JP2015532684A - Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability - Google Patents

Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability Download PDF

Info

Publication number
JP2015532684A
JP2015532684A JP2015529983A JP2015529983A JP2015532684A JP 2015532684 A JP2015532684 A JP 2015532684A JP 2015529983 A JP2015529983 A JP 2015529983A JP 2015529983 A JP2015529983 A JP 2015529983A JP 2015532684 A JP2015532684 A JP 2015532684A
Authority
JP
Japan
Prior art keywords
ferritic stainless
stainless steel
steel
less
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015529983A
Other languages
Japanese (ja)
Other versions
JP6194956B2 (en
Inventor
栄三 吉竹
栄三 吉竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2015532684A publication Critical patent/JP2015532684A/en
Application granted granted Critical
Publication of JP6194956B2 publication Critical patent/JP6194956B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing

Abstract

耐酸化性、高温強度、及び加工性が良好であり、鋳造等軸粒組織に由来する室温加工性を得るためにTiを添加した低Al含有量のフェライト系ステンレス鋼を製造する。高温強度を付与するためにニオブ及び銅を添加する。耐酸化性を付与するためにシリコン及びマンガンを添加する。本フェライト系ステンレス鋼は、18Cr-2Mo及び15Cr-Nb-Ti-Si-Mnのフェライト系ステンレス鋼よりも優れた耐酸化性を実現する。また、本フェライト系ステンレス鋼は一般に、18Cr-2Moよりも製造コストが安価である。【選択図】なしProduces ferritic stainless steel with low Al content to which Ti is added in order to obtain room temperature workability derived from a cast grain structure such as casting, which has good oxidation resistance, high temperature strength, and workability. Niobium and copper are added to provide high temperature strength. Silicon and manganese are added to provide oxidation resistance. This ferritic stainless steel achieves better oxidation resistance than 18Cr-2Mo and 15Cr-Nb-Ti-Si-Mn ferritic stainless steels. In addition, this ferritic stainless steel is generally less expensive to manufacture than 18Cr-2Mo. [Selection figure] None

Description

(発明者)
吉竹栄三
(関連出願の相互参照)
本願は、2012年8月31日に出願された米国仮特許出願第61/695,771号(「Ferritic Stainless Steels with Excellent Oxidation Resistance with Good High Temperature Strength and Good Formability」)及び2013年3月15日に出願された米国特許出願第13/837,500号(「Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability」)の優先権を主張する。米国仮特許出願第61/695,771号及び米国特許出願第13/837,500号の開示内容は、それぞれ参照により本明細書に援用するものとする。
(Inventor)
Eizo Yoshitake (Cross-reference of related applications)
No. 61 / 695,771 (“Ferritic Stainless Steels with Excellent Oxidation Resistance with Good High Temperature Strength and Good Formability”) filed on August 31, 2012, and March 15, 2013 US patent application Ser. No. 13 / 837,500 (“Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability”). The disclosures of US Provisional Patent Application No. 61 / 695,771 and US Patent Application No. 13 / 837,500 are each incorporated herein by reference.

耐酸化性、高温強度、及び良好な加工性を有するフェライト系ステンレス鋼を製造することが望まれている。ニオブ及び銅は高温強度を付与するために所定量添加され、シリコン及びマンガンは耐酸化性を付与するために所定量添加される。本フェライト系ステンレス鋼は、18Cr-2Moや15Cr-Nb-Ti-Si-Mnのような既知のステンレス鋼よりも優れた耐酸化性を実現する。また、本フェライト系ステンレス鋼は、18Cr-2Mo鋼のような他のステンレス鋼よりも製造が安価であり、熱延板焼鈍工程なしに製造することができる。   It is desired to produce a ferritic stainless steel having oxidation resistance, high temperature strength, and good workability. Niobium and copper are added in a predetermined amount for imparting high-temperature strength, and silicon and manganese are added in a predetermined amount for imparting oxidation resistance. This ferritic stainless steel achieves better oxidation resistance than known stainless steels such as 18Cr-2Mo and 15Cr-Nb-Ti-Si-Mn. The ferritic stainless steel is less expensive to manufacture than other stainless steels such as 18Cr-2Mo steel, and can be manufactured without a hot-rolled sheet annealing step.

米国特許第6,855,213号明細書U.S. Patent No. 6,855,213 米国特許第5,868,875号明細書U.S. Pat.No. 5,868,875 米国特許第4,964,926号明細書U.S. Pat.No. 4,964,926

本フェライト系ステンレス鋼は、特許文献1及び特許文献2(それぞれの開示内容全体を参照により本明細書に援用する。)に開示されるような鋳造等軸粒組織によって室温での加工性を得るために、チタンが添加され、低アルミニウム濃度で製造される。本フェライト系ステンレス鋼には、高温強度を付与するためにニオブ及び銅が添加され、耐酸化性を向上させるためにシリコン及びマンガンが添加される。   This ferritic stainless steel obtains processability at room temperature by a cast equiaxed grain structure as disclosed in Patent Document 1 and Patent Document 2 (the entire disclosures of each are incorporated herein by reference). For this reason, titanium is added and the aluminum is manufactured at a low aluminum concentration. Niobium and copper are added to the ferritic stainless steel to impart high temperature strength, and silicon and manganese are added to improve oxidation resistance.

本フェライト系ステンレス鋼は、特許文献1及び特許文献2に記載の方法等、フェライト系ステンレス鋼の製造で使用する当業界で知られる製造条件で製造される。本フェライト系ステンレス鋼には、高温強度を付与するためにニオブ及び銅が添加され、耐酸化性を向上させるためにシリコン及びマンガンが添加される。本フェライト系ステンレス鋼は、微細な等軸粒で構成される鋳造組織を有する材料から製造することができる。   This ferritic stainless steel is manufactured under manufacturing conditions known in the art used in the manufacture of ferritic stainless steel, such as the methods described in Patent Document 1 and Patent Document 2. Niobium and copper are added to the ferritic stainless steel to impart high temperature strength, and silicon and manganese are added to improve oxidation resistance. This ferritic stainless steel can be manufactured from a material having a cast structure composed of fine equiaxed grains.

