JPS6158547B2 - - Google Patents

Info

Publication number
JPS6158547B2
JPS6158547B2 JP53042176A JP4217678A JPS6158547B2 JP S6158547 B2 JPS6158547 B2 JP S6158547B2 JP 53042176 A JP53042176 A JP 53042176A JP 4217678 A JP4217678 A JP 4217678A JP S6158547 B2 JPS6158547 B2 JP S6158547B2
Authority
JP
Japan
Prior art keywords
alloy
electromagnetic
present
machinability
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53042176A
Other languages
Japanese (ja)
Other versions
JPS54135612A (en
Inventor
Masayoshi Takano
Atsuyoshi Kimura
Takashi Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP4217678A priority Critical patent/JPS54135612A/en
Publication of JPS54135612A publication Critical patent/JPS54135612A/en
Publication of JPS6158547B2 publication Critical patent/JPS6158547B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、本来の磁気特性を劣化させることな
く被削性を改善したFe−Si−Al系電磁合金に関
する。Si:0.80〜5.90%およびAl:0.1〜5.0%を
含有するFe−Si−Al系電磁合金は、飽和磁束密
度が高く、かつ電気抵抗が高い合金であり、この
利点を活かして、継電器、ソレノイド鉄心、電磁
クラツチ、電動機、変圧器など種々の用途に広く
使用されている。 ところがこの合金系は、SiおよびAlを多量に含
有するため、合金中にAl2O3、SiO2等の酸化物系
介在物が多量に存在することが避けられず、これ
が著しい工具摩耗をひきおこすため、被削性がき
わめて悪いという問題がある。 一方、最近の傾向として、製造性と強度的な面
から、上記したような電磁部品を切削または研削
加工によつて製造する場合が多くなつてきてい
る。一例をあげれば、電磁石の鉄心は、内部で発
生するうず電流を抑制するために電子合金からな
る薄鋼板を積層し、これをカシメて製造するのが
ふつうであつたが、このような電磁石は鉄心の製
造に手数がかかり、また薄鋼板のカシメが悪いと
繰返し電磁石を作動させたときにカシメが外れ、
鉄心が破損することがある。このような問題を解
消するためには、合金のブロツクから切削加工に
より鉄心を製造することが望ましい。こうした傾
向に対処できるよう、Fe−Si−Al系合金の被削
性を改善することが強く要望されている。 本発明者らは、Fe−Si−Al系電磁合金の快削
化の要望にこたえて、この合金本来の磁気特性を
損なうことなく被削性を改善する可能性を追求し
た結果、以下に述べるように鋼中介在物組成を調
整することにより、この目的が達成できることも
見出した。 すなわち、本発明のFe−Si−Al系電磁合金
は、Si:0.80〜5.90%およびAl:0.10〜5.0%を、
Si+Al≧3.0%およびSi+1/2Al≦6.0%を満足す
るように含有し、残部が実質的にFeからなるFe
−Si−Al系電磁合金において、Ca:0.0005〜
0.0080%を含有し、0:0.010%以下に規制する
ことにより鋼中非金属介在物の80%以上をAl2O3
−SiO2−CaO系酸化物が占めるようにしたこと
を特徴とする。 より高い被削性への要求をみたす本発明のFe
−Si−Al系電磁合金は、Si:0.80〜5.90%および
Al:0.10〜5.0%を、Si+Al≧3.0%およびSi+1/2
Al≦6.0%を満足するように含有し、さらにPb、
Bi、S、SeおよびTeから選んだ1種または2種
以上を合計量で0.01〜0.20%添加し、残部が実質
的にFeからなるFe−Si−Al系電磁合金におい
て、Ca:0.0005〜0.0080%を含有し、0:0.010
%以下に規制することにより鋼中非金属介在物の
80%以上をAl2O3−SiO2−CaO系酸化物が占める
ようにしたことを特徴とする。 従来のFe−Si−Al系電磁合金においては、工
具摩耗を著しく促進するAl2O3およびSiO2系の酸
化物介在物が多量に存在していたが、本発明に従
つて適量のCaを添加するとともにO量を規制す
ることにより、介在物を被削性の改善に有利な
Al2O3−SiO2−CaO系の酸化物に改質することが
できたのである。本発明の電磁合金に含まれる
Al2O3−SiO2−CaO系酸化物の平均的な組成は、
Al2O3:30〜60%、SiO2:30〜60%、CaO:5〜
20%である。 本発明の電磁合金の成分組成の限定理由を以下
に述べる。 Si:0.8〜5.9% Al:0.5〜5.0% これらの元素は、ともに磁性合金としての特性
を得るために必須の元素である。本発明において
は、さらにSi+Al≧3.0%、Si+1/2Al≦0.6%の
条件をみたす必要がある。これら主要成分の組成
範囲をグラフに示せば、第1図のとおりである。
第1図において、(Si+Al)量が3%の線以下で
は、電気的特性および機械的特性において、在来
の3%ケイ素鉄をしのぐことはできない。本発明
は、在来のFe−Si系電磁合金よりすぐれた磁気
特性を有する合金を対象としたものであるから、
Si+Al=3.0%以上の領域に限定した。一方、
Si:6%およびAl:12%を結ぶ線以上の領域で
は、常法の塑性加工を行なうと欠陥が生じるおそ
れがあるため、Si+1/2Al=6.0%以下の領域に限
定した。また、Fe−Si−Al系合金がFe−Si系合
金よりもすぐれた磁気特性を有するためには、Si
は0.8%以上、Alは0.1%以上共存させる必要があ
るが、あまり多量に存在すると、熱間加工性、靭
延性および冷間成形性を害するため、Siは5.9
%、Alは5%以内に止めるべきである。このよ
うなわけで、本発明の電磁合金におけるSiおよび
Alの範囲は、第1図の斜線領域内である。 O:0.0100%以下 本発明の電磁合金は、酸素との親和力が強いSi
およびAlを多量に含有するため、前記のよう
に、SiO2、Al2O3などの硬質の酸化物を含有しや
すい。これらの酸化物は、被削性だけでなく磁気
特性をも劣化させる作用がある。従つて本発明の
電磁合金は、製造時に溶湯を真空脱ガスなどの手
段で処理して、Oを0.0100%以下にまで微量化さ
せる必要がある。 Ca:0.0005〜0.0080% Caは本発明の電磁合金に存在する少量の酸素
と化合してCaOを生成し、これが他の微量酸化
物、主としてSiO2、Al2O3と結合した球状の
Al2O3−SiO2−CaO系酸化物として残留する。被
削性改善のためには、合金の切削工具の刃先にこ
の酸化物が軟化溶融して付着する条件を与える必
要がある。工具刃先温度とほぼ同等の温度で軟化
溶融する酸化物組成として適切な領域を求めたと
ころ、おおむねAl2O3:30〜60%、SiO2:30〜60
%、CaO:5〜20%であつた。また、Al2O3
SiO2−CaO系酸化物による被削性改善を効果的
にするには、このような酸化物が全非金属介在物
中の80%以上を占めるようにすべきことが実験に
より確認された。これを可能にする条件が、前記
O量を考慮に入れたCaの範囲0.0005〜0.0080%で
ある。 このように、適量のCaを添加しO量を規制し
て介在物組成を調整することにより、合金本来の
磁気特性を劣化させることなく被削性を改善でき
るが、さらに下記の元素を適当量添加すると、被
削性はいつそう向上する。 Pb、Bi、S、SeおよびTeから選んだ1種また
は2種以上を合計量で0.01〜0.20%:Pb、Biはほ
とんど単独の微細金属粒として存在し、切削時に
潤滑作用を果し、切くず破砕性を高める。多量に
添加すると熱間加工性、磁気特性を低下させるた
め、それぞれ単独では0.01〜0.15%の範囲が望ま
しい。 S、Se、Teは、主としてそれぞれサルフアイ
ド、セレナイドおよびテルライドとして存在し、
いずれも被削性を高める。多量に添加すると磁気
特性が劣化するから、0.01〜0.20%の範囲が好ま
しい。複合添加する場合、合計量で0.20%を超え
ると磁気特性が大きく劣化する。 本発明の電磁合金は、上記のほかに、Fe−Si
−Al系合金自体の磁気特性および熱間加工性な
どの改善に有効な、Nb、Ta、W、Mo、Ti、V、
Zr、Cr、Ni、Coなどを適量添加してもよい。多
量に添加すると被削性が損なわれるため、合計量
で10%以下の範囲に止めるべきである。 実施例 1 第1表に示す組成のFe−3Si−2Al系合金を溶
製した。供試材No.1は、従来の溶製材であり、供
試材No.2〜4は真空脱ガスおよびCa−Si脱酸に
より鋼中介在物組成を調整した本発明の電磁合金
である。 各供試材について、鋼中の非金属介在物の組成
をしらべた結果を第1表に併記する。本発明の電
磁合金は、比較鋼にくらべて、非金属介在物量が
少なく清浄度が高い。また非金属介在物も、その
大部分がAl2O3−SiO2−CaO組成からなる酸化物
で占められている。
The present invention relates to an Fe-Si-Al electromagnetic alloy that has improved machinability without deteriorating its original magnetic properties. Fe-Si-Al electromagnetic alloys containing Si: 0.80 to 5.90% and Al: 0.1 to 5.0% are alloys with high saturation magnetic flux density and high electrical resistance. It is widely used in various applications such as iron cores, electromagnetic clutches, electric motors, and transformers. However, since this alloy system contains large amounts of Si and Al, it is inevitable that a large amount of oxide inclusions such as Al 2 O 3 and SiO 2 will be present in the alloy, which causes significant tool wear. Therefore, there is a problem that machinability is extremely poor. On the other hand, as a recent trend, from the viewpoint of manufacturability and strength, electromagnetic parts such as those described above are increasingly being manufactured by cutting or grinding. For example, the iron core of an electromagnet was usually manufactured by laminating thin steel plates made of electronic alloy and caulking them in order to suppress the eddy currents generated inside. It takes time to manufacture the iron core, and if the thin steel plate is not caulked properly, the caulking may come off when the electromagnet is activated repeatedly.
The iron core may be damaged. In order to solve these problems, it is desirable to manufacture the iron core from an alloy block by cutting. In order to cope with these trends, there is a strong demand for improving the machinability of Fe-Si-Al alloys. In response to the demand for free machining of Fe-Si-Al based electromagnetic alloys, the present inventors pursued the possibility of improving machinability without impairing the inherent magnetic properties of this alloy, as described below. We have also discovered that this objective can be achieved by adjusting the composition of inclusions in the steel. That is, the Fe-Si-Al electromagnetic alloy of the present invention contains Si: 0.80 to 5.90% and Al: 0.10 to 5.0%,
Fe containing so as to satisfy Si+Al≧3.0% and Si+1/2Al≦6.0%, the balance being substantially Fe
