JP4267439B2 - Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method - Google Patents

Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method Download PDF

Info

Publication number
JP4267439B2
JP4267439B2 JP2003423346A JP2003423346A JP4267439B2 JP 4267439 B2 JP4267439 B2 JP 4267439B2 JP 2003423346 A JP2003423346 A JP 2003423346A JP 2003423346 A JP2003423346 A JP 2003423346A JP 4267439 B2 JP4267439 B2 JP 4267439B2
Authority
JP
Japan
Prior art keywords
annealing
less
electrical steel
steel sheet
strain relief
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003423346A
Other languages
Japanese (ja)
Other versions
JP2005179746A (en
Inventor
吉宏 有田
健一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003423346A priority Critical patent/JP4267439B2/en
Publication of JP2005179746A publication Critical patent/JP2005179746A/en
Application granted granted Critical
Publication of JP4267439B2 publication Critical patent/JP4267439B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は電気機器の鉄心材料として使用される無方向性電磁鋼板と、その製造方法および歪取焼鈍方法に関するものであり、特に歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板に関するものである。   The present invention relates to a non-oriented electrical steel sheet used as an iron core material for electrical equipment, a manufacturing method thereof, and a stress relief annealing method, and particularly to a non-oriented electrical steel sheet having excellent magnetic properties after stress relief annealing. It is.

無方向性電磁鋼板の結晶粒径を大きくすることは、鉄損を低減する手段として極めて有効であるが、一方でダレやカエリが大きくなって、モータコアの打抜き加工性を著しく悪化させる問題があった。このため歪取焼鈍前の結晶粒径を小さくし、歪取焼鈍で結晶粒成長させることで打抜き加工性と磁気特性との両立を図る商品が提供されている。この場合、歪取焼鈍時の粒成長を改善することが最も重要であり、粒成長を阻害する析出物を無害化する方法が提案されてきた。例えば、特許文献1ではS:50ppm以下、Ti:50ppm以下とする方法、特許文献2ではTiを15ppm以下とした上でREM添加によって硫化物を粗大化する方法が開示されている。しかしながら、無方向性電磁鋼板ではAlを0.2%以上含有している鋼種が多く、強脱酸元素であるAlは製鋼においてスラグ中のTiO2を還元して鋼中のTi量が増加させてしまう問題があった。更にREMを添加した場合、Al同様に強脱酸元素であるがゆえに、鋼中のTi量が更に増加してしまい、期待した効果の得られない場合があった。このような状況において低Ti化を図るためには、スラグ中のTiO2濃度を極力低減する必要があり、製造コストの増加や生産性の低下が避けられない問題であった。一方、特許文献3ではTi:15〜50ppmの混入を許容しても歪取焼鈍後の粒成長を改善する方法が開示されているが、そのためには最終冷間圧延前までに700〜900℃で30分〜10時間もの長時間焼鈍と500℃まで50℃/分以下の緩冷却が必要であり、生産性を著しく悪化させるという問題があった。 Increasing the grain size of non-oriented electrical steel sheets is extremely effective as a means of reducing iron loss, but on the other hand, sagging and burrs become large, and there is a problem that the punching workability of the motor core is remarkably deteriorated. It was. For this reason, there is provided a product that achieves both punching workability and magnetic characteristics by reducing the crystal grain size before strain relief annealing and growing crystal grains by strain relief annealing. In this case, it is most important to improve the grain growth during strain relief annealing, and a method for detoxifying precipitates that inhibit grain growth has been proposed. For example, Patent Document 1 discloses a method in which S: 50 ppm or less and Ti: 50 ppm or less, and Patent Document 2 discloses a method in which Ti is reduced to 15 ppm or less and sulfide is coarsened by adding REM. However, many non-oriented electrical steel sheets contain 0.2% or more of Al, and Al, which is a strong deoxidizing element, reduces TiO 2 in slag and increases the amount of Ti in steel in steelmaking. There was a problem. Further, when REM is added, since it is a strong deoxidizing element like Al, the amount of Ti in the steel further increases, and the expected effect may not be obtained. In order to reduce the Ti in such a situation, it is necessary to reduce the TiO 2 concentration in the slag as much as possible, which is an unavoidable increase in manufacturing cost and a decrease in productivity. On the other hand, Patent Document 3 discloses a method for improving grain growth after strain relief annealing even if mixing of Ti: 15 to 50 ppm is allowed, but for that purpose, 700 to 900 ° C. before final cold rolling. Therefore, annealing for 30 minutes to 10 hours and slow cooling to 500 ° C. at 50 ° C./min or less are necessary, and the productivity is remarkably deteriorated.