本フェライト系ステンレス鋼のための鉄溶湯は電気アーク炉等の溶融炉において提供される。この鉄溶湯は、固体鉄含有スクラップ、炭素鋼スクラップ、ステンレス鋼スクラップ、並びに酸化鉄、炭化鉄、直接還元鉄、及びホットブリケット鉄を含めた諸種の固体鉄含有材料から溶融炉において形成することも、高炉又は鉄溶湯を提供することが可能な他の任意の鉄製錬ユニットにおける溶融炉の上流で生成することも可能である。次いで、鉄溶湯は溶融炉で精錬され、又はアルゴン‐酸素脱炭容器や真空‐酸素脱炭容器等の精錬容器に移された後、取鍋冶金炉やワイヤフィードステーション等のトリムステーションに送られる。   The molten iron for the ferritic stainless steel is provided in a melting furnace such as an electric arc furnace. This molten iron can also be formed in a melting furnace from various solid iron containing materials including solid iron containing scrap, carbon steel scrap, stainless steel scrap, and iron oxide, iron carbide, direct reduced iron and hot briquette iron. It can also be produced upstream of the melting furnace in a blast furnace or any other iron smelting unit capable of providing molten iron. Next, the molten iron is refined in a melting furnace or transferred to a refining vessel such as an argon-oxygen decarburization vessel or vacuum-oxygen decarburization vessel, and then sent to a trim station such as a ladle metallurgical furnace or a wire feed station. .

いくつかの実施形態において、焼鈍板のリジング特性及び加工性が向上するように、鋼は、鋳造等軸粒組織を形成するのに必要な核を提供する微細なチタン酸化物介在物を形成するのに十分な量のチタン及び窒素と、制御された量のアルミニウムとを含有する溶湯から鋳造される。   In some embodiments, the steel forms fine titanium oxide inclusions that provide the nuclei necessary to form a cast equiaxed grain structure so that the ridging properties and workability of the annealed plate are improved. Cast from a melt containing a sufficient amount of titanium and nitrogen and a controlled amount of aluminum.

いくつかの実施形態では、鋳造に先立って、脱酸のために溶湯にチタンが添加される。溶湯をチタンで脱酸すると、鋳造等軸微細結晶粒組織の核となる微細なチタン酸化物介在物が形成される。アルミナ介在物、すなわち酸化アルミニウム(Al2O3)の形成を最小限に抑えるために、精錬後の溶湯には、実施形態に応じて、アルミニウムを脱酸剤として添加しないことも、少量だけ添加することもある。いくつかの実施形態では、鋳造前の溶湯中にチタン及び窒素が存在してもよい。その場合は、チタンと窒素の積を残留アルミニウムで割った比が少なくとも約0.14となるようにする。 In some embodiments, titanium is added to the melt for deoxidation prior to casting. When the molten metal is deoxidized with titanium, fine titanium oxide inclusions that form the core of the cast equiaxed fine grain structure are formed. Depending on the embodiment, in order to minimize the formation of alumina inclusions, that is, aluminum oxide (Al 2 O 3 ), aluminum may not be added as a deoxidizer depending on the embodiment. Sometimes. In some embodiments, titanium and nitrogen may be present in the melt before casting. In that case, the ratio of the product of titanium and nitrogen divided by residual aluminum should be at least about 0.14.

鋼を安定化させる場合、チタンの添加量は、溶湯中の炭素及び窒素と結合させるため、脱酸に必要な量を上回る十分な量としてよいが、窒素と飽和する量を下回ること、すなわち平衡未満量とすることが好ましい。これにより、大きい窒化チタン介在物が析出して凝固するのを回避すること又は少なくとも最小限に抑えることが可能となる。「平衡未満(sub-equilibrium)」となるチタンの最大量については、特許文献3の図4を参照されたい。当該米国特許の開示内容は、参照により本明細書に援用するものとする。いくつかの実施形態では、ニオブ、ジルコニウム、タンタル、バナジウム等の一種又は複数の安定化元素を溶湯に添加してもよい。   When the steel is stabilized, the amount of titanium added is sufficient to exceed the amount required for deoxidation in order to combine with the carbon and nitrogen in the molten metal. It is preferable to make it less than the amount. This makes it possible to avoid or at least minimize the large titanium nitride inclusions from precipitating and solidifying. See FIG. 4 of Patent Document 3 for the maximum amount of titanium that is “sub-equilibrium”. The disclosure of that US patent is incorporated herein by reference. In some embodiments, one or more stabilizing elements such as niobium, zirconium, tantalum, vanadium may be added to the melt.

鋳鋼を熱間処理して鋼板とする。本明細書で「鋼板(sheet)」とは、連続鋼帯又は連続鋼帯の切断長さ部分を含むことを意味し、「熱間処理(hot processed)」とは、鋳鋼を必要に応じて再加熱してから熱間圧延等によって所定の板厚に圧下することを指す。熱間圧延をする場合は、鋼スラブを2000〜2350 °F(約1093〜約1288℃)まで再加熱し、1500〜1800 °F(約816〜約982℃)の仕上げ温度で熱間圧延し、1000〜1400 °F(約538〜760℃)の温度でコイル状に巻き取る。熱間圧延鋼板は「熱延板」としても知られる。いくつかの実施形態では、熱延板を1700〜2100 °F(約926〜約1149℃)の最高到達板温で焼鈍してもよい。他の実施形態では、鋼板の熱延板焼鈍工程を行わない。いくつかの実施形態では、熱延板のスケール除去を行い、少なくとも40%の冷間圧下率で所望の最終板厚とすることができる。他の実施形態では、熱延板のスケール除去を行い、少なくとも50%の冷間圧下率で所望の最終板厚とすることができる。その後、冷間圧下した鋼板を1800〜2100 °F(約982〜約1149℃)の最高到達板温で仕上げ焼鈍してもよい。   Cast steel is hot-treated to form a steel plate. As used herein, “steel sheet” means including a continuous steel strip or a cut length portion of the continuous steel strip, and “hot processed” refers to cast steel as required. It refers to reduction to a predetermined plate thickness by hot rolling after reheating. When hot rolling, the steel slab is reheated to 2000-2350 ° F (about 1093 to about 1288 ° C) and hot rolled at a finishing temperature of 1500-1800 ° F (about 816 to about 982 ° C). And coiled at a temperature of 1000-1400 ° F (about 538-760 ° C). Hot rolled steel sheets are also known as “hot rolled sheets”. In some embodiments, the hot rolled plate may be annealed at a maximum plate temperature of 1700-2100 ° F. (about 926 to about 1149 ° C.). In other embodiments, the hot-rolled sheet annealing process of the steel sheet is not performed. In some embodiments, hot rolled sheets can be descaled to a desired final sheet thickness with a cold reduction of at least 40%. In other embodiments, the hot rolled sheet can be descaled to a desired final sheet thickness with a cold reduction of at least 50%. Thereafter, the cold-rolled steel sheet may be finish-annealed at a maximum reached sheet temperature of 1800 to 2100 ° F. (about 982 to about 1149 ° C.).