−In Si-Al electromagnetic alloy, Ca: 0.0005~
By controlling the content to 0:0.010% or less, more than 80% of the nonmetallic inclusions in the steel can be reduced to Al 2 O 3.
It is characterized by being dominated by -SiO 2 -CaO-based oxides. The Fe of the present invention satisfies the demand for higher machinability.
-Si-Al electromagnetic alloy has Si: 0.80~5.90% and
Al: 0.10~5.0%, Si+Al≧3.0% and Si+1/2
Contains Al≦6.0%, and further contains Pb,
In a Fe-Si-Al electromagnetic alloy in which one or more selected from Bi, S, Se, and Te are added in a total amount of 0.01 to 0.20%, and the balance is substantially Fe, Ca: 0.0005 to 0.0080. Contains %, 0:0.010
By regulating non-metallic inclusions in steel to below %
It is characterized in that 80% or more is occupied by Al 2 O 3 --SiO 2 --CaO-based oxide. In conventional Fe-Si-Al electromagnetic alloys, there were large amounts of Al 2 O 3 and SiO 2 oxide inclusions that significantly accelerated tool wear, but according to the present invention, an appropriate amount of Ca was added. By adding O and controlling the amount of O, inclusions can be effectively removed to improve machinability.
It was possible to modify it into an Al 2 O 3 −SiO 2 −CaO-based oxide. Contained in the electromagnetic alloy of the present invention
The average composition of Al 2 O 3 −SiO 2 −CaO-based oxide is
Al2O3 : 30~60%, SiO2 : 30~60%, CaO : 5~
It is 20%. The reason for limiting the composition of the electromagnetic alloy of the present invention will be described below. Si: 0.8 to 5.9% Al: 0.5 to 5.0% Both of these elements are essential elements in order to obtain properties as a magnetic alloy. In the present invention, it is further necessary to satisfy the conditions of Si+Al≧3.0% and Si+1/2Al≦0.6%. The composition range of these main components is shown in FIG. 1 in a graph.
In FIG. 1, if the amount of (Si+Al) is below the 3% line, it cannot surpass the conventional 3% silicon iron in terms of electrical and mechanical properties. Since the present invention is directed to an alloy that has magnetic properties superior to conventional Fe-Si electromagnetic alloys,
Limited to the area where Si + Al = 3.0% or more. on the other hand,
In the region above the line connecting Si: 6% and Al: 12%, there is a risk of defects occurring if conventional plastic working is performed, so it was limited to the region where Si + 1/2 Al = 6.0% or less. In addition, in order for Fe-Si-Al alloys to have superior magnetic properties than Fe-Si alloys, Si
It is necessary to coexist 0.8% or more of Al, and 0.1% or more of Al, but if it exists in too large a quantity, it will impair hot workability, toughness and ductility, and cold formability.
%, Al should be kept within 5%. For this reason, Si and
The range of Al is within the shaded area in FIG. O: 0.0100% or less The electromagnetic alloy of the present invention uses Si, which has a strong affinity for oxygen.
Since it contains a large amount of Al and Al, it tends to contain hard oxides such as SiO 2 and Al 2 O 3 as described above. These oxides have the effect of degrading not only machinability but also magnetic properties. Therefore, during production of the electromagnetic alloy of the present invention, it is necessary to treat the molten metal by means such as vacuum degassing to reduce the amount of O to 0.0100% or less. Ca: 0.0005-0.0080% Ca combines with a small amount of oxygen present in the electromagnetic alloy of the present invention to form CaO, which forms a spherical structure combined with other trace oxides, mainly SiO 2 and Al 2 O 3 .
It remains as an Al 2 O 3 −SiO 2 −CaO-based oxide. In order to improve machinability, it is necessary to provide conditions for this oxide to soften, melt, and adhere to the cutting edge of an alloy cutting tool. When we searched for the appropriate range of oxide composition that softens and melts at a temperature almost equivalent to the tool cutting edge temperature, we found that it was approximately Al 2 O 3 : 30-60%, SiO 2 : 30-60%.
%, CaO: 5 to 20%. Also, Al 2 O 3
Experiments have confirmed that in order to effectively improve machinability using SiO 2 -CaO-based oxides, such oxides should account for 80% or more of the total nonmetallic inclusions. The condition that makes this possible is a Ca range of 0.0005 to 0.0080%, taking into account the O content. In this way, by adding an appropriate amount of Ca and regulating the amount of O to adjust the inclusion composition, machinability can be improved without deteriorating the inherent magnetic properties of the alloy. When added, the machinability is improved. One or more selected from Pb, Bi, S, Se, and Te in a total amount of 0.01 to 0.20%: Pb and Bi exist almost as single fine metal grains and have a lubricating effect during cutting. Improves crumb crushability. If added in large amounts, hot workability and magnetic properties will deteriorate, so it is desirable that each element be added in a range of 0.01 to 0.15%. S, Se, and Te exist primarily as sulfide, selenide, and telluride, respectively;
Both improve machinability. If added in a large amount, the magnetic properties will deteriorate, so a range of 0.01 to 0.20% is preferable. When adding composite materials, if the total amount exceeds 0.20%, the magnetic properties will deteriorate significantly. In addition to the above, the electromagnetic alloy of the present invention also has Fe-Si
- Nb, Ta, W, Mo, Ti, V, effective for improving the magnetic properties and hot workability of Al-based alloys themselves.
Appropriate amounts of Zr, Cr, Ni, Co, etc. may be added. If added in large amounts, machinability will be impaired, so the total amount should be kept within 10%. Example 1 A Fe-3Si-2Al alloy having the composition shown in Table 1 was melted. Test material No. 1 is a conventional ingot material, and test materials No. 2 to 4 are electromagnetic alloys of the present invention in which the composition of inclusions in the steel is adjusted by vacuum degassing and Ca--Si deoxidation. Table 1 also shows the results of examining the composition of nonmetallic inclusions in the steel for each sample material. The electromagnetic alloy of the present invention has a lower amount of nonmetallic inclusions and higher cleanliness than comparative steels. Moreover, most of the nonmetallic inclusions are occupied by oxides having a composition of Al 2 O 3 --SiO 2 --CaO.