特開平6-108149号公報JP-A-6-108149 特開平8-325678号公報JP-A-8-325678 特開平11-158589号公報JP-A-11-158589

本発明は前述の問題に鑑み、コストや生産性を犠牲にすることなく、歪取焼鈍後の磁気特性に優れた無方向性電磁鋼板と、その製造方法および歪取焼鈍方法を提供するものである。   In view of the above-mentioned problems, the present invention provides a non-oriented electrical steel sheet having excellent magnetic properties after strain relief annealing without sacrificing cost and productivity, a manufacturing method thereof, and a strain relief annealing method. is there.

本発明は、上記課題を解決するため、以下(1)〜(5)を要旨とするものである。   In order to solve the above-described problems, the present invention has the following (1) to (5).

(1) 質量%で、C:0.0010%以上0.010%以下、Si:3.5%以下、Al:0.2%以上3.0%以下、Mn:1.5%以下、Ti:0.0015%以上0.010%以下、S:0.0030%以下、N:0.0030%以下を含有し、残部Fe及び不可避不純物からなり、歪取焼鈍前における結晶粒径が40μm以下、直径0.01μm以上のTiを含有する析出物が10000個/mm2未満であることを特徴とする無方向性電磁鋼板。
(2) (1)において、Sn:0.01%以上0.10%以下を含有することを特徴とする無方向性電磁鋼板。
(1) By mass%, C: 0.0010% to 0.010%, Si: 3.5% or less, Al: 0.2% to 3.0%, Mn: 1.5% or less, Ti: 0.0015% to 0.010%, S: 0.0030% Below, N: 0.0030% or less, consisting of the balance Fe and inevitable impurities, the grain size before strain relief annealing is 40 μm or less, and the precipitate containing Ti with a diameter of 0.01 μm or more is less than 10000 pieces / mm 2 A non-oriented electrical steel sheet characterized by being.
(2) A non-oriented electrical steel sheet characterized by containing Sn: 0.01% or more and 0.10% or less in (1).

(3) (1)または(2)の電磁鋼板を製造するに際し、熱延、酸洗、冷延に引き続いて仕上焼鈍を施す製造工程において、熱延の仕上温度を850℃以上、巻取温度を650℃未満とし、仕上焼鈍の昇温速度を15℃/sec以上にすることを特徴とする無方向性電磁鋼板の製造方法。   (3) When manufacturing the electrical steel sheet of (1) or (2), in the manufacturing process in which finish annealing is performed following hot rolling, pickling, and cold rolling, the finishing temperature of hot rolling is 850 ° C or higher, and the coiling temperature Is made to be less than 650 ° C., and the temperature raising rate of finish annealing is set to 15 ° C./sec or more.

(4) (1)または(2)の電磁鋼板を製造するに際し、熱延、熱延板焼鈍、酸洗、冷延に引き続いて仕上焼鈍を施す製造工程において、熱延の仕上温度を850℃以上、巻取温度を650℃未満とし、熱延板焼鈍を900℃以上1150℃以下で60秒以上施した上で少なくとも650℃までの冷却速度を15℃/sec以上とし、仕上焼鈍の昇温速度を15℃/sec以上にすることを特徴とする無方向性電磁鋼板の製造方法。   (4) When manufacturing the electrical steel sheet of (1) or (2), the hot rolling finish temperature is set to 850 ° C. in the manufacturing process in which hot annealing, hot rolling sheet annealing, pickling and cold rolling are followed by finish annealing. As described above, the coiling temperature is set to less than 650 ° C., the hot-rolled sheet annealing is performed at 900 ° C. to 1150 ° C. for 60 seconds or more, and the cooling rate to at least 650 ° C. is set to 15 ° C./sec or more. A method for producing a non-oriented electrical steel sheet, wherein the speed is 15 ° C / sec or more.

