JP3247154B2 - Melting method of non-oriented electrical steel sheet with excellent magnetic properties - Google Patents

Melting method of non-oriented electrical steel sheet with excellent magnetic properties

Info

Publication number
JP3247154B2
JP3247154B2 JP22970292A JP22970292A JP3247154B2 JP 3247154 B2 JP3247154 B2 JP 3247154B2 JP 22970292 A JP22970292 A JP 22970292A JP 22970292 A JP22970292 A JP 22970292A JP 3247154 B2 JP3247154 B2 JP 3247154B2
Authority
JP
Japan
Prior art keywords
mno
concentration
oxide
mns
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22970292A
Other languages
Japanese (ja)
Other versions
JPH0673510A (en
Inventor
信也 北村
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22970292A priority Critical patent/JP3247154B2/en
Publication of JPH0673510A publication Critical patent/JPH0673510A/en
Application granted granted Critical
Publication of JP3247154B2 publication Critical patent/JP3247154B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、酸化物を用いて鉄損特
性に有害な微細なMnSを無害化させることを特徴とす
る磁気特性に優れた、Siが0.6%以上、2.0%以
下含まれる無方向性電磁鋼板溶製方法である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of detoxifying fine MnS, which is harmful to iron loss characteristics, using an oxide. a melting method of the non-oriented electrical steel sheet which contained than 0%.

【0002】[0002]

【従来の技術】近年、電気機器の高効率化は、世界的な
電力・エネルギー節減の動きの中で強く要望されてい
る。このため、回転機及び中小型変圧器等の鉄心材料に
広く使用されている無方向性電磁鋼板においても、磁気
特性が優れていること、特に低鉄損であることへの要請
がますます強まってきている。
2. Description of the Related Art In recent years, there has been a strong demand for higher efficiency of electrical equipment in the context of worldwide power and energy saving. For this reason, even non-oriented electrical steel sheets widely used for core materials such as rotating machines and small and medium-sized transformers are increasingly required to have excellent magnetic properties, especially low iron loss. Is coming.

【0003】無方向性電磁鋼板の磁気特性を左右する重
要な因子にMnSやAlN等の析出物が挙げられる。す
なわち、熱間圧延工程で析出する微細なMnSやAlN
が、仕上げ焼鈍時や需要家での歪取焼鈍時の結晶粒の成
長を阻害し、鉄損特性を大幅に劣化させる。熱間圧延工
程で析出する微細なMnSの数を低減させるには、溶製
段階でSを極力低減させることと、熱間圧延以前にMn
Sを析出させ凝集粗大化し個数を減少することが考えら
れる。
[0003] Precipitates such as MnS and AlN are important factors influencing the magnetic properties of non-oriented electrical steel sheets. That is, fine MnS or AlN precipitated in the hot rolling step.
However, it hinders the growth of crystal grains at the time of finish annealing or at the time of strain relief annealing at a customer, and greatly deteriorates iron loss characteristics. In order to reduce the number of fine MnS precipitated in the hot rolling process, it is necessary to reduce S as much as possible at the melting stage, and to reduce Mn before hot rolling.
It is conceivable that S is precipitated to form a coarse aggregate and reduce the number.

【0004】このうち、前者は、溶銑予備処理から2次
精錬工程において徹底した脱硫を実施することに対応す
るが、必然的に溶製コストの大幅な上昇を招くことにな
る。また、2次精錬工程で脱硫を実施する場合には、A
l等の強脱酸元素の使用が前提になるが、AlNの微細
析出防止策を施す必要がある。例えば特開昭54−16
3720号公報に記載されているように、Al脱酸にお
いてBを添加することにより、NをBNとして固定しA
lNの微細析出を抑制する方法があるが、BN自体が磁
性劣化の原因となる場合が懸念される。また、Al脱酸
においては、群落状のAl2 3 が生成し鉄損を劣化さ
せる原因となる。
[0004] Of the above, the former corresponds to the thorough desulfurization in the secondary refining process from the hot metal pretreatment, but inevitably causes a significant increase in the cost of smelting. When desulfurization is performed in the secondary refining process, A
The use of a strong deoxidizing element such as 1 is premised, but it is necessary to take measures to prevent fine precipitation of AlN. For example, JP-A-54-16
As described in Japanese Patent No. 3720, by adding B in Al deoxidation, N is fixed as BN and A
Although there is a method of suppressing fine precipitation of 1N, there is a concern that BN itself may cause magnetic deterioration. In addition, in Al deoxidation, cluster-like Al 2 O 3 is generated, which causes iron loss to deteriorate.