【表】 第1表の供試材について、切削加工による被削
性および磁気特性を測定した。 (切削加工性) 第1表の供試材を熱間圧延により直径50mmの棒
材とし、つづいて700℃×2hrの焼鈍を施し、かた
さをHB200〜210程度に調整したのち、切削試験
を行なつた。 使用工具はP10、送りは0.12mm/rev、切込は1.0
mmであり、工具寿命はフランク摩耗の幅VB0.3mm
を判定基準とした。試験結果を第2図に示す。同
図にみるように、本発明の電磁合金は、比較鋼に
対し、同一切削速度における工具寿命が長く、す
ぐれた被削性を有する。 (磁気特性) 第1表に示した供試材の直径50mm材から、外径
45mm×内径33mm×厚さ7mmのリング状試験片を採
取した。900℃×4hrの磁気焼鈍を施したのち、磁
気特性と抵抗を調査した。その結果を第2表に示
す。
[Table] The machinability and magnetic properties of the test materials shown in Table 1 were measured by cutting. (Cutting workability) The test materials in Table 1 were hot rolled into bars with a diameter of 50 mm, and then annealed at 700°C for 2 hours to adjust the hardness to about HB200 to 210, and then a cutting test was conducted. Summer. The tool used is P10, the feed is 0.12mm/rev, and the depth of cut is 1.0.
mm, and the tool life is the width of flank wear V B 0.3 mm
was used as the criterion. The test results are shown in Figure 2. As shown in the figure, the electromagnetic alloy of the present invention has a longer tool life and excellent machinability at the same cutting speed than the comparative steel. (Magnetic properties) From the sample materials shown in Table 1 with a diameter of 50 mm, the outer diameter
A ring-shaped test piece of 45 mm x 33 mm inner diameter x 7 mm thickness was taken. After magnetic annealing at 900°C for 4 hours, the magnetic properties and resistance were investigated. The results are shown in Table 2.