(5) (3)または(4)にて製造した電磁鋼板をコアに加工後に歪取焼鈍を施すに際し、15℃/sec以下で昇温し、750℃以上900℃以下で30分以上3時間以下の焼鈍を行なうことを特徴とする無方向性電磁鋼板の歪取焼鈍方法。   (5) When performing stress relief annealing after machining the electrical steel sheet produced in (3) or (4) into a core, the temperature is raised at 15 ° C / sec or less, and 750 to 900 ° C for 30 minutes to 3 hours. A strain relief annealing method for a non-oriented electrical steel sheet, characterized by performing the following annealing.

本発明は低Ti化や長時間焼鈍を施さなくても歪取焼鈍後の磁気特性を改善せしめるもので、コスト増加や生産性の問題がない。   The present invention improves the magnetic properties after strain relief annealing without lowering Ti or annealing for a long time, and there is no problem of cost increase or productivity.

発明者らはTiを極度に低減することなく、また製造の途中工程で長時間焼鈍を施すことなく、歪取焼鈍後の鉄損を改善する方法について鋭意研究を行なった。その結果、直径0.01μm以上のTiを含む析出物(以下、Ti析出物と記載する)を、歪取焼鈍前まで極力析出させないようにすることで、歪取焼鈍後の結晶粒が粗大化して低鉄損が実現できることを知見し、本発明を完成させた。以下、本発明に至った実験結果について述べる。   The inventors conducted intensive research on a method for improving iron loss after strain relief annealing without extremely reducing Ti and without annealing for a long time during the manufacturing process. As a result, by preventing precipitation containing Ti with a diameter of 0.01 μm or more (hereinafter referred to as Ti precipitate) as much as possible before strain relief annealing, the crystal grains after strain relief annealing are coarsened. The inventors have found that low iron loss can be realized, and have completed the present invention. Hereinafter, the experimental results that led to the present invention will be described.

(実験1)
実験室の真空溶解炉にて、質量%で、C:0.0020%、Si:2.0%、Al:0.3%、Mn:0.2%、Ti:0.0020%、S:0.0010%、N:0.0020%を含有した鋼片を作製した。この鋼片を加熱温度1100℃、仕上温度870℃、巻取温度を550〜700℃に変化させて熱延して板厚2.7mmとした。この熱延板に酸洗を施し、板厚0.50mmに冷延後、昇温速度5,15,30℃/secで仕上焼鈍を行ない、昇温速度10℃/secにて750℃で2時間の歪取焼鈍を施した。こうして作製した試料について、結晶粒径と鉄損を測定し、透過型電子顕微鏡でTi析出物を観察した。
(Experiment 1)
In a laboratory vacuum melting furnace, contained by mass: C: 0.0020%, Si: 2.0%, Al: 0.3%, Mn: 0.2%, Ti: 0.0020%, S: 0.0010%, N: 0.0020% A steel piece was prepared. This steel slab was hot rolled at a heating temperature of 1100 ° C., a finishing temperature of 870 ° C., and a coiling temperature of 550 to 700 ° C. to obtain a plate thickness of 2.7 mm. This hot-rolled sheet is pickled, cold-rolled to a thickness of 0.50 mm, and then subjected to finish annealing at a heating rate of 5,15,30 ° C / sec and at a heating rate of 10 ° C / sec for 2 hours at 750 ° C. The strain relief annealing was performed. With respect to the sample thus prepared, the crystal grain size and iron loss were measured, and Ti precipitates were observed with a transmission electron microscope.