本フェライト系ステンレス鋼は、いくつかの方法によって製造した熱間処理鋼板から製造することができる。鋼板は、インゴットから形成されるスラブ、若しくは厚さ50〜200 mmの連続鋳造スラブから製造することが出来る。これらを2000〜2350 °F(約1093〜約1288℃)に再加熱後、熱間圧延を施して厚さ1〜7 mmの出発材料となる熱間処理鋼板とする。あるいは、鋼板は、2〜52 mmの厚さに連続鋳造された鋼帯から熱間処理することで製造することもできる。本処理は、連続鋳造スラブ若しくはインゴットから製造されたスラブを大幅な再加熱を経て若しくは経ずに熱間圧延機に直接供給する方法によって製造された鋼板に対して、又は更なる再加熱を伴う若しくは伴わない熱間圧延を施して鋼板とするのに十分な温度のスラブに熱間圧下されたインゴットに対して適用可能である。   This ferritic stainless steel can be manufactured from a hot-treated steel sheet manufactured by several methods. The steel plate can be manufactured from a slab formed from an ingot or a continuous cast slab having a thickness of 50 to 200 mm. These are reheated to 2000 to 2350 ° F. (about 1093 to about 1288 ° C.) and hot-rolled to obtain a hot-treated steel sheet as a starting material having a thickness of 1 to 7 mm. Or a steel plate can also be manufactured by carrying out the hot process from the steel strip continuously cast by the thickness of 2-52 mm. This treatment involves steel sheets produced by a method of feeding a continuous cast slab or slab produced from an ingot directly to a hot rolling mill with or without significant reheating, or with further reheating. Alternatively, the present invention can be applied to an ingot that has been hot-rolled to a slab having a temperature sufficient to perform hot rolling without accompanying the steel sheet.

チタンは、本フェライト系ステンレス鋼の溶湯に対する鋳造前の脱酸に使用される。溶湯中のチタンの量は0.30%以下であってよい。特に明記しない限り、「%」と記載した濃度は全て重量パーセントである。いくつかの実施形態において、チタンは平衡未満量で存在させることができる。本明細書で「平衡未満」とは、形成されるチタン化合物の溶解度積が鋼の液相線温度における飽和水準を下回り、それにより溶湯中における窒化チタンの過剰な析出が回避されるようにチタンの量を制御することを指す。過剰な窒素は、アルゴン酸素脱炭容器内のフェライト系ステンレス鋼の溶湯を精錬する製造業者にとっては問題とならない。アルゴン酸素脱炭容器内のステンレス鋼を精錬する場合は、窒素を実質的に0.010%未満とすることができ、それによりチタン量の増加を許容しながら依然として平衡未満状態を保つことができる。   Titanium is used for deoxidation before casting of the molten ferritic stainless steel. The amount of titanium in the molten metal may be 0.30% or less. Unless otherwise stated, all concentrations stated as “%” are percent by weight. In some embodiments, titanium can be present in sub-equilibrium amounts. As used herein, “less than equilibrium” means that the solubility product of the titanium compound formed is below the saturation level at the liquidus temperature of the steel, thereby avoiding excessive precipitation of titanium nitride in the melt. Refers to controlling the amount of. Excess nitrogen is not a problem for manufacturers refining the ferritic stainless steel melt in an argon oxygen decarburization vessel. When refining stainless steel in an argon oxygen decarburization vessel, the nitrogen can be substantially less than 0.010%, thereby still maintaining a state below equilibrium while allowing an increase in the amount of titanium.

鋳造等軸フェライト粒を形成するのに必要な核形成サイトを提供するために、溶湯へのチタン添加後、溶湯の鋳造前に十分な経過時間を確保して、チタン酸化物介在物が形成されるようにする。チタン添加直後に溶湯の鋳造を行う場合は、鋳造組織により大型の柱状粒子が含まれる可能性がある。経過時間は当業者なら過度の実験なしに決定できるはずである。実験室で、溶湯にチタンを添加した後、5分間未満で鋳造したインゴットは、チタンと窒素の積を残留アルミニウムで割った値が少なくとも0.14である場合でも大型の鋳造柱状粒を含んでいた。   In order to provide the nucleation sites necessary to form cast equiaxed ferrite grains, titanium oxide inclusions are formed after sufficient addition of titanium to the melt and before casting the melt. So that When casting the molten metal immediately after the addition of titanium, there is a possibility that large columnar particles are included depending on the cast structure. The elapsed time should be determinable by one skilled in the art without undue experimentation. Ingots cast in less than 5 minutes after adding titanium to the melt in the laboratory contained large cast columnar grains even when the product of titanium and nitrogen divided by residual aluminum was at least 0.14.

鋳造前の鋼中には、チタンと窒素の積をアルミニウムで割った比が少なくとも約0.14となるように、十分な窒素を存在させる必要がある。いくつかの実施形態において、溶湯中に存在する窒素の量は0.020%以下である。   Sufficient nitrogen must be present in the steel before casting so that the ratio of the product of titanium and nitrogen divided by aluminum is at least about 0.14. In some embodiments, the amount of nitrogen present in the melt is 0.020% or less.

