JP4593313B2 - Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof - Google Patents

Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof Download PDF

Info

Publication number
JP4593313B2
JP4593313B2 JP2005050276A JP2005050276A JP4593313B2 JP 4593313 B2 JP4593313 B2 JP 4593313B2 JP 2005050276 A JP2005050276 A JP 2005050276A JP 2005050276 A JP2005050276 A JP 2005050276A JP 4593313 B2 JP4593313 B2 JP 4593313B2
Authority
JP
Japan
Prior art keywords
mass
alloy plate
less
hot workability
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005050276A
Other languages
Japanese (ja)
Other versions
JP2006233284A (en
Inventor
一彦 梅原
秀和 轟
徹 西
辰哉 伊藤
康晴 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Yakin Kogyo Co Ltd
Original Assignee
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Yakin Kogyo Co Ltd filed Critical Nippon Yakin Kogyo Co Ltd
Priority to JP2005050276A priority Critical patent/JP4593313B2/en
Publication of JP2006233284A publication Critical patent/JP2006233284A/en
Application granted granted Critical
Publication of JP4593313B2 publication Critical patent/JP4593313B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、磁気ヘッドや磁気シールド材、トランスコアの巻鉄心等に用いられるFe-Ni系磁性合金およびその製造方法に関し、とくに磁気特性を阻害することなく、熱間加工性が改善されてなるFe-Ni系磁性合金とそれの有利な製造方法を提案する。 The present invention relates to a Fe-Ni magnetic alloy plate used for a magnetic head, a magnetic shield material, a wound core of a transformer core, and the like, and a manufacturing method thereof, in particular, with improved hot workability without impairing magnetic properties. An Fe-Ni magnetic alloy plate and an advantageous manufacturing method thereof are proposed.

Fe-Ni系合金は、JIS C2531に規定されるパーマロイとして、PD材(Ni:30〜40mass%)、PB材(Ni:40〜50mass%)、およびPC材(Ni:70〜85mass%)等がよく知られている。前記PB材は、飽和磁束密度が大きいという特性を活かして時計のステータや電磁レンズのポールピースなどに多く使用されている。一方、PC材は、優れた比透磁率を活かして磁気シールド材や磁気ヘッド等に使用されている。   Fe-Ni alloys are permalloys specified in JIS C2531, PD materials (Ni: 30-40 mass%), PB materials (Ni: 40-50 mass%), PC materials (Ni: 70-85 mass%), etc. Is well known. The PB material is often used for a stator of a watch, a pole piece of an electromagnetic lens, or the like by taking advantage of a characteristic that a saturation magnetic flux density is large. On the other hand, PC materials are used for magnetic shield materials, magnetic heads, and the like by taking advantage of excellent relative magnetic permeability.

従来、Fe-Ni系磁性合金の磁気特性を改善する技術の提案がある。例えば、特許文献1には、磁気容易軸<100>を含む{200}面を、2以上の集積強度比で面内集積させるという手法により、磁気特性を改善することとしている。   Conventionally, there have been proposals for techniques for improving the magnetic properties of Fe-Ni magnetic alloys. For example, Patent Document 1 discloses that the magnetic characteristics are improved by a method in which {200} planes including the easy magnetic axis <100> are integrated in-plane with an integration strength ratio of 2 or more.

また、特許文献2には、Fe-Ni系磁性合金の磁気特性に及ぼす不純物あるいは析出物の影響に鑑み、不純物元素であるS、BおよびOを、S≦0.003mass%、B≦0.005mass%およびO≦0.005mass%で、かつS+B+O≦0.008mass%に規制することの提案がある。この技術は、析出物等の第二相が磁壁移動に対して悪影響を及ぼすということを前提として、その不純物元素を抑制するという技術である。ただし、この技術は、非金属介在物それ自体を直接、制御するという技術ではない。   In Patent Document 2, in view of the influence of impurities or precipitates on the magnetic properties of the Fe—Ni-based magnetic alloy, S, B, and O, which are impurity elements, are defined as S ≦ 0.003 mass% and B ≦ 0.005 mass%. And there is a proposal to regulate O ≦ 0.005 mass% and S + B + O ≦ 0.008 mass%. This technique is based on the premise that the second phase such as precipitates adversely affects the domain wall motion, and suppresses the impurity element. However, this technique is not a technique for directly controlling the nonmetallic inclusion itself.

さらに、特許文献3には、Fe-Ni系磁性合金の磁気特性に及ぼす不純物あるいは介在物の影響に鑑み、酸化物系非金属介在物や硫化物系非金属介在物を形成する酸素と硫黄の合計濃度を150ppm以下にすることで、磁壁移動を容易にして、磁気特性を改善する技術が開示されている。ただし、この技術は、脱酸および/または脱硫を行い、介在物組成を制御することで、磁気特性を向上させるという技術であって、熱間加工性の改善方法についての開示ではない。
特開平5-5162号公報 特開平6-122947号公報 特開2002-161328号公報
Furthermore, in Patent Document 3, in view of the influence of impurities or inclusions on the magnetic properties of Fe-Ni magnetic alloys, oxygen and sulfur that form oxide-based nonmetallic inclusions and sulfide-based nonmetallic inclusions are disclosed. A technique has been disclosed that facilitates domain wall movement and improves magnetic properties by making the total concentration 150 ppm or less. However, this technique is a technique for improving magnetic properties by performing deoxidation and / or desulfurization and controlling the composition of inclusions, and is not a disclosure of a method for improving hot workability.
Japanese Patent Laid-Open No. 5-5162 JP-A-6-122947 JP 2002-161328 A

一般に、Fe-Ni系磁性材料というのは、加工性が悪く、とくに熱間圧延時に板のサイドエッジ部に大きな割れが生じやすいことから、そのサイドエッジ部を切り取るトリミング処理を行うのが普通であり、それ故に製品歩留まりが悪いという問題があった。この点、前記特許文献1〜3に開示の発明は、Fe-Ni系磁性合金においてその磁気特性の低下を招くことなく、熱間加工性を改善するという考え方、とくに合金中の非金属介在物の組成や形態制御を通じて、上記の両特性が共に優れるというFe-Ni系磁性合金とその製造方法についての開示はない。 In general, Fe-Ni magnetic materials have poor workability, and large cracks are likely to occur at the side edge of the plate, especially during hot rolling, so it is common to perform trimming to cut off the side edge. Therefore, there was a problem that the product yield was poor. In this regard, the inventions disclosed in Patent Documents 1 to 3 described above are based on the idea of improving hot workability without deteriorating the magnetic properties of Fe-Ni based magnetic alloys, particularly nonmetallic inclusions in the alloys. There is no disclosure of an Fe—Ni-based magnetic alloy plate and a method for manufacturing the same, in which both of the above characteristics are excellent through the composition and morphology control.

そこで、本発明の主たる目的は、磁気特性のみならず熱間加工性にも優れるFe-Ni系磁性合金を提案することにある。
また、本発明の他の具体的な目的は、介在物の組成やその形態の制御を通じて、上述した2つの特性を互いに他の特性を犠牲にすることなく共に改善することにある。
また、本発明のさらに他の具体的な目的は、SiやAlによる脱酸、脱硫を有利に進行させて、製造性を上げるための方法を提案することにある。
Therefore, a main object of the present invention is to propose an Fe—Ni based magnetic alloy plate that is excellent not only in magnetic properties but also in hot workability.
Another specific object of the present invention is to improve the above-mentioned two characteristics together without sacrificing other characteristics through the control of the composition of inclusions and the form thereof.
Still another specific object of the present invention is to propose a method for increasing the productivity by advantageously proceeding with deoxidation and desulfurization with Si or Al.