その結果、表1に示す通り、歪取焼鈍前の結晶粒径はいずれの試料においても同等であるが、巻取温度650℃未満でかつ仕上焼鈍の昇温速度が15℃/sec以上の試料2,3,5,6について、歪取焼鈍後の結晶粒径が粗大化して鉄損が著しく低減した。そこで歪取焼鈍前のTi析出物を観察したところ、粒成長が良好であった試料2,3,5,6では析出物密度が10×103個/mm2未満と、他の試料に比べて極端に少ないことを知見した。 As a result, as shown in Table 1, the crystal grain size before strain relief annealing is the same in all samples, but the sample with a coiling temperature of less than 650 ° C and a temperature increase rate of finish annealing of 15 ° C / sec or more. For 2, 3, 5, and 6, the crystal grain size after strain relief annealing was coarsened, and the iron loss was remarkably reduced. Therefore, when Ti precipitates before strain relief annealing were observed, in Samples 2, 3, 5, and 6 where grain growth was good, the precipitate density was less than 10 × 10 3 pieces / mm 2 compared to other samples. And found that it is extremely few.

Figure 0004267439
Figure 0004267439

(実験2)
実験1の歪取焼鈍前の試料について、昇温速度10℃/secにて700℃で1時間の歪取焼鈍を施した後、直ちに水冷し、結晶粒径と析出物を観察した。その結果を表2に示すが、結晶粒径はいずれの試料においても歪取焼鈍前の約30μmから変化していないが、試料2,3,5,6では直径0.01μm以上のTi析出物が結晶粒界に沿って析出しているのが確認された。
(Experiment 2)
The sample before stress relief annealing in Experiment 1 was subjected to strain relief annealing at 700 ° C. for 1 hour at a temperature increase rate of 10 ° C./sec, and then immediately cooled with water to observe the crystal grain size and precipitates. The results are shown in Table 2. Although the crystal grain size did not change from about 30 μm before strain relief annealing in any of the samples, Ti precipitates with a diameter of 0.01 μm or more were observed in Samples 2, 3, 5, and 6. Precipitation along the grain boundaries was confirmed.

一方、試料1,4,7〜12でもTi析出物は観察されるものの、その分布は歪取焼鈍前と大差なく、結晶粒界とは無関係に均一分散していた。   On the other hand, although Ti precipitates were observed in Samples 1, 4, 7-12, the distribution was not much different from that before strain relief annealing, and was uniformly dispersed regardless of the grain boundaries.

この結果については以下のように考えている。試料2,3,5,6では熱延の巻取温度が650℃未満と低かったこと、仕上焼鈍の昇温速度が15℃/sec以上と早かったことから、Ti析出物は熱延後および仕上焼鈍後には析出しておらず、歪取焼鈍の昇温中に結晶粒界に析出したものと考えられる。一方、熱延の巻取温度が高かった試料7〜12については巻取後に、仕上焼鈍の昇温速度が遅かった試料1,4では再結晶前に大半のTiが析出したため、その分布は歪取焼鈍前の結晶粒界と無関係であったものと考えられる。   This result is considered as follows. In Samples 2, 3, 5, and 6, the coiling temperature of hot rolling was as low as less than 650 ° C, and the temperature increase rate of finish annealing was as fast as 15 ° C / sec or more. It is thought that it was not precipitated after the finish annealing, but was precipitated at the grain boundaries during the temperature increase of the strain relief annealing. On the other hand, in Samples 7 to 12, where the hot rolling coiling temperature was high, most of Ti was deposited before recrystallization in Samples 1 and 4 where the temperature increase rate of finish annealing was slow after winding. It is thought that it was unrelated to the grain boundary before annealing.

Figure 0004267439
Figure 0004267439

(実験3)
実験1の歪取焼鈍前の試料について、昇温速度10℃/secにて800℃で1時間の歪取焼鈍を施した後、直ちに水冷して析出物を観察した。その結果を表3に示すが、いずれの試料においても直径0.01μm以上のTi析出物はほとんど観察されなかった。これはTi析出物が800℃の歪取焼鈍で分解して鋼中に固溶したものと考えられる。
(Experiment 3)
The sample before strain relief annealing in Experiment 1 was subjected to strain relief annealing at 800 ° C. for 1 hour at a heating rate of 10 ° C./sec, and then immediately cooled with water to observe precipitates. The results are shown in Table 3. Almost no Ti precipitate having a diameter of 0.01 μm or more was observed in any sample. This is thought to be because Ti precipitates decomposed by 800 ° C strain relief annealing and dissolved in steel.