【表】 第2表のデータは、本発明の合金の特性がいず
れも比較鋼と大差ないことを示す。すなわち、本
発明に従つて被削性を向上させるために合金中の
非金属介在物組成を調整しても、磁気特性には影
響ないこと、またこれに少量の被削性改善元素を
添加しても、その影響はほとんどないことがわか
る。 実施例 2 第3表に示す組成のFe−4Si−3Al系合金を溶
製した。供試材No.5は従来の溶製材であり、供試
材No.6〜8は、真空脱ガスおよびCa脱酸により
鋼中介在物組成を調整した、本発明の電磁合金で
ある。 各供試材について、鋼中の非金属介在物の塑性
および量をしらべた結果を第3表に併記する。 本発明の電磁合金は、比較鋼にくらべて、非金
属介在物量が少なく清浄度が高い。また非金属介
在物も、実施例1の合金と同様に、その大部分が
Al2O3−SiO2−CaO組成からなる酸化物で占めら
れている。
TABLE The data in Table 2 show that none of the properties of the alloys of the invention differ significantly from the comparative steels. That is, even if the composition of nonmetallic inclusions in the alloy is adjusted to improve machinability according to the present invention, the magnetic properties are not affected, and even if a small amount of machinability-improving elements are added to this, However, it can be seen that the effect is almost negligible. Example 2 A Fe-4Si-3Al alloy having the composition shown in Table 3 was produced. Test material No. 5 is a conventional ingot material, and test materials No. 6 to 8 are electromagnetic alloys of the present invention in which the composition of inclusions in the steel is adjusted by vacuum degassing and Ca deoxidation. Table 3 also shows the results of examining the plasticity and amount of nonmetallic inclusions in the steel for each sample material. The electromagnetic alloy of the present invention has a lower amount of nonmetallic inclusions and higher cleanliness than comparative steels. Also, as with the alloy of Example 1, most of the nonmetallic inclusions are
It is dominated by oxides with the composition Al 2 O 3 −SiO 2 −CaO.

