JP5312139B2 - High-strength temperature-sensitive magnetic alloy and heating member for induction heating - Google Patents

High-strength temperature-sensitive magnetic alloy and heating member for induction heating Download PDF

Info

Publication number
JP5312139B2
JP5312139B2 JP2009077930A JP2009077930A JP5312139B2 JP 5312139 B2 JP5312139 B2 JP 5312139B2 JP 2009077930 A JP2009077930 A JP 2009077930A JP 2009077930 A JP2009077930 A JP 2009077930A JP 5312139 B2 JP5312139 B2 JP 5312139B2
Authority
JP
Japan
Prior art keywords
induction heating
heating
magnetic
annealing
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009077930A
Other languages
Japanese (ja)
Other versions
JP2010229487A (en
Inventor
博志 三浦
祥晴 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Neomaterial Ltd
Original Assignee
Neomax Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co Ltd filed Critical Neomax Materials Co Ltd
Priority to JP2009077930A priority Critical patent/JP5312139B2/en
Publication of JP2010229487A publication Critical patent/JP2010229487A/en
Application granted granted Critical
Publication of JP5312139B2 publication Critical patent/JP5312139B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Fixing For Electrophotography (AREA)
  • General Induction Heating (AREA)

Description

本発明は、電子複写装置、静電記録装置などにおいて未定着画像(トナー画像)の加熱定着装置に設けられる誘導加熱用発熱ローラなどに用いられる誘導加熱用発熱部材及びその素材として好適な感温磁性合金に関する。   INDUSTRIAL APPLICABILITY The present invention relates to an induction heating heat generating member used for an induction heating heat generating roller provided in a heat fixing device for an unfixed image (toner image) in an electronic copying apparatus, an electrostatic recording apparatus, etc. It relates to a magnetic alloy.

電子複写機、静電記録装置などの画像定着部には、感光ドラムなどの画像形成手段によって被記録紙の上に形成されたトナー画像を加熱して、未定着画像を被記録紙の上に定着させる加熱定着装置が設けられる。前記加熱定着装置として種々のタイプのものがあるが、近年、発熱効率に優れた電磁誘導加熱を適用したものが利用されるようになっている。   In an image fixing unit such as an electronic copying machine or an electrostatic recording apparatus, a toner image formed on a recording paper is heated by an image forming unit such as a photosensitive drum, and an unfixed image is placed on the recording paper. A heat fixing device for fixing is provided. There are various types of heat fixing devices, but in recent years, devices using electromagnetic induction heating with excellent heat generation efficiency have been used.

このような加熱定着装置として、特開平11−327331号公報(特許文献1)には、移動可能なベルトと、前記ベルトとの間でトナー画像が形成された被記録紙(以下、単に「被記録紙」という。)を圧接する加圧ローラと、誘導加熱が可能で、前記ベルトを前記加圧ローラ側に押圧する誘導加熱用発熱部材と、前記発熱部材を誘導加熱する励磁手段を備えた加熱定着装置が記載されている。前記誘導加熱用発熱部材は、前記励磁手段(例えば励磁コイル)によって発生した交番磁界によって誘導電流が流れ、これにより発生したジュール熱により発熱する。前記加圧ローラは、適度なニップが形成されるように、シリコンゴムなどの耐熱性、弾力性のある樹脂でロール軸の周りに形成された外層を備えている。   As such a heat fixing device, Japanese Patent Laid-Open No. 11-327331 (Patent Document 1) discloses a movable belt and a recording paper on which a toner image is formed between the belt (hereinafter simply referred to as “covered”). A pressure roller that presses the recording paper), induction heating is possible, a heating member for induction heating that presses the belt toward the pressure roller, and excitation means for induction heating the heating member. A heat fixing device is described. The induction heating heat generating member generates an induced current by an alternating magnetic field generated by the excitation means (for example, an excitation coil), and generates heat due to Joule heat generated thereby. The pressure roller includes an outer layer formed around a roll shaft with a heat-resistant and elastic resin such as silicon rubber so that an appropriate nip is formed.