【0005】一方、特開平3−104844号公報に記
載されているように、直径0.5〜5μmの大きさの酸
化物を、1cm2 当り1000〜50000個存在させる
ことにより、熱間圧延以前に酸化物周囲にMnSを粗大
に析出させる方法があるが、本方法のみでは、脱酸方法
や鋼塊組成を種々変化された場合には充分な効果は得ら
れない。特に、Si濃度が0.6%よりも高い場合に
は、この方法のみでは充分な効果が得られていない。こ
のようにSi濃度が高い場合には、1次脱酸力が強くな
るために、低Si濃度では多量に晶出していた微細な2
次脱酸生成物が少なくなるため、個々の酸化物の組成を
制御することが極めて重要になる。つまり、酸化物の数
のみではなく、MnSが析出しやすい酸化物に、その組
成を制御する必要がある。
On the other hand, as described in Japanese Patent Application Laid-Open No. 3-104844, 1000 to 50,000 oxides having a diameter of 0.5 to 5 μm per 1 cm 2 are provided, so that oxides before hot rolling can be obtained. There is a method of coarsely depositing MnS around the oxide, but this method alone cannot provide a sufficient effect when the deoxidation method or the composition of the steel ingot is variously changed. In particular, when the Si concentration is higher than 0.6%, a sufficient effect cannot be obtained by this method alone. When the Si concentration is high as described above, the primary deoxidizing power becomes strong.
Controlling the composition of the individual oxides is extremely important because the amount of secondary deoxidation products is reduced. That is, it is necessary to control not only the number of oxides but also the composition of the oxide on which MnS is easily precipitated.

【0006】また、Siで脱酸する方法において、特開
平1−152239号公報の如く、成品中のSiO2
MnO,Al2 3 の3種の介在物の総重量に対するM
nOの重量の割合が15%以下であり、かつ、SiO2
の重量の割合を75%以上にすることで、展延性に富ん
だ低融点酸化物の生成を防止する方法が開示されてい
る。しかし、Si濃度が0.6%よりも高い場合には、
前述の如く2次脱酸生成物量が少なくなるため、酸化物
をMnSの析出しやすい組成に制御する必要がある。し
かし、MnOの重量の割合が15%以下の酸化物はMn
Sが析出しにくいため、この方法では充分な効果が得ら
れていない。
In the method of deoxidizing with Si, as disclosed in Japanese Patent Application Laid-Open No. 1-152239, SiO 2 ,
M based on the total weight of the three types of inclusions, MnO and Al 2 O 3
The weight ratio of nO is 15% or less, and SiO 2
Discloses a method for preventing the formation of a low-melting oxide with high spreadability by setting the weight ratio of the compound to 75% or more. However, when the Si concentration is higher than 0.6%,
As described above, since the amount of the secondary deoxidation product is reduced, it is necessary to control the oxide so that MnS is easily precipitated. However, oxides in which the proportion by weight of MnO is 15% or less are MnO.
Since S hardly precipitates, this method has not been able to obtain a sufficient effect.

【0007】ところで、材料とプロセス第4巻283ペ
ージに記載されている報告によれば、酸化物中のMnO
濃度が高いものにMnSは優先的に析出することが示さ
れている。しかし、このためには溶鋼中のSi濃度より
もMn濃度を非常に高くすることが必要なため、展延性
に富んだマンガンシリケートが生成し、MnSの析出は
促進されるものの、生成酸化物自体が粒成長を阻害する
という問題があった。
According to a report described in Material and Process, Vol. 4, page 283, MnO in oxides
It is shown that MnS precipitates preferentially at a high concentration. However, for this purpose, it is necessary to make the Mn concentration much higher than the Si concentration in the molten steel, so that manganese silicate with high ductility is produced and MnS precipitation is promoted, but the produced oxide itself is However, there is a problem that the grain growth is inhibited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、低硫化を実
施した際の、必然的な溶製コストの大幅な上昇や、Al
等の強脱酸元素を使用した場合のAlNの微細析出とい
う問題点、及び、特開昭54−163720号公報に記
載された方法におけるBNによる磁性劣化という問題点
を解決するとともに、特開平3−104844号公報や
特開平1−152239号公報に記載されている方法で
は、脱酸方法や鋼塊組成を種々変化された場合には充分
な効果は得られなかったという問題点を解決し、効率的
な磁気特性に優れた無方向性電磁鋼板の溶製方法を提供
するものである。
DISCLOSURE OF THE INVENTION The present invention is intended to reduce the cost of smelting when low sulfurization is carried out,
In addition to solving the problem of fine precipitation of AlN when using a strongly deoxidizing element such as the above, and the problem of magnetic deterioration due to BN in the method described in JP-A-54-163720, In the methods described in JP-A-104844 and JP-A-1-152239, it was possible to solve the problem that a sufficient effect was not obtained when the deoxidation method and the composition of the steel ingot were variously changed. An object of the present invention is to provide a method for melting a non-oriented electrical steel sheet having excellent magnetic properties.