上記目的の実現に向けて、本発明は、C:0.001〜0.2mass%、Si:0.01〜0.5mass%、Mn:0.01〜1.0mass%、S:0.0001〜0.002mass%、Ni:30〜85mass%、Al:0.001〜0.1mass%、Mg:0.0002〜0.05mass%、Ca:≦0.0020mass%およびO:0.0002〜0.01mass%を含有し、残部Feおよび不可避的不純物からなる成分組成の合金であって、この合金板中にはまた、少なくとも前記成分組成の範囲内において、主要成分がAl 2 O 3 、MgOのいずれか1種または2種を75mass%以上、SiO 2 ≦10mass%、CaO≦10mass%からなる酸化物系介在物を含有しており、圧延方向に平行な垂直断面に、0.5μm以上の大きさを有する酸化物系介在物および/または硫化物系介在物を、合計量で50〜300個/mm2含むことを特徴とする熱間加工性に優れるFe-Ni系磁性合金板を提案する。 To realize the above object, the present invention provides C: 0.001 to 0.2 mass%, Si: 0.01 to 0.5 mass%, Mn: 0.01 to 1.0 mass%, S: 0.0001 to 0.002 mass%, Ni: 30 to 85 mass%. , Al: 0.001 to 0.1 mass%, Mg: 0.0002 to 0.05 mass%, Ca: ≦ 0.0020 mass% and O: 0.0002 to 0.01 mass%, and an alloy plate having a component composition composed of the remaining Fe and inevitable impurities. In addition , in this alloy plate, at least within the range of the component composition, the main component is one or two of Al 2 O 3 and MgO of 75 mass% or more, SiO 2 ≦ 10 mass%, CaO ≦ 10 mass. % Of oxide inclusions and / or sulfide inclusions having a size of 0.5 μm or more in a vertical cross section parallel to the rolling direction. Suggest Fe-Ni based magnetic alloy sheet excellent in hot workability, characterized in that it comprises 300 pieces / mm 2.

また、本発明は、請求項1〜のいずれか1項に記載のFe-Ni系磁性合金板を製造する方法であって、一次精錬を行ったFe-Ni系合金の溶湯を、マグネシアを含む内張耐火物を有するAODあるいはVODのいずれかの二次精錬容器にて酸化精錬を施した後、一旦まず除滓し、次いで、石灰石、蛍石、珪石のいずれか1種または2種以上のフラックスを添加して、CaO-Al2O3-MgO-SiO2-F系スラグを生成させ、その後、合金溶湯中にAlおよび/またはSiを投入して、Al:0.001〜0.1mass%、Si:0.01〜0.5mass%に調製することにより脱酸および脱硫し、O:0.0002〜0.01mass%、S:0.0001〜0.002mass%である合金溶湯を得、次いで、この合金溶湯を連続鋳造してスラブとした後、表面研削してから熱間圧延することを特徴とする熱間加工性に優れるFe-Ni系磁性合金板の製造方法を提案する。 Moreover, this invention is a method of manufacturing the Fe-Ni type magnetic alloy plate of any one of Claims 1-5 , Comprising: The molten metal of the Fe-Ni type alloy which performed primary refining is used for magnesia. After oxidative smelting in a secondary smelting vessel of either AOD or VOD with a lining refractory, it is first removed, and then one or more of limestone, fluorite, and silica Of CaO—Al 2 O 3 —MgO—SiO 2 —F system slag is added, and then Al and / or Si is introduced into the molten alloy, Al: 0.001 to 0.1 mass%, Si: Deoxidized and desulfurized by preparing 0.01 to 0.5 mass% to obtain a molten alloy having O 2 : 0.0002 to 0.01 mass%, S: 0.0001 to 0.002 mass%, and then continuously casting this molten alloy We propose a method for producing Fe-Ni magnetic alloy sheets with excellent hot workability, characterized by surface rolling and hot rolling after forming a slab. I plan.

なお、本発明の上記合金においては、前記成分の他さらに、Mo、Cu 、CoおよびNb のうちから選ばれる1種または2種以上を、それぞれ15mass%以下、かつ、合計で20mass%以下の範囲内で含有すること、この合金中にはまた、少なくとも前記成分組成の範囲内において、主要成分がAl 2 O 3 、MgOのいずれか1種または2種を75mass%以上、SiO 2 ≦10mass%、CaO≦10mass%からなる酸化物系介在物を含むこと、Niを35mass%以上40mass%未満含有する合金であって、最大比透磁率μm:50,000以上、初比透磁率μi:10,000以上および保磁力Hc:4[A/m]以下の磁気特性を示すこと、Niを40mass%以上50mass%以下含有する合金であって、最大比透磁率μm:100,000以上、初比透磁率μi:10,000以上および保磁力Hc:4[A/m]以下の磁気特性を示すものであること、Niを70〜85mass%含有する合金であって、最大比透磁率μm:200,000以上、初比透磁率μi:100,000以上および保磁力Hc:0.8[A/m]以下の磁気特性を示すものであることが有効な手段となる。 In the above-mentioned alloy of the present invention, in addition to the above components, one or more selected from Mo, Cu, Co and Nb are each 15 mass% or less and a total range of 20 mass% or less. In this alloy, at least within the range of the component composition, the main component is Al 2 O 3 , any one or two of MgO is 75 mass% or more, SiO 2 ≦ 10 mass%, Alloy containing CaO ≦ 10 mass% , Ni containing 35 mass% or more and less than 40 mass%, maximum relative permeability μm: 50,000 or more, initial relative permeability μi: 10,000 or more, and coercive force Hc: An alloy containing 4 [A / m] or less, Ni containing 40 mass% to 50 mass%, maximum relative permeability μm: 100,000 or more, initial relative permeability μi: 10,000 or more Magnetic force Hc: Magnetic properties of 4 [A / m] or less, alloy containing 70 to 85 mass% of Ni, and maximum relative permeability It is an effective means to exhibit magnetic characteristics of a rate μm: 200,000 or more, an initial relative permeability μi: 100,000 or more, and a coercive force Hc: 0.8 [A / m] or less.

上述したように、本発明によれば、優れた熱間加工性を維持しつつ、かつ、磁気特性も良好な特性を示すFe-Ni系磁性合金を提案することができる。
また、本発明によれば、上記合金の製造を、ステンレス鋼等の大量生産ラインを介して容易に製造することができるため、製造コストの低減が可能である。
As described above, according to the present invention, it is possible to propose an Fe—Ni-based magnetic alloy plate that exhibits excellent hot workability and also exhibits excellent magnetic properties.
In addition, according to the present invention, the manufacturing of the alloy can be easily performed through a mass production line of stainless steel or the like, so that the manufacturing cost can be reduced.

本発明者らは、本発明を開発するために、以下のような実験を行った。即ち、この実験は、10kgの高周波誘導炉を用いてパーマロイC相当(77.4mass%Ni-4mass%Mo-4.7mass%Cu-残部Fe)のFe-Ni合金を溶解し、その合金溶湯の上に予め溶解し均質化したCaO-SiO2-Al2O3-MgO-F系スラグを投入した。その後、Alおよび/またはSiを投入して、脱酸および脱硫を施した。このときAl濃度は、0mass%から0.5mass%まで変化させた。そして、このようにして得られた合金溶湯を鋳型に鋳込んで鋳塊を得た。この鋳塊を鍛造したのち熱間圧延し、その後さらに、冷間圧延を行って厚さ0.5mmの冷延板を得た。この厚さ0.5mmの冷延板を水素雰囲気下で1100℃均熱3時間の条件で磁気焼鈍し、磁気特性を測定した。また、熱間加工性については、熱間圧延板のサイドエッジの割れの有無を評価した。 In order to develop the present invention, the present inventors conducted the following experiments. That is, in this experiment, a Fe-Ni alloy equivalent to Permalloy C (77.4 mass% Ni-4 mass% Mo-4.7 mass% Cu-balance Fe) was melted using a 10 kg high-frequency induction furnace, and the molten alloy was placed on the molten alloy. CaO—SiO 2 —Al 2 O 3 —MgO—F slag that was previously dissolved and homogenized was added. Thereafter, Al and / or Si were added to perform deoxidation and desulfurization. At this time, the Al concentration was changed from 0 mass% to 0.5 mass%. The molten alloy thus obtained was cast into a mold to obtain an ingot. The ingot was forged and hot rolled, and then further cold rolled to obtain a cold rolled sheet having a thickness of 0.5 mm. This cold-rolled sheet having a thickness of 0.5 mm was magnetically annealed under a hydrogen atmosphere at 1100 ° C. for 3 hours to measure the magnetic properties. Moreover, about hot workability, the presence or absence of the crack of the side edge of a hot rolled sheet was evaluated.

上記実験の結果、以下のことが明らかになった。それは、Al濃度が高くなると脱硫が進んでS濃度が低下すると同時に、Mg濃度も高くなることがわかった。これは下記(1)式に従い、スラグ中のMgOが還元されるためと考えられる。
3(MgO)+2Al=3Mg+(Al2O3)……(1)
そして、このMgとSの濃度が、熱間加工性ならびに磁気特性に対して重要な役割を果すことも明らかとなった。即ち、Al濃度が低くかつS濃度が高いと、熱間加工性ならびに磁気特性共はともに低下し、要求される特性が得られなかった。逆に、Al濃度が高くかつ低S濃度が低く、Mg濃度が高い場合、熱間加工性が低下する傾向を示すことがわかった。
As a result of the above experiment, the following became clear. It was found that as the Al concentration increased, desulfurization progressed and the S concentration decreased and at the same time the Mg concentration increased. This is presumably because MgO in the slag is reduced according to the following formula (1).
3 (MgO) + 2Al = 3Mg + (Al 2 O 3 ) …… (1)
It has also been clarified that the Mg and S concentrations play an important role in hot workability and magnetic properties. That is, when the Al concentration is low and the S concentration is high, both hot workability and magnetic properties are lowered, and the required properties cannot be obtained. Conversely, it was found that when the Al concentration is high, the low S concentration is low, and the Mg concentration is high, the hot workability tends to decrease.