また、電磁誘導加熱を利用した他の加熱定着装置として、誘導加熱用発熱ローラと、互いに反対方向に回転する一対の加圧ローラと、前記一対の加圧ローラの間に挟持されるようにして一方の加圧ローラと前記発熱ローラとに移動可能に巻き掛けられたベルトと、前記発熱ローラを誘導加熱するための励磁手段を備えたものがある。この装置では、被記録紙は前記ベルトに密着させた状態で前記一対の加圧ローラの間に通して搬送され、前記ベルトは誘導加熱された発熱ローラによって加熱される。前記被記録紙はこの加熱されたベルトと加圧ローラとの間に挟持され、その上の未定着トナー画像が前記ベルトによって加熱され、被記録紙に定着される。   Further, as another heat fixing device using electromagnetic induction heating, an induction heating heating roller, a pair of pressure rollers rotating in opposite directions, and a pair of pressure rollers are sandwiched between the pair of pressure rollers. There is a belt including a belt movably wound around one pressure roller and the heat generating roller, and an excitation unit for inductively heating the heat generating roller. In this apparatus, the recording paper is conveyed through the pair of pressure rollers while being in close contact with the belt, and the belt is heated by a heat-generating roller heated by induction. The recording paper is sandwiched between the heated belt and the pressure roller, and the unfixed toner image thereon is heated by the belt and fixed on the recording paper.

さらに、加熱定着装置をコンパクトにするために、前記一対の加圧ローラの内の一方を上記誘導加熱用発熱ローラで置き換えて、移動するベルトを無くしたものもある。この場合、通常、前記発熱ローラの外周部には、シリコンゴム、フッ素ゴム、フッ素樹脂などの弾力性のある耐熱性ゴムや樹脂(発泡材を含む。)で形成された外層が設けられる。   Further, in order to make the heat fixing device compact, one of the pair of pressure rollers is replaced with the induction heating heat generating roller, and the moving belt is eliminated. In this case, usually, an outer layer made of elastic heat-resistant rubber or resin (including foamed material) such as silicon rubber, fluororubber or fluororesin is provided on the outer peripheral portion of the heat generating roller.

前記加熱定着装置において、誘導加熱され、未定着トナー画像を被記録紙に定着させる各種の誘導加熱用発熱部材は、非磁性のステンレス鋼材に銅めっきを施したものなどが用いられることがあるが、直流磁気特性の最大比透磁率(μm )が5000以上で、キュリー点が180〜250℃程度の感温磁性合金が自己温度制御特性を備えるため好適に使用される。このような感温磁性合金としては、例えばmass%で36%Ni−Fe合金(キュリー点220℃)が用いられる。 In the heat fixing device, it is inductively heated, various induction heating heating member for fixing an unfixed toner image on a recording paper, but the non-magnetic stainless steel may be such as those plated with copper is used , a maximum relative permeability of dc magnetic properties ([mu] m) is 5,000 or more, a Curie point of the temperature-sensitive magnetic alloy of about 180 to 250 ° C. is suitably used for having a self temperature control characteristics. As such a temperature-sensitive magnetic alloy, for example, a mass% 36% Ni—Fe alloy (Curie point 220 ° C.) is used.

特開平11−327331号公報Japanese Patent Laid-Open No. 11-327331

上記誘導加熱用発熱部材を感温磁性合金で形成する場合、所定の形状に加工した後、高い透磁率を発現させるために再結晶温度域での焼鈍(「磁性焼鈍」という。)が施される。例えば、36%Ni−Fe合金では800〜1000℃程度の温度で磁性焼鈍が行われる。   In the case where the heat generating member for induction heating is formed of a temperature-sensitive magnetic alloy, after being processed into a predetermined shape, annealing in a recrystallization temperature region (referred to as “magnetic annealing”) is performed in order to develop a high magnetic permeability. The For example, in a 36% Ni—Fe alloy, magnetic annealing is performed at a temperature of about 800 to 1000 ° C.

ところが、加工後の発熱部材に磁性焼鈍を施すと、高い透磁率が発現するようになるものの、必然的に材料硬度、強度が低下する。例えば前記36%Ni−Fe合金では、磁性焼鈍により硬さが130Hv程度に落ちる。高周波交番磁界によって発熱部材に発生する誘導電流は表皮効果によって部材の表面に集中して流れるので、誘導加熱の観点からは、誘導加熱用発熱部材の厚さは0.03〜2mm程度でよいが、上記のとおり、磁性焼鈍により硬さ、強度が低下するため、発熱部材は誘導加熱のために必要とされる厚さよりも厚く形成する必要がある。また、発熱部材を薄く形成する場合には、発熱部材にステンレス鋼などの支持部材を付設するなどの対策が必要となる。いずれにしても発熱部材あるいは支持部材付きの誘導加熱用発熱部材は誘導加熱に必要な厚さ以上に厚くなるため、コンパクト化が損なわれる。   However, when magnetic annealing is performed on the heat-generating member after processing, high magnetic permeability is developed, but material hardness and strength are inevitably lowered. For example, in the 36% Ni—Fe alloy, the hardness decreases to about 130 Hv by magnetic annealing. Since the induction current generated in the heat generating member by the high frequency alternating magnetic field flows concentrated on the surface of the member due to the skin effect, the thickness of the heat generating member for induction heating may be about 0.03 to 2 mm from the viewpoint of induction heating. As described above, since the hardness and strength are reduced by magnetic annealing, the heat generating member needs to be formed thicker than the thickness required for induction heating. Further, when the heat generating member is formed thin, it is necessary to take measures such as attaching a support member such as stainless steel to the heat generating member. In any case, since the heat generating member or the heat generating member for induction heating with the support member becomes thicker than necessary for induction heating, downsizing is impaired.