【0009】[0009]

【課題を解決するための手段】本発明は、重量比で、C
が0.01%以下、Mnが0.1%以上2.0%以下、
Siが0.6%以上2.0%以下、Alが0.010%
以下、Pが0.15%以下、Sが0.01%以下を含
み、鋼板の全酸化物における、(MnO)と(Si
2 )の重量%で表わした濃度比、(%MnO)/
(%Si02 )として0.15〜0.45である電磁鋼
板を溶製するにあたり、真空脱ガス炉によ脱炭処理
、溶解酸素濃度を200ppm 以上とした状態でMn
を先行して添加し、引続き、SiをMn/Siとして
0.2〜1.0の比になるように添加することを特徴と
する磁気特性に優れた無方向性電磁鋼板の溶製方法であ
る。
SUMMARY OF THE INVENTION The present invention relates to a method for producing C by weight.
Is 0.01% or less, Mn is 0.1% or more and 2.0% or less,
Si is 0.6% or more and 2.0% or less, Al is 0.010%
Hereinafter, P contains 0.15% or less and S contains 0.01% or less .
(MnO) and (Si) in the total oxides of the steel sheet.
0 2) concentration ratios expressed in percent by weight of, (% MnO) /
(% Si0 2) as an electromagnetic steel is 0.15 to 0.45
Upon the melting plate, decarburization that by the vacuum degassing furnace
Then , with the dissolved oxygen concentration being 200 ppm or more , Mn
Was added prior to, and characterized by adding pull-out continues, the Si so that the ratio of 0.2 to 1.0 as Mn / Si
This is a method for melting non-oriented electrical steel sheets having excellent magnetic properties .

【0010】[0010]

【作用】本発明は、酸化物中のMnO濃度を高くするに
は、脱酸前の酸素濃度と、脱酸剤の添加順番を適正にす
れば、脱酸剤としてのSi濃度とMn濃度との濃度バラ
ンスを、有害な展延性に富んだマンガンシリケートにな
るまで高くせずとも、MnSの析出を促進できるという
事実の発見に基づくものである。これは、これまでは1
次脱酸生成物、2次脱酸生成物を問わず、酸化物個数が
一定量以上であれば良いとされていたことや、Si濃度
よりもMn濃度を非常に高くしない限りMnSの析出に
有効なマンガンシリケートが生成しないという、これま
での知見とは大きく異なるものである。
According to the present invention, in order to increase the MnO concentration in the oxide, the oxygen concentration before deoxidation and the order of addition of the deoxidizing agent can be adjusted to the appropriate values for the Si concentration and the Mn concentration as the deoxidizing agent. Is based on the discovery that the precipitation of MnS can be promoted without increasing the concentration balance of manganese silicate to a detrimentally spreadable manganese silicate. This is 1
Regardless of the secondary deoxidation product and the secondary deoxidation product, it was considered that the number of oxides should be a certain amount or more, and MnS was deposited unless the Mn concentration was much higher than the Si concentration. This is a significant departure from previous findings that no effective manganese silicate is produced.

【0011】本発明を原理的に記述すると以下のように
なる。つまり、Mnを先行添加することにより生成する
FeO−MnO系の脱酸生成酸化物とSiが反応した場
合、FeO−MnO−SiO2 系酸化物へと変化してい
くものの、この還元反応(逆の見方をすればSiO2
生成反応)の駆動力は、溶鋼中のSiと平衡する、活量
が1のSiO2 と、酸化物中のSiO2 活量との活量差
である。したがって、酸化物中のSiO2 濃度が増加し
てSiO2 飽和となると酸化物中のSiO2 の活量も1
となるため反応の駆動力がなくなり、それ以上は還元反
応は進行しなくなる。このため、平衡的には完全に還元
されてSiO2 となることが計算からは推定される条件
であっても、Mn先行脱酸で生成したFeO−MnO系
の脱酸生成物を起点とする酸化物は、純粋なSiO2
はなく、FeO−MnO−SiO2 系酸化物としてMn
Oが残存することになる。しかし、この反応で生成する
SiO2 の量が少ない場合には溶解酸素濃度が充分には
低下しないため、他の場所で純粋なSiO2 が生成する
ことで脱酸が進行することになる。これは、Si添加前
にFeO−MnO系の脱酸生成物を多量に生成しておく
ことが重要であることを意味している。
The present invention is described in principle as follows. In other words, when Si reacts with the FeO-MnO-based deoxidized oxide generated by the prior addition of Mn, it changes into FeO-MnO-SiO 2 -based oxide, but this reduction reaction (reverse In view of the above, the driving force of the reaction for producing SiO 2 ) is the activity difference between SiO 2 having an activity of 1 and the activity of SiO 2 in the oxide, which is in equilibrium with Si in molten steel. Thus, activity of SiO 2 in the oxide and the SiO 2 concentration of the oxide is an SiO 2 saturation also increased 1
Therefore, there is no driving force for the reaction, and the reduction reaction does not proceed any further. For this reason, even if it is a condition presumed from calculation that equilibrium is completely reduced to SiO 2 , the starting point is the FeO—MnO-based deoxidation product generated by Mn predeoxidation. The oxide is not pure SiO 2 but Mn as FeO—MnO—SiO 2 based oxide.
O will remain. However, when the amount of SiO 2 generated by this reaction is small, the dissolved oxygen concentration does not sufficiently decrease, and deoxidation proceeds by generating pure SiO 2 elsewhere. This means that it is important to generate a large amount of FeO—MnO-based deoxidation products before adding Si.