このような現象を発現する理由は次の通りである。まず、低Al濃度、高S濃度、低Mg濃度のとき、Sは固溶[S]と(MgS)として存在する。固溶[S]は、金属の粒界を脆化させるため、熱間加工性を悪化させ、(MgS)は磁壁の移動を阻害するため、磁気特性を低下させる。しかも、低Al濃度の場合、O濃度が高くなり、硫化物系のみならず酸化物系介在物の量が増加し、磁気特性を低下させる原因となる。また、介在物の組成もAl2O3、MgO・Al2O3、MgOで示される高融点介在物ではなくなり、SiO2が主体の低融点シリケートになる。この介在物は熱間圧延時は延び、冷間圧延時には分断されるため、これも磁壁移動を妨げることになって、磁気特性をさらに低下させる要因となる。 The reason why this phenomenon occurs is as follows. First, at low Al concentration, high S concentration, and low Mg concentration, S exists as solid solution [S] and (MgS). Since the solid solution [S] embrittles the grain boundary of the metal, the hot workability is deteriorated, and (MgS) inhibits the movement of the domain wall, thereby deteriorating the magnetic properties. Moreover, in the case of a low Al concentration, the O concentration increases, and the amount of oxide inclusions as well as sulfides increases, which causes a decrease in magnetic properties. The composition of the inclusions is also no longer a high-melting inclusions represented by Al 2 O 3, MgO · Al 2 O 3, MgO, SiO 2 becomes a low-melting silicate principal. The inclusions extend during hot rolling and are divided during cold rolling, which also impedes domain wall movement, which further degrades magnetic properties.

一方、高Al濃度、低S濃度、高Mg濃度のときは、磁気特性の阻害要因はないが、Ni2Mgなどの低融点金属間化合物を形成するため、熱間加工性の低下を招くと考えられる。 On the other hand, at high Al concentration, low S concentration, and high Mg concentration, there is no obstructive factor for magnetic properties, but low melting point intermetallic compounds such as Ni 2 Mg are formed, leading to a decrease in hot workability. Conceivable.

本発明は、上述した知見を下に、適正なAl濃度および適正なスラグ組成の選択下において、これらと連動して変化するSやMgの濃度を適切に制御することにより、熱間加工性に乏しいという従来オーステナイト単相組織の課題を解決しながら、かつ磁気特性にも優れた製品を歩留よく得ることを可能にしたのである。   The present invention is based on the above-mentioned knowledge, under the selection of an appropriate Al concentration and an appropriate slag composition, by appropriately controlling the concentration of S and Mg that change in conjunction with these, to achieve hot workability While solving the problem of the conventional austenite single-phase structure that is scarce, it was possible to obtain a product with excellent magnetic properties and good yield.

以下、本発明に係る合金ならびにその製造方法における各条件について、詳しく説明する。まず、この合金において推奨される成分組成について説明する。   Hereinafter, each condition in the alloy which concerns on this invention, and its manufacturing method is demonstrated in detail. First, the component composition recommended in this alloy will be described.

C:0.001〜0.2mass%
Cは、合金の強度を維持するために必要な元素である。このCの量が0.001mass%未満では、充分な強度を得ることができず、一方、0.2mass%を超えるとカーバイドを形成したり、固溶Cが増加して、結晶粒成長および磁壁の移動を阻むため、磁気特性を悪化させる。そのため、Cの含有量は0.001〜0.2mass%と規定した。好ましくは0.002〜0.02mass%である。
C: 0.001 ~ 0.2mass%
C is an element necessary for maintaining the strength of the alloy. If the amount of C is less than 0.001 mass%, sufficient strength cannot be obtained. On the other hand, if it exceeds 0.2 mass%, carbide is formed or solid solution C increases, so that crystal grain growth and domain wall movement occur. To prevent magnetic properties from deteriorating. Therefore, the C content is defined as 0.001 to 0.2 mass%. Preferably it is 0.002-0.02 mass%.

Si:0.01〜0.5mass%
Siは、脱酸に有効な元素である。このSiの量が0.01mass%未満では脱酸効果を充分に得ることができない。一方0.5mass%を超えた場合には、規則格子が最適な状態ではなくなり、磁気特性を悪化させる。そのために、Siの含有量は0.01〜0.5mass%と規定した。好ましくは、0.02〜0.3mass%、さらに好ましくは、0.03〜0.15mass%である。
Si: 0.01-0.5mass%
Si is an element effective for deoxidation. If the amount of Si is less than 0.01 mass%, a sufficient deoxidation effect cannot be obtained. On the other hand, when it exceeds 0.5 mass%, the regular lattice is not in an optimum state, and the magnetic properties are deteriorated. Therefore, the content of Si is defined as 0.01 to 0.5 mass%. Preferably, it is 0.02-0.3 mass%, More preferably, it is 0.03-0.15 mass%.

Mn:0.01〜1.0mass%
Mnは、規則格子の生成をコントロールするのに有効な元素である。このMnの量が0.01mass%未満または1.0mass%を超えると、規則格子が最適な状態ではなくなり、磁気特性を悪化させるため、適量の添加が望ましい。また、Mnは熱間加工性を低下させるSと結合し、MnSを形成してSの悪影響を無害化したり、打ち抜き加工性を向上する観点からも有用な元素である。そのため、Mnの含有量は0.01〜1.0mass%と規定した。好ましくは0.1〜0.8mass%、より好ましくは0.2〜0.7mass%である。
Mn: 0.01-1.0mass%
Mn is an effective element for controlling the formation of ordered lattices. If the amount of Mn is less than 0.01 mass% or exceeds 1.0 mass%, the ordered lattice is not in an optimal state and deteriorates the magnetic properties. Therefore, it is desirable to add an appropriate amount. Further, Mn is a useful element from the viewpoint of bonding with S that lowers hot workability, forming MnS to make harmless effects of S harmless, and improving punching workability. Therefore, the Mn content is defined as 0.01 to 1.0 mass%. Preferably it is 0.1-0.8 mass%, More preferably, it is 0.2-0.7 mass%.

S:0.0001〜0.002mass%
Sは、熱間加工性を低下させるため、低い方が望ましい元素であるが、MgやMnと結合して、MgSやMnS粒子を形成するため、薄板を種々の形状に打ち抜き加工する際には、その加工性を改善するのに役立つ元素でもある。このSの量が0.0001未満では必要な打ち抜き性を確保することができない。一方、Sが0.002mass%を超えると、固溶Sが多くなり、熱間加工性を悪化させるため、熱間圧延板に割れを生じて製品の歩留を悪くする。そのために、Sの含有量を0.0001〜0.002mass%と規定した。なお、好ましくは、0.0002〜0.0018mass%である。より好ましくは、0.0003〜0.0015mass%である。
S: 0.0001 to 0.002 mass%
S is a desirable element because it lowers hot workability. However, S forms MgS and MnS particles by combining with Mg and Mn, so when punching a thin plate into various shapes. It is also an element that helps to improve its workability. If the amount of S is less than 0.0001, the required punchability cannot be ensured. On the other hand, when S exceeds 0.002 mass%, the amount of solid solution S increases and the hot workability is deteriorated, so that the hot rolled sheet is cracked and the yield of the product is deteriorated. Therefore, the S content is defined as 0.0001 to 0.002 mass%. In addition, Preferably, it is 0.0002-0.0018 mass%. More preferably, it is 0.0003-0.0015 mass%.

