it is less than 8%, the magnetic permeability is low, and if it exceeds 8%, a material with a small thermal expansion coefficient and high magnetic permeability cannot be obtained even by adding At, Nb, or rare earth elements. On the other hand, At0.
5 to 2.5% is because if it is less than 0.5%, the effect of reducing magnetic anisotropy is small, and if it exceeds 2.5%, Si2
This is because the magnetic permeability is lowered in the range of ~8%.

また、本発明の軟砒性薄膜を製造する方法は特に規定し
ないが、ス・ンツタ法、蒸着法、メッキ法等により任意
に選択できる。ここで規定している各元素の添加量は薄
膜の合金組成であって、この薄膜を製造するためのスパ
クタ用ターケ゛クト、蒸着用母合金等の組成は製造装置
および製造条件によって決定すればよい。
Further, the method for producing the soft arsenic thin film of the present invention is not particularly specified, but can be arbitrarily selected from among the sun-sealing method, vapor deposition method, plating method, and the like. The addition amount of each element specified here is the alloy composition of the thin film, and the composition of the sputter target, vapor deposition master alloy, etc. for manufacturing this thin film may be determined depending on the manufacturing equipment and manufacturing conditions.

以下、本発明をスフ4ツタ法を用いた実施例にょ9詳し
く説明する。
Hereinafter, the present invention will be described in detail with reference to 9 examples using the Sufu 4 Tsuta method.

〈実施例〉 外径lO園、内径G門、厚さ0.5 mの結晶化ガラス
基板(熱膨張係数140X10”−7,/’C冷用いて
、この上にスiRツタ法により表−1に示した組成の合
金を厚さ3μm被着した。なお、Nbおよび希土類元素
の添加効果を明確にするために、大部分はS1量7%、
At量1.5%の一定とした。これらのスノクツタ膜を
分析した結果、表−1に示した元素の他に3ppm以下
のS、5ppm以下のCが検出された。また、スパッタ
膜の組織観察およびX線回析結果により第2相の析出は
認められなかった。膜形成の後、非酸化性雰囲気中で4
00〜800℃の膜組成に応じた温度で熱処理を行−1
5MHzにおける実効透磁率(μe )を測定した。な
お必要に応じて磁界中熱処理あるいは磁界中冷却を行っ
た。
<Example> A crystallized glass substrate (thermal expansion coefficient 140 x 10"-7, /'C) with an outer diameter of 10 mm and an inner diameter of G gate, and a thickness of 0.5 m was prepared using the SiR ivy method. An alloy having the composition shown in 1 was deposited to a thickness of 3 μm.In order to clarify the effect of adding Nb and rare earth elements, most of the alloys were coated with an S1 content of 7%,
The At content was kept constant at 1.5%. As a result of analyzing these Snock ivy films, in addition to the elements shown in Table 1, 3 ppm or less of S and 5 ppm or less of C were detected. In addition, no second phase precipitation was observed by microstructural observation and X-ray diffraction results of the sputtered film. After film formation, 4
Heat treatment is performed at a temperature of 00 to 800℃ depending on the film composition-1
The effective magnetic permeability (μe) at 5 MHz was measured. Note that heat treatment in a magnetic field or cooling in a magnetic field was performed as necessary.

この結果を表−1に示す。The results are shown in Table-1.

表−1に示した熱膨張係数は薄膜を直接測定したのでは
なく、同一組成を有する材料から3×3×15(単位:
咽)の試料を切出し、これを測定した。
The coefficient of thermal expansion shown in Table 1 was not measured directly on a thin film, but was measured using materials with the same composition as 3 x 3 x 15 (unit:
A sample of the throat) was cut out and measured.

また、機械的強度の測定および耐蝕性試験には、5cr
r1四方のポリイミドフィルム基板に上記と同時に作成
された厚さ3μmの薄膜を試料として用いた。耐蝕性試
験としては塩水噴震試験法(JIS Z2371)を用
いた。評価方法は試料番号A2の腐食面積を100とし
て相対腐食面積を算出した。
In addition, 5cr was used for mechanical strength measurement and corrosion resistance testing.
A thin film with a thickness of 3 μm, which was prepared at the same time as described above, was used as a sample on a polyimide film substrate with r1 square dimensions. The salt water jet test method (JIS Z2371) was used for the corrosion resistance test. The evaluation method was to calculate the relative corrosion area by setting the corrosion area of sample number A2 as 100.

機械的強度は得られた膜について引張試験を行ない、膜
にクラックが発生するときの強度とした。
Mechanical strength was determined by performing a tensile test on the obtained film and taking the strength at which cracks occurred in the film.

評価方法は試料番号屋2の強度を100とする相対評価
とした。この結果を表−1に示す。
The evaluation method was a relative evaluation with the strength of sample number 2 being 100. The results are shown in Table-1.

本実施例よシSi 2〜8%、At 0.5〜2.5%
、NbO,5〜6チ、希土類元素0.01〜2%および
残部Feからなる軟磁性合金薄膜は熱膨張係数が小さく
、このため基板との密着性に優れ、しかも透磁率が高く
、耐蝕性に優れ、機械的強度が高くなっていることがわ
かる。
In this example, Si 2-8%, At 0.5-2.5%
, NbO, 5-6%, rare earth elements 0.01-2%, and the balance Fe, the soft magnetic alloy thin film has a small coefficient of thermal expansion, so it has excellent adhesion to the substrate, high magnetic permeability, and corrosion resistance. It can be seen that the material has excellent mechanical strength.

〈発明の効果〉 以上のよ5に、本発明による軟磁性薄膜用材料によれば
、基板との密着性に優れしかも透磁率、耐蝕性、機械的
強度の高い薄膜が実現される。
<Effects of the Invention> As described above, according to the soft magnetic thin film material according to the present invention, a thin film having excellent adhesion to a substrate and high magnetic permeability, corrosion resistance, and mechanical strength can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第4図はNbの添加量と熱膨張係数との関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between the amount of Nb added and the coefficient of thermal expansion.

Claims (1)

【特許請求の範囲】[Claims] 1)重量比でSi2〜8%、Al0.5〜2.5%、N
b0.5〜6%、希土類元素0.01〜2%および残部
Feからなることを特徴とする軟磁性薄膜用材料。
1) Weight ratio: Si2-8%, Al0.5-2.5%, N
A soft magnetic thin film material comprising 0.5 to 6% b, 0.01 to 2% rare earth element, and the balance Fe.
JP25761585A 1985-11-19 1985-11-19 Material for soft magnetic thin film Pending JPS62120460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25761585A JPS62120460A (en) 1985-11-19 1985-11-19 Material for soft magnetic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25761585A JPS62120460A (en) 1985-11-19 1985-11-19 Material for soft magnetic thin film

Publications (1)

Publication Number Publication Date
JPS62120460A true JPS62120460A (en) 1987-06-01

Family

ID=17308721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25761585A Pending JPS62120460A (en) 1985-11-19 1985-11-19 Material for soft magnetic thin film

Country Status (1)

Country Link
JP (1) JPS62120460A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254269A (en) * 1989-03-27 1990-10-15 Hitachi Ltd Finned tube type heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02254269A (en) * 1989-03-27 1990-10-15 Hitachi Ltd Finned tube type heat exchanger

Similar Documents

Publication Publication Date Title
KR920003999B1 (en) Molted membrane of soft magnetics
JPH06259729A (en) Magnetic head
JP2721562B2 (en) Soft magnetic alloy film
JPS62120460A (en) Material for soft magnetic thin film
JPS58100412A (en) Manufacture of soft magnetic material
JPS5898824A (en) Magnetic head
JPS62120459A (en) Material for soft magnetic thin film
JPS6273604A (en) Ferromagnetic thin film
JPS62120461A (en) Material for soft magnetic thin film
JPS6240710A (en) Magnetically soft thin film
JPS6252907A (en) Magnetically soft thin film
JPS6265308A (en) Softly magnetized thin film
JPS61252617A (en) Material for soft-magnetic thin film
JPS6265309A (en) Material for softly magnetized thin film
JPH07249519A (en) Soft magnetic alloy film, magnetic head, and method for adjusting coefficient of thermal expansion of soft magnetic alloy film
JP2707213B2 (en) Iron-based soft magnetic thin film alloy for magnetic head and method of manufacturing the same
JP3233538B2 (en) Soft magnetic alloys, soft magnetic thin films and multilayer films
JP2727274B2 (en) Soft magnetic thin film
JPS5975610A (en) Iron base magnetic alloy thin film and manufacture thereof
JPH0485716A (en) Thin magnetic film for magnetic head
JPH04275407A (en) Soft magnetic film high in saturation magnetic flux density and its manufacture
JPS63255343A (en) Material for soft magnetic thin film
JPS63260117A (en) Material for soft magnetic thin film
JPS62263945A (en) Soft-magnetic alloy
JPH06228716A (en) Soft-magnetic alloy film