【0012】この原理によれば、熱力学的には純粋なS
iO2 しか生成しない条件であっても、脱酸条件を厳密
に制御すればMnSの析出に効果的に作用するMnO含
有酸化物を生成することが可能となる。このような方法
により生成した、マンガンシリケートは酸化物中のMn
Oの濃度が低いため融点は高く、熱力学的平衡条件で生
成した、MnOが高く融点が低いため展延性に富んだマ
ンガンシリケートに比べると、酸化物自身の磁気特性に
対する悪影響は、ほとんど生じない。逆に、酸化物中の
元素の存在位置を調査すると、本原理に基づき生成した
MnO含有酸化物は、MnO濃度が低くとも、MnOの
濃化した相が酸化物外周部に存在しているため、MnS
の析出には極めて有利となっている。
According to this principle, thermodynamically pure S
Even under the condition that only iO 2 is generated, it is possible to generate a MnO-containing oxide that effectively acts on the precipitation of MnS by strictly controlling the deoxidation conditions. Manganese silicate produced by such a method is composed of Mn in the oxide.
The melting point is high due to the low concentration of O, and there is almost no adverse effect on the magnetic properties of the oxide itself as compared with manganese silicate, which is formed under thermodynamic equilibrium conditions and has a high melting point and a high melting point, and thus has high ductility . Conversely, when investigating the locations of the elements in the oxide, the MnO-containing oxide produced based on the present principle shows that even when the MnO concentration is low, a phase in which MnO is concentrated exists at the outer peripheral portion of the oxide. , MnS
This is extremely advantageous for the precipitation of.

【0013】本発明者による詳細な実験によれば、この
原理に立脚してMnOが残存した酸化物を多数生成させ
るためには、以下の要件を満たす必要がある。真空脱
ガス炉による脱炭処理後、溶解酸素濃度を200ppm 以
上とした状態でMnを先行して添加すること。引続
き、SiをMn/Siとして0.2〜1.0の比になる
ように添加すること。Alを0.010重量%以下と
すること。
According to a detailed experiment by the present inventors, the following requirements must be satisfied in order to form a large number of oxides with MnO remaining based on this principle. After the decarburization treatment in a vacuum degassing furnace, Mn is added in advance with the dissolved oxygen concentration kept at 200 ppm or more. Subsequently, Si should be added in a ratio of 0.2 to 1.0 as Mn / Si. Al content should be 0.010% by weight or less.

【0014】このうち、はSi添加前にMnO系酸化
物を多量に生成させるための条件であり、Mnを先行添
加する際の溶解酸素濃度が200ppm よりも少ない場合
には、Mn添加後に生成するFeO−MnO系酸化物の
数が少なくなるため、Si添加後には、純粋なSiO2
が多量に生成しMnSの析出に有効に働くMnOを含有
する酸化物の量が不足する。溶解酸素が高い場合には、
MnO系酸化物の生成条件としては有利となるが、必要
以上に生成することで溶鋼の清浄性が低下する問題を生
じせしめないためには、900ppm 以下とすることが好
ましい。また、はSiと反応した後に生成する酸化物
の組成を適正に制御するための条件である。つまり、上
記反応機構で生成したFeO−MnO−SiO2 系酸化
物は、酸化物中のMnO濃度が、ある値以上に高くMn
Sの析出核として有効に作用するとともに、極端に低融
点化させないことで、磁性に対して有害な展延性に富ん
だマンガンシリケートにしないことが必要となる。Mn
/Siが0.2よりも小さい場合には、酸化物中のMn
O濃度が低いためMnSの析出に対して有効に作用せ
ず、逆に、1.0よりも大きくすると、生成酸化物中の
MnO濃度が高くなりすぎるため展延性が生じ、有害な
マンガンシリケートとなる。一方、の条件は、MnS
の析出核となるマンガンシリケートの組成を適正化する
ための条件である。つまり、Alが0.010%よりも
高い場合には、Mn添加後に生成していたFeO−Mn
O系酸化物が、最終的にマンガンシリケートにならず
に、マンガン濃度が極めて低い、アルミナシリケートに
なるため、MnSの析出核として有効に作用しなくな
る。
Among these conditions, conditions for generating a large amount of MnO-based oxides before the addition of Si, and when the concentration of dissolved oxygen at the time of prior addition of Mn is less than 200 ppm, formation of MnO-based oxides after addition of Mn. Since the number of FeO—MnO-based oxides is reduced, pure SiO 2
Is generated in a large amount, and the amount of the oxide containing MnO that effectively works for the precipitation of MnS is insufficient. If dissolved oxygen is high,
Although it is advantageous as a condition for forming the MnO-based oxide, the content is preferably 900 ppm or less in order to prevent a problem that the cleanliness of the molten steel is deteriorated by generating more than necessary. Is a condition for appropriately controlling the composition of the oxide generated after reacting with Si. That is, the FeO—MnO—SiO 2 -based oxide generated by the above reaction mechanism has a MnO concentration in the oxide higher than a certain value and a MnO
It is necessary to effectively act as a precipitation nucleus of S and not to make the manganese silicate rich in spreadability harmful to magnetism by not extremely lowering the melting point. Mn
/ Si is smaller than 0.2, Mn in the oxide
Since the O concentration is low, it does not effectively act on the precipitation of MnS. Conversely, if the O concentration is higher than 1.0 , the MnO concentration in the produced oxide becomes too high, causing ductility and causing harmful manganese silicate. Become. On the other hand, the condition of MnS
This is a condition for optimizing the composition of manganese silicate, which serves as a precipitation nucleus of manganese. That is, when Al is higher than 0.010%, FeO—Mn generated after Mn addition is added.
The O-based oxide does not eventually become manganese silicate, but becomes alumina silicate having a very low manganese concentration, and thus does not effectively act as MnS precipitation nuclei.

