JPS61243144A - Amorphous alloy for magnetic head - Google Patents

Amorphous alloy for magnetic head

Info

Publication number
JPS61243144A
JPS61243144A JP60083601A JP8360185A JPS61243144A JP S61243144 A JPS61243144 A JP S61243144A JP 60083601 A JP60083601 A JP 60083601A JP 8360185 A JP8360185 A JP 8360185A JP S61243144 A JPS61243144 A JP S61243144A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
magnetic
magnetic head
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60083601A
Other languages
Japanese (ja)
Inventor
Teruhiro Makino
彰宏 牧野
Mikio Nakajima
中嶌 幹雄
Tadashi Sasaki
正 佐々木
Koichi Mukasa
幸一 武笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP60083601A priority Critical patent/JPS61243144A/en
Priority to KR1019850007622A priority patent/KR900007666B1/en
Priority to GB08527730A priority patent/GB2167087B/en
Priority to US06/797,238 priority patent/US4743313A/en
Publication of JPS61243144A publication Critical patent/JPS61243144A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an amorphous alloy for a magnetic head having higher magnetic permeability than ferrite and showing superior wear resistance and thermal stability by adding atomic percentages of Cr and Ru to an alloy having a specific composition consisting of Fe, Co, Si and B. CONSTITUTION:An amorphous alloy for a magnetic head is manufactured by adding 1-2atom% Cr and 0-4atom% Ru to an alloy having a composition represented by a formula (Fe1-a,Coa)100-b(Sic,Bd)b (where a=0.93-0.95, c+d=1, b=23-27atom%, and c/(c+d)=0.55-0.65].

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は磁気ヘッド用磁性合金に関し、Coを主成分と
する磁気ヘッド用非晶質合金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a magnetic alloy for a magnetic head, and more particularly to an amorphous alloy for a magnetic head containing Co as a main component.

現用磁気ヘッド材料では、パーマロイ、センダストなど
の結晶質金属材料及びMu−Znフェライト、N 1−
Znフェライトなどの酸化物材料が主とじて使用されて
いる。結晶質金属材料は、酸化物材料であるフェライト
と比較して飽和磁束密度が高いという利点を有するが、
比抵抗が100μΩ・1以下と低いため、ビデオテープ
レコーダ等で使用される周波数帯域(MHz程度)では
透磁率が著しく低下してしまう。
Current magnetic head materials include crystalline metal materials such as permalloy and sendust, Mu-Zn ferrite, and N1-
Oxide materials such as Zn ferrite are mainly used. Crystalline metal materials have the advantage of having a higher saturation magnetic flux density than ferrite, which is an oxide material.
Since the specific resistance is as low as 100 μΩ·1 or less, the magnetic permeability is significantly reduced in the frequency band (approximately MHz) used in video tape recorders and the like.

一方、フェライトは比抵抗が大きく高周波帯域において
も優れた電磁変換特性を示し、さらに高い耐摩耗性を示
すためMn−Zn系がビデオ用映像ヘッドを中心に使用
されている。しかしフェライトは飽和磁化が小さいため
、記録歪を生じ、雑音が多い。
On the other hand, ferrite has a large specific resistance and exhibits excellent electromagnetic conversion characteristics even in a high frequency band, and also exhibits high wear resistance, so the Mn-Zn type is mainly used in video heads. However, since ferrite has a small saturation magnetization, recording distortion occurs and there is a lot of noise.

一般に高密度記録は、高い周波数を使用帯域とする。従
って高密度磁気ヘッド用のコア材は、渦電流損失による
透磁率の劣下を防止するため、薄板化にするか、または
比抵抗ρを大きくする必要がある。センダストは、飽和
磁化が大きく比抵抗もパーマロイと比較して高いが脆弱
であるため、薄板化できない。
Generally, high-density recording uses a high frequency band. Therefore, the core material for a high-density magnetic head needs to be made thinner or have a larger resistivity ρ in order to prevent deterioration of magnetic permeability due to eddy current loss. Sendust has a large saturation magnetization and a high resistivity compared to permalloy, but it is brittle and cannot be made into a thin plate.

近年、結晶構造をもたない非晶質合金において、優れた
磁気的性質及び機械的性質が見い出され、た。
In recent years, excellent magnetic and mechanical properties have been discovered in amorphous alloys that do not have a crystalline structure.