本発明はかかる問題に鑑みなされたもので、5000以上の最大比透磁率で、180〜250℃程度のキュリー点を備え、しかも磁性焼鈍により硬度が低下し難い、高強度感温磁性合金及び誘導加熱用発熱部材を提供することを目的とする。   The present invention has been made in view of such a problem, and has a maximum relative magnetic permeability of 5000 or more, a Curie point of about 180 to 250 ° C., and a high strength thermosensitive magnetic alloy and induction which are hard to decrease in hardness by magnetic annealing. An object is to provide a heating member for heating.

本発明者はNi−Feをベースとして第3元素を種々添加して所定の最大比透磁率、キュリー点を備えながら、磁性焼鈍後の硬度を測定したところ、第3元素としてNbが非常に好ましく、かつNi、Nb、Feが所定量の範囲で所期の目的が達成されることを見出し、本発明を完成するに至った。   The present inventor measured the hardness after magnetic annealing while adding various third elements based on Ni-Fe and having a predetermined maximum relative magnetic permeability and Curie point. As a third element, Nb is very preferable. In addition, the inventors have found that the intended purpose can be achieved within a predetermined amount of Ni, Nb, and Fe, and have completed the present invention.

すなわち、本発明の感温磁性合金は、成分元素がNi、Nb及びFe(不可避的不純物を含む)からなり、最大比透磁率が5000以上、キュリー点が180〜250℃、表面硬度が試験荷重4.9MPaにおけるビッカース硬度でHV160以上であり、図1に示すように、mass%で、
点A(Ni:43.0%、Nb:6.5%、Fe:50.5%)、
点B(Ni:41.0%、Nb:3.5%、Fe:55.5%)、
点C(Ni:38.0%、Nb:3.5%、Fe:58.5%)、
点D(Ni:36.5%、Nb:6.5%、Fe:57.0%)、
で囲まれる範囲内の化学組成を有するものである。この感温磁性合金において、磁性焼鈍後の表面硬度(試験荷重4.9MPa(500g)でのビッカース硬度。以下、単に「硬度」という。)はHV180以上が好ましい。
That is, the temperature-sensitive magnetic alloy of the present invention is composed of Ni, Nb and Fe (including inevitable impurities) as constituent elements, a maximum relative permeability of 5000 or more, a Curie point of 180 to 250 ° C., and a surface hardness of a test load. The Vickers hardness at 4.9 MPa is HV160 or more, and as shown in FIG.
Point A (Ni: 43.0%, Nb: 6.5%, Fe: 50.5%),
Point B (Ni: 41.0%, Nb: 3.5%, Fe: 55.5%),
Point C (Ni: 38.0%, Nb: 3.5%, Fe: 58.5%),
Point D (Ni: 36.5%, Nb: 6.5%, Fe: 57.0%),
It has a chemical composition within the range surrounded by. In this temperature-sensitive magnetic alloy, the surface hardness after magnetic annealing (Vickers hardness at a test load of 4.9 MPa (500 g), hereinafter simply referred to as “hardness”) is preferably HV180 or more .

また、本発明の誘導加熱用発熱部材は、トナー画像定着用の誘導加熱用発熱ローラなどの誘導加熱用発熱部材であって、前記高強度感温磁性合金によって形成されたものである。   In addition, the heat generating member for induction heating according to the present invention is a heat generating member for induction heating such as a heat generating roller for induction heating for fixing a toner image, and is formed of the high-strength thermosensitive magnetic alloy.

本発明の感温磁性合金によれば、Ni−Nb−Feの特定範囲の組成を有するので、5000以上の最大比透磁率で、180〜250℃のキュリー点を備え、しかも磁性焼鈍後の硬度がHV160以上とすることができ、トナー画像定着用の発熱ローラなどの誘導加熱用発熱部材として、従来の感温磁性合金に比して、ステンレス鋼などの支持部材なしで厚さを薄くすることができ、コンパクト化に資することができる。

According to the temperature-sensitive magnetic alloy of the present invention, since it has a composition in a specific range of Ni-Nb-Fe, it has a Curie point of 180-250 ° C. with a maximum relative permeability of 5000 or more, and hardness after magnetic annealing. Can be made HV160 or more, and as a heat generating member for induction heating such as a heat generating roller for fixing a toner image, the thickness is reduced without a supporting member such as stainless steel as compared with a conventional temperature-sensitive magnetic alloy. Can contribute to downsizing.