【0015】Siは鉄損を低下させるためには0.1%
以上含有させる必要があるが、0.6%より少ない範囲
であれば、1次脱酸力が弱く2次脱酸生成物が多量に晶
出するために、本発明を用いずとも良好な電磁特性が得
られる。また、2%より高くすると磁束密度が低下し、
圧延作業が劣化し、さらにコスト高となる。
Si is 0.1% to reduce iron loss
However, if the content is less than 0.6%, the primary deoxidizing power is weak, and a large amount of the secondary deoxidizing product is crystallized. Characteristics are obtained. If it is higher than 2%, the magnetic flux density decreases,
The rolling operation is deteriorated, and the cost is further increased.

【0016】以上のことからわかるように、本発明の最
も重要な点は、酸化物の組成をMnSが析出しやすい、
MnOが高いマンガンシリケートにする一方、MnO濃
度を必要以上に上げ、展延性に富んだ有害なマンガンシ
リケートにしないという点である。図1は鋼板の全酸化
物におけるMnOとSiO2 の濃度比と、鋳片でのMn
S晶出率との関係と、電磁鋼板での磁性焼鈍後の鉄損値
を示したものであるが、重量%で表わした濃度比(%M
nO/%SiO2 )が0.15よりも小さい場合には、
鋳片でのMnS晶出率が小さく鉄損が高く、逆に、0.
45よりも大きい場合にも、マンガンシリケートが展延
性を有し始めるため鉄損が高くなっている。ここで、全
酸化物組成は、例えば鋼板の一部を沃素アルコール溶液
で溶解し、抽出残渣を分析する方法で求められるもので
ある。またMnS晶出率は、化学分析によりMnSとし
て晶出している硫黄分をSasMnSとして抽出し、それ
と全硫黄濃度(TotalS)との比較として定義した({S
asMnS/Total S}×100)として定義した。%M
nO/%SiO2 が0.15よりも小さい場合に磁気特
性が悪いのは、MnSの析出に有効なMnO濃度が高い
マンガンシリケートの数が少なく、鋳片段階では効率的
なMnSの晶出が起こらないため、固溶した硫黄濃度分
が高く、熱延以降で微細なMnSが多量に析出し結晶粒
成長を阻害するためである。逆に、0.45よりも大き
い場合には、マンガンシリケート中のMnO濃度が高く
なりすぎるため、酸化物の融点が低下し展延性を有し始
めるため、鋼板で長く延びた酸化物が多量に存在し結晶
粒の粗大化を妨害するためである。
As can be seen from the above, the most important point of the present invention is that the composition of the oxide is such that MnS is easily precipitated.
On the other hand, while making MnO a high manganese silicate, the MnO concentration is increased more than necessary, and a harmful manganese silicate with high malleability is not formed. FIG. 1 shows the concentration ratio between MnO and SiO 2 in the total oxides of the steel sheet and the Mn in the slab.
It shows the relationship with the S crystallization rate and the iron loss value after magnetic annealing in an electrical steel sheet. The concentration ratio expressed in% by weight (% M
(nO /% SiO 2 ) is smaller than 0.15,
The crystallization ratio of MnS in the slab is small and the iron loss is high.
Even when it is larger than 45, the iron loss is high because the manganese silicate starts to have ductility. Here, the total oxide composition is determined by, for example, dissolving a part of the steel sheet with an iodine alcohol solution and analyzing the extraction residue. The MnS crystallization rate was defined as a comparison between the sulfur content crystallized as MnS by chemical analysis as SasMnS and the total sulfur concentration (TotalS) (ΔS
asMnS / Total S} × 100). % M
When nO /% SiO 2 is smaller than 0.15, the magnetic properties are poor because the number of manganese silicates having a high MnO concentration effective for MnS precipitation is small, and efficient crystallization of MnS at the slab stage. This is because the concentration of the dissolved sulfur is high because it does not occur, and a large amount of fine MnS precipitates after hot rolling and hinders crystal grain growth. On the other hand, when it is larger than 0.45, the MnO concentration in the manganese silicate becomes too high, so that the melting point of the oxide decreases and starts to have ductility. This is because they are present and hinder coarsening of crystal grains.

