JPH0356298B2 - - Google Patents

Info

Publication number
JPH0356298B2
JPH0356298B2 JP58243113A JP24311383A JPH0356298B2 JP H0356298 B2 JPH0356298 B2 JP H0356298B2 JP 58243113 A JP58243113 A JP 58243113A JP 24311383 A JP24311383 A JP 24311383A JP H0356298 B2 JPH0356298 B2 JP H0356298B2
Authority
JP
Japan
Prior art keywords
alloy
machinability
magnetic
less
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58243113A
Other languages
Japanese (ja)
Other versions
JPS60135544A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58243113A priority Critical patent/JPS60135544A/en
Publication of JPS60135544A publication Critical patent/JPS60135544A/en
Publication of JPH0356298B2 publication Critical patent/JPH0356298B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はNi−Fe−Cu系合金、すなわちCuパー
マロイ被削性、打抜性などの機械加工性を改善し
た快削性磁性合金に関する。 従来よりパーマロイは電解機器、磁気シールド
用材料として広く使用されている。シールド用と
してはオーデイオ、VTR分野における磁気ヘツ
ドのシールドケース、シールドカバー等として多
用されている。これらの用途にはパーマイロの中
でも特に高透磁率が得られる高Niパーマイロで
あるJIS−PC相当材が主として用いられているが
比較的価格が高いので、この低価格化が工業的に
は望まれている。そこで高価なNi量が従来のJIS
−PC相当材よりも約7〜25%少なく低価格化が
可能なCuパーマロイが近年注目されている。 このCuパーマロイの基本的な組成は重量%
(以下単に%)でNi57〜74%、Cu12〜34%、Fe
残部であり、Cuが多量に含まれている。このた
め従来のJIS−PC相当材よりもさらに柔軟で粘く
なるため、被削性が劣り、工具寿命を短くすると
いう問題があつた。特にVTR音声コントロール
ヘツドの磁気シールドケースには数個のねじ止め
固定用の穴が開けられており、さらにその穴には
タツプ加工が施されている。そのためCuパーマ
ロイを上記用途に用いる場合は、快削性を改善さ
せることが必要となる。 一般にNi−Fe系磁性合金の快削性を改善する
ために、Ni−Fe系合金と固溶しない低融点元素
を添加することにより、該合金中に微細な金属粒
として分散させ被削性を向上させる方法さらに該
合金中に不純物や非金属介在物を多量に含有させ
て被削性を向上させる方法が考えられている。し
かし、前者の方法では熱間加工性が著しく劣化す
ると共に透磁率が低下し、後者の方法でも透磁率
が低下する。 本発明は熱間加工性を損なうことなく、初透磁
率をも低下させずに、Cuを多量に含有するNi−
Fe−Cu合金の被削性を改良した磁性合金を提供
することを目的とする。 本発明はNi57〜74%、Cu12〜32%、Be0.001〜
0.5%、10%以下のTi、Zr、V、Nb、Ta、Cr、
Mo、W、Mn、Geから選ばれた少なくとも1種、
および残部Feから成る快削性磁性合金を生成す
ることによつて、熱間加工性、磁気特性を損なう
ことなくこの種の合金に関する被削性を改善させ
たものである。 次に合金組成の限定理由について説明する。 Ni57〜74%の範囲で高透磁率を有するが、
Ni57%未満では透磁率が低下し、耐食性も著し
く劣り、また74%を越えるとCu量12%以上の添
加により透磁率の低下が著しい。さらにNiが74
%を越えるものは省資源低価格化を考慮すれば工
業的に不利となる。 Cu12〜32%の範囲で高透磁率を有するがCuが
12%未満ではNi量が74%を越えないと高透磁率
が得られず、Cuが32%を越えるとNiを57%未満
としても初透磁率が低下し熱間加工性も劣化す
る。 Ni、Cuともに上記組成範囲内で高透磁率を得
るためにはNi量が少なくなればCu量を逆に多く
する必要がある。 Ti、Zr、V、Nb、Ta、Cr、Mo、W、Mn、
Geは磁気特性、機械的性質を改善するために10
%を上限として添加するものである。各添加元素
の好ましい添加範囲は、Ta、W、Mnはそれぞれ
10%以下、V、Nb、Cr、Mo、Geはそれぞれ6
%以下、Ti2%以下、Zr1%以下である。これら
の元素を上記範囲を越えて添加すると、熱間加工
性が劣化したり、飽和磁束密度が低下したり、さ
らには被削性も劣化する。 Beは被削性改善のために添加する元素で切り
くず破砕性を向上させる効果があり、0.001%未
満ではその添加効果が明らかでなく、0.5%を越
えて添加しても被削性は著しく改善されず、さら
に透磁率の劣化が著しくなる。 次に実施例により本発明を説明する。 表−1に示した化学組成を有する合金を真空溶
解後、鋳造しインゴツトを得た。これらのインゴ
ツトは900〜1250℃の適当な温度範囲で熱間鍛造、
熱間圧延して厚さ6mmの板状試料を得た。このと
き熱間加工性はいずれも良好であつた。これらの
試料から50×50×6の試験片を切り出し900℃、
1時間(水素雰囲気中)の焼鈍を施し被削性試験
に供した。さらに前記板状試料を冷間圧延により
厚さ0.5mmとし、外径10mm、内径6mmのリング状
試料を打ち抜き、1100℃、3時間(水素雰囲気
中)の焼鈍を施し、磁気特性を測定した。
The present invention relates to a Ni-Fe-Cu alloy, that is, a free-cutting magnetic alloy with improved machinability such as Cu permalloy machinability and punchability. Permalloy has been widely used as a material for electrolytic equipment and magnetic shielding. For shielding purposes, it is widely used as magnetic head shield cases and shield covers in the audio and VTR fields. For these applications, JIS-PC equivalent materials, which are high-Ni permilos with particularly high magnetic permeability among permilosites, are mainly used, but they are relatively expensive, so lowering the price is desired industrially. ing. Therefore, the amount of expensive Ni is lower than the conventional JIS
-Cu permalloy has been attracting attention in recent years because it can be produced at a cost of about 7 to 25% less than PC equivalent materials. The basic composition of this Cu permalloy is wt%
(hereinafter simply %) Ni57~74%, Cu12~34%, Fe
It is the remainder and contains a large amount of Cu. As a result, it becomes more flexible and sticky than conventional JIS-PC equivalent materials, resulting in poor machinability and shortened tool life. In particular, the magnetically shielded case of the VTR audio control head has several holes for fixing screws, and the holes are also tapped. Therefore, when Cu permalloy is used for the above applications, it is necessary to improve its free machinability. Generally, in order to improve the free machinability of Ni-Fe magnetic alloys, low-melting elements that do not form a solid solution with the Ni-Fe alloy are added to disperse them as fine metal grains in the alloy, thereby improving machinability. Further, a method of improving machinability by incorporating a large amount of impurities or nonmetallic inclusions into the alloy has been considered. However, in the former method, the hot workability is significantly deteriorated and the magnetic permeability is reduced, and in the latter method, the magnetic permeability is also reduced. The present invention enables Ni-
The purpose is to provide a magnetic alloy with improved machinability of Fe-Cu alloy. The present invention has Ni57~74%, Cu12~32%, Be0.001~
0.5%, 10% or less Ti, Zr, V, Nb, Ta, Cr,
At least one selected from Mo, W, Mn, Ge,
By producing a free-cutting magnetic alloy consisting of Fe and the balance Fe, the machinability of this type of alloy is improved without impairing hot workability or magnetic properties. Next, the reason for limiting the alloy composition will be explained. Ni has high permeability in the range of 57-74%,
If Ni is less than 57%, the magnetic permeability decreases and the corrosion resistance is significantly inferior, and if it exceeds 74%, the magnetic permeability decreases significantly due to the addition of 12% or more of Cu. In addition, Ni is 74
% or more is industrially disadvantageous if resource conservation and price reduction are taken into consideration. Cu has high magnetic permeability in the range of 12 to 32%, but Cu
If the Cu content is less than 12%, high magnetic permeability cannot be obtained unless the Ni content exceeds 74%, and if the Cu content exceeds 32%, the initial permeability decreases and hot workability deteriorates even if the Ni content is less than 57%. In order to obtain high magnetic permeability within the above composition range for both Ni and Cu, it is necessary to conversely increase the amount of Cu as the amount of Ni decreases. Ti, Zr, V, Nb, Ta, Cr, Mo, W, Mn,
Ge 10 to improve magnetic properties and mechanical properties
%. The preferred addition range of each additive element is Ta, W, and Mn, respectively.
10% or less, V, Nb, Cr, Mo, Ge each 6
% or less, Ti2% or less, Zr1% or less. If these elements are added in excess of the above range, hot workability will deteriorate, saturation magnetic flux density will decrease, and machinability will also deteriorate. Be is an element added to improve machinability, and it has the effect of improving chip breakage.If it is less than 0.001%, its effect is not obvious, and if it is added more than 0.5%, the machinability is significantly reduced. There is no improvement, and the deterioration of magnetic permeability becomes even more significant. Next, the present invention will be explained with reference to Examples. An alloy having the chemical composition shown in Table 1 was vacuum melted and then cast to obtain an ingot. These ingots are hot-forged at a suitable temperature range of 900-1250℃.
A plate-shaped sample with a thickness of 6 mm was obtained by hot rolling. At this time, hot workability was good in all cases. A 50 x 50 x 6 test piece was cut out from these samples and heated to 900°C.
It was annealed for 1 hour (in a hydrogen atmosphere) and subjected to a machinability test. Further, the plate-shaped sample was cold-rolled to a thickness of 0.5 mm, and a ring-shaped sample having an outer diameter of 10 mm and an inner diameter of 6 mm was punched out, and annealed at 1100° C. for 3 hours (in a hydrogen atmosphere) to measure magnetic properties.