本発明の感温磁性合金の構成成分であるNi、NbおよびFeの組成範囲を示す組成図である。It is a composition diagram which shows the composition range of Ni, Nb, and Fe which are the structural components of the thermosensitive magnetic alloy of this invention. キュリー点の測定要領を示す説明図である。It is explanatory drawing which shows the measuring point of a Curie point.

本発明者は、Ni−Nb−Fe合金について、Ni−Fe二元合金の特性から5000以上の最大比透磁率を確保することができると推測される、Ni:35〜50%程度の範囲で、キュリー点(c.p.)、直流磁気特性の最大比透磁率、磁性焼鈍後の硬度に及ぼすNb量の影響を詳細に調査した。その結果、図1に示す点A(Ni:43.0%、Nb:6.5%、Fe:50.5%)好ましくは(Ni:42.0%、Nb:6.0%、Fe:52.0%)、点B(Ni:41.0%、Nb:3.5%、Fe:55.5%)好ましくは(Ni:40.0%、Nb:4.0%、Fe:56.0%)、点C(Ni:38.0%、Nb:3.5%、Fe:58.5%)好ましくは(Ni:38.0%、Nb:4.0%、Fe:58.0%)、点D(Ni:36.5%、Nb:6.5%、Fe:57.0%)好ましくは(Ni:37.0%、Nb:6.0%、Fe:57.0%)で囲まれた領域(以下、「本発明合金領域」という。)において、上記3条件をバランスよく満足することが見出された。なお、上記組成のFeは残部であり、不可避的不純物を含む。   The inventor of the present invention is assumed to be able to secure a maximum relative magnetic permeability of 5000 or more from the characteristics of the Ni—Fe binary alloy with respect to the Ni—Nb—Fe alloy. The effect of Nb on the Curie point (cp), the maximum relative permeability of the DC magnetic characteristics, and the hardness after magnetic annealing was investigated in detail. As a result, the point A shown in FIG. 1 (Ni: 43.0%, Nb: 6.5%, Fe: 50.5%), preferably (Ni: 42.0%, Nb: 6.0%, Fe: 52.0%), point B (Ni: 41.0%, Nb: 3.5%, Fe: 55.5%), preferably (Ni: 40.0%, Nb: 4.0%, Fe: 56) 0.0%), point C (Ni: 38.0%, Nb: 3.5%, Fe: 58.5%), preferably (Ni: 38.0%, Nb: 4.0%, Fe: 58.%). 0%), point D (Ni: 36.5%, Nb: 6.5%, Fe: 57.0%), preferably (Ni: 37.0%, Nb: 6.0%, Fe: 57.0) %) Was found to satisfy the above three conditions in a well-balanced manner (hereinafter referred to as “the alloy region of the present invention”). In addition, Fe of the said composition is a remainder and contains an unavoidable impurity.

すなわち、図1において、B−C線及びその延長線よりNbが少ないと、総じて焼鈍後の硬さが低下し、またNi量が低濃度側ではキュリー点も180℃を下回るようになり、一方Ni量が高濃度側ではキュリー点が250℃超となる。また、A−D線及びその延長線よりNb量が多いと、総じて加工性が劣化し、素材の成形が困難になる。また、A−B線よりNbが少ないとやはり磁性焼鈍後の硬度が低下し、またNi量が多いとキュリー点が上昇し、250℃を越えるようになる。また、C−D線よりNi量が少ないと最大比透磁率が低下し、またキュリー点も180℃を下回るようになる。なお、本発明の感温磁性合金の特性に影響を及ぼさない限り、数%程度の特性向上元素を添加することができる。この場合、特性向上元素を除いたNi、Nb及びFeの合計量を100%としたときの各元素量の割合が前記本発明合金領域を満足しておればよい。   That is, in FIG. 1, when Nb is less than the B-C line and its extension line, the hardness after annealing generally decreases, and when the Ni content is low, the Curie point is also below 180 ° C., When the amount of Ni is high, the Curie point exceeds 250 ° C. Moreover, when there is more Nb amount than an A-D line and its extension line, workability will deteriorate on the whole and shaping | molding of a raw material will become difficult. Further, if the amount of Nb is less than that of the AB line, the hardness after magnetic annealing also decreases, and if the amount of Ni is large, the Curie point increases and exceeds 250 ° C. Further, when the amount of Ni is smaller than that of the CD line, the maximum relative permeability is lowered, and the Curie point is also lower than 180 ° C. As long as the characteristics of the temperature-sensitive magnetic alloy of the present invention are not affected, about several percent of the characteristic improving element can be added. In this case, it is only necessary that the ratio of each element amount satisfies the alloy region of the present invention when the total amount of Ni, Nb and Fe excluding the characteristic improving element is 100%.

本発明の感温磁性合金は、上記本発明合金領域の組成を有するNi−Nb−Fe合金を溶製し、これを鋳造して得られた鋳片を熱間加工(熱間鍛造や熱間圧延)を施し、その後必要に応じて軟化焼鈍、冷間圧延を行い、得られた合金板に最終焼鈍として磁性焼鈍を施すことによって製造される。前記冷間圧延を複数工程で行う場合、工程間で中間焼鈍(軟化焼鈍)を施すことができる。本発明の合金は酸化し易いNbを含むため、溶解は真空溶解を行うことが好ましく、前記軟化焼鈍、磁性焼鈍は水素ガス雰囲気などの還元性雰囲気下での熱処理が好ましい。また、軟化焼鈍、中間焼鈍は後述する磁性焼鈍と同様の条件で行えばよい。   The temperature-sensitive magnetic alloy of the present invention melts a Ni—Nb—Fe alloy having the composition of the above-described alloy region of the present invention, and hot-processes a slab obtained by casting the alloy (hot forging or hot Rolling), followed by soft annealing and cold rolling as necessary, and the resulting alloy sheet is subjected to magnetic annealing as final annealing. When the cold rolling is performed in a plurality of steps, intermediate annealing (softening annealing) can be performed between the steps. Since the alloy of the present invention contains Nb which is easily oxidized, the melting is preferably performed by vacuum melting, and the softening annealing and magnetic annealing are preferably heat treatment in a reducing atmosphere such as a hydrogen gas atmosphere. The soft annealing and the intermediate annealing may be performed under the same conditions as the magnetic annealing described later.

前記磁性焼鈍は、通常、950〜1150℃程度の範囲内の温度で0.5〜2hr程度加熱保持することによって行われる。磁性焼鈍温度は、再結晶により結晶粒径を増大させるため、表面硬度を低下させる傾向があり、またキュリー点も低下させる傾向がある。一方、最大比透磁率に対する影響は、硬度、キュリー点に比して敏感であり、焼鈍温度が高くなる程、最大比透磁率が大きく向上させる傾向がある。このため5000以上の最大比透磁率を確保するように、前記温度範囲内で最適な焼鈍温度を設定することが望ましい。   The magnetic annealing is usually performed by heating and holding at a temperature in the range of about 950 to 1150 ° C. for about 0.5 to 2 hours. Since the magnetic annealing temperature increases the crystal grain size by recrystallization, the surface hardness tends to decrease and the Curie point also tends to decrease. On the other hand, the influence on the maximum relative permeability is more sensitive than the hardness and the Curie point, and the maximum relative permeability tends to be greatly improved as the annealing temperature increases. Therefore, it is desirable to set an optimum annealing temperature within the temperature range so as to ensure a maximum relative permeability of 5000 or more.

所定形状の発熱部材に加工する場合は、焼鈍後の冷間圧延板に適宜の加工を施して目的形状に加工した後、磁性焼鈍を施す。形状加工に際しては、必要に応じて中間焼鈍を施しながら、複数工程で成形するようにすればよい。トナー画像の加熱定着装置に用いられる誘導加熱用発熱ローラの場合、通常、焼鈍後の冷延板を有底筒状に深絞り成形し、成形後、底部を切断除去することにより製作される。深絞り成形を行う場合、成形を複数工程に分けて、その間に中間焼鈍を施すことができる。誘導加熱用発熱ローラの板厚は、通常、0.03〜2mm程度に設定される。なお、本発明に係る感温磁性合金は、前記発熱ローラに限らず、トナー画像の加熱定着装置に用いられる各種の誘導加熱用発熱部材やその素材に好適に用いることができる。   When processing into a heat generating member having a predetermined shape, the cold-rolled sheet after annealing is appropriately processed to be processed into a target shape, and then subjected to magnetic annealing. In forming the shape, it may be formed in a plurality of steps while performing intermediate annealing as necessary. In the case of a heating roller for induction heating used in a heat fixing device for toner images, it is usually produced by deep drawing a cold-rolled plate after annealing into a bottomed cylindrical shape, and cutting and removing the bottom after forming. When deep drawing is performed, the molding can be divided into a plurality of steps, and intermediate annealing can be performed during the process. The plate thickness of the heating roller for induction heating is usually set to about 0.03 to 2 mm. The temperature-sensitive magnetic alloy according to the present invention is not limited to the heat-generating roller, and can be suitably used for various induction heating heat-generating members and materials used in toner image heat-fixing devices.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明は上記実施形態や下記実施例よって限定的に解釈されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by the said embodiment and the following Example.