【0017】また、本発明による方法を用いれば、Si
が0.6%よりも少ない場合においても、特開平3−1
04844号公報に記載された方法により得られた製品
と、同等もしくは、それ以上の高い磁気特性を有する製
品を製造することができる。
Further, when the method according to the present invention is used, Si
Is less than 0.6%,
It is possible to manufacture a product having high magnetic properties equal to or higher than the product obtained by the method described in Japanese Patent No. 04844.

【0018】次に、本発明の他の鋼成分の限定理由につ
いて述べる。Cは鉄損を高める有害な成分で、磁気時効
の原因となるので0.01重量%以下とする。Mnは固
有抵抗を高めて鉄損を下げる効果があり、このために
は、0.1重量%以上含有させる必要がある。一方、そ
の含有量が増えると、フェライト/オーステナイト変態
温度が低下するため、焼鈍時の温度を十分に高くとるこ
とができず、比較的低温での長時間焼鈍が必要となり、
生産性が劣化するので2.0重量%以下とする。
Next, the reasons for limiting other steel components of the present invention will be described. C is a harmful component that increases iron loss and causes magnetic aging. Mn has the effect of increasing the specific resistance and reducing the iron loss. For this purpose, Mn must be contained in an amount of 0.1% by weight or more. On the other hand, when the content increases, the ferrite / austenite transformation temperature decreases, so that the temperature during annealing cannot be sufficiently increased, and long-time annealing at a relatively low temperature is required,
Since the productivity deteriorates, the content is set to 2.0% by weight or less.

【0019】Pは鋼の硬度を高め打ち抜き性を良くする
場合に必要な成分であるが、その含有量が0.15%を
超えると鋼が脆化し、圧延作業性、加工性が劣化するの
で0.15重量%以下とする。Sは鋳片段階でMnSと
して晶出させ、無害化するものであるが、前記のMn濃
度範囲である限り、本発明を用いてもSが0.01重量
%よりも多い場合には十分に無害化することは困難とな
るため、0.01重量%以下とする。
P is a component necessary for increasing the hardness of the steel and improving the punching property. However, if the content exceeds 0.15%, the steel becomes brittle and the rolling workability and workability deteriorate. 0.15% by weight or less. S is crystallized as MnS in the slab stage to render it harmless. However, as long as the Mn concentration is within the above-mentioned range, even when the present invention is used, when S is more than 0.01% by weight, it is not sufficient. Since it is difficult to make the particles harmless, the content is set to 0.01% by weight or less.

【0020】[0020]

【実施例】【Example】

(実施例1)実施例1は以下の工程で行われた。表1の
成分を含有する無方向性電磁鋼板を20kg規模の高周波
真空溶解炉を用いて製造し、その後、熱間圧延し、0.
50mm厚みに冷間圧延後、800℃で30秒間の仕上げ
焼鈍を行い、さらに、750℃×2時間の磁性焼鈍を行
った。
(Example 1) Example 1 was performed by the following steps. A non-oriented electrical steel sheet containing the components shown in Table 1 was manufactured using a high-frequency vacuum melting furnace of a 20 kg scale, and then hot-rolled.
After cold rolling to a thickness of 50 mm, finish annealing was performed at 800 ° C. for 30 seconds, and further magnetic annealing was performed at 750 ° C. × 2 hours.

【0021】その結果を表1に示す。これより、全酸化
物組成における%MnO/%SiO2 が0.15〜0.
45の範囲外にある、比較例鋼板e,f,gはいずれも
鉄損値が高く磁気特性に劣ることがわかる。
Table 1 shows the results. From this,% MnO /% SiO 2 in the total oxide composition from 0.15 to 0.
It can be seen that the comparative example steel sheets e, f, and g, which are outside the range of 45, have high iron loss values and are inferior in magnetic properties.