すなわち、非晶質合金は結晶構造をもたないことに起因
して、比抵抗ρが結晶質の金属合金に比較して約数倍高
く、結晶磁気異方性が無いため保磁力が小さり、透磁率
も高い、さらにヴイツカース硬度も1000程度であり
結晶質の金属より高い。
In other words, because amorphous alloys do not have a crystalline structure, their resistivity ρ is several times higher than that of crystalline metal alloys, and their coercive force is small because they do not have magnetic crystalline anisotropy. It also has high magnetic permeability and Witzkars hardness of about 1000, which is higher than crystalline metals.

また磁気歪を零にする組成も基本的にはほぼ解明され磁
気ヘッド用コア材として検討が進められている。
In addition, the composition that makes magnetostriction zero has basically been elucidated and is being studied as a core material for magnetic heads.

しかし、より高密度記録用の磁気へラドコアとして非晶
質合金を用いるには低い周波数域ばかりでなく、IMH
z以上の高周波数帯域で高い透磁率をもつことが必要で
ある。そのためには■ 高い比抵抗をもつこと、 ■ 高い初透磁率をもつこと、 ■ 高い耐摩耗性をもつこと、 ■ 高い熱的安定性をもつこと、 ■ 高い耐食性をもつこと、 を満足する必要がある。
However, the use of amorphous alloys as magnetic helad cores for higher density recording requires not only low frequency ranges but also IMH
It is necessary to have high magnetic permeability in a high frequency band above z. To achieve this, it is necessary to satisfy the following requirements: ■ High resistivity, ■ High initial permeability, ■ High wear resistance, ■ High thermal stability, and ■ High corrosion resistance. There is.

■■■■■のいずれも満足する非晶質合金は非常に狭い
組成領域でのみでしか得られないことを我々は見い出し
た。
We have found that an amorphous alloy that satisfies all of ■■■■■ can only be obtained in a very narrow composition range.

(発明の目的) 本発明は、Co、Fe、Si、Bの4元素の非晶質合金
において上記■〜■のいずれも満足する組成領域を開示
し、更に、耐食性を付加するためにCr、また、より耐
摩耗性を向上するためにRuを添加した。すなわち、本
発明は初透磁率が高く、また比抵抗が高いためIMHz
以上の帯域においてもフェライト以上の透磁率を示すと
ともに、優れた耐摩耗性及び高い熱的安定性を示す非晶
質合金を提出するものである。
(Objective of the Invention) The present invention discloses a composition range that satisfies all of the above (1) to (2) in an amorphous alloy of four elements Co, Fe, Si, and B, and further includes Cr, Additionally, Ru was added to further improve wear resistance. That is, the present invention has high initial permeability and high specific resistance, so
The present invention proposes an amorphous alloy that exhibits a magnetic permeability higher than that of ferrite even in the above range, as well as excellent wear resistance and high thermal stability.

(発明の実施例) 本発明の主合金は(Fet−a l Cot)+oo−
b(Sic。
(Embodiments of the invention) The main alloy of the present invention is (Fet-a l Cot)+oo-
b(Sic.

B4)、なる式により表現され、特にc、d、bが限定
される。そして、本発明の合金は該主合金に更にCrを
l。O〜2.0原子%、RuをO〜4.0原子%添加し
たものである。なお式中(+ d−1*aは通常磁歪を
零にするため、0.93〜0.95であることが知られ
ている。
B4), and c, d, and b are particularly limited. The alloy of the present invention further contains Cr in the main alloy. O~2.0 at% and Ru are added at O~4.0 at%. In the formula, (+d-1*a) is known to be 0.93 to 0.95 in order to normally make the magnetostriction zero.