表1に示すNi量、Nb量、残部Fe及び不可避的不純物のNi−Nb−Fe合金を真空溶解し、その溶湯を鋳造して鋳片を得た。得られた鋳片を1150℃に加熱し、大気下で熱間鍛造して幅50mm×厚さ8mmの断面形状の鍛造片を得た後、水素雰囲気で1100℃、1hr加熱保持する軟化焼鈍を施した後、表面を面削して冷間圧延を行い幅50mm×厚さ2mmの冷間圧延板を得た。この圧延板をさらに1000℃、1hr加熱保持する中間焼鈍を行った後、冷間圧延によって板厚を0.5mm(板幅50mm)に加工し、表1に示す磁性焼鈍温度(焼鈍時間1hr)で磁性焼鈍を施した。   The Ni amount, Nb amount, balance Fe, and inevitable impurity Ni—Nb—Fe alloy shown in Table 1 were vacuum-melted, and the molten metal was cast to obtain a slab. The obtained slab was heated to 1150 ° C. and hot forged in the atmosphere to obtain a forged slab having a cross-sectional shape of 50 mm width × 8 mm thickness, and then softened and annealed by heating at 1100 ° C. for 1 hr in a hydrogen atmosphere. Then, the surface was chamfered and cold rolled to obtain a cold rolled sheet having a width of 50 mm and a thickness of 2 mm. This rolled plate was further subjected to intermediate annealing by heating and holding at 1000 ° C. for 1 hr, and then processed into a thickness of 0.5 mm (plate width 50 mm) by cold rolling, and the magnetic annealing temperature shown in Table 1 (annealing time 1 hr) And magnetic annealing.

上記のようにして製造されたNi−Nb−Fe合金板の各試料から組織観察試験片を採取し、JISG0511の規定に従って、光学顕微鏡観察(100倍)によって平均結晶粒径を組織標準図から同定した。また、各試料から硬度測定試験片を採取し、ビッカース硬度(試験荷重4.9MPa)を測定した。また、各試料からキュリー点測定試験片、透磁率測定試験片を採取し、キュリー点、直流磁気特性の最大比透磁率を求めた。最大比透磁率(μm)は旧JISC2531(1987年版)の規定に準拠して測定した。   Tissue observation specimens were collected from each sample of the Ni—Nb—Fe alloy plate produced as described above, and the average crystal grain size was identified from the structure standard diagram by optical microscope observation (100 times) in accordance with the provisions of JIS G0511. did. Moreover, a hardness measurement test piece was collected from each sample, and Vickers hardness (test load 4.9 MPa) was measured. Moreover, the Curie point measurement test piece and the magnetic permeability measurement test piece were sampled from each sample, and the maximum relative permeability of the Curie point and DC magnetic characteristics was determined. The maximum relative permeability (μm) was measured in accordance with the provisions of the old JISC2531 (1987 edition).

キュリー点は以下の要領で測定した。図2に示すように、長さ方向に沿って二つのコイル(5巻き)を設けた試験片S(幅22mm、長さ27mm)を加熱炉1に入れ、前記試験片Sの温度を熱電対により測定し、また一方のコイルに30kHzの交流電圧を印加し、他方のコイルで誘導起電力を測定する。加熱炉の温度を上昇させながら誘導起電力を測定し、誘導起電力が低下しはじめたときの温度をキュリー点とした。図中、2は発信器、3は電圧計、4は温度計である。   The Curie point was measured as follows. As shown in FIG. 2, a test piece S (22 mm wide, 27 mm long) provided with two coils (5 windings) along the length direction is placed in a heating furnace 1, and the temperature of the test piece S is adjusted to a thermocouple. Further, an alternating voltage of 30 kHz is applied to one coil, and the induced electromotive force is measured with the other coil. The induced electromotive force was measured while raising the temperature of the heating furnace, and the temperature when the induced electromotive force began to decrease was taken as the Curie point. In the figure, 2 is a transmitter, 3 is a voltmeter, and 4 is a thermometer.

測定結果を表1にまとめて示す。また、表1の試料番号を図1に示す。各特性の合格レベルは、キュリー点は180〜250℃、最大比透磁率は5000以上であり、硬度は従来レベルよりHV30程度高いHV160以上とした。なお、表中、「−」は測定を省いたことを示す。   The measurement results are summarized in Table 1. The sample numbers in Table 1 are shown in FIG. The acceptable level of each characteristic was a Curie point of 180 to 250 ° C., a maximum relative magnetic permeability of 5000 or more, and a hardness of HV160 or higher, which is about HV30 higher than the conventional level. In the table, “-” indicates that measurement was omitted.