Al:0.001〜0.1mass%
Alは脱酸元素であり、本発明において非常に重要な役割を担う元素である。このAlの量が0.001mass%未満では、脱酸が充分でなくなるため、O濃度が0.01mass%を超えて高くなるとともに、S濃度が0.002mass%を超えて高くなる。そのため、酸化物系ならびに硫化物系介在物の個数が、300個/mm2を超えるようになり、磁気特性悪化の原因となる。しかも、固溶Sが高くなると結晶粒界を脆化させるため、熱間加工性にも悪影響を及ぼす。一方、このAl量が0.1mass%を超えると、スラグ中のMgOを還元する力が強くなりすぎて、鋼中のMgが0.05mass%を超えるようになる。それによって、低融点の金属間化合物Ni2Mgが生成し、熱間加工性に悪影響を及ぼす。しかも、この場合、Oが0.0002mass%未満と低くなり、スラグ中のCaOを還元してCaが0.002mass%を超えてしまう。このような理由から、Alは0.001〜0.1mass%と規定した。好ましくは、0.002〜0.02mass%、より好ましくは、0.003〜0.015mass%である。
Al: 0.001 to 0.1 mass%
Al is a deoxidizing element and plays an extremely important role in the present invention. If the amount of Al is less than 0.001 mass%, deoxidation is not sufficient, so that the O concentration exceeds 0.01 mass% and the S concentration exceeds 0.002 mass%. Therefore, the number of oxide-based and sulfide-based inclusions exceeds 300 / mm 2, which causes deterioration of magnetic characteristics. In addition, when the solid solution S is high, the grain boundaries are embrittled, which adversely affects hot workability. On the other hand, when the Al content exceeds 0.1 mass%, the power to reduce MgO in the slag becomes too strong, and Mg in the steel exceeds 0.05 mass%. As a result, a low-melting intermetallic compound Ni 2 Mg is formed, which adversely affects hot workability. In addition, in this case, O becomes as low as less than 0.0002 mass%, CaO in the slag is reduced, and Ca exceeds 0.002 mass%. For these reasons, Al is defined as 0.001 to 0.1 mass%. Preferably, it is 0.002-0.02 mass%, More preferably, it is 0.003-0.015 mass%.

Mg:0.0002〜0.05mass%
Mgは、熱間加工性を低下させるSと結合してMgSを形成し、熱間加工性を改善したり、打ち抜き加工性を改善するための元素として必要である。このMgの量が、0.0002mass%未満では、熱間加工性を低下させるSをMgSとして充分固着できないため、熱間加工性が低下する。一方、0.05mass%を超えるときは、低融点の金属間化合物Ni2Mgが生成するため、やはり熱間加工性を低下させる。したがって、Mgは、0.0002〜0.05mass%と規定した。好ましくは、0.001〜0.02mass%であり、より好ましくは、0.002〜0.01mass%である。
このMgの添加方法は、前記(1)式のように、Alを効果的に用いて、スラグから還元することが好ましい。もちろん、金属Mgの適量を直接添加する方法でもよい。
Mg: 0.0002 ~ 0.05mass%
Mg combines with S, which decreases hot workability, to form MgS, and is required as an element for improving hot workability and punching workability. If the amount of Mg is less than 0.0002 mass%, S that lowers hot workability cannot be sufficiently fixed as MgS, so hot workability is lowered. On the other hand, when it exceeds 0.05 mass%, the low-melting intermetallic compound Ni 2 Mg is formed, so that the hot workability is also lowered. Therefore, Mg was defined as 0.0002 to 0.05 mass%. Preferably, it is 0.001-0.02 mass%, More preferably, it is 0.002-0.01 mass%.
As for the method of adding Mg, it is preferable to reduce from slag by effectively using Al as shown in the formula (1). Of course, a method of adding an appropriate amount of metal Mg directly may be used.

Ca:≦0.0020mass%
Caは、溶接性を低下させるのに有効な元素である。このCaの量が0.0020mass%を超えると、溶接時に黒点等が発生し、溶接性を著しく悪化させる。そのために、Caの含有量は0.0020mass%以下と規定した。好ましくは、0.0015mass%以下である。
Ca: ≦ 0.0020 mass%
Ca is an element effective in reducing weldability. When the amount of Ca exceeds 0.0020 mass%, black spots and the like are generated during welding, and the weldability is remarkably deteriorated. Therefore, the Ca content is specified to be 0.0020 mass% or less. Preferably, it is 0.0015 mass% or less.

O:0.0002〜0.01mass%
Oは、他の元素と酸化物系介在物を形成し、その量が多すぎると磁気特性を低下させるため、この観点では極力低いことが望ましい。しかし、低すぎると強還元性となり、スラグ中のCaOを還元して、溶鋼中のCa濃度が増加させてしまうため、制御が必要な元素である。すなわち、このOの量は、0.0002未満では、強還元性となりスラグのCaOを還元するため、溶鋼中のCa濃度が0.0020mass%超となると同時に、酸化物系介在物が少なくなり、必要な打ち抜き加工性が得られなくなる。一方、このOの量が0.01mass%を超えると、酸化物系介在物の個数が多くなり、磁壁の移動を妨害するため磁気特性が低下すると同時に、SiO2主体の低融点シリケートを生成し微細分散される。その結果、磁壁の移動の妨げとなり磁気特性に悪影響を及ぼす。また、一部の酸素は固溶酸素としても存在し、熱間加工性を低下させる。そのために、Oの含有量は0.0002〜0.01mass%と規定した。好ましくは、0.0003〜0.007mass%、より好ましくは0.0004〜0.002mass%とする。
O: 0.0002 to 0.01 mass%
O forms oxide inclusions with other elements, and if the amount is too large, the magnetic properties are deteriorated. Therefore, it is desirable that O be as low as possible from this viewpoint. However, if it is too low, it becomes a strong reducibility, reducing CaO in the slag and increasing the Ca concentration in the molten steel, so it is an element that needs to be controlled. That is, if the amount of O is less than 0.0002, it becomes strongly reducing and reduces CaO in the slag, so that the Ca concentration in the molten steel exceeds 0.0020 mass%, and at the same time, the oxide inclusions are reduced and the necessary punching is performed. Workability cannot be obtained. On the other hand, if the amount of O exceeds 0.01 mass%, the number of oxide inclusions increases, and magnetic properties are deteriorated because the movement of the domain wall is disturbed. At the same time, a low melting point silicate mainly composed of SiO 2 is generated and fine. Distributed. As a result, the movement of the domain wall is hindered and the magnetic properties are adversely affected. Moreover, some oxygen exists also as solid solution oxygen, and reduces hot workability. Therefore, the content of O is defined as 0.0002 to 0.01 mass%. Preferably, it is 0.0003 to 0.007 mass%, more preferably 0.0004 to 0.002 mass%.

Mo:15mass%以下
Moは、PC材の磁気特性を実用的な製造条件で製造するために有効な成分であり、結晶磁気異方性や磁歪に影響する規則格子の生成条件を制御する働きを有する。その規則格子は、磁気焼鈍後の冷却条件に影響を受け、Moを含まないものでは非常に早い冷却速度が必要になるが、Moをある程度含有させることにより、工業上実用的な冷却条件で最大の特性を得ることができる。しかし、このMoはその量が多すぎると、最適冷却速度が遅くなりすぎたり、Feの含有量が少なくなり、飽和磁束密度が少なくなる。このため、Moの含有量は15mass%以下と規定する。
Mo: 15 mass% or less
Mo is an effective component for producing the magnetic properties of the PC material under practical production conditions, and has a function of controlling the conditions for generating a regular lattice that affects the magnetocrystalline anisotropy and magnetostriction. The ordered lattice is affected by the cooling conditions after magnetic annealing, and if it does not contain Mo, a very fast cooling rate is required, but by including a certain amount of Mo, it is the maximum in industrially practical cooling conditions. Characteristics can be obtained. However, if the amount of Mo is too large, the optimum cooling rate becomes too slow, the Fe content decreases, and the saturation magnetic flux density decreases. For this reason, the Mo content is specified to be 15 mass% or less.

Cu:15mass%以下
Cuは、Moと同様に、主にPC材の前記規則格子の生成条件を制御する働きを有するが、Moの効果に対して冷却速度の影響を少なくするようにして、磁気特性を安定化させる作用がある。また、このCuの適量添加は、電気抵抗を高めることから交流での磁気特性を向上させることもわかっている。しかしながら、このCuの量が多すぎると、Feの含有量が少なくなって飽和磁束密度が少なくなる。このため、Cuの含有量は15mass%以下と規定する。
Cu: 15 mass% or less
Cu, like Mo, mainly has the function of controlling the generation conditions of the regular lattice of PC material, but stabilizes the magnetic properties by reducing the influence of the cooling rate on the effect of Mo. There is an effect. It has also been found that the addition of an appropriate amount of Cu improves the magnetic properties under alternating current because it increases the electrical resistance. However, if the amount of Cu is too large, the Fe content decreases and the saturation magnetic flux density decreases. For this reason, Cu content is prescribed | regulated as 15 mass% or less.

Co:15mass%以下
Coは、磁束密度を高めると同時に、適量添加により比透磁率を向上させる働きをもつ。しかしながら、このCoの含有量が多すぎると、比透磁率を低下させると同時にFeの含有量が少なくなり、飽和磁束密度が小さくなる。このため、Coの含有量は15mass%以下と規定する。
Co: 15 mass% or less
Co has the function of increasing the magnetic flux density and improving the relative permeability by adding an appropriate amount. However, if the Co content is too large, the relative magnetic permeability is decreased, and at the same time, the Fe content is decreased and the saturation magnetic flux density is decreased. For this reason, the Co content is specified to be 15 mass% or less.

Nb:15mass%以下
Nbは、磁気特性に対する効果は少ないが、材料の硬さを高めて耐磨耗性を向上させることから、磁気ヘッドなどの用途には欠かせない成分である。また、モールド形成などによる磁気特性の劣化を低減するためにも有効である。しかしながら、このNbの量が多すぎるとFeの含有量が少なくなり、飽和磁束密度が小さくなる。このため、Nbの含有量は15mass%以下、特に1〜15mass%が好ましい。
Nb: 15 mass% or less
Nb has little effect on the magnetic properties, but increases the hardness of the material and improves the wear resistance, so it is an indispensable component for applications such as magnetic heads. It is also effective for reducing deterioration of magnetic characteristics due to mold formation. However, if the amount of Nb is too large, the Fe content decreases and the saturation magnetic flux density decreases. For this reason, the Nb content is preferably 15 mass% or less, particularly preferably 1 to 15 mass%.

本発明に係る合金では、上記成分の一部と、酸素とが化合して酸化物系介在物を形成するが、その好ましい組成は、Al2O3、MgOのいずれか1種または2種を75mass%以上、SiO2≦10mass%、CaO≦10mass%からなるものである。 In the alloy according to the present invention, a part of the above components and oxygen combine to form oxide inclusions, but the preferred composition thereof is any one or two of Al 2 O 3 and MgO. It consists of 75 mass% or more, SiO 2 ≦ 10 mass%, and CaO ≦ 10 mass%.

Al2O3、MgOのいずれか1種または2種:75mass%以上
酸化物系介在物は、1000〜1200℃程度の低融点だと、熱間加工の際に延伸を受け、さらに、冷間圧延段階では微細に分断されるため、最終製品においては、介在物の密度が高くなり、磁気特性を低下させてしまう。そこで、この酸化物系介在物が熱間圧延の時に延伸されないようにするためには、Al2O3、MgOのいずれか1種または2種の割合が75mass%以上の介在物とすることが有効である。その理由は、Al2O3、MgOともに融点が2000℃以上と高融点であると同時に、この2種の酸化物の化合物MgO-Al2O3もやはり融点が2000℃以上の高融点であることからである。
なお、このAl2O3、MgOの量は、好ましくは、80mass%以上、より好ましくは85mass%以上とする。
One or two of Al 2 O 3 and MgO: 75 mass% or more If the oxide inclusions have a low melting point of about 1000 to 1200 ° C, they are stretched during hot working, and further cold Since it is finely divided in the rolling stage, the density of inclusions is increased in the final product and the magnetic properties are deteriorated. Therefore, in order to prevent the oxide inclusions from being stretched during hot rolling, the inclusion of one or two of Al 2 O 3 and MgO should be 75 mass% or more. It is valid. The reason is that both Al 2 O 3 and MgO have a high melting point of 2000 ° C or higher, and at the same time, these two oxide compounds MgO-Al 2 O 3 also have a high melting point of 2000 ° C or higher. From that.
The amounts of Al 2 O 3 and MgO are preferably 80 mass% or more, more preferably 85 mass% or more.

SiO2≦10mass%、CaO≦10mass%
SiO2およびCaOの量は、これらの量が10mass%を超えると、介在物の融点が1200℃程度になるため、10mass%以下と規定した。好ましくは、8mass%以下である。
SiO 2 ≦ 10 mass%, CaO ≦ 10 mass%
The amount of SiO 2 and CaO was specified to be 10 mass% or less because the melting point of inclusions was about 1200 ° C. when these amounts exceeded 10 mass%. Preferably, it is 8 mass% or less.

さらに、本発明においては、上述のように構成することによって、要求される磁気特性を維持しつつ、一方で、酸化物系介在物および/または硫化物系介在物の個数を制御することにより、必要な熱間加工性を確保することが重要である。以下に、その介在物個数限定の理由について説明する。   Furthermore, in the present invention, by configuring as described above, while maintaining the required magnetic properties, on the other hand, by controlling the number of oxide inclusions and / or sulfide inclusions, It is important to ensure the necessary hot workability. The reason for limiting the number of inclusions will be described below.

酸化物系介在物および/または硫化物系介在物の総量:50〜300個/mm2
酸化物系介在物や硫化物系介在物の数を制御することは、本発明において非常に重要なことである。例えば、これらの介在物の数が少なければ高い磁気特性が得られると考えられるが、この場合は、O、Sの一部が合金中に固溶したものとなるため、熱間加工性を悪化させる。従って、もし酸化物系介在物と硫化物系介在物の総量が50個未満になるとO、Sの固溶量が増して熱間加工性が低下し、生産歩留の低下を招くと同時に、打ち抜き加工性をも低下させてしまう。一方、その個数が300個を超えると、磁壁の移動を妨げるために、磁気特性の方が低下する。このために、酸化物系介在物と硫化物系介在物の総量を50〜300個/mm2と設定した。好ましくは60〜180個/mm2である。なお、ここで言う硫化物系介在物とは、特に限定はしないが、MgS、MnSのいずれかまたは両方である。
Total amount of oxide inclusions and / or sulfide inclusions: 50 to 300 / mm 2
Controlling the number of oxide inclusions and sulfide inclusions is very important in the present invention. For example, it is considered that high magnetic properties can be obtained if the number of these inclusions is small. In this case, however, since part of O and S are dissolved in the alloy, hot workability is deteriorated. Therefore, if the total amount of oxide inclusions and sulfide inclusions is less than 50, the solid solution amount of O and S increases, hot workability decreases, and the production yield decreases. The punching workability is also reduced. On the other hand, when the number exceeds 300, the magnetic properties are deteriorated in order to prevent the domain wall from moving. For this purpose, the total amount of oxide inclusions and sulfide inclusions was set to 50 to 300 / mm 2 . Preferably, it is 60 to 180 pieces / mm 2 . The sulfide inclusions mentioned here are not particularly limited, but are either or both of MgS and MnS.

前記酸化物系介在物は脱酸時に形成されるのに対し、硫化物系介在物は凝固中あるいは凝固後に形成されるものである。そのため、硫化物系介在物を下記(2)式、(3)式の反応に従い、効果的に形成し、Sを固定するためには、連続鋳造時にスラブ表面温度が800℃以上にさらされる時間を3分以上は保持することが望ましい。
Mg+S→MgS …(2)
Mn+S→MnS …(3)
The oxide inclusions are formed during deoxidation, whereas sulfide inclusions are formed during or after solidification. Therefore, in order to effectively form sulfide inclusions according to the reactions of the following formulas (2) and (3) and to fix S, the time during which the slab surface temperature is exposed to 800 ° C. or more during continuous casting It is desirable to hold for at least 3 minutes.
Mg + S → MgS (2)
Mn + S → MnS (3)

次に、本発明に係るFe-Ni系磁性合金のうち、PD材(35mass%以上40mass%未満Ni)に要求される磁気特性としては、次にような特性を示すものが好ましい実施形態である。
1.高透磁率であること:少なくとも最大比透磁率μm=50,000以上、初比透磁率μi=10,000以上、
2.保磁力が小さいこと:少なくとも保磁力Hc=4[A/m]以下、
Next, among the Fe—Ni based magnetic alloy plates according to the present invention, the magnetic characteristics required for the PD material (Ni of 35 mass% or more and less than 40 mass%) are those showing the following characteristics in a preferred embodiment. is there.
1. High permeability: at least maximum relative permeability μm = 50,000 or more, initial relative permeability μi = 10,000 or more,
2. Small coercive force: at least coercive force Hc = 4 [A / m] or less,

また、本発明に係るFe-Ni系磁性合のうち、PB材(40mass%以上50mass%以下Ni)に要求される磁気特性としては、次のような特性を示すものが好ましい実施形態である。
1.高透磁率であること:少なくとも最大比透磁率μm=100,000以上、初比透磁率μi=10,000以上、
2.保磁力が小さいこと:少なくとも保磁力Hc=4[A/m]以下、
In addition, among the Fe-Ni based magnetic plywood according to the present invention, the magnetic properties required for the PB material (40 mass% or more 50 mass% or less Ni), which exhibits the following characteristics is a preferred embodiment .
1. High permeability: at least maximum relative permeability μm = 100,000 or more, initial relative permeability μi = 10,000 or more,
2. Small coercive force: at least coercive force Hc = 4 [A / m] or less,

そして、本発明に係るFe-Ni系磁性合金のうち、PC材(70〜85mass%Ni)の磁気特性に関しては、透磁率のより一層の向上と保磁力の低減を図ったものが好ましい。即ち、目標とする数値としては、最大比透磁率μm=200,000以上、初比透磁率=100,000以上、保磁力Hc=0.8[A/m]以下である。 And among the Fe-Ni type magnetic alloy plates according to the present invention, with respect to the magnetic properties of the PC material (70 to 85 mass% Ni), it is preferable to further improve the permeability and reduce the coercive force. That is, the target numerical values are the maximum relative permeability μm = 200,000 or more, the initial relative permeability = 100,000 or more, and the coercive force Hc = 0.8 [A / m] or less.