【表】 あつた。
表−1に示した各合金についてドリル穴あけ加
工を行ないこのときの切削抵抗を測定した。切削
抵抗は工具動力計を用いてトルク成分とスラスト
成分に分けて測定した。さらにタツプ加工時の切
削トルクをも測定した。このときの切削条件をま
とめて表−2に、測定結果を表−4に示す。 また磁気特性の測定項目を表−3に、測定結果
を表−4に示す。
[Table] Atsuta.
Drilling was performed for each alloy shown in Table 1, and the cutting resistance at this time was measured. Cutting resistance was measured separately into torque and thrust components using a tool dynamometer. Furthermore, the cutting torque during tapping was also measured. The cutting conditions at this time are summarized in Table 2, and the measurement results are shown in Table 4. In addition, the measurement items of magnetic properties are shown in Table 3, and the measurement results are shown in Table 4.

【表】【table】

【表】【table】

【表】 による
[Table] According to

【表】 次にNo.1、No.3、No.9についてドリル穴あけ加
工時の送り速度と切削抵抗の関係を第1図および
第2図に示す。第1図はトルク成分、第2図はス
ラスト成分についての結果である。これらの図よ
り、本発明合金No.9は比較例のNo.1、3に比べて
トルク成分、スラスト成分がともに小さくなつて
おり、すなわち切削抵抗が小さくなつていること
がわかる。 さらに同合金についてのタツプ加工時の切削ト
ルクを第3図に示す。この図からも本発明合金No.
9は比較例のNo.1、3よりも切削抵抗が小さいこ
とがわかる。 上記実施例において示した如く本発明合金にお
いてNiは60〜69%、Cuは16〜30%の範囲が磁気
特性上好ましい組成範囲である。 以上述べた如くNi57〜74%、Cu12〜32%、
Be0.001〜0.5%、10%以下のTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Geから選ばれた少なく
とも1種および残部Feからなる合金、即ち、Cu
パーマロイにBeを適量含有させることにより熱
間加工性、磁気特性を損なうことなく被削性を改
善することが可能である。故に本発明合金は
VTR用磁気ヘツドケースとして極めて有用であ
るとともにその他の切削加工を施して用いられる
各種電磁機器用材料として有益である。
[Table] Next, Figures 1 and 2 show the relationship between feed rate and cutting resistance during drilling for No. 1, No. 3, and No. 9. Figure 1 shows the results for the torque component, and Figure 2 shows the results for the thrust component. From these figures, it can be seen that the torque component and the thrust component of the alloy No. 9 of the present invention are smaller than those of Comparative Examples No. 1 and 3, that is, the cutting resistance is smaller. Furthermore, Fig. 3 shows the cutting torque during tapping for the same alloy. From this figure, the invention alloy No.
It can be seen that No. 9 has a smaller cutting resistance than Comparative Examples Nos. 1 and 3. As shown in the above examples, preferred composition ranges for the alloy of the present invention include Ni in a range of 60 to 69% and Cu in a range of 16 to 30% in terms of magnetic properties. As mentioned above, Ni57-74%, Cu12-32%,
Be0.001~0.5%, 10% or less Ti, Zr, V, Nb,
An alloy consisting of at least one selected from Ta, Cr, Mo, W, Mn, Ge and the balance Fe, that is, Cu
By incorporating an appropriate amount of Be into permalloy, it is possible to improve machinability without impairing hot workability or magnetic properties. Therefore, the alloy of the present invention
It is extremely useful as a magnetic head case for VTRs, and is also useful as a material for various electromagnetic devices that are subjected to other cutting processes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は穴あけ加工時の工具送り
速度と切削抵抗との関係を表わした図であり、切
削抵抗のトルク成分を第1図に、スラスト成分を
第2図に示す。第3図はタツプ加工時の切削トル
クを材質毎に表わした図である。
FIGS. 1 and 2 are diagrams showing the relationship between tool feed rate and cutting resistance during drilling, and FIG. 1 shows the torque component of the cutting resistance, and FIG. 2 shows the thrust component. FIG. 3 is a diagram showing the cutting torque for each material during tapping.