電気アーク炉での溶融後の窒素濃度が0.05%と高い場合も、固溶N量は、アルゴン酸素脱炭容器内におけるアルゴンガス精錬中に0.02%未満に低減することができる。所与の任意の窒素含有量に対して溶湯に添加されるTi量を平衡量未満に低減することにより、TiNの過度の析出を回避することができる。別法として、溶湯中の窒素の量は、溶湯中のチタンの予想含有量に応じてアルゴン酸素脱炭容器内で低減することができる。   Even when the nitrogen concentration after melting in an electric arc furnace is as high as 0.05%, the amount of solute N can be reduced to less than 0.02% during argon gas refining in an argon oxygen decarburization vessel. By reducing the amount of Ti added to the melt to less than the equilibrium amount for a given arbitrary nitrogen content, excessive precipitation of TiN can be avoided. Alternatively, the amount of nitrogen in the melt can be reduced in an argon oxygen decarburization vessel depending on the expected content of titanium in the melt.

全残留アルミニウムは、チタン及び窒素の量に関連して制御、又は最小限に抑えることができる。残留アルミニウム量に関連して、最低限量のチタン及び窒素は溶湯中に存在しなければならない。チタンと窒素の積を残留アルミニウムで割った比は、実施形態に応じて少なくとも約0.14としてもよいし、少なくとも0.23としてもよい。溶湯中に必要なチタン及び窒素の量を最小限に抑えるために、いくつかの実施形態ではアルミニウムの量を0.020%未満とする。アルミニウムの量は、他の実施形態では0.013%以下とし、また他の実施形態では0.010%以下に抑える。鋳造直前の脱酸等の目的で、精錬中又は鋳造中にアルミニウムを意図的に溶湯と合金化する場合は、全アルミニウムを制御、又は0.020%未満に抑えることができる。ただし、アルミニウムは、例えばチタンのような別の元素の合金添加物に含まれる不純物として、溶湯に意図せず混入する可能性もあることに留意されたい。チタン合金は20%ものAlを含有し、これが溶湯の全Alに寄与し得る。精製及び鋳造手法を注意深く制御することにより、アルミニウム含量0.020%未満の溶湯を得ることが可能となる。   Total residual aluminum can be controlled or minimized in relation to the amount of titanium and nitrogen. In relation to the amount of residual aluminum, a minimum amount of titanium and nitrogen must be present in the melt. The ratio of the product of titanium and nitrogen divided by residual aluminum may be at least about 0.14 or at least 0.23, depending on the embodiment. In order to minimize the amount of titanium and nitrogen required in the melt, in some embodiments the amount of aluminum is less than 0.020%. The amount of aluminum is 0.013% or less in other embodiments, and is 0.010% or less in other embodiments. When aluminum is intentionally alloyed with the molten metal during refining or casting for the purpose of deoxidation immediately before casting, the total aluminum can be controlled or suppressed to less than 0.020%. However, it should be noted that aluminum may be unintentionally mixed into the molten metal as an impurity contained in an alloy additive of another element such as titanium. Titanium alloys contain as much as 20% Al, which can contribute to the total Al in the melt. By carefully controlling the refining and casting procedures, it is possible to obtain molten metal with an aluminum content of less than 0.020%.

チタンを安定化に利用することに加えて、他の適切な安定化元素としては、ニオブ、ジルコニウム、タンタル、バナジウム、又はこれらの混合物も挙げられる。いくつかの実施形態では、チタンと第2の安定化元素、例えばニオブ又はバナジウムを併用する場合に、深絞り加工性が要求されるときは、当該第2の安定化元素を0.50%以下に抑えることができる。いくつかの実施形態は、ニオブを0.5%以下の濃度で含む。いくつかの実施形態は、ニオブを0.28〜0.43%の濃度で含む。バナジウムは0.5%未満の量で存在してもよい。本フェライト系ステンレス鋼のいくつかの実施形態は、0.008〜0.098%のバナジウムを含む。   In addition to utilizing titanium for stabilization, other suitable stabilizing elements also include niobium, zirconium, tantalum, vanadium, or mixtures thereof. In some embodiments, when deep drawing workability is required when titanium and a second stabilizing element, such as niobium or vanadium, are used, the second stabilizing element is suppressed to 0.50% or less. be able to. Some embodiments include niobium at a concentration of 0.5% or less. Some embodiments include niobium at a concentration of 0.28-0.43%. Vanadium may be present in an amount less than 0.5%. Some embodiments of the present ferritic stainless steel contain 0.008-0.098% vanadium.

銅は高温強度を向上させる。本フェライト系ステンレス鋼は、1.0〜2.0%の銅を含有する。いくつかの実施形態は、1.16〜1.31%の銅を含む。   Copper improves high temperature strength. This ferritic stainless steel contains 1.0 to 2.0% copper. Some embodiments include 1.16 to 1.31% copper.

シリコンは本フェライト系ステンレス鋼中に1.0〜1.7%の量で存在する。いくつかの実施形態において、シリコンは1.27〜1.35%の量で存在する。一般に、フェライト系ステンレス鋼には少量のシリコンが存在するが、これによりフェライト相の形成が促進される。シリコンは、耐高温酸化性を向上させ、高温強度をもたらす。多くの実施形態において、シリコンは約1.7%を超えないようにする。そうしないと鋼が硬くなりすぎたり、伸びに悪影響が及んだりするからである。   Silicon is present in the ferritic stainless steel in an amount of 1.0-1.7%. In some embodiments, the silicon is present in an amount from 1.27 to 1.35%. In general, a small amount of silicon is present in ferritic stainless steel, which promotes the formation of a ferrite phase. Silicon improves high temperature oxidation resistance and provides high temperature strength. In many embodiments, silicon does not exceed about 1.7%. Otherwise, the steel will be too hard or the elongation will be adversely affected.

マンガンは、本フェライト系ステンレス鋼中に0.4〜1.5%の量で存在する。いくつかの実施形態では、マンガンは0.97〜1.00%の量で存在する。マンガンは、高温下の耐酸化性及び耐剥離性を向上させる。したがって、いくつかの実施形態は、マンガンを少なくとも0.4%の量で含む。しかしながら、マンガンはオーステナイト生成元素であり、フェライト相の安定化に影響を与える。マンガンの量が約1.5%を超えると、フェライト相の安定化及び加工性に影響が及ぶ可能性がある。   Manganese is present in the ferritic stainless steel in an amount of 0.4 to 1.5%. In some embodiments, manganese is present in an amount from 0.97 to 1.00%. Manganese improves the oxidation resistance and peel resistance at high temperatures. Accordingly, some embodiments include manganese in an amount of at least 0.4%. However, manganese is an austenite-forming element and affects the stabilization of the ferrite phase. If the amount of manganese exceeds about 1.5%, the stability and workability of the ferrite phase may be affected.

炭素は、本フェライト系ステンレス鋼中に最大0.02%の量で存在する。いくつかの実施形態において、炭素含有量は0.02%以下である。また他の実施形態において、炭素含有量は0.0054〜0.0133%である。   Carbon is present in this ferritic stainless steel in an amount up to 0.02%. In some embodiments, the carbon content is 0.02% or less. In another embodiment, the carbon content is 0.0054-0.0133%.

クロムは、いくつかの実施形態では本フェライト系ステンレス鋼中に15〜20%の量で存在する。クロムの量が約25%を超えると、鋼の加工性が低下する可能性がある。   Chromium is present in some embodiments in the present ferritic stainless steel in an amount of 15-20%. If the amount of chromium exceeds about 25%, the workability of the steel may be reduced.

いくつかの実施形態において、酸素は鋼中に100 ppm未満の量で存在する。鋼の溶湯をアルゴン酸素脱炭精錬容器及び取鍋冶金炉合金化容器内で順次調製する場合は、溶湯中の酸素を10〜60 ppmの範囲とし、それにより、微細な鋳造等軸粒組織をもたらす核形成サイトの形成を促す微細なチタン酸化物介在物を含む、非常に清浄な鋼を提供することが可能となる。   In some embodiments, oxygen is present in the steel in an amount less than 100 ppm. When the molten steel is prepared sequentially in the argon oxygen decarburization refining vessel and ladle metallurgy furnace alloying vessel, the oxygen in the molten metal should be in the range of 10 to 60 ppm, so that a fine cast equiaxed grain structure can be formed. It is possible to provide a very clean steel that contains fine titanium oxide inclusions that facilitate the formation of resulting nucleation sites.

硫黄は、本フェライト系ステンレス鋼中に0.01%以下の量で存在する。   Sulfur is present in the ferritic stainless steel in an amount of 0.01% or less.

リンは、熱間圧延時の加工性を劣化させ、孔食を発生させる可能性がある。リンは、本フェライト系ステンレス鋼中に0.05%以下の量で存在する。   Phosphorus may deteriorate the workability during hot rolling and cause pitting corrosion. Phosphorus is present in the ferritic stainless steel in an amount of 0.05% or less.

マンガンと同様、ニッケルもオーステナイト生成元素であり、フェライト相の安定化に影響を与える。したがって、いくつかの実施形態ではニッケルを1.0%以下に抑える。いくつかの実施形態において、ニッケルは0.13〜0.19%の量で存在する。   Like manganese, nickel is an austenite-forming element and affects the stabilization of the ferrite phase. Thus, in some embodiments, nickel is kept below 1.0%. In some embodiments, nickel is present in an amount of 0.13-0.19%.

また、モリブデンは耐食性を向上させる。いくつかの実施形態は、3.0%以下のモリブデンを含む。いくつかの実施形態は、0.03〜0.049%のモリブデンを含む。   Molybdenum improves corrosion resistance. Some embodiments include up to 3.0% molybdenum. Some embodiments include 0.03-0.049% molybdenum.

用途によっては、本発明の鋼中にホウ素を0.010%以下の量で含むことが望ましいこともある。いくつかの実施形態において、ホウ素は0.0001〜0.002%の量で存在する。ホウ素は鋼の二次加工脆化耐性を向上させることができ、したがって深絞り用途及び多段階加工用途で鋼板が割れにくくなる。   Depending on the application, it may be desirable to include boron in an amount of 0.010% or less in the steel of the present invention. In some embodiments, boron is present in an amount from 0.0001 to 0.002%. Boron can improve the secondary work embrittlement resistance of steel, thus making it difficult for steel sheets to crack in deep drawing applications and multistage processing applications.

いくつかの実施形態において、本フェライト系ステンレス鋼は、意図的な添加物として調製し得る、又は残留元素、すなわち製鋼工程に由来する不純物として存在し得る、製鋼分野で知られる他の元素を含んでもよい。   In some embodiments, the ferritic stainless steel includes other elements known in the steelmaking art that may be prepared as intentional additives or present as residual elements, i.e. impurities derived from the steelmaking process. But you can.

(実施例1)
本フェライト系ステンレス鋼の諸実施形態と比較例の基準鋼とを、以下の表1に記載する組成として作製した。
(Example 1)
Embodiments of the present ferritic stainless steel and reference steels of comparative examples were prepared as compositions shown in Table 1 below.

「実験室材料」は、以下のパラメータに従って実験設備にて処理した。各インゴットを2300 °F(1260℃)の温度に再加熱した。次いで、鋼帯厚さ:0.200インチ(5.08 mm)まで熱間圧延した。次いで、1825〜1975℃(約996〜約1079℃)の温度で熱延板焼鈍を施した。次いで、厚さ:0.079〜0.098インチ(約2.0〜約2.5 mm)まで冷間圧延した。この冷間圧延鋼帯に対して1885〜1950 °F(約1029〜約1066℃)の温度で仕上げ焼鈍を施した。   “Lab material” was processed in the experimental facility according to the following parameters. Each ingot was reheated to a temperature of 2300 ° F (1260 ° C). The steel strip was then hot rolled to a thickness of 0.200 inch (5.08 mm). Subsequently, hot-rolled sheet annealing was performed at a temperature of 1825 to 1975 ° C. (about 996 to about 1079 ° C.). Then, it was cold-rolled to a thickness of 0.079 to 0.098 inch (about 2.0 to about 2.5 mm). The cold-rolled steel strip was subjected to finish annealing at a temperature of 1885 to 1950 ° F. (about 1029 to about 1066 ° C.).

「工場製造材料」として識別される材料は、以下のパラメータに従って工場の製造設備にて処理した。各スラブを2273〜2296 °F(1245〜約1258℃)の温度まで再加熱した。次いで、鋼帯厚さ:0.200〜0.180インチ(5.08〜約4.57 mm)まで熱間圧延した。次いで、後述の実施例に別段の指定がない限り、熱間圧延鋼帯に対して1950〜2000 °F(1066〜1083℃)の温度で熱延板焼鈍を施した。0.079〜0.059インチ(約2.0〜約1.5 mm)まで冷間圧延した後、鋼帯に対して1900〜2000 °F(約1038〜約1093℃)の温度で仕上げ焼鈍を施した。   Materials identified as “factory manufactured materials” were processed at the factory manufacturing facility according to the following parameters. Each slab was reheated to a temperature of 2273-2296 ° F. (1245 to about 1258 ° C.). The steel strip was then hot rolled to a thickness of 0.200 to 0.180 inches (5.08 to about 4.57 mm). Next, unless otherwise specified in the examples described later, hot-rolled sheet steel was subjected to hot-rolled sheet annealing at a temperature of 1950 to 2000 ° F. (1066 to 1083 ° C.). After cold rolling to 0.079-0.059 inches (about 2.0 to about 1.5 mm), the steel strip was finish annealed at a temperature of 1900-2000 ° F. (about 1038-10.degree. C.).

備考欄に「本発明」として識別される材料は、本発明のフェライト系ステンレス鋼の実施形態である。「参考」として識別される材料は、本発明のフェライト系ステンレス鋼の実施形態ではない。実際には、よく知られている以下の2種類の従来製品である。1つはHT #831187(Type 444ステンレス鋼)、もう1つはHT #830843(AK Steel Corporation社(オハイオ州、ウエストチェスター)の製品である15 CrCbステンレス鋼)である。   The material identified as “present invention” in the remarks column is an embodiment of the ferritic stainless steel of the present invention. The material identified as “reference” is not an embodiment of the ferritic stainless steel of the present invention. In fact, there are two well-known conventional products: One is HT # 831187 (Type 444 stainless steel) and the other is HT # 830843 (15 CrCb stainless steel from AK Steel Corporation (West Chester, Ohio)).

(実施例2)
上記の実施例1及び表1に記載した鋼組成のいくつかにつき、930℃、200時間、大気中の条件下で耐酸化性を試験した。試験結果を以下の表2に示す。個々の組成はそれぞれのID番号で識別される。耐酸化性は、以下の2つの要因によって評価した。1つは重量増加量、もう1つは剥離の程度である。HT #920097以外の各材料につき、表に示した重量増加値は2回の試験の平均である。HT #920097については、8つの試料を試験し、その8回の試験の最小値、平均値、及び最大値を示してある。
(Example 2)
Several of the steel compositions described in Example 1 and Table 1 above were tested for oxidation resistance under atmospheric conditions at 930 ° C. for 200 hours. The test results are shown in Table 2 below. Individual compositions are identified by their ID numbers. The oxidation resistance was evaluated by the following two factors. One is weight gain and the other is the degree of exfoliation. For each material other than HT # 920097, the weight gain values shown in the table are the average of two tests. For HT # 920097, 8 samples were tested and the minimum, average, and maximum values of the 8 tests are shown.

(実施例3)
実施例1の鋼組成のいくつかにつき、ASTM規格E21引張試験の手順に従って圧延方向の高温引張特性を試験した。これらの試験結果を以下の表に示す。
(Example 3)
Several of the steel compositions of Example 1 were tested for high temperature tensile properties in the rolling direction according to the ASTM standard E21 tensile test procedure. The test results are shown in the following table.

(実施例4)
実施例1の鋼組成のいくつかにつき、ASTM規格E8/E8Mの手順に従って圧延方向の引張特性を試験した。また、ASTM規格E517の手順に従ってr値も試験した。さらに、これらの組成の耐リジング性を0〜6の定性的指標(0:最良、6:許容範囲外)に基づいて判定した。これらの試験結果を以下の表に示す。
(Example 4)
Several of the steel compositions of Example 1 were tested for tensile properties in the rolling direction according to the procedure of ASTM standard E8 / E8M. The r value was also tested according to the procedure of ASTM standard E517. Furthermore, the ridging resistance of these compositions was determined based on a qualitative index of 0 to 6 (0: best, 6: outside acceptable range). The test results are shown in the following table.

(実施例5)
実施例1の鋼組成のいくつかにつき、ASTM規格E8/E8M試験手順に従って圧延方向の引張特性を試験した。また、ASTM規格E517の手順に従ってr値も試験した。さらに、これらの組成の耐リジング性を0〜6の定性的指標(0:最良、6:許容範囲外)に基づいて判定した。これらの試験結果を以下の表に示す。
(Example 5)
Several of the steel compositions of Example 1 were tested for tensile properties in the rolling direction according to ASTM standard E8 / E8M test procedures. The r value was also tested according to the procedure of ASTM standard E517. Furthermore, the ridging resistance of these compositions was determined based on a qualitative index of 0 to 6 (0: best, 6: outside acceptable range). The test results are shown in the following table.

(実施例6)
HT #920097からA、B、C、Dの4種の熱延板試料を工場にて製造した。熱延板焼鈍工程の影響及び、より高いr値(絞り性又は絞り度)が得られる熱延板焼鈍温度を調査するために実験室検査を行った。検査結果を表6に示す。熱延板焼鈍温度が低い処理及び熱延板焼鈍を伴わない処理の場合に高いr値を示した。これらの処理は引張伸びがやや低く、耐リジング性も低いが、全て許容範囲内であった。
(Example 6)
Four types of hot-rolled sheet samples A, B, C, and D were manufactured at the factory from HT # 920097. A laboratory inspection was conducted to investigate the influence of the hot-rolled sheet annealing step and the hot-rolled sheet annealing temperature at which a higher r value (drawability or degree of drawing) was obtained. The test results are shown in Table 6. A high r value was shown in the case of the treatment with low hot-rolled sheet annealing temperature and the treatment without hot-rolled sheet annealing. These treatments had a slightly low tensile elongation and low ridging resistance, but all were within an acceptable range.