【表】 第3表の供試材について、切削加工による被削
性および磁気特性を測定した。 (切削加工性) 第3表の供試材を熱間圧延により直径50mmの棒
材とし、つづいて700℃×2hrの焼鈍を施してかた
さをHB240〜260程度に調整したのち、実質例1
と同じ条件で切削試験を行なつた。試験結果を第
3図に示す。同図にみるように、本発明の電磁合
金は、いずれも比較鋼に対し同一切削速度におけ
る工具寿命が明らかに長い。 (磁気特性) 第3表に示した供試材の直径50mm材から、外径
45mm×内径33mm×厚さ7mmのリング状試験片を採
取した。900℃×4hrの磁気焼鈍を施したのち、磁
気特性と抵抗を調査した。その結果を第4表に示
す。
[Table] The machinability and magnetic properties of the test materials shown in Table 3 were measured by cutting. (Cutting workability) The test materials in Table 3 were hot rolled into bars with a diameter of 50 mm, and then annealed at 700°C for 2 hours to adjust the hardness to about HB240 to 260.
Cutting tests were conducted under the same conditions. The test results are shown in Figure 3. As shown in the figure, the electromagnetic alloys of the present invention clearly have a longer tool life than the comparative steel at the same cutting speed. (Magnetic properties) From the sample materials shown in Table 3 with a diameter of 50 mm, the outer diameter
A ring-shaped test piece of 45 mm x 33 mm inner diameter x 7 mm thickness was taken. After magnetic annealing at 900°C for 4 hours, the magnetic properties and resistance were investigated. The results are shown in Table 4.