【0022】[0022]

【表1】 [Table 1]

【0023】(実施例2)実施例2は以下の工程で行わ
れた。表2の成分を含有する無方向性電磁鋼板を20kg
規模の高周波真空溶解炉を用いて製造し、その後、熱間
圧延し、0.50mm厚みに冷間圧延後、800℃で30
秒間の仕上げ焼鈍を行い、さらに、750℃×2時間の
磁性焼鈍を行った。ここで、真空溶解炉においては電解
鉄とともに酸化鉄を混合して溶解することで溶解酸素濃
度を制御した上で、まず、Mnを所定量投入し、次い
で、Siを所定量投入した。鋼塊の酸化物粒度分布状態
は光学顕微鏡で観察し、2.5μm以上の酸化物の単位
cm2 当りの個数で評価し、MnS析出状況は化学分析に
よりMnSとして晶出している硫黄分をSasMnSと
し、それと全硫黄濃度(TotalS)との比率として定義し
たMnS晶出率({(SasMnS)/(TotalS)}×1
00)を調査した。また製品板の結晶粒の観察、鉄損特
性の測定を行った。
Example 2 Example 2 was performed by the following steps. 20 kg of non-oriented electrical steel sheet containing the components shown in Table 2
It is manufactured using a high-frequency vacuum melting furnace of a scale, then hot-rolled, cold-rolled to a thickness of 0.50 mm, and then
Finish annealing was performed for 2 seconds, and then magnetic annealing was performed at 750 ° C. × 2 hours. Here, in the vacuum melting furnace, after controlling the dissolved oxygen concentration by mixing and dissolving iron oxide together with electrolytic iron, first, a predetermined amount of Mn was charged, and then a predetermined amount of Si was charged. Observe the oxide particle size distribution of the steel ingot with an optical microscope.
The MnS precipitation was evaluated by the number per cm 2 , and the MnS precipitation state was defined as the ratio of the sulfur content crystallized as MnS by chemical analysis as SasMnS and the total sulfur concentration (TotalS) (Mn (SasMnS) / (TotalS)} × 1
00) was investigated. In addition, observation of crystal grains of the product plate and measurement of iron loss characteristics were performed.

【0024】[0024]

【表2】 [Table 2]

【0025】[0025]

【表3】 [Table 3]

【0026】調査結果を表3に示す。これより、Mn/
Siが0.2よりも小さいHや、Al濃度が0.010
%以上のJ、Mn添加前の溶解酸素濃度が200ppm 以
下のKは、MnS晶出率が低く電磁特性が悪い。また、
Mn/Siが1.0よりも大きいIは、MnS晶出率は
大きいものの、展延性がある酸化物が出現するため、電
磁特性は悪化している。さらに、本発明の実施例である
Aと同一成分であっても、脱酸順序をSi先行脱酸にし
たLは、酸化物中のMnO濃度比が低いためMnS晶出
率が低く電磁特性が悪い。
Table 3 shows the results of the investigation. From this, Mn /
H having an Si content of less than 0.2 or an Al concentration of 0.010
% Of J and K having a dissolved oxygen concentration of 200 ppm or less before the addition of Mn have a low MnS crystallization ratio and poor electromagnetic characteristics. Also,
I having Mn / Si greater than 1.0 has a large MnS crystallization rate, but an extensible oxide appears, so that the electromagnetic characteristics are deteriorated. Further, even when the same component as A in the embodiment of the present invention is used, L in which the deoxidation order is Si predeoxidation has a low MnS crystallization ratio due to a low MnO concentration ratio in the oxide, resulting in low electromagnetic characteristics. bad.

【0027】(実施例3)実施例3は以下の工程で行わ
れた。まず無方向性電磁鋼板用溶鋼約350ton を転炉
で溶製後、DHで真空脱ガスした。脱ガス後、Mn,S
iを添加し脱酸した、最終的に表4に示す組成に制御し
た後、連続鋳造機で鋳造した。その後、熱間圧延し、
0.50mm厚みに冷間圧延後、800℃で30秒間の仕
上げ焼鈍を行い、さらに、750℃×2時間の磁性焼鈍
を行った。結果を表5に示すが、実施例1,2と全く同
様な結果が、実機工程でも得られた。
Example 3 Example 3 was performed by the following steps. First, about 350 tons of molten steel for non-oriented electrical steel sheets was melted in a converter, and then vacuum degassed with DH. After degassing, Mn, S
i was added and deoxidized. Finally, the composition was controlled to the composition shown in Table 4, and then cast using a continuous casting machine. After that, hot rolling,
After cold rolling to a thickness of 0.50 mm, finish annealing was performed at 800 ° C. for 30 seconds, and magnetic annealing was performed at 750 ° C. × 2 hours. The results are shown in Table 5, and the same results as in Examples 1 and 2 were obtained in the actual process.

【0028】[0028]

【表4】 [Table 4]

【0029】[0029]

【表5】 [Table 5]

【0030】[0030]

【発明の効果】本発明を用いることにより、いかなるS
i濃度の無方向性電磁鋼板においても、酸化物を用いて
鉄損特性に有害な微細なMnSを無害化させることを特
徴とする磁気特性に優れた無方向性電磁鋼板の溶製が可
能となった。
According to the present invention, any S
Even in a non-oriented electrical steel sheet having an i-concentration, it is possible to produce a non-oriented electrical steel sheet excellent in magnetic properties characterized by detoxifying fine MnS harmful to iron loss properties using an oxide. became.