(実施例7)
表1に記載した組成を有する1つの工場製造熱延板コイル(HT #930354、CL #681158-03)を、熱延板焼鈍を施さずに板厚1.5 mmに仕上げ加工した。HT #930354の工場製造コイルのr値については、熱延板焼鈍工程を含む場合は表5に示すように1.34、1.31、1.38、1.34となり、熱延板焼鈍工程を含まない場合は以下の表7に示すように1.46と高くなった。
(Example 7)
One factory manufactured hot rolled sheet coil (HT # 930354, CL # 681158-03) having the composition listed in Table 1 was finished to a thickness of 1.5 mm without being subjected to hot rolled sheet annealing. As shown in Table 5, the r value of the HT # 930354 factory manufactured coil is 1.34, 1.31, 1.38, 1.34 when the hot-rolled sheet annealing process is included, and the following table when the hot-rolled sheet annealing process is not included. As shown in Fig. 7, it was as high as 1.46.

本発明には、発明の趣旨及び範囲から逸脱しない限り、様々な変更を施すことができることが理解されるであろう。したがって、本発明の範囲は添付の特許請求の範囲に基づいて決定すべきである。   It will be understood that various modifications can be made to the present invention without departing from the spirit and scope of the invention. Accordingly, the scope of the invention should be determined based on the appended claims.

Claims (2)

重量パーセントで、
炭素:0.020%以下、
窒素:0.020%以下、
クロム:15〜20%、
チタン:0.30%以下、
ニオブ:0.50%以下、
銅:1.0〜2.00%、
シリコン:1.0〜1.7%
マンガン:0.4〜1.5%
リン:0.050%以下、
硫黄:0.01%以下、及び
アルミニウム:0.020%以下
を含むことを特徴とするフェライト系ステンレス鋼。
In weight percent
Carbon: 0.020% or less,
Nitrogen: 0.020% or less,
Chromium: 15-20%
Titanium: 0.30% or less,
Niobium: 0.50% or less,
Copper: 1.0-2.00%
Silicon: 1.0-1.7%
Manganese: 0.4-1.5%
Phosphorus: 0.050% or less,
A ferritic stainless steel containing sulfur: 0.01% or less and aluminum: 0.020% or less.
前記フェライト系ステンレス鋼が、重量パーセントで、
モリブデン:3.0%以下、
ホウ素:0.010%以下、
バナジウム:0.5%以下、及び
ニッケル:1.0%以下
のうちの少なくとも一種を更に含むことを特徴とする請求項1に記載のフェライト系ステンレス鋼。
The ferritic stainless steel is in weight percent,
Molybdenum: 3.0% or less,
Boron: 0.010% or less,
2. The ferritic stainless steel according to claim 1, further comprising at least one of vanadium: 0.5% or less and nickel: 1.0% or less.
JP2015529983A 2012-08-31 2013-08-28 Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability Active JP6194956B2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201261695771P 2012-08-31 2012-08-31
US61/695,771 2012-08-31
US13/837,500 2013-03-15
US13/837,500 US20140065005A1 (en) 2012-08-31 2013-03-15 Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability
PCT/US2013/056999 WO2014036091A1 (en) 2012-08-31 2013-08-28 Ferritic stainless steel with excellent oxidation resistance, good high temperature strength, and good formability

Publications (2)

Publication Number Publication Date
JP2015532684A true JP2015532684A (en) 2015-11-12
JP6194956B2 JP6194956B2 (en) 2017-09-13

Family

ID=49151344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015529983A Active JP6194956B2 (en) 2012-08-31 2013-08-28 Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability

Country Status (19)

Country Link
US (2) US20140065005A1 (en)
EP (1) EP2890825B1 (en)
JP (1) JP6194956B2 (en)
KR (2) KR20200028502A (en)
CN (2) CN108823509A (en)
AU (1) AU2013308922B2 (en)
BR (1) BR112015004228A2 (en)
CA (1) CA2882361C (en)
ES (1) ES2728229T3 (en)
HR (1) HRP20190864T1 (en)
HU (1) HUE043997T2 (en)
MX (1) MX2015002677A (en)
MY (1) MY172722A (en)
PL (1) PL2890825T3 (en)
RS (1) RS58807B1 (en)
RU (1) RU2650467C2 (en)
SI (1) SI2890825T1 (en)
WO (1) WO2014036091A1 (en)
ZA (1) ZA201502075B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420893B1 (en) * 2017-12-26 2018-11-07 日新製鋼株式会社 Ferritic stainless steel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140065005A1 (en) * 2012-08-31 2014-03-06 Eizo Yoshitake Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability
EP3333277B1 (en) 2015-08-05 2019-04-24 Sidenor Investigación y Desarrollo, S.A. High-strength low-alloy steel with high resistance to high-temperature oxidation
CN107675075A (en) * 2017-09-05 2018-02-09 王业双 A kind of high-performance high temperature resistant ferritic stainless steel and preparation method thereof
CN114787395A (en) * 2019-12-18 2022-07-22 欧瑞康美科(美国)公司 Iron-based high corrosion and wear resistant alloy

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165752A (en) * 1987-12-22 1989-06-29 Kawasaki Steel Corp Ferritic stainless steel having superior corrosion resistance in highly concentrated halide solution
JPH02115346A (en) * 1988-10-21 1990-04-27 Kawasaki Steel Corp Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JP2004115888A (en) * 2002-09-27 2004-04-15 Nisshin Steel Co Ltd Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance
JP2006231404A (en) * 2005-01-26 2006-09-07 Nippon Welding Rod Kk Ferritic stainless steel welding wire and manufacturing method thereof
JP2007217716A (en) * 2006-02-14 2007-08-30 Nisshin Steel Co Ltd Welded ferritic stainless steel pipe for spinning process, and its manufacturing method
JP2008144199A (en) * 2006-12-07 2008-06-26 Nisshin Steel Co Ltd Ferritic stainless steel for automobile exhaust gas passage member, and welded steel pipe
WO2012036313A1 (en) * 2010-09-16 2012-03-22 新日鐵住金ステンレス株式会社 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA899A (en) * 1871-03-24 D. Cameron Composition of matter for making fire brick, and in the art of burning the same
US5426039A (en) * 1993-09-08 1995-06-20 Bio-Rad Laboratories, Inc. Direct molecular cloning of primer extended DNA containing an alkane diol
FR2720410B1 (en) * 1994-05-31 1996-06-28 Ugine Savoie Sa Ferritic stainless steel with improved machinability.
JP3439866B2 (en) * 1995-03-08 2003-08-25 日本冶金工業株式会社 Ferritic stainless steel with excellent corrosion resistance and weldability
US6426039B2 (en) * 2000-07-04 2002-07-30 Kawasaki Steel Corporation Ferritic stainless steel
JP3942876B2 (en) * 2001-11-22 2007-07-11 日新製鋼株式会社 Ferritic stainless steel for hydrocarbon fuel reformer
JP3886785B2 (en) * 2001-11-22 2007-02-28 日新製鋼株式会社 Ferritic stainless steel for petroleum fuel reformers
JP3989790B2 (en) * 2002-07-30 2007-10-10 新日鐵住金ステンレス株式会社 Ferritic stainless steel sheet with excellent press formability and manufacturing method thereof
JP4463663B2 (en) * 2004-11-04 2010-05-19 日新製鋼株式会社 Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
US7732733B2 (en) * 2005-01-26 2010-06-08 Nippon Welding Rod Co., Ltd. Ferritic stainless steel welding wire and manufacturing method thereof
JP4302678B2 (en) * 2005-09-01 2009-07-29 日新製鋼株式会社 Ferritic stainless steel sheet for fuel tanks
JP5349153B2 (en) * 2009-06-15 2013-11-20 日新製鋼株式会社 Ferritic stainless steel for brazing and heat exchanger members
RU2415963C2 (en) * 2009-07-13 2011-04-10 Открытое акционерное общество "Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения", ОАО НПО "ЦНИИТМАШ" Heat resistant steel
US20140065005A1 (en) * 2012-08-31 2014-03-06 Eizo Yoshitake Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01165752A (en) * 1987-12-22 1989-06-29 Kawasaki Steel Corp Ferritic stainless steel having superior corrosion resistance in highly concentrated halide solution
JPH02115346A (en) * 1988-10-21 1990-04-27 Kawasaki Steel Corp Ferritic stainless steel having excellent corrosion resistance in high concentrated halide
JP2004115888A (en) * 2002-09-27 2004-04-15 Nisshin Steel Co Ltd Tire rim material and frame material for stainless steel-made two-wheeled vehicle excellent in deflecting resistance
JP2006231404A (en) * 2005-01-26 2006-09-07 Nippon Welding Rod Kk Ferritic stainless steel welding wire and manufacturing method thereof
JP2007217716A (en) * 2006-02-14 2007-08-30 Nisshin Steel Co Ltd Welded ferritic stainless steel pipe for spinning process, and its manufacturing method
JP2008144199A (en) * 2006-12-07 2008-06-26 Nisshin Steel Co Ltd Ferritic stainless steel for automobile exhaust gas passage member, and welded steel pipe
WO2012036313A1 (en) * 2010-09-16 2012-03-22 新日鐵住金ステンレス株式会社 Heat-resistant ferrite-type stainless steel plate having excellent oxidation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6420893B1 (en) * 2017-12-26 2018-11-07 日新製鋼株式会社 Ferritic stainless steel

Also Published As

Publication number Publication date
WO2014036091A1 (en) 2014-03-06
MX2015002677A (en) 2015-05-12
US20140065006A1 (en) 2014-03-06
RU2015108849A (en) 2016-10-20
MY172722A (en) 2019-12-11
CN104769147A8 (en) 2018-10-09
CN104769147A (en) 2015-07-08
SI2890825T1 (en) 2019-06-28
AU2013308922A1 (en) 2015-03-05
HRP20190864T1 (en) 2019-06-28
PL2890825T3 (en) 2019-09-30
AU2013308922B2 (en) 2016-08-04
CA2882361A1 (en) 2014-03-06
EP2890825B1 (en) 2019-04-03
HUE043997T2 (en) 2019-09-30
EP2890825A1 (en) 2015-07-08
CA2882361C (en) 2019-06-18
KR20200028502A (en) 2020-03-16
CN108823509A (en) 2018-11-16
RS58807B1 (en) 2019-07-31
ES2728229T3 (en) 2019-10-23
JP6194956B2 (en) 2017-09-13
BR112015004228A2 (en) 2017-07-04
ZA201502075B (en) 2016-03-30
US20140065005A1 (en) 2014-03-06
RU2650467C2 (en) 2018-04-13
KR20150080485A (en) 2015-07-09

Similar Documents

Publication Publication Date Title
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
JP4880467B2 (en) Improved manufacturing method of non-oriented electrical steel sheet
JP6115691B1 (en) Steel plate and enamel products
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
JP6194956B2 (en) Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
JP6842257B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
AU2013243635B2 (en) Cost-effective ferritic stainless steel
JPH10226843A (en) Thin steel sheet small in defect and excellent in press formability and its production
JP2007177303A (en) Steel having excellent ductility and its production method
JP4267439B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method
WO2021045212A1 (en) Grain-oriented electromagnetic steel plate and production method therefor
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP3362077B2 (en) Smelting method of molten steel for non-oriented electrical steel sheets with low iron loss
JP6941003B2 (en) Fe-Ni-Cr-Mo alloy and its manufacturing method
JP3419982B2 (en) Steel sheet for cans with few defects and excellent aging and method for producing the same
JP3300639B2 (en) Cold rolled steel sheet excellent in workability and method for producing the same
JP2002212644A (en) Method for producing ferritic stainless steel sheet
JP2017137579A (en) Copper plate nd manufacturing method therefor
JP2001342540A (en) Cold rolling steel sheet excellent in processablity and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170509

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20170529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170731

R150 Certificate of patent or registration of utility model

Ref document number: 6194956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250