次に、本発明では、上記合金を、AODやVODを用いた2次精錬法により製造することとし、真空誘導炉などの使用の場合に比較して安価に製造する方法を提案する。即ち、本発明では、まず、鉄屑、ニッケル、フェロニッケルなどを原料として用い、これを所定のFe-Ni組成(PD材:Fe-36mass%Ni、PB材:Fe-46mass%Ni、PC材:Fe-77mass%Ni)となるように60トン電気炉で溶解する。この原料には、Fe-Ni系磁性合金の屑を用いてもよい。その後、溶融した合金溶湯は、AODあるいはVODに移し、脱炭、脱クロム、脱りんなどの処理のために、酸化精錬を行う。このAOD、VODの耐火物としては、ドロマイトに代表されるマグネシアを含有する耐火物を用いる。その後、一旦除滓し、このAODまたはVOD中には新たに、石灰石、蛍石、珪砂等のフラックスを添加し、CaO-SiO2-Al2O3-MgO-F系のスラグを溶湯上に形成する。スラグ中のMgOは、耐火物がスラグ中に溶融することでも得られる。もちろん、予めMgOを含む廃煉瓦を使用してもよい。その後、合金溶湯は、Alおよび/またはFeSi合金を用いて脱硫、脱酸処理し、Alを0.001〜0.1mass%、Siを0.01〜0.5mass%に調整することにより、Oを0.0002〜0.01mass%、Sを0.0001〜0.002mass%にした。 Next, in the present invention, the above alloy is manufactured by a secondary refining method using AOD or VOD, and a method of manufacturing at a lower cost than in the case of using a vacuum induction furnace or the like is proposed. That is, in the present invention, iron scrap, nickel, ferronickel or the like is used as a raw material, and this is used in a predetermined Fe—Ni composition (PD material: Fe-36 mass% Ni, PB material: Fe-46 mass% Ni, PC material). : Fe-77mass% Ni) and melt in a 60-ton electric furnace. As this raw material, scraps of an Fe—Ni based magnetic alloy plate may be used. Thereafter, the molten alloy melt is transferred to AOD or VOD and subjected to oxidative refining for treatment such as decarburization, dechromation, and dephosphorization. A refractory containing magnesia represented by dolomite is used as the refractory for AOD and VOD. After that, it is removed once, and flux such as limestone, fluorite, silica sand, etc. is newly added during this AOD or VOD, and CaO-SiO 2 -Al 2 O 3 -MgO-F slag is put on the molten metal. Form. MgO in the slag can also be obtained by melting the refractory into the slag. Of course, waste bricks containing MgO in advance may be used. Thereafter, the molten alloy is desulfurized and deoxidized using Al and / or FeSi alloy, and by adjusting Al to 0.001 to 0.1 mass% and Si to 0.01 to 0.5 mass%, O is 0.0002 to 0.01 mass%. , S was 0.0001 to 0.002 mass%.

このようなスラグ組成およびAl濃度、Si濃度、酸素濃度をもつ溶湯では、この合金溶湯中の酸化物系介在物の組成はAl2O3、MgOのいずれか1種または2種が75mass%以上、SiO2≦10mass%、CaO≦10mass%に制御されたものとなる。それは、添加されたAlが、前記(1)式にしたがって、スラグ中のMgOを還元し、溶鋼中にMgを供給し、溶鋼中のMg、Al、Si、Ca濃度がAl2O3、MgO主体の介在物を形成するに適正な範囲、即ち、本発明の規定する範囲に制御されるためである。場合によっては、脱酸の後、MoやCuを所定量添加してもよい。Mo源としては、特に限定はしないが、金属MoあるいはFe-Mo、Cuは金属Cuを用いることが望ましい。一部のPC材では、Cuを含まないものも製造した。AODあるいはVODの後、LFにて温度調整し、また、さらに精密な成分調整を行ってもよい。 In the molten metal having such a slag composition and Al concentration, Si concentration, and oxygen concentration, the composition of oxide inclusions in the molten alloy is 75 mass% or more when either one or two of Al 2 O 3 and MgO are used. , SiO 2 ≦ 10 mass% and CaO ≦ 10 mass%. According to the formula (1), the added Al reduces MgO in the slag, supplies Mg into the molten steel, and the Mg, Al, Si, and Ca concentrations in the molten steel are Al 2 O 3 and MgO. This is because it is controlled within a range appropriate for forming the main inclusion, that is, a range defined by the present invention. In some cases, a predetermined amount of Mo or Cu may be added after deoxidation. Although it does not specifically limit as a Mo source, As for metal Mo or Fe-Mo, Cu, it is desirable to use metal Cu. Some PC materials were also manufactured without Cu. After AOD or VOD, the temperature may be adjusted with LF, or more precise component adjustment may be performed.

このようにして精錬された合金溶湯を、連続鋳造機にて鋳造し、連鋳スラブを製造する。このとき、硫化物系介在物は凝固中あるいは凝固後に形成されるので、硫化物系介在物を効果的に形成させて、Sを固定させるためには、特に限定はしないが、連続鋳造時にスラブ表面温度が800℃以上にさらされる時間を3分以上保持することが望ましい。   The molten alloy refined in this manner is cast by a continuous casting machine to produce a continuous cast slab. At this time, since the sulfide inclusions are formed during or after solidification, there is no particular limitation in order to effectively form sulfide inclusions and fix S. It is desirable to keep the time at which the surface temperature is exposed to 800 ° C. or more for 3 minutes or more.

鉄屑、ニッケル、フェロニッケルなどの原料を、60トン電気炉にて、所定のFe-Ni組成(PD材:Fe-35.5mass%Ni、PB材:Fe-46.5mass%Ni、PC材:Fe-77.5mass%Ni)となるように溶解した。その後、AODあるいはVODに移し、脱炭、脱クロム、脱りんなどの処理のために、酸化精錬を行った。AOD、VODの耐火物にはドロマイトを用いた。その後、一旦除滓し、そのAODまたはVODには、新たに石灰石、蛍石、珪砂等のフラックスを添加し、CaO-SiO2-Al2O3-MgO-F系のスラグを溶湯上に形成した。その後、Alおよび/またはFe-Si合金を用いて、脱酸、脱硫を行った。PC材の場合は、この後、所定量のMoおよびCuを添加した。Mo源としては、金属MoあるいはFe-Mo、Cuは金属Cuを用いた。一部のPC材では、Cuを含まないものも製造した。AODあるいはVODの後、LFにて温度調整、および、さらに精密な成分調整を行った。 Raw materials such as iron scrap, nickel, ferronickel, etc., in a 60-ton electric furnace, with a predetermined Fe-Ni composition (PD material: Fe-35.5 mass% Ni, PB material: Fe-46.5 mass% Ni, PC material: Fe-77.5 mass% Ni). Then, it moved to AOD or VOD, and oxidation refining was performed for processes, such as decarburization, dechromation, and dephosphorization. Dolomite was used for AOD and VOD refractories. After that, it is removed once, and flux such as limestone, fluorite, and silica sand is newly added to the AOD or VOD, and CaO-SiO 2 -Al 2 O 3 -MgO-F slag is formed on the molten metal. did. Thereafter, deoxidation and desulfurization were performed using Al and / or Fe-Si alloy. In the case of the PC material, predetermined amounts of Mo and Cu were added thereafter. As the Mo source, metal Mo or Fe-Mo, and Cu used metal Cu. Some PC materials were also manufactured without Cu. After AOD or VOD, temperature adjustment and more precise component adjustment were performed with LF.