【表】 第4表のデータは、本発明の合金の特性がいず
れも比較鋼と大差ないことを示す。すなわち、実
施例1と同様に、被削性を向上させるために合金
中の非金属介在物組成を調整しても、磁気特性に
影響ないことが、Fe−4Si−3Al系合金について
もいえる。 以上の実施例が裏付けるように、本発明のFe
−Si−Al合金は、微量のCaの添加とO量の規制
による非金属介在物の組成調整により、被削性が
向上し、これに少量のPb、Bi、S、Se、Teを添
加してさらに被削性を向上させることに成功した
ものである。磁気特性も従来の同種合金系に遜色
ないので、本発明の電磁合金を用いることによ
り、電磁部品の製造性を大いに高めることができ
る。
Table 4 The data in Table 4 show that none of the properties of the alloys of the invention differ significantly from the comparative steels. That is, as in Example 1, the same can be said for the Fe-4Si-3Al alloy that even if the composition of nonmetallic inclusions in the alloy is adjusted to improve machinability, the magnetic properties are not affected. As supported by the above examples, Fe of the present invention
-Si-Al alloy has improved machinability by adding a small amount of Ca and adjusting the composition of non-metallic inclusions by regulating the amount of O. This has succeeded in further improving machinability. Since the magnetic properties are comparable to those of conventional alloys of the same type, the use of the electromagnetic alloy of the present invention can greatly improve the manufacturability of electromagnetic parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の電磁合金のSiおよびAl含有
量の範囲を示すグラフである。第2図および第3
図は、本発明の電磁合金および比較鋼の切削試験
の結果を示すグラフである。
FIG. 1 is a graph showing the range of Si and Al contents of the electromagnetic alloy of the present invention. Figures 2 and 3
The figure is a graph showing the results of cutting tests on the electromagnetic alloy of the present invention and comparative steel.

Claims (1)

【特許請求の範囲】 1 Si:0.80〜5.90%およびAl:0.10〜5.0%を、
Si+Al≧3.0%およびSi+1/2Al≦6.0%を満足す
るように含有し、残部が実質的にFeからなるFe
−Si−Al系電磁合金において、Ca:0.0005〜
0.0080%を含有し、O:0.0100%以下に規制する
ことにより鋼中非金属介在物の80%以上をAl2O3
−SiO2−CaO系酸化物が占めるようにしたこと
を特徴とする被削性が良好なFe−Si−Al系電磁
合金。 2 Si:0.80〜5.90%およびAl:0.10〜5.0%を、
Si+Al≧3.0%およびSi+1/2Al≦6.0%を満足す
るように含有し、さらにPb、Bi、S、Seおよび
Teから選んだ1種または2種以上を合計量で
0.01〜0.20%添加し、残部が実質的にFeからなる
Fe−Si−Al系電磁合金において、Ca:0.0005〜
0.0080%を含有し、0:0.0100%以下に規制する
ことにより鋼中非金属介在物の80%以上をAl2O3
−SiO2−CaO系酸化物が占めるようにしたこと
を特徴とする被削性が良好なFe−Si−Al系電磁
合金。
[Claims] 1 Si: 0.80 to 5.90% and Al: 0.10 to 5.0%,
Fe containing so as to satisfy Si+Al≧3.0% and Si+1/2Al≦6.0%, the balance being substantially Fe
−In Si-Al electromagnetic alloy, Ca: 0.0005~
By controlling O to 0.0100% or less, more than 80% of the nonmetallic inclusions in the steel can be reduced to Al 2 O 3.
An Fe-Si-Al based electromagnetic alloy with good machinability characterized by being dominated by -SiO 2 -CaO based oxides. 2 Si: 0.80 to 5.90% and Al: 0.10 to 5.0%,
Contains Si+Al≧3.0% and Si+1/2Al≦6.0%, and further contains Pb, Bi, S, Se and
Total amount of one or more types selected from Te
Added 0.01 to 0.20%, with the remainder essentially consisting of Fe.
In Fe-Si-Al electromagnetic alloys, Ca: 0.0005~
By controlling the content to 0:0.0100% or less, more than 80% of the nonmetallic inclusions in the steel can be reduced to Al 2 O 3.
An Fe-Si-Al based electromagnetic alloy with good machinability characterized by being dominated by -SiO 2 -CaO based oxides.
JP4217678A 1978-04-12 1978-04-12 Highly cuttable feesiial base maelectromagnetic alloy Granted JPS54135612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4217678A JPS54135612A (en) 1978-04-12 1978-04-12 Highly cuttable feesiial base maelectromagnetic alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4217678A JPS54135612A (en) 1978-04-12 1978-04-12 Highly cuttable feesiial base maelectromagnetic alloy

Publications (2)

Publication Number Publication Date
JPS54135612A JPS54135612A (en) 1979-10-22
JPS6158547B2 true JPS6158547B2 (en) 1986-12-12

Family

ID=12628664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4217678A Granted JPS54135612A (en) 1978-04-12 1978-04-12 Highly cuttable feesiial base maelectromagnetic alloy

Country Status (1)

Country Link
JP (1) JPS54135612A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0188117U (en) * 1987-12-01 1989-06-09

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562146A (en) * 1978-10-31 1980-05-10 Hitachi Metals Ltd Corrosion resistant, high permeability alloy
JPS56112441A (en) * 1980-02-06 1981-09-04 Kobe Steel Ltd Sendust alloy with superior chipping resistance
JP2003257722A (en) * 2002-03-06 2003-09-12 Daido Steel Co Ltd Soft magnetic powder and dust core using it
KR20200085652A (en) * 2019-01-07 2020-07-15 신토고교 가부시키가이샤 Iron-based soft magnetic alloy powder
JP7247874B2 (en) * 2019-01-07 2023-03-29 新東工業株式会社 Iron-based soft magnetic alloy powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0188117U (en) * 1987-12-01 1989-06-09

Also Published As

Publication number Publication date
JPS54135612A (en) 1979-10-22

Similar Documents

Publication Publication Date Title
JP2002173745A (en) Fe-Ni BASED PERMALLOY, ITS PRODUCTION METHOD AND CAST SLAB
TW200302872A (en) Low-carbon free cutting steel
JP2003049251A (en) Iron alloy sheet material for voice coil motor magnetic circuit yoke and yoke for voice coil motor magnetic circuit
EP1264912A1 (en) Free-cutting steel for machine structural use having good machinability in cutting by cemented carbide tool
JP5683197B2 (en) Ferritic free-cutting stainless steel bar wire with excellent corrosion resistance
JPH08193240A (en) Steel material excellent in temper embrittlement resistance and its production
JPS6158547B2 (en)
JPH06228717A (en) Silicon stainless steel
JPH0765144B2 (en) Stainless steel for cold forging
JP3224781B2 (en) Fe-Cr-Si based alloy excellent in high frequency magnetic properties and method for producing the same
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JPH1088298A (en) Nonoriented silicon steel sheet
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JP2001032054A (en) Fe-Cr-Sx ALLOY EXCELLENT IN HIGH FREQUENCY CORE LOSS CHARACTERISTIC AND ITS PRODUCTION
JP2917450B2 (en) Stainless steel with excellent corrosion resistance
JP4280201B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JPH0762483A (en) Refining method of soft magnetic alloy
JPS6232267B2 (en)
JPH0711061B2 (en) Electromagnetic stainless steel for cold forging
JPH0288746A (en) High permeability magnetic material
JP2722520B2 (en) High permeability magnetic material
JPH04111962A (en) Production of high-speed tool steel
JPS62142749A (en) High permeability pb permalloy having superior suitability to press blanking
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JPH05279793A (en) Machinability steel excellent in hot workability