本発明の磁気ヘッド用非晶質合金における組成の限度理
由は以下の如きである。まずbの値は半金属(St、B
)の濃度を示すが、bが27原子%を超えると飽和磁束
密度が低下し、磁気ヘッド用コア材として好ましくない
、一方、半金属濃度が20原子%以下では、透磁率が低
下し、均一な非晶質合金の形成が困難となる。また、4
0μm以上の厚さの非晶質薄板帯を安定して得るには、
半金属濃度が23原子%以上であることが必要である。
The reason for the composition limit in the amorphous alloy for magnetic heads of the present invention is as follows. First, the value of b is a metalloid (St, B
), but if b exceeds 27 atomic %, the saturation magnetic flux density decreases, making it undesirable as a core material for a magnetic head. On the other hand, if the semimetal concentration is 20 atomic % or less, the magnetic permeability decreases and becomes uniform. It becomes difficult to form amorphous alloy. Also, 4
To stably obtain an amorphous thin plate strip with a thickness of 0 μm or more,
It is necessary that the metalloid concentration is 23 atomic % or more.

Crについては1.0原子%より少ないと耐蝕性等の効
果がなく、また、2.0原子%より多くなると飽和磁束
密度が低下する。Ruについては添加量が多くなるに従
って耐摩耗性は向上するが、4.0原子%を超えると合
金が非晶質になりにくく、また、打抜き加工性が悪くな
る。
Regarding Cr, if it is less than 1.0 at %, there is no effect such as corrosion resistance, and if it is more than 2.0 at %, the saturation magnetic flux density decreases. As the amount of Ru added increases, the wear resistance improves, but if it exceeds 4.0 at %, the alloy is difficult to become amorphous and the punching workability deteriorates.

以下、本発明の主合金の実施例について詳細に説明する
Examples of the main alloy of the present invention will be described in detail below.

(主合金の実施例) 表に示す組成の非晶質合金薄板帯は片ロール液体急冷法
に従い作成された。即ち1つの回転している鋼製ロール
上におかれた石英ノズルより溶融金属をアルゴンガスの
圧力により噴出させる。
(Example of Main Alloy) Amorphous alloy thin plate strips having the compositions shown in the table were prepared according to the single roll liquid quenching method. That is, molten metal is jetted out from a quartz nozzle placed on one rotating steel roll under the pressure of argon gas.

ロール回転数は500〜2000rpm 、噴出ガス圧
は0.1〜1kg/−であった0作成された薄板は巾約
25m、厚さ32〜49μm、長さ約20〜30mであ
った0作成されたすべての薄板はX線回折により、非晶
質相であることが確認され、磁歪104オーダーでほぼ
零であった。結晶化温度はDSC(示差走査型熱量計)
にて決定した。
The roll rotation speed was 500 to 2000 rpm, and the ejected gas pressure was 0.1 to 1 kg/-.The thin plate produced was approximately 25 m wide, 32 to 49 μm thick, and approximately 20 to 30 m long. It was confirmed by X-ray diffraction that all the thin plates were in an amorphous phase, and the magnetostriction was on the order of 104 and almost zero. Crystallization temperature is determined by DSC (differential scanning calorimeter)
It was decided.

厚さはマイクロメーターにより測定した。透磁率は薄帯
より打抜きにして作成された外径10fi、内径6鶴の
リングを10枚バラ積みしたものに巻線(1次、2次側
それぞれ20ターン)を処し、インダクタンス法により
測定した。なお、透磁率は液体急冷された薄帯より得ら
れたリングの状態、及び一部のサンプルを除いて、その
リングを焼鈍(100℃〜500℃で10分保持後水焼
入れ、保持温度は10℃間隔)した状態について室温に
て測定された。
Thickness was measured using a micrometer. Magnetic permeability was measured by the inductance method by winding (20 turns each on the primary and secondary sides) a stack of 10 rings with an outer diameter of 10 fi and an inner diameter of 6 mm, which were punched from thin ribbon. . The magnetic permeability is determined by the state of the ring obtained from the liquid-quenched ribbon, and by annealing the ring (holding at 100°C to 500°C for 10 minutes, then water quenching, holding temperature at 10°C). ℃ interval) at room temperature.

初透磁率としては3m0e、IKHzにおけるその実効
透磁率を採用した。t!i!和磁化(σ3)はVSMに
て10KOeの磁界で測定した。比抵抗は四端子法によ
り測定した。
As the initial magnetic permeability, 3 m0e and its effective magnetic permeability at IKHz were adopted. T! i! The sum magnetization (σ3) was measured using a VSM in a magnetic field of 10 KOe. Specific resistance was measured by the four-terminal method.

第1図に比抵抗pとc / c + dとの関係を示す
FIG. 1 shows the relationship between specific resistance p and c/c + d.

b−23〜27原子%の範囲でpはc / c + d
が大きい方が高い。
p is c/c + d in the range of b-23 to 27 atom%
The larger the value, the higher the value.

第2図は結晶化温度に及ぼすb及びc / c + d
の影響を示す、この関係については、すでに種々の報告
がなされているが、戦々の実験ではc / c+dが約
0.65付近で結晶温度の急激な変化が見い出された。
Figure 2 shows the effects of b and c/c + d on the crystallization temperature.
Various reports have already been made regarding this relationship, which indicates the influence of c, and in extensive experiments, a rapid change in crystal temperature was found when c/c+d was around 0.65.

すなわちc / c + d > 0.65では結晶化
温度が低くなってしまう、この事実はすでに報告されて
いるものと異なっている。
That is, when c/c + d > 0.65, the crystallization temperature becomes low, which is different from what has already been reported.

第3図には、100hrあたりの摩耗量とc / c+
dの関係が示しである。摩耗量の測定は液体急冷したア
モルファスより通常のオーディオタイプの磁気ヘッドを
作成し、市販のカセットタイプのデツキに装着した後、
市販のノーマルチーブを用いて行なった。また摩耗量は
c / c + dが0.2〜0.4でほぼ一定であり
、0.4より大きくなるとしだいに小さくなり、0.5
5以上でほぼ一定となる。
Figure 3 shows the amount of wear per 100hr and c/c+
The relationship d is shown. To measure the amount of wear, a normal audio type magnetic head was created from amorphous material that had been quenched with liquid, and after it was attached to a commercially available cassette type deck,
This was carried out using a commercially available normal tube. In addition, the amount of wear is almost constant at c/c + d of 0.2 to 0.4, and gradually decreases when it becomes larger than 0.4, reaching 0.5.
It becomes almost constant at 5 or more.

c / c + dが0.55以上で良好な耐摩耗性を
示す第4図に液体急冷されたままの種々の組成をもつア
モルファスの初透磁率μlとc/c+d17)59係を
示す、いずれの場合もbが異なるとμlの値も異なって
くるが、c / c + dが0.4以下では一定値を
とり、0.4〜0.6で急激に増加し、しだいに高い一
定値に近づく、すなわち液体急冷のままではc / c
 + dが大きい方がμlが高い、より好ましくはc 
/ c 十dが0.55以上が望ましい。
Good wear resistance is shown when c/c+d is 0.55 or more. In the case of , the value of μl will also differ as b changes, but when c / c + d takes a constant value below 0.4, it increases rapidly between 0.4 and 0.6, and gradually reaches a higher constant value. , that is, when the liquid is quenched, c/c
+ The larger d is, the higher μl is, more preferably c
/ c 10d is preferably 0.55 or more.

一般にアモルファス磁性合金の透磁率は適当な条件での
焼鈍により改善されることが知られている。そこで、透
磁率に及ぼす焼鈍の効果について調べた。
It is generally known that the magnetic permeability of amorphous magnetic alloys can be improved by annealing under appropriate conditions. Therefore, we investigated the effect of annealing on magnetic permeability.

第5図は、b−24で種々のc / c + dの組成
をもつアモルファス合金(llk17〜2G)を種々の
温度で10分間焼鈍した後、水焼入れを行ない、その状
態で測定された初透磁率と焼鈍温度の関係を示す0種々
の組成をもつアモルファス合金における初透磁率に及ぼ
す焼鈍温度の影響は類似しており、c / c + d
が0.5.0.63において高いμ菖 晶!(皿 、艷
 41   講枯夛ψ 11〜n二港シ号中t〜1〜自
kjJ 雫 ↓リ lの組成で大き11ことが確認され
た。各サンプルにおける種々の焼鈍後のμlの最大値を
比較し、μlの高い順にc / c + dをならべる
と、0.63゜0.50.0.67. 0.18であっ
た。
Figure 5 shows the initial values measured in b-24 after annealing amorphous alloys (llk17 to 2G) with various c/c + d compositions at various temperatures for 10 minutes and then water quenching. 0 showing the relationship between magnetic permeability and annealing temperature. The effect of annealing temperature on the initial magnetic permeability in amorphous alloys with various compositions is similar, c / c + d
μ irises with a high value of 0.5.0.63! It was confirmed that the composition of 11 was large in the composition of l. Comparing the results, and arranging c/c + d in descending order of μl, they were 0.63°, 0.50, 0.67, and 0.18.

第6図はb−25場合について第5図と同様にμlに及
ぼす熱処理効果を調べた結果である。各サンプルにおけ
る種々の焼鈍後のμlの最大値を比較し、μlの高い順
にc / c + dをならべると0.64. 0.6
0.0.50.0.40. 0.6 B、  0.20
となる。
FIG. 6 shows the results of examining the effect of heat treatment on μl in the case of b-25 in the same way as FIG. 5. Comparing the maximum value of μl after various annealing in each sample, and arranging c/c + d in descending order of μl, it is 0.64. 0.6
0.0.50.0.40. 0.6 B, 0.20
becomes.

第7図は、b−27の場合について第5図と同様に、μ
lに及ぼす熱処理効果を調べた結果である。各サンプル
における種々の焼鈍後のμlの最大値を比較し、μlの
高い順にc / c + dをならべると、0.63.
 0.50. 0.40. 0.20. 0.76であ
った。
FIG. 7 shows the case of b-27 with μ
These are the results of investigating the effect of heat treatment on l. Comparing the maximum value of μl after various annealing in each sample and arranging c/c + d in descending order of μl, it is 0.63.
0.50. 0.40. 0.20. It was 0.76.

第8図は種々の組成について焼鈍後得られたμlの最大
値とc / c + dとの関係を示す、b−24゜2
5.27のいずれの場合においてもμlはC/c+dは
約0.6付近で最も大きい値となる。
Figure 8 shows the relationship between the maximum value of μl and c/c + d obtained after annealing for various compositions, b-24°2
In any case of 5.27, μl and C/c+d have the largest value around 0.6.

また、実用材料としての観点から特性のばらつきを考慮
する必要があり、たとえば熱処理の操作を考えると広い
熱処理温度範囲で高い透磁率が得られることは作業性、
量産性あるいは材料の信頼性を増す。
Also, from the viewpoint of practical materials, it is necessary to take into account variations in properties. For example, when considering heat treatment operations, it is important to obtain high magnetic permeability over a wide heat treatment temperature range.
Increase mass productivity or reliability of materials.

第9図はμl>10’なる値が得られる焼鈍温度の範囲
(ΔT)を示す、μ1−10’なる値はへラドコア材と
して必要な値と近いと考えられる。
FIG. 9 shows the annealing temperature range (ΔT) in which the value μl>10′ is obtained. The value μ1−10′ is considered to be close to the value required for the Herad core material.

現在、ヘッド用コア材として使用されているパーマロイ
、センダストのμlはほぼこの程度の値である。bが大
きいほどΔTも大きくなるが飽和磁束密度が小さくなる
。c+d−24,25,27の場合いずれも曲線は類似
しており、c / c + dが0.5〜0.65付近
でそれぞれのbについてΔTは大きな値をとる。
Permalloy and Sendust, which are currently used as core materials for heads, have approximately this value in μl. The larger b is, the larger ΔT is, but the saturation magnetic flux density is smaller. In the case of c+d-24, 25, and 27, the curves are similar, and ΔT takes a large value for each b when c/c+d is around 0.5 to 0.65.

さらに(1)〜(24)の合金を高湿度の空気中に放置
し、表面状態を観察し、耐食性を調べた。耐食性はbの
大小によらずc / c 十dが大きいほど良好であっ
た。
Further, the alloys (1) to (24) were left in high humidity air, their surface conditions were observed, and their corrosion resistance was investigated. Corrosion resistance was better as c/c+d was larger, regardless of the size of b.

以上述べてきたことをまとめると、以下に示すようにな
る。
A summary of what has been said above is as follows.