【図面の簡単な説明】[Brief description of the drawings]

【図1】鋼板の全酸化物におけるMnOとSiO2 の濃
度比と、鋳片でのMnS晶出率との関係、及び、電磁鋼
板での磁性焼鈍後の鉄損値の関係である。
FIG. 1 shows a relationship between a concentration ratio of MnO and SiO 2 in all oxides of a steel sheet, a crystallization ratio of MnS in a slab, and a relationship between an iron loss value of a magnetic steel sheet after magnetic annealing.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21C 7/00 C22C 38/00 C22C 38/06 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 7 , DB name) C21C 7/00 C22C 38/00 C22C 38/06

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量比で C :0.01%以下、 Mn:0.1〜2.0%、 Si:0.6〜2.0%、 Al:0.010%以下、 P :0.15%以下、 S :0.01%以下 を含み、鋼板の全酸化物における、MnOとSi02
重量%で表した濃度比が%MnO/%Si02 として
0.15〜0.45である電磁鋼板を溶製するにあた
り、真空脱ガス炉による脱炭処理後、溶解酸素濃度を2
00ppm 以上とした状態で、Mnを先行して添加し、引
き続き、SiをMn/Siとして0.2〜1.0の比に
なるように添加することを特徴とする磁気特性に優れた
無方向性電磁鋼板の溶製方法。
1. C: 0.01% or less, Mn: 0.1 to 2.0%, Si: 0.6 to 2.0%, Al: 0.010% or less, P: 0. 15% or less, S: see contains 0.01% or less, in the total oxides of the steel sheet, as MnO and Si0 concentration ratio expressed 2 in weight percent,% MnO /% Si0 2 0.15 to 0.45 To melt electrical steel sheets
After the decarburization treatment in a vacuum degassing furnace, the dissolved oxygen
Mn is added in advance in a state of not less than 00 ppm,
Subsequently, Si is converted to a ratio of 0.2 to 1.0 as Mn / Si.
Excellent magnetic properties characterized by being added as
A method for melting non-oriented electrical steel sheets.
JP22970292A 1992-08-28 1992-08-28 Melting method of non-oriented electrical steel sheet with excellent magnetic properties Expired - Fee Related JP3247154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22970292A JP3247154B2 (en) 1992-08-28 1992-08-28 Melting method of non-oriented electrical steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22970292A JP3247154B2 (en) 1992-08-28 1992-08-28 Melting method of non-oriented electrical steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH0673510A JPH0673510A (en) 1994-03-15
JP3247154B2 true JP3247154B2 (en) 2002-01-15

Family

ID=16896364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22970292A Expired - Fee Related JP3247154B2 (en) 1992-08-28 1992-08-28 Melting method of non-oriented electrical steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP3247154B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1112699A (en) * 1997-06-20 1999-01-19 Sumitomo Metal Ind Ltd Non-oriented electrical sheet having excellent magnetic characteristic and its manufacture

Also Published As

Publication number Publication date
JPH0673510A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
CN114540711B (en) High-grade non-oriented electrical steel and preparation method thereof
JP3436857B2 (en) Thin steel sheet excellent in press formability with few defects and method for producing the same
JP2015532684A (en) Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
KR20060065492A (en) Highly ductile steel sheet and method of manufacturing the same
JP3247154B2 (en) Melting method of non-oriented electrical steel sheet with excellent magnetic properties
JP4510787B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP2007177303A (en) Steel having excellent ductility and its production method
JPH10183295A (en) Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production
JPH1088298A (en) Nonoriented silicon steel sheet
JP4593313B2 (en) Fe-Ni-based magnetic alloy plate excellent in hot workability and manufacturing method thereof
JPH07122090B2 (en) Method of melting directional silicon steel material
JP3105525B2 (en) Melting method of silicon steel material
JP4107801B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP4218136B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JPH08269532A (en) Method of refining steel for nonoriented silicon steel sheet
KR102528345B1 (en) Manufacturing method of non-oriented electrical steel sheet and slab cast steel as its material
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP7413600B1 (en) Fe-Ni alloy plate and its manufacturing method
JP5215327B2 (en) Method for producing Fe-Ni-based permalloy alloy having excellent magnetic properties
JP7047818B2 (en) Refining method of molten steel
JP3179530B2 (en) Melting method of extremely low Ti steel
JP2000273525A (en) Production of high cleanliness steel
JPH10212555A (en) Nonoriented silicon steel sheet excellent in magnetic property and its production
JP3548314B2 (en) Steel sheet for cans with few defects and excellent aging and method for producing the same
JP2001348652A (en) Nonoriented silicon steel sheet and its production method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010925

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees