JPS60135545A - Free-cutting magnetic alloy - Google Patents
Free-cutting magnetic alloyInfo
- Publication number
- JPS60135545A JPS60135545A JP58243114A JP24311483A JPS60135545A JP S60135545 A JPS60135545 A JP S60135545A JP 58243114 A JP58243114 A JP 58243114A JP 24311483 A JP24311483 A JP 24311483A JP S60135545 A JPS60135545 A JP S60135545A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- machinability
- hot workability
- rare earth
- earth elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Soft Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はNi −Fe −Cu系合金、すなわち(:’
uzf−マロイの被削性、打抜性などの機械加工性を改
善した快削性磁性合金に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Ni-Fe-Cu alloy, namely (:'
This invention relates to a free-cutting magnetic alloy that has improved machinability such as machinability and punchability of uzf-malloy.
従来よシ・ぞ−マロイは電磁機器、磁気シールド用材料
として広く使用されている。シールド用としてはオーデ
ィオ、 VTR分野における磁気へラドのシールドケー
ス、シールドカバー等として多用されている。これらの
用途にはパーマロイの中でも特に高透磁率が得られる高
NiパーマロイであるJIS −PC相当機が主として
用いられているが、比較的価格が高いので、この低価格
化が工業的には望まれている。そこで高価なNi量が従
来のJIS−pc相当機よシも約7〜b
可能なCuaj−マaイが近年注目されている。Traditionally, cylindrical malloy has been widely used as a material for electromagnetic equipment and magnetic shielding. For shielding purposes, it is widely used as magnetic herad shield cases and shield covers in the audio and VTR fields. For these applications, machines equivalent to JIS-PC, which is a high Ni permalloy that can obtain particularly high magnetic permeability among permalloy types, are mainly used, but since the price is relatively high, lowering the price is not desirable industrially. It is rare. Therefore, the Cuaj-Mai, which has an expensive Ni content of about 7 to 70% less than the conventional JIS-PC equivalent machine, has been attracting attention in recent years.
このCuA−マロイの基本的な組成は重量%(以下単に
%)でNi57〜74%、 Cu I 2〜34%。The basic composition of this CuA-malloy is 57 to 74% Ni and 2 to 34% Cu I in weight percent (hereinafter simply referred to as %).
Fe残部であり、 Cuが多量に含まれている。このた
め従来のJIS −PC相当機よりもさらに柔軟で粘く
kるため、被削性が劣シ、工具寿命を短くするという問
題があった。特にVTR音声コントロールヘッドの磁気
シールドケースには数個のねじ止め固定用の穴が開けら
れてお9.さらにその穴にはタップ加工が施されている
。そのためCuパーマロイを上記用途に用いる場合は、
快削性を改善させることが必要となる。It is the remainder of Fe and contains a large amount of Cu. For this reason, it is more flexible and sticky than conventional JIS-PC equivalent machines, resulting in poor machinability and shortened tool life. In particular, the magnetic shield case of the VTR audio control head has several holes for fixing screws.9. Furthermore, the hole is tapped. Therefore, when using Cu permalloy for the above purposes,
It is necessary to improve free machinability.
一般にNi−Fe系磁性合金の快削性を改善するために
+ Nr−Fe系合金と固溶しない低融点元素を添加す
ることにより、該合金中に微細な金属粒として分散させ
被削性を向上させる方法さらに該合金中に不純物や非金
属介在物を多量に含有させて被削性を向上させる方法が
考えられている。しかし。Generally, in order to improve the free machinability of Ni-Fe based magnetic alloys, a low melting point element that does not form a solid solution with the Nr-Fe based alloy is added to disperse it as fine metal particles in the alloy and improve the machinability. Further, a method of improving machinability by incorporating a large amount of impurities or nonmetallic inclusions into the alloy has been considered. but.
前者の方法では熱間加工性が著しく劣化すると共に透磁
率が低下し、後者の方法でも透磁率が低下する。In the former method, the hot workability is significantly deteriorated and the magnetic permeability is reduced, and in the latter method, the magnetic permeability is also reduced.
本発明は熱間加工性を損なうことなく、初透磁率をも低
下させずに、Cu’i多量に含有するNi−Fe−Cu
合金の被削性を改良した磁性合金を提供することを目的
とする。The present invention has been developed using Ni-Fe-Cu containing a large amount of Cu'i without impairing hot workability or reducing initial permeability.
The purpose of the present invention is to provide a magnetic alloy with improved machinability.
本発明はNi57〜74%、 Cu ] 2〜32%
。The present invention contains Ni57-74%, Cu]2-32%
.
10%以下のTi 、 Zr + V 、 Nb 、
Ta 、 Cr + Mo+W 、 Mn 、 Geか
ら選ばれた少なくとも1種および残部Feからなる合金
に希土類元素0.001〜0.5%を含有させて、熱間
加工性、磁気特性全損なうことなく被剛性を改善させた
ものである。10% or less Ti, Zr + V, Nb,
By adding 0.001 to 0.5% of rare earth elements to an alloy consisting of at least one selected from Ta, Cr + Mo + W, Mn, Ge and the balance Fe, it is possible to improve hot workability and magnetic properties without impairing them. It has improved rigidity.
次に合金組成の限定理由について説明する。Next, the reason for limiting the alloy composition will be explained.
Ni57〜74%の範囲で高透磁率を有するが。Although Ni has high magnetic permeability in the range of 57-74%.
N157%未満では透磁率が低下し、耐食性も著しく劣
り、また74チを越えるとCu量12%以上の添加によ
り透磁率の低下が著しい。さらにNiが74%を越える
ものは省資源低価格化を考慮すれば工業的に不利となる
。When the N content is less than 157%, the magnetic permeability decreases and the corrosion resistance is also significantly inferior, and when the content exceeds 74 mm, the magnetic permeability decreases significantly due to the addition of Cu in an amount of 12% or more. Further, those containing more than 74% Ni are industrially disadvantageous in terms of saving resources and lowering prices.
Cu l 2〜32チの範囲で高透磁率を有するがCu
が12%未満ではNi量が74%を越えないと。Cu l has high magnetic permeability in the range of 2 to 32 cm, but Cu
If it is less than 12%, the Ni content must not exceed 74%.
高透磁率が得られず+ Cuが32%を越えるとNiを
57チ未満としても初透磁率が低下し熱間加工性も劣化
する。If high magnetic permeability cannot be obtained and Cu exceeds 32%, the initial magnetic permeability decreases and hot workability deteriorates even if Ni is less than 57%.
Ni 、 Cuともに上記組成範囲内で高透磁率を得る
ためにはNi量が少なくなればCu量は逆に多くなる必
要がある。In order to obtain high magnetic permeability within the above composition range for both Ni and Cu, the amount of Cu needs to increase as the amount of Ni decreases.
Ti 、 Zr + V 、 Nb + Ta 、 C
r 、 Mo 、 W 、 Mn。Ti, Zr + V, Nb + Ta, C
r, Mo, W, Mn.
Geは磁気特性2機械的性質を改善するために10%全
上限として添加するものである。各添加元素の好ましい
添加範囲は+ Ta + W + Mnはそれぞれ10
%以下+ V + Nb + Cr + Mo + G
eはそれぞれ6チ以下、 Ti 2%以下、 Zr ]
%以下である。これらの元素を上記範囲ヶ越えて添加
すると、熱間加工性が劣化したり、飽和磁束密度が低下
したりさらには被削性も劣化する。Ge is added as a total upper limit of 10% to improve magnetic properties and mechanical properties. The preferable addition range of each additive element is + Ta + W + Mn is 10 each.
% or less + V + Nb + Cr + Mo + G
e is 6 tres or less, Ti 2% or less, Zr]
% or less. If these elements are added in excess of the above range, hot workability will deteriorate, saturation magnetic flux density will decrease, and machinability will also deteriorate.
希土類元素は被削性改善のために添加する元素で切りく
ず破砕性を向上させる効果があり。Rare earth elements are elements added to improve machinability and have the effect of improving chip breakability.
0001%未満ではその添加効果が明らかでなく。If it is less than 0,001%, the effect of its addition is not obvious.
0、5 % k越えて添加しても被削性は著しく改善さ
れず、さらに熱間加工性の劣化が著しくなる。ここで希
土類元素とは周期律表の57番元累Laから71番元累
Luまでの15元元素ある。なお以下の実施例では、9
8チ希土類元累で40%以上がCeJ:すfxるミッシ
ュメタル(M−M、)を用いた。Addition of more than 0.5% K does not significantly improve machinability, and furthermore, hot workability deteriorates significantly. Here, the rare earth elements include 15 element elements from the 57th element La to the 71st element Lu in the periodic table. In the following examples, 9
A misch metal (M-M,) containing 8 rare earth elements and 40% or more of CeJ:Sfx was used.
次に実施例により本発明を説明する。Next, the present invention will be explained with reference to examples.
表−1に示した化学組成を有する合金を真空溶解後鋳造
しインボッ)k得た。これらのインゴットは900〜1
250℃の適当な温度範囲で熱間鍛造、熱間圧延して厚
さ6咽の板状試料を得た。An alloy having the chemical composition shown in Table 1 was vacuum melted and then cast to obtain an ingot. These ingots are 900-1
A plate-shaped sample with a thickness of 6 mm was obtained by hot forging and hot rolling at an appropriate temperature range of 250°C.
このとき熱間加工性はいずれも良好であった。これらの
試料から50X50X6の試験片を切り出し900℃、
1時間(水素雰囲気中)の焼鈍を施し被剛性試験に供し
た。さらに前記板状試料を冷(5)
間圧延により厚さ0.5 mmとし外径10箇、内径6
咽のリング状試料を打ち抜き、1100℃、3時間(水
素雰囲気中)の焼鈍を施し、磁気特性を測定した。At this time, hot workability was good in all cases. A 50x50x6 test piece was cut out from these samples and heated at 900°C.
It was annealed for 1 hour (in a hydrogen atmosphere) and subjected to a stiffness test. Further, the plate-shaped sample was cold-rolled to a thickness of 0.5 mm, with 10 outer diameters and 6 inner diameters.
A ring-shaped sample of the throat was punched out, annealed at 1100°C for 3 hours (in a hydrogen atmosphere), and the magnetic properties were measured.
以下余白
(6)
表 −1
表−1に示した各合金についてドリル穴あけ加工を行な
いこのときの切削抵抗を測定した。切削抵抗は工具動力
計を用いてトルク成分とスラスト成分に分けて測定した
。さらにタップ加工時の切削トルク全も測定した。この
ときの切削条件をまとめて表−2に、測定結果全表−4
に示す。Margin below (6) Table 1 Drilling was performed for each alloy shown in Table 1, and the cutting resistance at this time was measured. Cutting resistance was measured separately into torque and thrust components using a tool dynamometer. Furthermore, the total cutting torque during tapping was also measured. The cutting conditions at this time are summarized in Table 2, and the full measurement results Table 4
Shown below.
また磁気特性の測定項目を表−3に、測定結果を表−4
に示す。In addition, the measurement items of magnetic properties are shown in Table 3, and the measurement results are shown in Table 4.
Shown below.
以下余白
表−2切削条件
表−3測定項目
(注)電子材料工業会標準規格EMAS−2003によ
る。Margin Table-2 Cutting Condition Table-3 Measurement Items (Note) Based on the Electronic Materials Industry Association standard EMAS-2003.
(9)
表 −4
(10)
次にAl 、!3 、A9についてドリル穴あけ加工時
の送り速度と切削抵抗の関係を第1図および第2図に示
す。第1図はトルク成分、第2図はスラスト成分につい
ての結果である。これらの図より1本発明合金扁9は比
較1flJの扁1,3に比べてトルク成分、スラスト成
分がともに小さくなっており、すなわち切削抵抗が小さ
くなっていることがわかる。(9) Table-4 (10) Next, Al,! 3 and A9, the relationship between feed rate and cutting resistance during drilling is shown in Figs. 1 and 2. Figure 1 shows the results for the torque component, and Figure 2 shows the results for the thrust component. From these figures, it can be seen that the torque component and the thrust component of the alloy flat plate 9 of the present invention are smaller than those of the comparative flat sheets 1 and 3 of 1flJ, that is, the cutting resistance is smaller.
さらに同合金についてのタップ加工時の切削トルク全第
3図に示す。この図からも本発明合金扁9は比較例の扁
1,3よりも切削抵抗が小さいことがわかる。Furthermore, the total cutting torque during tapping for the same alloy is shown in FIG. This figure also shows that the alloy flat plate 9 of the present invention has a smaller cutting resistance than the flat plates 1 and 3 of the comparative example.
」ニ記実施例において示した如く本発明合金においてN
iは60〜69%+ Cuば16〜30%の範囲が磁気
特性上好ましい組成範囲である。” As shown in Example 2, in the alloy of the present invention, N
A preferable composition range from the viewpoint of magnetic properties is 60 to 69% for i and 16 to 30% for Cu.
以」−述べた如くN157〜74%、 Cu ] 2〜
32%、10%以下の’ri 、 Zr 、 V 、
Nb + Ta 、 Cr。- As mentioned, N157~74%, Cu ] 2~
32%, 10% or less of 'ri, Zr, V,
Nb + Ta, Cr.
Mo + W + Mn + Geから選ばれた少なく
とも1種および残部Feからなる。いわゆるCuzR−
マロイに希土類元素i0.oo1〜05チを含有させる
ことにより熱間加工性、磁気特性を損なうことなく被削
性を改善することが可能である。故に本発明合金はVT
R用磁へノドケースとして極めて有用であるとともにそ
の他の切削加工金施して用いられる各種電磁機器用材料
として有益である。It consists of at least one selected from Mo + W + Mn + Ge and the remainder Fe. The so-called CuzR-
Malloy contains rare earth elements i0. By containing oo1-05chi, it is possible to improve machinability without impairing hot workability and magnetic properties. Therefore, the alloy of the present invention has VT
It is extremely useful as a magnetic nozzle case for R, and is also useful as a material for various electromagnetic devices used in other cutting processes.
第1図および第2図は穴あけ加工時の工具送り速度と切
削抵抗との関係を表わした図であり、切削抵抗のトルク
成分を第1図に、スラスト成分を第2図に示す。第3図
はタップ加工時の切削トルクを材質毎に表わした図であ
る。FIGS. 1 and 2 are diagrams showing the relationship between tool feed rate and cutting resistance during drilling, and FIG. 1 shows the torque component of the cutting resistance, and FIG. 2 shows the thrust component. FIG. 3 is a diagram showing the cutting torque for each material during tapping.
Claims (1)
10%以下のT+ + Zr r V + Nb +
Ta + CryMo + W 、 Mn 、 Geか
ら選ばれた少なくとも1種および残部Feからなる合金
に、希土類元素0.001〜0.5%を含有させたこと
を特徴とする快削性磁性合金。1. Ni 57-74%, Cu 12-32% by weight,
10% or less T+ + Zr r V + Nb +
A free-cutting magnetic alloy characterized by containing 0.001 to 0.5% of a rare earth element in an alloy consisting of at least one selected from Ta + CryMo + W, Mn, and Ge and the remainder Fe.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58243114A JPS60135545A (en) | 1983-12-24 | 1983-12-24 | Free-cutting magnetic alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58243114A JPS60135545A (en) | 1983-12-24 | 1983-12-24 | Free-cutting magnetic alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60135545A true JPS60135545A (en) | 1985-07-18 |
Family
ID=17099001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58243114A Pending JPS60135545A (en) | 1983-12-24 | 1983-12-24 | Free-cutting magnetic alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60135545A (en) |
-
1983
- 1983-12-24 JP JP58243114A patent/JPS60135545A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100845072B1 (en) | Iron Base Alloy Plate Material for Voice Coil Motor Magnetic Circuit Yoke and Yoke for Voice Coil Motor Magnetic Circuit | |
US5158624A (en) | Soft-magnetic nickel-iron-chromium alloy | |
KR910009974B1 (en) | High saturated magnetic flux density alloy | |
JPS60135545A (en) | Free-cutting magnetic alloy | |
JPS60135544A (en) | Free-cutting magnetic alloy | |
JPS60135543A (en) | Free-cutting magnetic alloy | |
JPS63149356A (en) | Soft magnetic alloy for reed chip, manufacture thereof and reed switch | |
JPS6158547B2 (en) | ||
JPH0532454B2 (en) | ||
JPS62227065A (en) | High permeability magnetic alloy excellent in workability | |
US3972745A (en) | Ni-Fe-Al Material having high magnetic permeability | |
US6547889B2 (en) | Iron-based alloy sheet for magnetic yokes in hard-disk voice-coil motor | |
JPS6151023B2 (en) | ||
JP2862985B2 (en) | Magnetic shield parts | |
JPH03191041A (en) | Fe-ni-cr series soft magnetic alloy | |
JPH0138862B2 (en) | ||
JPS63307246A (en) | Free cutting high permeability alloy | |
JP2927926B2 (en) | Magnetic shield parts | |
JPS63211604A (en) | Yoke component | |
JPH01252756A (en) | Ni-fe-cr soft magnetic alloy | |
JPS62227053A (en) | High permeability magnetic alloy excellent in workability | |
JPS62142748A (en) | High permeability pd permalloy having superior suitability to press blanking | |
JPS62222B2 (en) | ||
JPS62227055A (en) | Rare earth-cobalt magnet material | |
JPS6213420B2 (en) |