表1より、Nbを含まないか、含んでも過少な試料No. 1、2及び17は、磁性焼鈍温度を800℃、1000℃と低く設定しても焼鈍後の硬度がHV160を下回った。また、Ni量が過少な試料No. 3〜5は、総じてキュリー点が180℃より低かった。また、Nb量が低く、Ni量が多い試料No. 13もやはり十分な硬度が得られなかった。また、Ni量が過多の試料No. 14〜16は磁性焼鈍を1100℃と高めに設定してもキュリー点が総じて高い値となった。また、Nb量が過多の試料No. 20は、熱間鍛造段階で鋳片が割れ、加工性が非常に悪かった。これらに対して、本発明合金領域内の試料No. 6〜12,18及び19(番号にA,Bを付したものを含む。)は、合格レベルのキュリー点及び最大比透磁率を有し、硬度もHV180以上を有しており、従来例の試料No. 1に比して十分な強度を有していることが確認された。   From Table 1, Sample Nos. 1, 2 and 17 containing no or little Nb, even after setting the magnetic annealing temperature as low as 800 ° C. and 1000 ° C., had a hardness after annealing lower than HV160. Further, Sample Nos. 3 to 5 having a small amount of Ni generally had a Curie point lower than 180 ° C. Further, Sample No. 13 having a low Nb amount and a large Ni amount also did not provide sufficient hardness. Further, Sample Nos. 14 to 16 having an excessive amount of Ni had high Curie points as a whole even when the magnetic annealing was set to a high 1100 ° C. In addition, Sample No. 20 with an excessive Nb amount had a very poor workability because the slab was cracked at the hot forging stage. In contrast, sample Nos. 6-12, 18 and 19 (including those with numbers A and B added) in the alloy region of the present invention have an acceptable level of Curie point and maximum relative permeability. Further, the hardness was HV180 or more, and it was confirmed that it had sufficient strength as compared with Sample No. 1 of the conventional example.

さらに、比較的Nb量の高い発明例の試料No. 9の組成のNi−Nb−Fe合金板(板厚0.5mm)を上記と同様にして製造し、これより円形平面のブランクを採取し、3工程の深絞り成形により、内径30mm、厚さ40μm 、長さ440mmの有底円筒体を製造した。深絞り成形の各工程間では水素雰囲気中で1100℃、0.5hr加熱保持する中間焼鈍を施した。成形後、同雰囲気中で1100℃、1hr加熱保持する磁性焼鈍を施した。その後、底部を切断し、長さ430mmの円筒状発熱ローラを得た。このローラを長さ方向に切断し、展開して、表面硬度を測定したところ、HV203であった。また、試験片を採取して、キュリー点、最大比透磁率を測定したところ、それぞれ191℃、8000であった。   Further, a Ni—Nb—Fe alloy plate (thickness 0.5 mm) of the composition of Sample No. 9 of the inventive example having a relatively high Nb amount was manufactured in the same manner as described above, and a circular flat blank was collected therefrom. A bottomed cylindrical body having an inner diameter of 30 mm, a thickness of 40 μm and a length of 440 mm was produced by three-stage deep drawing. Between each process of deep drawing, the intermediate annealing which heated and hold | maintained at 1100 degreeC and 0.5 hr was performed in hydrogen atmosphere. After molding, magnetic annealing was performed by heating and holding at 1100 ° C. for 1 hr in the same atmosphere. Thereafter, the bottom portion was cut to obtain a cylindrical heating roller having a length of 430 mm. When this roller was cut in the length direction, developed, and the surface hardness was measured, it was HV203. Moreover, when the test piece was extract | collected and the Curie point and the maximum relative magnetic permeability were measured, they were 191 degreeC and 8000, respectively.

Figure 0005312139
Figure 0005312139

Claims (3)

成分元素がNi、Nb及びFeからなる高強度感温磁性合金であって、
最大比透磁率が5000以上、キュリー点が180〜250℃、表面硬度が試験荷重4.9MPaにおけるビッカース硬度でHV160以上であり、
図1に示すように、mass%で、
点A(Ni:43.0%、Nb:6.5%、Fe:50.5%)、
点B(Ni:41.0%、Nb:3.5%、Fe:55.5%)、
点C(Ni:38.0%、Nb:3.5%、Fe:58.5%)、
点D(Ni:36.5%、Nb:6.5%、Fe:57.0%)、
で囲まれる範囲内の化学組成を有する、高強度感温磁性合金。
It is a high-strength thermosensitive magnetic alloy whose constituent elements are Ni, Nb and Fe,
The maximum relative permeability is 5000 or more, the Curie point is 180 to 250 ° C., the surface hardness is HV160 or more in terms of Vickers hardness at a test load of 4.9 MPa,
As shown in FIG.
Point A (Ni: 43.0%, Nb: 6.5%, Fe: 50.5%),
Point B (Ni: 41.0%, Nb: 3.5%, Fe: 55.5%),
Point C (Ni: 38.0%, Nb: 3.5%, Fe: 58.5%),
Point D (Ni: 36.5%, Nb: 6.5%, Fe: 57.0%),
A high-strength thermosensitive magnetic alloy having a chemical composition within the range surrounded by.
トナー画像定着用の誘導加熱用発熱部材であって、請求項1に記載された高強度感温磁性合金によって形成された、誘導加熱用発熱部材。 A heating member for induction heating for fixing a toner image, the heating member for induction heating formed of the high-strength temperature-sensitive magnetic alloy according to claim 1 . 前記誘導加熱用発熱部材が誘導加熱用発熱ローラである、請求項に記載した誘導加熱用発熱部材。 The heating member for induction heating according to claim 2 , wherein the heating member for induction heating is a heating roller for induction heating.
JP2009077930A 2009-03-27 2009-03-27 High-strength temperature-sensitive magnetic alloy and heating member for induction heating Active JP5312139B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077930A JP5312139B2 (en) 2009-03-27 2009-03-27 High-strength temperature-sensitive magnetic alloy and heating member for induction heating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077930A JP5312139B2 (en) 2009-03-27 2009-03-27 High-strength temperature-sensitive magnetic alloy and heating member for induction heating

Publications (2)

Publication Number Publication Date
JP2010229487A JP2010229487A (en) 2010-10-14
JP5312139B2 true JP5312139B2 (en) 2013-10-09

Family

ID=43045570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077930A Active JP5312139B2 (en) 2009-03-27 2009-03-27 High-strength temperature-sensitive magnetic alloy and heating member for induction heating

Country Status (1)

Country Link
JP (1) JP5312139B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743550A (en) * 1970-06-25 1973-07-03 Elect & Magn Alloys Res Inst Alloys for magnetic recording-reproducing heads
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head
JPS602651A (en) * 1983-06-17 1985-01-08 Nippon Mining Co Ltd Magnetic alloy
JPS60248865A (en) * 1984-05-23 1985-12-09 Nippon Gakki Seizo Kk High magnetic permeability alloy
JPH0610327B2 (en) * 1984-06-30 1994-02-09 株式会社東芝 Torque sensor
JP2615661B2 (en) * 1987-09-09 1997-06-04 大同特殊鋼株式会社 Torque sensor

Also Published As

Publication number Publication date
JP2010229487A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5737952B2 (en) Nb-containing ferritic stainless steel hot rolled coil and manufacturing method
JP5737951B2 (en) Ti-containing ferritic stainless steel hot-rolled coil and manufacturing method
JP5349015B2 (en) Method for producing Ni-saving austenitic stainless hot-rolled steel sheet, slab and hot-rolled steel sheet
JP5920555B1 (en) Austenitic stainless steel sheet and manufacturing method thereof
JP4858286B2 (en) Full hard cold rolled steel sheet
JP2016538422A (en) Metal steel production by slab casting
CN102181789A (en) Refractory steel material for supercritical turbine blade and preparation method thereof
TWI625402B (en) Titanium copper foil and manufacturing method thereof
JPWO2017154981A1 (en) Martensitic stainless steel foil and method for producing the same
JP2000104142A (en) Composite magnetic member, production of ferromagnetic part in composite magnetic member and formation of nonmagnetic part in composite magnetic member
JP6472317B2 (en) Metal base material, fixing member and thermal fixing device
Li et al. Effect of pulse current on the tensile deformation of SUS304 stainless steel
JP5320990B2 (en) Cold rolled steel sheet and method for producing the same
JP5357439B2 (en) Linear steel or bar steel that can omit spheroidizing annealing
JP5139021B2 (en) Soft magnetic steel material, soft magnetic steel component and manufacturing method thereof
JP5312139B2 (en) High-strength temperature-sensitive magnetic alloy and heating member for induction heating
JP2010132983A (en) Full hard cold rolled steel sheet
JP5939190B2 (en) Electrical steel sheet
JP2014238447A (en) Metal base for fixing member and manufacturing method of the same, fixing member, and fixing device
TWI677584B (en) High-strength copper-titanium alloy strip and foil having a layered structure
JP6180490B2 (en) Stainless steel foil or wire for resistance heating element
CN107406944B (en) Steel plate for tanks and its manufacturing method
JP6112582B2 (en) Method for producing magnetostrictive material
JP4646872B2 (en) Soft magnetic steel material, soft magnetic component and method for manufacturing the same
JP5282456B2 (en) A material for stainless cold-rolled steel sheet capable of suppressing the occurrence of roping and ear cracking and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5312139

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250