JPS59170248A - Heat treatment of amorphous alloy - Google Patents

Heat treatment of amorphous alloy

Info

Publication number
JPS59170248A
JPS59170248A JP58044187A JP4418783A JPS59170248A JP S59170248 A JPS59170248 A JP S59170248A JP 58044187 A JP58044187 A JP 58044187A JP 4418783 A JP4418783 A JP 4418783A JP S59170248 A JPS59170248 A JP S59170248A
Authority
JP
Japan
Prior art keywords
heat treatment
amorphous alloy
magnetic
temperature
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58044187A
Other languages
Japanese (ja)
Inventor
Moichi Otomo
茂一 大友
Takayuki Kumasaka
登行 熊坂
Hideo Fujiwara
英夫 藤原
Shinji Takayama
高山 新司
Takeo Yamashita
武夫 山下
Kazuo Shiiki
椎木 一夫
Noritoshi Saitou
斉藤 法利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58044187A priority Critical patent/JPS59170248A/en
Publication of JPS59170248A publication Critical patent/JPS59170248A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To provide high magnetic permeability to an amorphous alloy and to reduce a change in the magnetic permeability with the lapse of time by subjecting the alloy to secondary heat treatment at a temp. below the Curie temp. and below the crystallization temp. in a rotating magnetic field after primary heat treatment. CONSTITUTION:An amorphous alloy having magnetic anisotropy is subjected to primary heat treatment at a temp. below the crystallization temp. The alloy is then subjected to secondary heat treatment at a temp. below the Curie temp. and below the crystallization temp. in a magnetic field rotating relatively to the alloy. The heat-treated amorphous alloy having reduced anistropic magnetism and improved magnetic permeability is stable to the following heat treatment at a low temp., so it undergoes no change in the characteristics. When this heat treatment method is applied to the manufacture of a magnetic head, a magnetic head having superior characteristics is obtd.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は非晶質合金の熱処理方法、およびこれを用いた
磁気ヘッドの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of heat treating an amorphous alloy and a method of manufacturing a magnetic head using the same.

〔従来技術〕[Prior art]

近年、磁気記録技術は高保磁力テープおよび高性能磁気
ヘッド材料の開発によシ著しい進展を遂げつつある。従
来磁気ヘッド材料としてはpe−At−5i系、Fe−
4Ji系などの結晶質磁性材料が用いられて来たが、こ
れらの材料は飽和磁束密度BSがいずれもl0KG以下
であり、高保磁力テープ用磁気ヘッドに用いるにはBs
が不足であること、結晶であるために結晶磁気異方性が
あり、結晶磁気異方性が極小となって高透磁率特性が得
られる組成範囲が極めて狭いという問題がある。近年開
発が進んでいる非晶質合金は、非晶質であるため結晶磁
気異方性がなく、従って高透磁性を持っている。しかし
一方、非晶質合金は以下に述べるような欠点を有する。
In recent years, magnetic recording technology has made significant progress with the development of high coercive force tapes and high performance magnetic head materials. Conventional magnetic head materials include pe-At-5i and Fe-
Crystalline magnetic materials such as 4Ji-based materials have been used, but the saturation magnetic flux density BS of these materials is less than 10 KG, and Bs is too high for use in magnetic heads for high coercive force tapes.
There is a problem that, since it is a crystal, it has magnetocrystalline anisotropy, and the composition range in which the magnetocrystalline anisotropy is minimal and high magnetic permeability characteristics can be obtained is extremely narrow. Amorphous alloys, which have been developed in recent years, have no crystal magnetic anisotropy because they are amorphous and therefore have high magnetic permeability. However, on the other hand, amorphous alloys have drawbacks as described below.

すなわち、非晶質合金は準安定相であるため、結晶化温
度以上で安定な結晶相に変化し、これに伴ってHcの大
幅な増加、透磁率の減少が起こる。捷た、結晶化温度以
下においても、長時間加熱することにより透磁率が徐々
に減少するという経時変化を示すことが知られており、
これは非晶質合金の実用化にとって大きな問題となって
いる。さらに、非晶質合金は作製後の状態よシこれを熱
処理することにより高い透磁率が得ら−れるが、この熱
処理は非晶質合金のキュリ一温度以上、結晶化温度以下
で行なわなければならないことが知られている(特許公
開公報昭53−43028 )。この熱処理をキュリ一
温度以下で行なった場合には透磁率を改善出来ず、かえ
って減少する場合がある。非晶質合金の干ユリ一温度は
ほぼ飽和磁束密度に比例する傾向をもっておシ、飽和磁
束密度が約8KG以上の非晶質合金ではキュリ一温度が
結晶化温度以上となってしまう。従ってこのような場合
、キュリ一温度以下の熱処理は不可能となり、熱処理に
よって透磁率を上げることが困難であるという問題があ
った。
That is, since the amorphous alloy is a metastable phase, it changes to a stable crystalline phase above the crystallization temperature, and as a result, a significant increase in Hc and a decrease in magnetic permeability occur. It is known that even at temperatures below the crystallization temperature, magnetic permeability gradually decreases over time when heated for a long time.
This is a major problem for the practical application of amorphous alloys. Furthermore, high magnetic permeability can be obtained from amorphous alloys by heat-treating them after fabrication, but this heat treatment must be performed at a temperature above the Curie temperature and below the crystallization temperature of the amorphous alloy. It is known that this is not the case (Patent Publication No. 53-43028). If this heat treatment is performed at a temperature below one Curie temperature, the magnetic permeability cannot be improved and may actually decrease. The heating temperature of an amorphous alloy tends to be approximately proportional to the saturation magnetic flux density, and for an amorphous alloy with a saturation magnetic flux density of about 8 KG or more, the heating temperature will exceed the crystallization temperature. Therefore, in such a case, heat treatment at a temperature below one Curie temperature is impossible, and there is a problem in that it is difficult to increase the magnetic permeability by heat treatment.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、かかる問題を解決し飽和磁束密度が大
きく、キュリ一温度が結晶化温度よりも高い非晶質合金
を、その形状にかかわらず高透磁率特性を与え、かつ透
磁率の経時変化を減するような熱処理方法を提供し、か
つこれを磁気ヘッドの製造方法に応用することにより、
特性の優れた磁気ヘッドの製造方法を提供することにあ
る。
It is an object of the present invention to solve such problems by providing an amorphous alloy with a high saturation magnetic flux density and a Curie temperature higher than the crystallization temperature, a high magnetic permeability characteristic regardless of its shape, and a change in magnetic permeability over time. By providing a heat treatment method that reduces changes and applying this to the manufacturing method of magnetic heads,
An object of the present invention is to provide a method for manufacturing a magnetic head with excellent characteristics.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明では非晶質合金をそ
の結晶化温度以下において行なう第一の熱処理の後、回
転磁界中もしくは一方向磁界中において第2の熱処理を
行なう方法をとる。ここで第1の熱処理全行なう理由は
、この熱処理によって非晶質合金を安定化させ、透磁率
の経時変化を押えるためであり、第2の回転磁界中ある
いは一方向磁界中熱処理は透磁率を高めることを目的と
している。
In order to achieve the above object, the present invention employs a method in which an amorphous alloy is subjected to a first heat treatment at a temperature below its crystallization temperature, and then a second heat treatment is performed in a rotating magnetic field or a unidirectional magnetic field. The reason why the entire first heat treatment is performed here is to stabilize the amorphous alloy and suppress changes in magnetic permeability over time.The second heat treatment in a rotating magnetic field or in a unidirectional magnetic field stabilizes the magnetic permeability. It is intended to increase.