Claims (1)

【特許請求の範囲】[Claims] 1 重量%にてNi57〜74%、Cu12〜32%、
Be0.001〜0.5%、10%以下のTi、Zr、V、Nb、
Ta、Cr、Mo、W、Mn、Geから選ばれた少なく
とも1種、および残部Feから成ることを特徴と
する快削性磁性合金。
1 Weight% Ni57-74%, Cu12-32%,
Be0.001~0.5%, 10% or less Ti, Zr, V, Nb,
A free-cutting magnetic alloy comprising at least one selected from Ta, Cr, Mo, W, Mn, and Ge, and the balance being Fe.
JP58243113A 1983-12-24 1983-12-24 Free-cutting magnetic alloy Granted JPS60135544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58243113A JPS60135544A (en) 1983-12-24 1983-12-24 Free-cutting magnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58243113A JPS60135544A (en) 1983-12-24 1983-12-24 Free-cutting magnetic alloy

Publications (2)

Publication Number Publication Date
JPS60135544A JPS60135544A (en) 1985-07-18
JPH0356298B2 true JPH0356298B2 (en) 1991-08-27

Family

ID=17098986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58243113A Granted JPS60135544A (en) 1983-12-24 1983-12-24 Free-cutting magnetic alloy

Country Status (1)

Country Link
JP (1) JPS60135544A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5382947B2 (en) * 2010-04-08 2014-01-08 株式会社アルバック DIFFERENTIAL TRANSFORMER CORE FOR PROTECT TYPE STEP METER AND ITS MANUFACTURING METHOD

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58123848A (en) * 1982-01-20 1983-07-23 Res Inst Electric Magnetic Alloys Wear resistant high permeability alloy for magnetic recording and reproducing head, its manufacture and magnetic recording and reproducing head

Also Published As

Publication number Publication date
JPS60135544A (en) 1985-07-18

Similar Documents

Publication Publication Date Title
US5158624A (en) Soft-magnetic nickel-iron-chromium alloy
JPS625972B2 (en)
JP2646277B2 (en) Ni-Fe-Cr soft magnetic alloy for iron core members
EP0088244B1 (en) Cobalt rich manganese containing near-zero magnetostrictive metallic glasses having high saturation induction
US5725687A (en) Wear-resistant high permability alloy and method of manufacturing the same and magnetic recording and reproducing head
JPH0356298B2 (en)
JPS6212296B2 (en)
JPH0356297B2 (en)
JPH0532454B2 (en)
JP2734035B2 (en) Stainless steel with excellent cold forgeability
JP2862985B2 (en) Magnetic shield parts
JP2927926B2 (en) Magnetic shield parts
JPH0711061B2 (en) Electromagnetic stainless steel for cold forging
JPS60135545A (en) Free-cutting magnetic alloy
JPH03277718A (en) Production of ni-fe-cr soft-magnetic alloy
JPH01252756A (en) Ni-fe-cr soft magnetic alloy
JPH0288746A (en) High permeability magnetic material
JPS62222B2 (en)
JPH02153036A (en) Wear-resistant high permeability alloy for magnetic recording/reproducing head and its manufacture and magnetic recording/reproducing head
JPH08120420A (en) Corrosion resistant soft-magnetic steel
JPS6151023B2 (en)
JPS6018133B2 (en) Magnetic alloy for magnetic head shield case
JPS6213420B2 (en)
JPS63307246A (en) Free cutting high permeability alloy
JP3222896B2 (en) Ni-Fe alloy with excellent punching properties