比抵抗ρ    c / c + d−大結晶化温度 
  c / c + d < 0.65耐摩耗性   
 0.55 < c / c + dμi  (AsQ
)  0.55<c/c+dμl (熱処理後)0.5
0<c/c+d<0.65.1Ji(ΔT)   0.
5<c/c+d<0.65耐食性     c / c
 + d−大いずれの条件をも満足するには、 Q、55<C/C+d<0.65 である必要がある。
Specific resistance ρ c / c + d - large crystallization temperature
c/c+d<0.65 wear resistance
0.55 < c / c + dμi (AsQ
) 0.55<c/c+dμl (after heat treatment) 0.5
0<c/c+d<0.65.1Ji(ΔT) 0.
5<c/c+d<0.65 Corrosion resistance c/c
In order to satisfy both the conditions of +d-large, it is necessary that Q, 55<C/C+d<0.65.

次に、本発明の非晶質合金は、前記主合金にCr及びR
u元素を添加したものである。これらの元素を添加した
合金の製法については前述の主合金と同様に片ロール液
体急冷法に従い作成した。
Next, the amorphous alloy of the present invention includes Cr and R in the main alloy.
It is added with the u element. The alloys to which these elements were added were manufactured using the same single-roll liquid quenching method as in the case of the main alloy described above.

Crを添加する理由は耐食性を向上するためで、前記主
合金に対して1.0〜2.0原子%添加した。
The reason for adding Cr is to improve corrosion resistance, and it is added in an amount of 1.0 to 2.0 atomic % based on the main alloy.

添加した合金について塩水噴霧試験(40℃、48時間
)を行い、外部観察した結果、充分な耐食性いと効果が
なく、2.0原子%を超えると飽和磁束密度が低下して
しまう、また、Cr添加により熱処理後において合金が
脆くならないという効果も奏した。
A salt spray test (40°C, 48 hours) was conducted on the alloy to which Cr was added, and as a result of external observation, it was found that the alloy had insufficient corrosion resistance and was not effective, and that if it exceeded 2.0 at%, the saturation magnetic flux density decreased. The addition also had the effect of preventing the alloy from becoming brittle after heat treatment.

Ruについては、添加量が多ければ多い程、より耐摩耗
性を向上することができるが、4.0原子%を超えると
合金が非晶質状態になりにくく、また、打抜き加工性も
悪くなる。
Regarding Ru, the greater the amount added, the more the wear resistance can be improved, but if it exceeds 4.0 atomic %, the alloy will be difficult to become amorphous, and the punching workability will also deteriorate. .

第10図は、前記表に示した主合金組成サンプル(患1
9及び23)にそれぞれ予め1.5原子%のCrを添加
し、更に、Ruを1.0原子%、又は3.0原子%添加
したものについての、走行時間(hr)に対する摩耗量
(μm)をグラフに表わしたものである。同図において
、19aは主合金組成サンプル(Nl119)にCrの
みを1.5原子%添加したもの、19bは同サンプル(
N119)にCrを1.5原子%、Ruを1.0原子%
加えたもの、19Cは同サンプル(Na19)にCrを
1.5原子%、Ruを3.0原子%加えたものをそれぞ
れ示している。また、同様に、23aは主合金組成サン
プル(&23)にCrのみを1.5原子%添加したもの
、23bはCrを1.5原子%及びRuを1.0原子%
、23cはCrを1.5原子%及びRuを3.0原子%
加えたものである。図から明らかなように、19a−C
と23 a −cとの間で耐摩耗の差はなく、何れの主
合金組成においてもRuの添加量が増大するに従って、
摩耗量が大幅に減少している。
Figure 10 shows the main alloy composition samples (patient 1) shown in the table above.
Wear amount (μm ) is expressed in a graph. In the same figure, 19a is the main alloy composition sample (Nl119) with only 1.5 atomic% of Cr added, and 19b is the same sample (Nl119).
N119) with 1.5 at% Cr and 1.0 at% Ru
19C indicates the same sample (Na19) to which 1.5 at. % of Cr and 3.0 at. % of Ru were added. Similarly, 23a is the main alloy composition sample (&23) with 1.5 at% of Cr only added, and 23b is 1.5 at% of Cr and 1.0 at% of Ru.
, 23c contains 1.5 at% Cr and 3.0 at% Ru
It was added. As is clear from the figure, 19a-C
There is no difference in wear resistance between 23a and 23a-c, and as the amount of Ru added increases in any of the main alloy compositions,
The amount of wear is significantly reduced.

なお、比抵抗ρ、μ1等の特性向上に関して、前記主合
金の31.Bの量が0.55 < c / c + d
<0.65の条件を満足すれば良いことは、Cr。
Regarding the improvement of characteristics such as specific resistance ρ and μ1, 31. The amount of B is 0.55 < c / c + d
It is sufficient for Cr to satisfy the condition of <0.65.

Ru元素を添加しても変わらない。There is no change even if Ru element is added.

また、アモルファス磁性合金において、他元素による置
換、添加により初透磁率、耐摩耗性及び比抵抗が改善さ
れることもよく知られているが、本発明合金においても
思違のことが観察されている。
In addition, it is well known that the initial permeability, wear resistance, and specific resistance of amorphous magnetic alloys can be improved by substitution or addition of other elements, but this is not the case in the alloys of the present invention. There is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非晶質合金の比抵抗pとSt/Si+B(−c
/c+d)との関係を示す図、第2図は結晶化温度とb
(−3i+Hの温度)とる/c+dとの関係を示す図、
第3図は100時間当たりの摩耗量とc / c + 
dとの関係を示す図、第4図は非晶質合金の初透磁率μ
mとc / c + dとの関係を示す図、第5図ない
し第7図は、それぞれのbと初透磁率と焼鈍温度との関
係を示す図、第8図は、μmとc / c + dとの
関係を示す図、第9図はμt>16aなる値が得られる
焼鈍温度の範囲とc / c + dとの関係を示す図
、第10図はRuの添加量と時間当たりの摩耗量との関
係を示す図である。 第1図 ”l’sL+B” C/c十d ’/c十d 第3図 ’/c中d ’/c十d 第5図 第6図 m托温度(0C) 第7図 第8図 c/c+d 第9図 C1c+d 第10図 走行時lWI(hr)
Figure 1 shows the specific resistance p of the amorphous alloy and St/Si+B(-c
Figure 2 shows the relationship between crystallization temperature and b
A diagram showing the relationship between (temperature of -3i+H)/c+d,
Figure 3 shows the amount of wear per 100 hours and c/c +
Figure 4 shows the relationship between d and the initial magnetic permeability μ of an amorphous alloy.
Figures 5 to 7 are diagrams showing the relationship between m and c/c + d, Figures 5 to 7 are diagrams showing the relationship between b, initial permeability, and annealing temperature, and Figure 8 is µm and c/c. + d, Figure 9 is a diagram showing the relationship between c/c + d and the range of annealing temperature that provides a value of μt>16a, and Figure 10 is a diagram showing the relationship between the amount of Ru added and the amount per hour. FIG. 3 is a diagram showing the relationship with the amount of wear. Fig. 1 "l'sL+B" C/c 10d '/c 10d Fig. 3'/d in c'/c 0d Fig. 5 Fig. 6 m Temperature (0C) Fig. 7 Fig. 8 c /c+d Figure 9 C1c+d Figure 10 When driving lWI (hr)

Claims (1)

【特許請求の範囲】  組成式(Fe_1_−_a、Co_a)_1_0_0
_−_bSi_c、B_d)_bから成る合金に、Cr
を1.0〜2.0原子%、及びRuを0〜4.0原子%
添加したことを特徴とする磁気ヘッド用非晶質合金。 ただし、a=0.93〜0.95 c+d=1 b=23〜27原子% c/c+d=0.55〜0.65
[Claims] Composition formula (Fe_1_-_a, Co_a)_1_0_0
____bSi_c, B_d)_b alloy, Cr
1.0 to 2.0 at%, and 0 to 4.0 at% Ru.
An amorphous alloy for magnetic heads characterized by the addition of additives. However, a=0.93-0.95 c+d=1 b=23-27 atomic% c/c+d=0.55-0.65
JP60083601A 1984-11-12 1985-04-20 Amorphous alloy for magnetic head Pending JPS61243144A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP60083601A JPS61243144A (en) 1985-04-20 1985-04-20 Amorphous alloy for magnetic head
KR1019850007622A KR900007666B1 (en) 1984-11-12 1985-10-16 Amorphous alloy for use in magnetic heads
GB08527730A GB2167087B (en) 1984-11-12 1985-11-11 Amorphous magnetic alloys
US06/797,238 US4743313A (en) 1984-11-12 1985-11-12 Amorphous alloy for use in magnetic heads

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083601A JPS61243144A (en) 1985-04-20 1985-04-20 Amorphous alloy for magnetic head

Publications (1)

Publication Number Publication Date
JPS61243144A true JPS61243144A (en) 1986-10-29

Family

ID=13807003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083601A Pending JPS61243144A (en) 1984-11-12 1985-04-20 Amorphous alloy for magnetic head

Country Status (1)

Country Link
JP (1) JPS61243144A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270741A (en) * 1986-05-19 1987-11-25 Alps Electric Co Ltd Amorphous alloy for magnetic head
KR100414452B1 (en) * 2001-10-17 2004-01-13 주식회사 포스코 Amorphous alloy materials for the fluid filtering media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713137A (en) * 1980-06-24 1982-01-23 Toshiba Corp Amorphous alloy for magnetic head
JPS5719361A (en) * 1980-07-11 1982-02-01 Hitachi Ltd Amorphous alloy for core of magnetic head and magnetic head for video using it
JPS5825449A (en) * 1981-08-05 1983-02-15 Toshiba Corp Amorphous magnetic alloy for magnetic head
JPS6024338A (en) * 1983-07-19 1985-02-07 Hitachi Metals Ltd Amorphous ferromagnetic alloy
JPS6169939A (en) * 1985-09-19 1986-04-10 Toshiba Corp Amorphous alloy for magnetic head
JPS61194609A (en) * 1985-02-21 1986-08-29 Sony Corp Composite magnetic head

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5713137A (en) * 1980-06-24 1982-01-23 Toshiba Corp Amorphous alloy for magnetic head
JPS5719361A (en) * 1980-07-11 1982-02-01 Hitachi Ltd Amorphous alloy for core of magnetic head and magnetic head for video using it
JPS5825449A (en) * 1981-08-05 1983-02-15 Toshiba Corp Amorphous magnetic alloy for magnetic head
JPS6024338A (en) * 1983-07-19 1985-02-07 Hitachi Metals Ltd Amorphous ferromagnetic alloy
JPS61194609A (en) * 1985-02-21 1986-08-29 Sony Corp Composite magnetic head
JPS6169939A (en) * 1985-09-19 1986-04-10 Toshiba Corp Amorphous alloy for magnetic head

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62270741A (en) * 1986-05-19 1987-11-25 Alps Electric Co Ltd Amorphous alloy for magnetic head
JPH05465B2 (en) * 1986-05-19 1993-01-06 Alps Electric Co Ltd
KR100414452B1 (en) * 2001-10-17 2004-01-13 주식회사 포스코 Amorphous alloy materials for the fluid filtering media

Similar Documents

Publication Publication Date Title
US4918555A (en) Magnetic head containing an Fe-base soft magnetic alloy layer
JPS63119209A (en) Soft magnetic thin-film
US4748000A (en) Soft magnetic thin film
JPH07116563B2 (en) Fe-based soft magnetic alloy
JPH0342806A (en) Soft magnetism thin film
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JPS61243144A (en) Amorphous alloy for magnetic head
US5133814A (en) Soft magnetic thin film
US6303240B1 (en) Soft magnetic thin film
KR900002758B1 (en) Amorphous alloy for magnetic heads
JPS61143546A (en) Amorphous alloy for magnetic head
JP2556863B2 (en) Fe-based magnetic alloy film
JPS61284546A (en) Amorphous alloy for magnetic head
JP2774702B2 (en) Soft magnetic thin film and thin film magnetic head using the same
JP3272738B2 (en) Soft magnetic multilayer
KR0136419B1 (en) Soft magnetic alloy thin film substrate
JPS5927371B2 (en) Fe↓-Co magnetic material
JP2774708B2 (en) Soft magnetic thin film and thin film magnetic head using the same
JPS6089539A (en) Amorphous magnetic alloy having low magnetostriction
JP2727274B2 (en) Soft magnetic thin film
JP2657710B2 (en) Method for manufacturing soft magnetic thin film
JPH03158440A (en) Magnetic alloy for magnetic head core and its production
JPH04252006A (en) Corrosion-resistant magnetically soft film and magnetic head using the same
JPH0546922A (en) Soft magnetic alloy and magnetic head using the same
JPS63168006A (en) Manganese-zinc ferrite and composite magnetic head