その後、連続鋳造によって得られたスラブに熱間圧延、そして冷間圧延を行い厚さ0.5mmの冷延板を得た。この厚さ0.5mmの冷延板を1100℃均熱3hrの条件で、水素雰囲気中で磁気焼鈍し、磁気特性等を測定すると共に、下記のような試験を行った。   Thereafter, the slab obtained by continuous casting was hot-rolled and cold-rolled to obtain a cold-rolled sheet having a thickness of 0.5 mm. This cold-rolled sheet having a thickness of 0.5 mm was subjected to magnetic annealing in a hydrogen atmosphere under conditions of 1100 ° C. soaking for 3 hours, and the magnetic properties were measured, and the following tests were performed.

[化学成分の分析方法]
化学成分は、蛍光X線装置を用い測定を行った。ただし、C、Sは燃焼重量法、Oは不活性ガスインパルス融解赤外線吸収法により行った。
[Analysis method of chemical components]
The chemical component was measured using a fluorescent X-ray apparatus. However, C and S were performed by a combustion weight method, and O was performed by an inert gas impulse melting infrared absorption method.

[熱延時の割れの判定方法]
熱延時の割れの有無は、熱間圧延後板のサイドエッジから1cmを超える割れが、熱延板の長さ1m当り5箇所以上で認められた時、割れ有りとし、熱延板の長さ1m当り5箇所未満の時、割れ無しとする。
[Method of judging cracking during hot rolling]
As for the presence or absence of cracks during hot rolling, cracks exceeding 1 cm from the side edge of the sheet after hot rolling were considered to be cracked when 5 or more cracks per 1 m of the length of the hot rolled sheet were detected. When there are less than 5 locations per meter, there is no crack.

[介在物個数・組成の測定方法]
介在物個数は、0.5μm以上の介在物を対象とし、熱延後の板の断面を走査型電子顕微鏡にて1mm×1mmの領域にある介在物をカウントした。また、介在物組成は、エネルギー分散型X線分光装置を用い、O、Mg、Al、Si、Ca、Mnについて定量分析した。なお、表中の合計が100mass%に満たないのは、一部の介在物で、Fe、Crなどその他の元素が極微量に検出されたためである。
[Method of measuring the number and composition of inclusions]
The number of inclusions was 0.5 μm or more, and inclusions in the 1 mm × 1 mm area of the cross section of the hot-rolled plate were counted using a scanning electron microscope. The inclusion composition was quantitatively analyzed for O, Mg, Al, Si, Ca, and Mn using an energy dispersive X-ray spectrometer. The reason why the total in the table is less than 100 mass% is that trace amounts of other elements such as Fe and Cr were detected in some inclusions.

[酸化物系介在物の平均組成の定量方法]
酸化物系介在物の平均組成の定量は、5μm以上の介在物を対象とし、エネルギー分散型X線分光装置を用い20点測定を行いその平均とする。
[Method for quantifying average composition of oxide inclusions]
The average composition of oxide inclusions is quantified by measuring 20 points using an energy dispersive X-ray spectrometer for inclusions of 5 μm or more.

[磁気特性の測定方法]
直流磁化特性は、JIS C2531に基づき、φ45mm×φ33mmリング試験片を1次、2次側共に50巻きし、飽和磁束密度に関しては、磁場1592(A/m)の条件下測定を行った。また、最大比透磁率μm、初比透磁率μi、及び保磁力Hcについて、PC材については4(A/m)を反転磁場とし、PD材およびPB材については16(A/m)を反転磁場として測定したものである。また、0.5mmの冷延板を1100℃均熱3hr、水素雰囲気中で磁気焼鈍し、磁気特性を測定した。
[Measurement method of magnetic properties]
Based on JIS C2531, the direct current magnetization characteristics were obtained by measuring a φ45 mm × φ33 mm ring test piece with 50 turns on both the primary and secondary sides, and measuring the saturation magnetic flux density under a magnetic field of 1592 (A / m). The maximum relative permeability μm, initial relative permeability μi, and coercive force Hc are 4 (A / m) for the PC material, and 16 (A / m) for the PD and PB materials. It is measured as a magnetic field. A 0.5 mm cold-rolled plate was magnetically annealed in a hydrogen atmosphere at 1100 ° C. for 3 hours, and the magnetic properties were measured.

上記試験結果を、合金組成、製造条件と併せて、表1a〜1c(PC材)、表2a〜2c(PB材)、表3a〜3c(PD材)に分けて示した。
表に示すとおり、発明例のNo.1〜6、No.11〜16、No.21〜26では、優れた熱間加工性を確保しつつ、磁気特性も良好なレベルのものが得られていた。
The test results are shown separately in Tables 1a to 1c (PC material), Tables 2a to 2c (PB material), and Tables 3a to 3c (PD material) together with the alloy composition and production conditions.
As shown in the table, Nos. 1 to 6, Nos. 11 to 16, and Nos. 21 to 26 of the invention examples have excellent magnetic workability while maintaining excellent hot workability. It was.

一方、比較例のNo.7、No.8、No.17、No.18、No.27、No.28は、いずれも[S]が本発明の範囲より高くなっており、熱間加工性が悪く、かつ磁気特性も良くないものであった。これは固溶[S]が多くなるために、粒界を脆化させ熱間加工性が悪化し、かつ、SiO2が主体の低融点シリケートが多くなり、このシリケートが熱延で延びて冷延で分断されたため、磁壁移動を妨げて磁気特性をさらに低下させる要因となったものと考えられる。
なお、比較例No.9、No.19、No.29は、Mgが本発明の範囲よりも高くなっており、磁気特性はすべて本発明に適合するものであったが、熱間加工性が悪いという結果となった。これは、低融点の金属間化合物Ni2Mgが生成したことが原因と考えられる。しかも、Caも本発明の範囲より高く、溶接時にビード上に黒点が発生した。さらには、Sが0.0001mass%を下回っており、打ち抜き加工性も低下してしまった。
なお、以上の実施例はすべてステンレス鋼用の精錬設備を用いて、造塊、連続鋳造、熱間圧延、冷間圧延を実施したものであり、60トン規模の例である。そのため、従来の数トン規模の真空溶解よりも、製造コストが著しく安価であるという効果がある。
On the other hand, No.7, No.8, No.17, No.18, No.27, and No.28 of Comparative Examples all have [S] higher than the range of the present invention, and hot workability. However, the magnetic properties were not good. This is because the amount of solid solution [S] increases, the grain boundaries become brittle and the hot workability deteriorates, and the low melting point silicate mainly composed of SiO2 increases, and this silicate extends by hot rolling and cold rolling. This is considered to be a factor that hinders domain wall movement and further deteriorates magnetic properties.
In Comparative Examples No. 9, No. 19, and No. 29, Mg was higher than the range of the present invention, and all the magnetic properties were compatible with the present invention. The result was bad. This is presumably because low-melting intermetallic compound Ni 2 Mg was formed. Moreover, Ca was also higher than the range of the present invention, and black spots were generated on the beads during welding. Furthermore, S was less than 0.0001 mass%, and the punching workability was also lowered.
The above examples are all examples of 60 tons, in which ingots, continuous casting, hot rolling, and cold rolling are performed using a refining equipment for stainless steel. Therefore, there is an effect that the manufacturing cost is significantly lower than the conventional vacuum melting of several tons.

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

Figure 0004593313
Figure 0004593313

本発明の技術は、磁気ヘッドや磁気シールド材、トランスコアの巻鉄心等に使用されるFe-Ni系磁性合金の製造の他、シャドウマスク、バイメタル、リードフレーム、ガンパーツの熱膨張率制御材やスピードメータケース材、電磁調理器などのキュリー点制御材、ステンレス鋼などの分野においても適用が可能である。 The technology of the present invention controls the thermal expansion coefficient of shadow masks, bimetals, lead frames, and gun parts in addition to the manufacture of Fe-Ni magnetic alloy plates used for magnetic heads, magnetic shield materials, wound cores of transformer cores, etc. It can also be applied in the fields of materials, speedometer case materials, Curie point control materials such as electromagnetic cookers, and stainless steel.

Claims (6)

C:0.001〜0.2mass%、Si:0.01〜0.5mass%、Mn:0.01〜1.0mass%、S:0.0001〜0.002mass%、Ni:30〜85mass%、Al:0.001〜0.1mass%、Mg:0.0002〜0.05mass%、Ca:≦0.0020mass%およびO:0.0002〜0.01mass%を含有し、残部Feおよび不可避的不純物からなる成分組成の合金であって、この合金板中にはまた、少なくとも前記成分組成の範囲内において、主要成分がAl 2 O 3 、MgOのいずれか1種または2種を75mass%以上、SiO 2 ≦10mass%、CaO≦10mass%からなる酸化物系介在物を含有しており、圧延方向に平行な垂直断面に、0.5μm以上の大きさを有する酸化物系介在物および/または硫化物系介在物を、合計量で50〜300個/mm2含むことを特徴とする熱間加工性に優れるFe-Ni系磁性合金板。 C: 0.001 to 0.2 mass%, Si: 0.01 to 0.5 mass%, Mn: 0.01 to 1.0 mass%, S: 0.0001 to 0.002 mass%, Ni: 30 to 85 mass%, Al: 0.001 to 0.1 mass%, Mg: 0.0002 ~ 0.05mass%, Ca: ≤0.0020mass% and O: 0.0002 ~ 0.01mass%, the alloy plate of the component composition consisting of the balance Fe and unavoidable impurities, the alloy plate also includes at least the above-mentioned Within the range of the component composition, the main component contains one or two of Al 2 O 3 and MgO containing 75 mass% or more of oxide inclusions composed of SiO 2 ≦ 10 mass% and CaO ≦ 10 mass%. In addition, the vertical cross section parallel to the rolling direction includes oxide inclusions and / or sulfide inclusions having a size of 0.5 μm or more in a total amount of 50 to 300 pieces / mm 2. Fe-Ni magnetic alloy plate with excellent hot workability. 前記成分の他さらに、Mo、Cu、CoおよびNb のうちから選ばれる1種または2種以上を、それぞれ15mass%以下、かつ、合計で20mass%以下の範囲内で含有することを特徴とする請求項1に記載の熱間加工性に優れるFe-Ni系磁性合金板。 In addition to the above components, one or more selected from Mo, Cu, Co, and Nb are each contained in a range of 15 mass% or less and a total of 20 mass% or less. Item 2. An Fe—Ni-based magnetic alloy plate excellent in hot workability according to Item 1. Niを35mass%以上40mass%未満含有する合金であって、最大比透磁率μm:50,000以上、初比透磁率μi:10,000以上および保磁力Hc:4[A/m]以下の磁気特性を示すことを特徴とする請求項1または2に記載の熱間加工性に優れるFe-Ni系磁性合金板。 An alloy plate containing 35 mass% or more and less than 40 mass% of Ni, exhibiting magnetic properties of maximum relative permeability μm: 50,000 or more, initial relative permeability μi: 10,000 or more, and coercive force Hc: 4 [A / m] or less The Fe-Ni-based magnetic alloy plate having excellent hot workability according to claim 1 or 2 . Niを40mass%以上50mass%以下含有する合金であって、最大比透磁率μm:100,000以上、初比透磁率μi:10,000以上および保磁力Hc:4[A/m]以下の磁気特性を示すものであることを特徴とする請求項1または2に記載の熱間加工性に優れるFe-Ni系磁性合金板。 Alloy plate containing 40 mass% or more and 50 mass% or less of Ni, exhibiting magnetic properties of maximum relative permeability μm: 100,000 or more, initial relative permeability μi: 10,000 or more, and coercive force Hc: 4 [A / m] or less The Fe-Ni-based magnetic alloy plate having excellent hot workability according to claim 1 or 2 , wherein the Fe-Ni-based magnetic alloy plate is excellent. Niを70〜85mass%含有する合金であって、最大比透磁率μm:200,000以上、初比透磁率μi:100,000以上および保磁力Hc:0.8[A/m]以下の磁気特性を示すものであることを特徴とする請求項1または2に記載の熱間加工性に優れるFe-Ni系磁性合金板。 An alloy plate containing 70 to 85 mass% of Ni, which exhibits magnetic properties of maximum relative permeability μm: 200,000 or more, initial relative permeability μi: 100,000 or more, and coercive force Hc: 0.8 [A / m] or less. 3. The Fe—Ni based magnetic alloy plate having excellent hot workability according to claim 1 or 2 . 請求項1〜のいずれか1項に記載のFe-Ni系磁性合金板を製造する方法であって、一次精錬を行ったFe-Ni系合金の溶湯を、マグネシアを含む内張耐火物を有するAODあるいはVODのいずれかの二次精錬容器にて酸化精錬を施した後、一旦まず除滓し、次いで、石灰石、蛍石、珪石のいずれか1種または2種以上のフラックスを添加して、CaO-Al2O3-MgO-SiO2-F系スラグを生成させ、その後、合金溶湯中にAlおよび/またはSiを投入して、Al:0.001〜0.1mass%、Si:0.01〜0.5mass%に調製することにより脱酸および脱硫し、O:0.0002〜0.01mass%、S:0.0001〜0.002mass%である合金溶湯を得、次いで、この合金溶湯を連続鋳造してスラブとした後、表面研削してから熱間圧延することを特徴とする熱間加工性に優れるFe-Ni系磁性合金板の製造方法。 A method for producing the Fe-Ni based magnetic alloy plate according to any one of claims 1 to 5 , wherein the molten Fe-Ni based alloy that has undergone primary refining is replaced with a lined refractory containing magnesia. After oxidative refining in the secondary refining vessel of either AOD or VOD, it is first removed, and then one or more fluxes of limestone, fluorite, and silica are added. , CaO-Al 2 O 3 -MgO-SiO 2 -F-based slag is produced, and then Al and / or Si is introduced into the molten alloy, Al: 0.001 to 0.1 mass%, Si: 0.01 to 0.5 mass By deoxidizing and desulfurizing by preparing to% , O 2 : 0.0002 to 0.01 mass%, S: 0.0001 to 0.002 mass% of molten alloy is obtained, and then the molten alloy is continuously cast into a slab, A method for producing a Fe-Ni magnetic alloy plate excellent in hot workability, characterized by hot rolling after grinding.
JP2005050276A 2005-02-25 2005-02-25 Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof Active JP4593313B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050276A JP4593313B2 (en) 2005-02-25 2005-02-25 Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050276A JP4593313B2 (en) 2005-02-25 2005-02-25 Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006233284A JP2006233284A (en) 2006-09-07
JP4593313B2 true JP4593313B2 (en) 2010-12-08

Family

ID=37041268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050276A Active JP4593313B2 (en) 2005-02-25 2005-02-25 Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4593313B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099812A1 (en) 2007-02-13 2008-08-21 Hitachi Metals, Ltd. Magnetic shielding material, magnetic shielding component, and magnetic shielding room
JP7328535B2 (en) * 2019-10-31 2023-08-17 日本製鉄株式会社 steel smelting method
CN114855005B (en) * 2022-04-06 2022-11-22 中国科学院上海高等研究院 Cryogenic low-temperature permalloy and preparation method and application thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030387A (en) * 2000-07-12 2002-01-31 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND ITS MANUFACTURING METHOD

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002030387A (en) * 2000-07-12 2002-01-31 Nippon Yakin Kogyo Co Ltd Fe-Ni ALLOY SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND ITS MANUFACTURING METHOD

Also Published As

Publication number Publication date
JP2006233284A (en) 2006-09-07

Similar Documents

Publication Publication Date Title
WO2021172381A1 (en) Stainless steel for metal foils, satinless steel foil, method for roducing stainless steel for metal foils, and method for producing satinless steel foil
CN115244199B (en) Stainless steel, stainless steel material, and method for producing stainless steel
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JP5428020B2 (en) Method for producing Fe-Ni alloy slab
KR100711410B1 (en) Highly Ductile Steel Sheet and Method of Manufacturing the Same
JP3687644B2 (en) Method for producing non-oriented electrical steel sheet
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP5797461B2 (en) Stainless steel and manufacturing method thereof
JP3790690B2 (en) Fe-Ni alloy plate for highly clean shadow mask and method for producing the same
JP4259097B2 (en) Ti-containing high workability ferritic chromium steel sheet excellent in ridging resistance and method for producing the same
JP3105525B2 (en) Melting method of silicon steel material
JP6989000B2 (en) Manufacturing method of slab slab, which is a material for non-oriented electrical steel sheets
JP7413600B1 (en) Fe-Ni alloy plate and its manufacturing method
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP7047818B2 (en) Refining method of molten steel
JP7261345B1 (en) Austenitic Ni-Cr-Fe alloy excellent in oxidation resistance and its production method
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP3881626B2 (en) Refining method of Fe-Ni alloy
JP2004204252A (en) Ti-CONTAINING HIGH-WORKABILITY FERRITIC CHROMIUM STEEL SHEET SUPERIOR IN RIDGING RESISTANCE, AND MANUFACTURING METHOD THEREFOR
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JP3840096B2 (en) Method for producing Fe-Ni alloy for low thermal expansion shadow mask with excellent rust resistance
CN116694999A (en) Magnetic levitation track profile steel and preparation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4593313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250