〔発明の実施例〕[Embodiments of the invention]

次に実例によυ本発明の熱処理方法を詳細に説明する。 Next, the heat treatment method of the present invention will be explained in detail using an example.

非晶質合金は前述のように結晶磁気異方性はないが製造
条件によって一般的には磁気異方性を有しておシ、例え
ばスプラットクーリング法によって作製した薄板状の非
晶質合金には一般的に試料の長手方向を磁化容易方向と
する磁気異方性を有しており、またスパッタリング法な
どの薄膜作製技術によって作製した非晶質合金膜は作製
中に働いた微小な磁界に応じた磁界異方性を有している
As mentioned above, amorphous alloys do not have magnetocrystalline anisotropy, but depending on manufacturing conditions, they generally have magnetic anisotropy.For example, thin plate-like amorphous alloys made by the splat cooling method generally has magnetic anisotropy in which the longitudinal direction of the sample is the direction of easy magnetization, and amorphous alloy films fabricated by thin film fabrication techniques such as sputtering are sensitive to the minute magnetic field applied during fabrication. It has a corresponding magnetic field anisotropy.

このような非晶質合金の磁気異方性は応力下あるいは磁
界中で非晶質合金全作製したために生じた誘導磁気異方
性であると考えられる。
The magnetic anisotropy of such an amorphous alloy is considered to be induced magnetic anisotropy that occurs because the entire amorphous alloy is manufactured under stress or in a magnetic field.

非晶質合金の誘導磁気異方性は試料作製した後に磁界中
で熱処理することによっても容易にその方向および大き
さを変えることが出来る。例えば第1図は高周波2極ス
パツタリング法によりガラス基板上に作製したCO80
MOIL5C08O(原子%)の組成を有する非晶質合
金薄膜のB −H曲線である。膜の作製中には、基板面
と平行に1006の磁界を印加しながらスパッタリング
を行なった。
The direction and magnitude of the induced magnetic anisotropy of an amorphous alloy can be easily changed by heat-treating it in a magnetic field after preparing a sample. For example, Figure 1 shows CO80 fabricated on a glass substrate by high frequency bipolar sputtering method.
It is a BH curve of an amorphous alloy thin film having a composition of MOIL5C08O (atomic %). During the fabrication of the film, sputtering was performed while applying a magnetic field of 1006 in parallel to the substrate surface.

図のように、非晶質合金薄膜はスノくツタリング中の磁
界印加方向を磁化容易方向とする典型的な一軸磁気異方
性を有する。膜の磁気異方性の大きさを示す異方性磁界
HKは50e、飽和磁束密度Bsは7KG、保磁力Hc
は0.20 e 、磁化困難方向の透磁率は30KHz
から30MH2まで1500、磁化容易方向の透磁率は
100、膜厚は1.5μmである。次にこの試料の磁化
困難方向に500006の磁界を印加しながら400C
で30分熱処理した場合には、熱処理中の磁界の印加方
向が磁化容易方向となジ飽和磁束密度、保磁力、異方性
磁界、透磁率はほとんど変わらないという結果となる。
As shown in the figure, the amorphous alloy thin film has typical uniaxial magnetic anisotropy with the direction of easy magnetization being the direction in which the magnetic field is applied during snobbing. The anisotropic magnetic field HK, which indicates the magnitude of magnetic anisotropy of the film, is 50e, the saturation magnetic flux density Bs is 7KG, and the coercive force Hc
is 0.20 e, and the magnetic permeability in the direction of difficult magnetization is 30 KHz
to 30MH2, the magnetic permeability in the direction of easy magnetization is 100, and the film thickness is 1.5 μm. Next, while applying a magnetic field of 500006 in the direction of difficult magnetization of this sample,
In the case of heat treatment for 30 minutes, the direction in which the magnetic field is applied during the heat treatment is the direction of easy magnetization, resulting in almost no change in saturation magnetic flux density, coercive force, anisotropy magnetic field, and magnetic permeability.

すなわちこの熱処理により磁気異方性の大きさは変らず
に方向を変化させることが出来る。
That is, by this heat treatment, the direction of magnetic anisotropy can be changed without changing the magnitude.

磁気異方性の大きさ?変えたい場合には熱処理温度およ
び時間全コントロールする必要がある。
Magnetic anisotropy? If you want to change it, you need to fully control the heat treatment temperature and time.

印加磁界に関しては、試料を十分に飽和させる値であれ
ば結果にはあまり影響を与えない。第2図は100eの
磁界を基板に平行に印加しながら高周波2極スパツタリ
ング法により作製したCo52Nbx3ZrsおよびC
089W5Zr6 (いずれも原子%)の組成を有する
非晶質合金薄膜を500006の磁界を試料の磁化困難
方向に印加しながら、300Cで熱処理した場合の異方
性磁界Hvcの熱処理時間による変化を示す。図におい
てHKが負の場合は磁化容易方向が磁界中熱処理前の方
向である場合、HKが正の場合は磁化容易方向が熱処理
中の印加磁界の方向に変化した場合を示す。
As for the applied magnetic field, it will not affect the results much as long as it saturates the sample sufficiently. Figure 2 shows Co52Nbx3Zrs and C
This figure shows the change in the anisotropic magnetic field Hvc depending on the heat treatment time when an amorphous alloy thin film having a composition of 089W5Zr6 (both atomic %) is heat treated at 300C while applying a magnetic field of 500006 in the direction of difficult magnetization of the sample. In the figure, when HK is negative, the direction of easy magnetization is the direction before heat treatment in a magnetic field, and when HK is positive, the direction of easy magnetization is changed to the direction of the applied magnetic field during heat treatment.

CO52Nbt3Zrsの飽和磁束密度はl0KG、熱
処理前(7) HKは110 e % CO59WsZ
rsの飽和磁束密度は12KG、熱処理前のHKは20
0eである。両者とも熱処理によってHKが減少し、1
0〜20分経過後に磁化容易方向が変化し、その後HK
は増大する。一般的に一軸磁気異方性を示す磁性膜は磁
化困難方向の透磁率が磁化容易方向よシも大きく、その
1直はHaが小さい場合は磁化困難方向のB−H曲線の
傾き、すなわち飽和磁束密度B8と異方性磁界HKの比
にほぼ比例する。スプラットクーリング法により作製し
た薄板状試料の場合も、磁壁移動が押えられる高周波に
おいては磁化困難方向の透磁率が大きく、その値は前述
のような関係にある。従って、第3図に示したよう(で
、磁化困難方向の透磁率はHKが0を切る近傍において
極大を示し、約4000もの高い透磁率が得られる。
The saturation magnetic flux density of CO52Nbt3Zrs is 10 KG, before heat treatment (7) HK is 110 e% CO59WsZ
Saturation magnetic flux density of rs is 12KG, HK before heat treatment is 20
It is 0e. In both cases, HK decreases due to heat treatment, and 1
After 0 to 20 minutes, the direction of easy magnetization changes, and then HK
increases. In general, magnetic films exhibiting uniaxial magnetic anisotropy have a larger permeability in the direction of difficult magnetization than in the direction of easy magnetization, and when Ha is small, the slope of the B-H curve in the direction of difficult magnetization, that is, saturation. It is approximately proportional to the ratio of magnetic flux density B8 and anisotropic magnetic field HK. In the case of a thin plate sample prepared by the splat cooling method, the magnetic permeability in the direction of difficult magnetization is large at high frequencies where domain wall motion is suppressed, and the values have the same relationship as described above. Therefore, as shown in FIG. 3, the magnetic permeability in the direction of difficult magnetization reaches a maximum near where HK is less than 0, and a high magnetic permeability of about 4000 is obtained.

このよう(磁界中熱処理によシ非晶質合金の磁気異方性
を減少することは、磁界と試料を相対的に回転しながら
、熱処理することによっても可能である。第4図は10
0eの磁界を基板に平行に印加しながら高周波2極スパ
ツタリング法により作製したC O80M o lt、
sZ r s、sおよびC081,5Tjla5(いず
れも原子%)の組成を有する非晶質合金薄膜を、500
00eの磁界中において試料を500番r−で回転しな
がら30分間熱処理した場合の、HKおよび5MH2に
おける磁化困難方向の透磁率の熱処理温度依存性を示し
たものである。飽和磁束密度7KG、熱処理前のHx5
QeのCo soM Of 1s Z rasおよび飽
和磁束密度9KG、熱処理前のHK150eのC0at
s T j ta、sとも、回転磁界中熱処理によって
HKが減少し、透磁率が署しく増加する。
It is also possible to reduce the magnetic anisotropy of an amorphous alloy by heat treatment in a magnetic field by performing heat treatment while rotating the magnetic field and the sample relative to each other.
CO80M o lt produced by high frequency bipolar sputtering method while applying a magnetic field of 0e parallel to the substrate,
An amorphous alloy thin film having a composition of sZ r s, s and C081,5Tjla5 (all atomic %) was
This figure shows the dependence of the magnetic permeability in the direction of difficult magnetization in HK and 5MH2 on the heat treatment temperature when the sample was heat treated for 30 minutes in a magnetic field of 00e while rotating at #500 r-. Saturation magnetic flux density 7KG, Hx5 before heat treatment
Co soM Of 1s Z ras of Qe and saturation magnetic flux density 9KG, C0at of HK150e before heat treatment
In both s T j ta and s, HK decreases and magnetic permeability increases significantly by heat treatment in a rotating magnetic field.

一方、これらの非晶質合金を磁界中でなく普通熱処理し
た場合を第5図に示した。焼鈍時間は10分とした。図
のように、キュ’J  TEA度Tcが450C,結晶
化温度Txが600CのCosoMott、sZ r8
.5が普通熱処理によってUKが減少し困難軸方向の透
磁率が大幅に増加するのに対して、Txが520CでT
cがTxより高いC0stsT 111L5は普通熱処
理によってHKおよび透磁率はほとんど変化せず、結晶
化温度の近傍で磁気特性が劣化する。
On the other hand, FIG. 5 shows the case where these amorphous alloys were subjected to normal heat treatment without being subjected to a magnetic field. The annealing time was 10 minutes. As shown in the figure, CosoMott, sZ r8 with Q'J TEA degree Tc of 450C and crystallization temperature Tx of 600C
.. 5, the UK decreases and the permeability in the difficult axis direction increases significantly through normal heat treatment, whereas the Tx is 520C and the T
In C0stsT 111L5, where c is higher than Tx, HK and magnetic permeability hardly change by heat treatment, and the magnetic properties deteriorate near the crystallization temperature.

以上のように飽和磁束密度が大きく、TcがTxより高
い非晶質合金は普通熱処理によってHxの低減、透磁率
の向上を計ることが出来ず、従って磁界中熱処理法が磁
気特性の改善に特に有効である。作製後の非晶質合金薄
膜のHKは飽和磁束密度が大きくなるに従って犬となる
傾向があり、これに伴って透磁率が減少する傾向がある
As mentioned above, it is not possible to reduce Hx or improve magnetic permeability by heat treatment for amorphous alloys with large saturation magnetic flux density and Tc higher than Tx. Therefore, heat treatment in a magnetic field is particularly effective for improving magnetic properties. It is valid. The HK of the amorphous alloy thin film after fabrication tends to become narrower as the saturation magnetic flux density increases, and the magnetic permeability tends to decrease accordingly.

これはスプラットクーリング法によって作製した非晶質
合金でも同様であり、飽和磁束密度大の非晶質合金では
作製後の透磁率が一般に小さい。従って飽和磁束密度の
大きな非晶質合金全磁気ヘッド等に応用する場合には磁
界中熱処理が不可欠である。
This also applies to amorphous alloys produced by the splat cooling method, and amorphous alloys with a high saturation magnetic flux density generally have a low magnetic permeability after production. Therefore, heat treatment in a magnetic field is essential when applied to an amorphous alloy all-magnetic head with a high saturation magnetic flux density.

次に、非晶質合金を普通熱処理した後に磁界中熱処理を
行なった場合を述べる。前述のC089W5 Z r 
s非晶質合金薄膜をスパッタリングによシ作製した後3
00U、350C1400c。
Next, a case will be described in which an amorphous alloy is subjected to normal heat treatment and then heat treatment in a magnetic field. The aforementioned C089W5 Z r
After fabricating the amorphous alloy thin film by sputtering 3
00U, 350C1400c.

450Cで各10分熱処理し、その後50000eの磁
界を磁化困難方向に印加しながら350tll’で熱処
理した場合のHKおよび5MH2における困難軸方向の
透磁率の熱処理時間による変化を第6図に示した。捷た
、前述のCo5zNb13Zrs非晶質合金薄膜をスパ
ッタリングにより作製した後に4700で10分熱処理
した後同様の方法で熱処理した場合についても第6図に
示した。図中Hxのとp方は第2図と同様である。図の
ように、いずれの非晶質合金薄膜においても、磁界中熱
処理前の熱処理温度が高い場合にはHKの変化が起こり
にくく、磁化容易方向の変化に長い時間を必要とする。
Figure 6 shows the change in magnetic permeability in the hard axis direction for HK and 5MH2 with heat treatment time when heat treated at 450C for 10 minutes each and then heat treated at 350tll' while applying a magnetic field of 50000e in the hard magnetization direction. FIG. 6 also shows the case where the above-mentioned thin Co5zNb13Zrs amorphous alloy thin film was prepared by sputtering, heat-treated at 4700° C. for 10 minutes, and then heat-treated in the same manner. In the figure, Hx and p are the same as in FIG. As shown in the figure, in any amorphous alloy thin film, if the heat treatment temperature before heat treatment in a magnetic field is high, the HK hardly changes, and it takes a long time for the easy magnetization direction to change.

同時に透磁率の変化も起こりに<<すっている。以上の
結果は普通熱処理の後に回転磁界中熱処理を行なった場
合も同様である。このような現象は、非晶質合金の誘導
磁気異方性の変化を助けているある要因が熱処理によっ
てしだいに消失することによって起こると考えられ、例
えば作製時に試料中に多量に生じた欠陥が原子の拡散移
動を助長して誘導磁気異方性の変化を助け、熱処理によ
ってこの欠陥が消失することによって誘導磁気異方性が
変化しにくくなるというモデルによって説明できる。こ
のような熱処理によってHxを小さくし、透磁率を大幅
に改善した非晶質合金は、その後の低温の熱処理に対し
て特性が変化せず、従って経時変化の少ない極めて安定
で、しかも高飽和磁束密度、高透磁率特性を有する非晶
質合金を得ることが出来る。
At the same time, changes in magnetic permeability are also occurring. The above results are the same even when heat treatment in a rotating magnetic field is performed after normal heat treatment. This phenomenon is thought to occur because a certain factor that helps change the induced magnetic anisotropy of the amorphous alloy gradually disappears due to heat treatment. For example, a large number of defects generated in the sample during fabrication This can be explained by a model in which the diffusion movement of atoms is promoted to help change the induced magnetic anisotropy, and heat treatment eliminates these defects, making it difficult for the induced magnetic anisotropy to change. The amorphous alloy, whose Hx is reduced and magnetic permeability is greatly improved through such heat treatment, does not change its characteristics even after subsequent low-temperature heat treatment, and is therefore extremely stable with little change over time, and has high saturation magnetic flux. An amorphous alloy with high density and high magnetic permeability properties can be obtained.

以上に述べた非晶質合金の経時変化の安定化の程度は、
非晶質合金が作製後に経験した温度と時間の累積によっ
て定まるものであり、従って非晶質合金作製後に普通熱
処理を経ずに磁界中熱処理を比較的高温・長時間荷なっ
ても経時変化の減少は可能である。しかしながら普通熱
処理を行なわずに磁界中熱処理を行なった場合には以下
に述べるような難点がある。すなわち、非晶質合金作製
後にその磁化困難方向に磁界を印加しながら熱処理した
場合には第2図に示したように30(I’という比較的
低温の熱処理によっても短時間でHKの変化が起こるた
めHKの制御が困難となる。
The degree of stabilization of the aging of the amorphous alloy described above is
It is determined by the cumulative temperature and time that an amorphous alloy experiences after its manufacture.Therefore, even if the amorphous alloy is subjected to heat treatment in a magnetic field at a relatively high temperature for a long period of time without undergoing normal heat treatment, it will not change over time. Reduction is possible. However, when heat treatment in a magnetic field is performed without ordinary heat treatment, there are problems as described below. In other words, when an amorphous alloy is produced and then heat treated while applying a magnetic field in the direction of difficulty in magnetization, the HK changes in a short time even with heat treatment at a relatively low temperature of 30 (I'), as shown in Figure 2. This makes it difficult to control HK.

HKの制御を容易にするために熱処理温度を低くした場
合には経時変化の減少の効果は少ない。また普通熱処理
を行なわずに回転磁界中を比較的高温で行なった場合に
は、例えば第4図の400C以上の熱処理では熱処理後
の磁化容易方向と熱処理前の磁化容易方向の関係が不定
となってしまい、磁化容易方向の制御が出来なくなる。
When the heat treatment temperature is lowered to facilitate control of HK, the effect of reducing changes over time is small. Furthermore, if heat treatment is performed in a rotating magnetic field at a relatively high temperature without ordinary heat treatment, for example, in the case of heat treatment at 400C or higher as shown in Fig. 4, the relationship between the easy magnetization direction after heat treatment and the easy magnetization direction before heat treatment becomes unstable. As a result, the direction of easy magnetization cannot be controlled.

すなわちこの状態では試料に残留するわずかな歪と磁歪
によって決まる方向に磁化容易方向が定まる。磁化容易
方向と困難方向では透磁率の値は犬きく異なるため、磁
化容易方向の制御が出来ないことは実用上極めて問題で
ある。これを防ぐには熱処理温度を下げればよいが、そ
の結果経時変化の減少の効果が少なくなる。
That is, in this state, the direction of easy magnetization is determined by the slight strain and magnetostriction remaining in the sample. Since the value of magnetic permeability is quite different between the direction of easy magnetization and the direction of difficult magnetization, the inability to control the direction of easy magnetization is extremely problematic in practical terms. This can be prevented by lowering the heat treatment temperature, but as a result, the effect of reducing changes over time becomes less effective.

以上述べたように非晶質合金作製後に磁界を印加しない
第1の熱処理を行ない、その後磁界を印加する第2の熱
処理を行なうことはHtcの制御を行なう上で良好な方
法である。第1および第2の熱処理温度は原理的に室温
までの低温が可能であるが、実用上Hzの制御が極めて
長時間にならないようにするため九は150C以上とす
ることが必要である。熱処理温度の上限は非晶質合金の
結晶化温度である。また、第2の熱処理の温度を第1の
熱処理温度よりあまり高くすることはHKの制御を困難
にするため、第2の熱処理の温度は第1の熱処理の温度
に5(I’加えた温度より低くすることが望ましい。
As described above, performing a first heat treatment without applying a magnetic field after producing an amorphous alloy, and then performing a second heat treatment in which a magnetic field is applied is a good method for controlling Htc. In principle, the first and second heat treatment temperatures can be as low as room temperature, but in practice it is necessary to set the temperature to 150C or higher in order to prevent Hz control from taking an extremely long time. The upper limit of the heat treatment temperature is the crystallization temperature of the amorphous alloy. Furthermore, since making the temperature of the second heat treatment much higher than the first heat treatment temperature makes it difficult to control HK, the temperature of the second heat treatment is set to the temperature of the first heat treatment plus 5 (I'). It is desirable to make it lower.

本発明における熱処理法は非晶質合金の作製方法および
形状によらず効果を有するが、特にスパッタリング法な
どの薄膜作製技術によって作製した非晶質合金薄膜にお
いて効果が大きい。すなわちスプラットクーリング法な
どによって作製した薄板状非晶質合金は誘導磁気異方性
を有しているものの、その方向および大きさは必ずしも
一定でなく不安定である。一方スバッタリング法などの
薄膜作製技術によって作製した非晶質合金薄膜は作製の
度に安定した磁気異方性の大きさと方向を示す。しかし
、この方法で作製した非晶質合金の磁気異方性は作製中
に存在した磁界の影響を極めて受けやすいため、非晶質
合金を飽和するに十分なだけの磁界を印加しながら作製
したほうが磁気異方性の大きさと方向がそろった試料を
安定に得ることが出来る。従ってこのような非晶質合金
薄膜を本発明の方法によシ熱処理した場合にHKの制御
が容易となる。
Although the heat treatment method of the present invention is effective regardless of the method and shape of the amorphous alloy, it is particularly effective for amorphous alloy thin films produced by thin film production techniques such as sputtering. That is, although a thin plate-like amorphous alloy produced by a splat cooling method has induced magnetic anisotropy, the direction and magnitude thereof are not necessarily constant and are unstable. On the other hand, amorphous alloy thin films fabricated by thin film fabrication techniques such as sputtering exhibit stable magnetic anisotropy in magnitude and direction each time they are fabricated. However, since the magnetic anisotropy of amorphous alloys fabricated using this method is extremely susceptible to the influence of the magnetic field that was present during fabrication, it was fabricated while applying a magnetic field sufficient to saturate the amorphous alloy. This makes it possible to stably obtain samples with uniform magnetic anisotropy in magnitude and direction. Therefore, when such an amorphous alloy thin film is heat-treated by the method of the present invention, HK can be easily controlled.

本発明の熱処理方法は非晶質の組成によらず効果を有す
るが、普通熱処理によってHKの低減、透磁率の改善が
出来ない飽和磁束密度が大きくキュリ一温度が結晶化温
度よシ高い非晶質合金に特に有効である。非晶質合金は
一般にFe、Co。
Although the heat treatment method of the present invention is effective regardless of the composition of the amorphous material, the saturation magnetic flux density is large and the Curie temperature is higher than the crystallization temperature of the amorphous crystal, which cannot be reduced in HK or improved in magnetic permeability by ordinary heat treatment. Particularly effective for high quality alloys. Amorphous alloys are generally Fe, Co.

Niなどの磁性をもつ遷移金属元素と非晶質化元素とか
らなっており、非晶質化元素としてはB。
It consists of a magnetic transition metal element such as Ni and an amorphous element, and B is the amorphous element.

c、At、s+、、p、oeなどのメタロイド元素とT
i、y、Zr、Nb、Hf、Ta、W、希土類元素など
の遷移金属元素がある。メタロイド元素は一般に非晶質
合金中での拡散速度が早いため、メタロイド元素を多量
に含む非晶質合金は誘導磁気異方性の変化が早く、経時
変化が大きいという欠点がある。従って経時変化の小さ
い非晶質合金を得るためには、メタロイド元素を全く含
まないか、含んでいても10原子パーセント以下とする
ことが望ましい。
Metalloid elements such as c, At, s+, p, oe and T
There are transition metal elements such as i, y, Zr, Nb, Hf, Ta, W, and rare earth elements. Since metalloid elements generally have a fast diffusion rate in amorphous alloys, amorphous alloys containing a large amount of metalloid elements have the disadvantage that induced magnetic anisotropy changes quickly and changes over time. Therefore, in order to obtain an amorphous alloy with little change over time, it is desirable to contain no metalloid elements at all, or to contain them in an amount of 10 atomic percent or less.

本発明の非晶質合金の熱処理方法は、そのまま磁気ヘッ
ドの製造工程の一部として利用することが出来る。磁気
ヘッドの製造工程中には、熱を加える工程が含まれるこ
とが多く、この工程を本発明の第1の熱処理として用い
、その後第2の熱処理として磁界中熱処理をすることが
出来る。本発明の熱処理方法を磁気ヘッドの製造に実施
した例を第7図に示した。第7図(a)で鏡面研摩し、
表面を洗浄した基板1を用意した。本実施例では基板材
料としてフオトセラム(米国コーニング社の商品名)を
用いた。次に第7図(b)において基板面に平行に10
0eの磁界を印加しながら、高周波2極スパツタリング
法により非晶質合金薄膜2を基板上に被着した。本実施
例ではC089W5Zf6を非晶質合金薄膜として用い
た。膜厚は20μmとした。次に第7図(C)において
フオトセラムの保護板3をP、b系ガラスを用いて接着
した。この接着において試料を400C・10分間加熱
し、本発明における第1の熱処理とした。本発明におけ
る第2の熱処理として基板面に対して垂直に13000
06の磁界を印加しなから350t:”で1時間熱処理
を行ない非晶質薄膜の膜面に垂直方向を磁化容易方向と
する小さな磁気異方性を付与するようにした。
The method of heat treating an amorphous alloy of the present invention can be used as is as part of the manufacturing process of a magnetic head. The manufacturing process of a magnetic head often includes a step of applying heat, and this step can be used as the first heat treatment of the present invention, followed by heat treatment in a magnetic field as the second heat treatment. FIG. 7 shows an example in which the heat treatment method of the present invention is applied to the manufacture of a magnetic head. Mirror polishing is performed in Figure 7 (a),
A substrate 1 whose surface was cleaned was prepared. In this example, Photoceram (trade name of Corning, Inc., USA) was used as the substrate material. Next, in Fig. 7(b), 10
The amorphous alloy thin film 2 was deposited on the substrate by high frequency bipolar sputtering while applying a magnetic field of 0e. In this example, C089W5Zf6 was used as the amorphous alloy thin film. The film thickness was 20 μm. Next, in FIG. 7(C), a protective plate 3 of photoceram was bonded using P, b type glass. During this bonding, the sample was heated at 400C for 10 minutes, which was the first heat treatment in the present invention. As the second heat treatment in the present invention, 13,000 yen perpendicular to the substrate surface
Heat treatment was performed at 350 t:'' for 1 hour without applying a magnetic field of 0.06 mm to impart a small magnetic anisotropy with the perpendicular direction to the film surface of the amorphous thin film as the direction of easy magnetization.

次に第7図(C)の破線部よシ切断し、第7図(d)に
おいてギャップ突き合わせ面4,4′を鏡面研摩し、接
合用溝5.5’、および巻線窓用溝6を加工し、さらに
ギャップ突き合わせ面4.4′にギャップ材を被着した
。次にヘッドコア半体7,7′を第7図(e)において
ギャップ材を介して一体化し、接合用溝5,5′に有機
接着剤8を充填し、150e2時間加熱硬化して磁気へ
ラドコア9を作製した。以上の工程によシ作製した磁気
ヘッドは第7図(C)において磁界中熱処理を行なわな
かった磁気ヘッドと比較して約4dB再生出力が高かっ
た。
Next, cut along the broken line in FIG. 7(C), and mirror-polish the gap abutting surfaces 4, 4' in FIG. 7(d) to form a bonding groove 5.5' and a winding window groove 6. was processed, and a gap material was applied to the gap abutting surfaces 4.4'. Next, the head core halves 7 and 7' are integrated via a gap material as shown in FIG. 9 was produced. The magnetic head manufactured by the above steps had a reproduction output approximately 4 dB higher than that of the magnetic head shown in FIG. 7(C) which was not subjected to heat treatment in a magnetic field.

以上の製造方法の他に本発明の熱処理方法は種々の応用
が可能である。例えば、非晶質合金薄膜としてC05z
Nb13Zrsを用い、第7図(C)におイテ保護材の
接着を470C・10分間行ない、第7図(e)におい
て接合用接着剤としてpb系ガラスを用い、基板面に垂
直に磁場を印加しながら、400C・1時間加熱する第
2の熱処理を行ない、この第2の熱処理と磁気へラドコ
ア半休の接合・一体化の工程を同時に行なう方法もある
In addition to the above manufacturing method, the heat treatment method of the present invention can be applied in various ways. For example, C05z as an amorphous alloy thin film
Using Nb13Zrs, bonding of the protective material was carried out at 470C for 10 minutes as shown in Fig. 7(C), and in Fig. 7(e), using PB glass as the bonding adhesive, a magnetic field was applied perpendicular to the substrate surface. However, there is also a method in which a second heat treatment is performed at 400 C for 1 hour, and this second heat treatment and the step of joining and integrating the magnetic held core half-dead are performed simultaneously.

次に本発明の熱処理方法を薄膜磁気ヘッドの製造に実施
した例を第8図の薄膜磁気ヘッドの断面図に示した。第
8図(a)において高透磁率M n −7、nフェライ
ト基板10の上に5102のギャップ材11を被着し、
さらにAt配線12を形成し、次にAt配線の上にポリ
イミド系接着剤13をかぶぜて加熱硬化した。次に第8
図(b)において矢印の方向に1ooeの磁界を印加し
ながら、高周波2極スパツタリング法によシ膜厚2μm
のC05zNb13Zrsの非晶質合金薄膜14を被着
した。
Next, an example in which the heat treatment method of the present invention is applied to the manufacture of a thin film magnetic head is shown in the sectional view of a thin film magnetic head in FIG. In FIG. 8(a), a gap material 11 of 5102 is deposited on a high magnetic permeability M n -7, n ferrite substrate 10,
Further, an At wiring 12 was formed, and then a polyimide adhesive 13 was applied over the At wiring and cured by heating. Then the 8th
In Figure (b), while applying a magnetic field of 1 ooe in the direction of the arrow, a film thickness of 2 μm was formed by high frequency bipolar sputtering method.
An amorphous alloy thin film 14 of C05zNb13Zrs was deposited.

次に第8図(C)においてこの非晶質合金薄膜をトラッ
ク幅規制のためにエツチングした後に、フォトセーラム
の保護板15をガラス16で接着した。この工程におい
て400C・10分間の熱処理を行なった。その後薄膜
磁気ヘッドのトラック幅方向に500002の磁界を印
加しながら350Cで1時間熱処理を行ない、薄膜磁気
ヘッドのトラック幅方向を磁化容易方向とする小さな磁
気異方性を非晶質合金薄膜に付与した。このようにして
作製した薄膜磁気ヘッドは磁界中熱処理を行なわなかっ
た薄膜磁気ヘッドと比較して約3dB再生出力が高かっ
た。
Next, in FIG. 8(C), this amorphous alloy thin film was etched to regulate the track width, and then a photoceram protective plate 15 was bonded with glass 16. In this step, heat treatment was performed at 400C for 10 minutes. After that, heat treatment was performed at 350C for 1 hour while applying a magnetic field of 500002 in the track width direction of the thin film magnetic head to give the amorphous alloy thin film a small magnetic anisotropy with the track width direction of the thin film magnetic head as the direction of easy magnetization. did. The thus manufactured thin film magnetic head had a reproduction output approximately 3 dB higher than that of a thin film magnetic head that was not subjected to heat treatment in a magnetic field.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の熱処理方法によれば、8K
G以上の高飽和磁束密度および高透磁率を有し、しかも
透磁率の経時変化の小さい非晶質合金を得ることが出来
、非晶質合金の磁気異方性の大きさおよび方向の制御が
容易となる。本発明の熱処理方法を磁気ヘッドの製造方
法に実施した場合には高性能で性能の経時変化のない磁
気ヘッドが歩留まシよく製造できる。
As described above, according to the heat treatment method of the present invention, 8K
It is possible to obtain an amorphous alloy that has a high saturation magnetic flux density of G or more and a high magnetic permeability, and also has a small change in permeability over time, and it is possible to control the magnitude and direction of the magnetic anisotropy of the amorphous alloy. It becomes easier. When the heat treatment method of the present invention is applied to a method for manufacturing a magnetic head, a magnetic head with high performance and no change in performance over time can be manufactured with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金薄膜のB−H曲線の一例、第2図お
よび第3図は非晶質合金薄膜を磁界中熱処理した時のH
Kおよび透磁率の変化、第4図は非晶質合金薄膜を回転
磁界中で熱処理した時のHzおよび透磁率の変化、第5
図は非晶質合金薄膜を普通熱処理した時のHKおよび透
磁率の変化、第6図は非晶質合金薄膜全普通熱処理した
後に磁界中熱処理した時のHKおよび透磁率の変化、第
7図(a)〜(e)は本発明の磁気ヘッドの製造方法の
工程を示す斜視図、第8図(a)〜(C)は本発明の磁
気ヘッドの製造方法の工程を示す断面図をそれぞれ示す
。 1・・・基板、2,13・・・非晶質合金薄膜、3,1
5・・・保護板、4,4′・・・ギャップ突き合わせ面
、5゜5′・・・接合用溝、6・・・巻線窓用溝、7,
7′・・・磁気へラドコア半休、8・・・接合用接着剤
、9・・・磁気へラドコア、10・・・M n −Z 
nフェライト基板、11・・・ギャップ材、12・・・
At配線、13・・・ポリ第 1 区 Y 2 口 2θ+ ソ 3 z セ1勢理 吟圏 (h) テへカ方j仏よ (′C) 第 5 図 9!:処理温水 (C) 1〜   乙    昏弓 勧刈)里ン龜生(h) 第 7 図 (久)                 (し)(C
)(べ) 片 & 図 (Q) 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 0発 明 者 山下武夫 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 @発 明 者 椎木−夫 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 (η)発 明 者 斉藤法利 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内
Figure 1 is an example of the B-H curve of an amorphous alloy thin film, and Figures 2 and 3 are H curves when the amorphous alloy thin film is heat-treated in a magnetic field.
Changes in K and magnetic permeability, Figure 4 shows changes in Hz and magnetic permeability when an amorphous alloy thin film is heat treated in a rotating magnetic field, Figure 5
The figure shows changes in HK and magnetic permeability when an amorphous alloy thin film is subjected to normal heat treatment. Figure 6 shows changes in HK and magnetic permeability when an amorphous alloy thin film is heat treated in a magnetic field after normal heat treatment. Figure 7 (a) to (e) are perspective views showing the steps of the method of manufacturing a magnetic head of the present invention, and FIGS. 8(a) to (C) are sectional views showing the steps of the method of manufacturing the magnetic head of the present invention, respectively. show. 1...Substrate, 2,13...Amorphous alloy thin film, 3,1
5... Protective plate, 4, 4'... Gap butting surface, 5°5'... Joining groove, 6... Winding window groove, 7,
7'...Magnetic rad core half off, 8...Joining adhesive, 9...Magnetic rad core, 10...M n -Z
n ferrite substrate, 11... gap material, 12...
At wiring, 13...poly 1st ward Y 2 mouth 2θ + so 3 z se1 seiri ginkan (h) Teheka way Buddha ('C) 5th Figure 9! : Treated hot water (C) 1-Otsu (Kenyuki Kankari) Rin Kao (h) Fig. 7 (Ku) (Shi) (C
)(Be) Fragment & Diagram (Q) Inside the Hitachi, Ltd. Central Research Laboratory, 1-280 Higashi-Koigakubo, Kokubunji City 0 Inventor: Takeo Yamashita Inside the Hitachi, Ltd. Central Research Laboratory, 1-280 Higashi-Koigakubo, Kokubunji City Inventor: Shiiki- Inside the Central Research Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji City (η) Inventor: Hori Saito Inside the Central Research Laboratory, Hitachi, Ltd., 1-280 Higashi-Koigakubo, Kokubunji City

Claims (1)

【特許請求の範囲】 1、磁気異方性を有する非晶質合金を、その結晶化温度
以下の温度で行なう第1の熱処理の後に、非晶質合金と
相対的に回転する磁界中において、キュリ一温度以下で
しかも結晶化温度以下の温度で第2の熱処理を行なうこ
とを特徴とした非晶質合金の熱処理方法。 2 磁気異方性を有する非晶質合金を、その結晶化温度
以下の温度で行なう第1の熱処理の後に、非晶質合金の
磁化困難方向に印加された磁界中において、キュリ一温
度以下でしかも結晶化温度以下の温度で第2の熱処理を
行なうことを特徴とした非晶質合金の熱処理方法。 3、特許請求の範囲第1項もしくは第2項記載の非晶質
合金の熱処理方法において、第1および第2の熱処理に
おける温度=i150C以上とし、かつ第2の熱処理に
おける温度金弟1の熱処理における温度に50C加えた
温度以下とするとと全特徴とした非晶質合金の熱処理方
法。 4、特許請求の範囲第1項、第2項もしくは第3項記載
の非晶質合金の熱処理方法において、非晶質合金はスパ
ッタリング法、蒸着法などの薄膜形成技術によシ作製さ
れ、かつ非晶質合金の作製が磁界中において行なわれる
ことヲ蒔徴とする非晶質合金の熱処理方法。 5、特許請求の範囲第1項、第2項、第3項もしくは第
4項記載の非晶質合金の熱処理方法において、非晶質合
金は90原子%以上の金属元素と10原子%以下のメタ
ロイド元素から成ることを特徴とした非晶質合金の熱処
理方法。
[Claims] 1. After the first heat treatment of an amorphous alloy having magnetic anisotropy at a temperature below its crystallization temperature, in a magnetic field rotating relative to the amorphous alloy, A method for heat treatment of an amorphous alloy, characterized in that a second heat treatment is performed at a temperature below one Curie temperature and below a crystallization temperature. 2. After the first heat treatment of an amorphous alloy having magnetic anisotropy at a temperature below its crystallization temperature, the amorphous alloy is heated at a temperature below one Curie temperature in a magnetic field applied in the direction of difficulty in magnetization of the amorphous alloy. Moreover, the method for heat treatment of an amorphous alloy is characterized in that the second heat treatment is performed at a temperature below the crystallization temperature. 3. In the method for heat treatment of an amorphous alloy according to claim 1 or 2, the temperature in the first and second heat treatments is equal to or higher than i150C, and the heat treatment is performed at a temperature of 1 in the second heat treatment. A heat treatment method for an amorphous alloy characterized in that the temperature is equal to or lower than the temperature of 50C plus 50C. 4. In the method for heat treatment of an amorphous alloy according to claim 1, 2 or 3, the amorphous alloy is produced by a thin film forming technique such as a sputtering method or a vapor deposition method, and A method for heat treatment of an amorphous alloy, characterized in that the preparation of the amorphous alloy is carried out in a magnetic field. 5. In the method for heat treatment of an amorphous alloy according to claim 1, 2, 3, or 4, the amorphous alloy contains 90 atomic % or more of a metal element and 10 atomic % or less of a metal element. A method for heat treatment of an amorphous alloy characterized by being composed of metalloid elements.
JP58044187A 1983-03-18 1983-03-18 Heat treatment of amorphous alloy Pending JPS59170248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044187A JPS59170248A (en) 1983-03-18 1983-03-18 Heat treatment of amorphous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044187A JPS59170248A (en) 1983-03-18 1983-03-18 Heat treatment of amorphous alloy

Publications (1)

Publication Number Publication Date
JPS59170248A true JPS59170248A (en) 1984-09-26

Family

ID=12684564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044187A Pending JPS59170248A (en) 1983-03-18 1983-03-18 Heat treatment of amorphous alloy

Country Status (1)

Country Link
JP (1) JPS59170248A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146417A (en) * 1985-12-21 1987-06-30 Hitachi Ltd Thin film magnetic head
JPS63171823A (en) * 1987-01-09 1988-07-15 Alps Electric Co Ltd Heat treatment of amorphous magnetic material
JPS63255371A (en) * 1987-04-13 1988-10-21 Fuji Photo Film Co Ltd Heat treatment of amorphous soft magnetic material
JPS63255370A (en) * 1987-04-13 1988-10-21 Fuji Photo Film Co Ltd Heat treatment of amorphous soft magnetic material
JPS63300419A (en) * 1987-05-30 1988-12-07 Matsushita Electric Ind Co Ltd Furnace for heat treatment in rotating magnetic field for producing magnetic head containing soft magnetic amorphous material
JP2002139407A (en) * 2000-07-28 2002-05-17 Inst Fr Petrole Improved visualization test engine especially for measuring combustion parameter
CN109504927A (en) * 2018-12-17 2019-03-22 内蒙古工业大学 A γ ' phase is precipitated and refines the GH4720Li heating means of crystal grain with transgranular secondary γ ' phase around promotion crystal boundary

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62146417A (en) * 1985-12-21 1987-06-30 Hitachi Ltd Thin film magnetic head
JPS63171823A (en) * 1987-01-09 1988-07-15 Alps Electric Co Ltd Heat treatment of amorphous magnetic material
JPS63255371A (en) * 1987-04-13 1988-10-21 Fuji Photo Film Co Ltd Heat treatment of amorphous soft magnetic material
JPS63255370A (en) * 1987-04-13 1988-10-21 Fuji Photo Film Co Ltd Heat treatment of amorphous soft magnetic material
JPH0694589B2 (en) * 1987-04-13 1994-11-24 富士写真フイルム株式会社 Heat treatment method for amorphous soft magnetic material
JPS63300419A (en) * 1987-05-30 1988-12-07 Matsushita Electric Ind Co Ltd Furnace for heat treatment in rotating magnetic field for producing magnetic head containing soft magnetic amorphous material
JP2002139407A (en) * 2000-07-28 2002-05-17 Inst Fr Petrole Improved visualization test engine especially for measuring combustion parameter
CN109504927A (en) * 2018-12-17 2019-03-22 内蒙古工业大学 A γ ' phase is precipitated and refines the GH4720Li heating means of crystal grain with transgranular secondary γ ' phase around promotion crystal boundary

Similar Documents

Publication Publication Date Title
US4475962A (en) Annealing method for amorphous magnetic alloy
JPS59170248A (en) Heat treatment of amorphous alloy
US5750251A (en) Multilayered soft magnetic film and magnetic head using the same
JPS6129105A (en) Magnetic alloy thin film
JPH0777007B2 (en) Magnetic head manufacturing method
JP3127613B2 (en) Magnetic head and method of manufacturing the same
JPH0375624B2 (en)
JP3127074B2 (en) Magnetic head
JPH02208811A (en) Magnetic head and its production
JPH0484403A (en) Soft magnetic thin film
JP3127075B2 (en) Soft magnetic alloy film, magnetic head, and method of adjusting thermal expansion coefficient of soft magnetic alloy film
JP2529313B2 (en) Magnetic head
JPS6089522A (en) Manufacture of thin film of soft-magnetic material
JPH0665662A (en) Soft magnetic alloy
JPS60234210A (en) Magnetic head using amorphous magnetic alloy
JPS63292406A (en) Manufacture of amorphous alloy thin film magnetic head
JPH07320933A (en) Fe-si-al alloy soft magnetic film and manufacture thereof
JPH02302007A (en) Manufacture of magnetic head
JPH06342512A (en) Perpendicular magnetic recording medium and its production
JPS61120305A (en) Vertical magnetic recording head
JPH0376102A (en) Multilayer magnetic thin film and magnetic head using the same
JPH03203308A (en) Thin magnetic film laminate
JPH0750006A (en) Magnetic head
JPS63300412A (en) Production of magnetic head
JPH01300412A (en) Manufacture of magnetic head