Figure 0004267439
Figure 0004267439

以上の結果により、歪取焼鈍中に直径0.01μm以上のTi析出物を結晶粒界に析出させた後、固溶させることで結晶粒の粗大化と低鉄損が図れることを知見した。これはTi析出物によって粒成長が著しく抑制されていたものを、Ti固溶化によってその抑止力を急激に消失させることで、著しい結晶粒成長が生じたものと考えている。   From the above results, it was found that during precipitation annealing, Ti precipitates with a diameter of 0.01 μm or more were precipitated at the grain boundaries and then solid-dissolved to achieve coarse grains and low iron loss. This is because the grain growth is remarkably suppressed by the Ti precipitates, and the deterring power is abruptly lost by the Ti solid solution, so that significant crystal grain growth occurs.

無方向性電磁鋼板の歪取焼鈍においてTi析出物の析出と固溶を連続して生じさせ、結晶粒成長を向上させる上述の技術手法は本発明にて初めて知見したもので、析出物の影響を低減して粒成長を向上させる従来知見とは全く異なるものである。特許文献1,2は勿論であるが、Ti:15〜50ppmの混入を許容して歪取焼鈍後の粒成長を改善する特許文献3についても、最終冷間圧延前までに施す700〜900℃の長時間焼鈍と50℃/分以下の緩冷却は、歪取焼鈍より前にTi析出物を粗大に析出させて粒成長の抑止力を低減させることを目的としており、本発明とは技術発想が全く異なるものである。   In the strain relief annealing of non-oriented electrical steel sheets, the above-mentioned technical technique for improving the grain growth by continuously causing precipitation and solid solution of Ti precipitates was first discovered in the present invention. This is completely different from the conventional knowledge of reducing grain size and improving grain growth. Needless to say, Patent Documents 1 and 2, but also for Patent Document 3 which improves the grain growth after strain relief annealing by allowing mixing of Ti: 15 to 50 ppm, 700 to 900 ° C. applied before the final cold rolling The purpose of this invention is to reduce the grain growth deterrence by precipitating Ti precipitates coarsely before strain relief annealing and annealing at 50 ° C / min or less. Are completely different.

続いて本発明における成分の数値限定理由について説明する。   Next, the reason for limiting the numerical values of the components in the present invention will be described.

CはTi析出物を生成するために必要な元素であり、その目的のためには0.0010%以上含有する必要がある。ただし0.010%を超えると炭化物量が増大し、著しく鉄損劣化するので上限を0.01%とした。   C is an element necessary for producing Ti precipitates, and for that purpose, it is necessary to contain 0.0010% or more. However, if it exceeds 0.010%, the amount of carbide increases and iron loss is remarkably deteriorated, so the upper limit was made 0.01%.

Siは電気抵抗を増加させるために有効な元素であるが、過度に添加すると冷延性を著しく悪くするため、3.5%を上限とした。   Si is an effective element for increasing the electric resistance, but if added excessively, the cold rolling property is remarkably deteriorated, so 3.5% was made the upper limit.

Alは脱酸と鋼中の窒素を固定するために必要な元素であり、その目的のためには0.2%以上添加する必要がある。またSi同様に電気抵抗を増加させるのに有効な元素であるが、添加量が3.0%を超えるとSi同様に硬度上昇を招くのに加え、鋳造性を悪化させるため、生産性を考慮して3.0%を上限とした。   Al is an element necessary for deoxidation and fixing nitrogen in steel. For that purpose, it is necessary to add 0.2% or more. In addition, it is an element effective for increasing electrical resistance like Si, but if the added amount exceeds 3.0%, it causes hardness increase like Si and deteriorates castability. The upper limit was 3.0%.

MnはSi,Al同様に電気抵抗を増加させるのに有効であるが、コストを考慮して1.5%を上限とした。   Mn is effective in increasing the electrical resistance like Si and Al, but the upper limit is 1.5% in consideration of cost.

SとNは歪取焼鈍時の粒成長を阻害させるため、共に0.0030%以下とした。   S and N are both 0.0030% or less in order to inhibit grain growth during strain relief annealing.

Tiは本発明を発現させる析出物の構成元素であり、その目的のためには0.0015%以上含有する必要がある。ただし0.010%を超えると析出物量が増大し、鉄損劣化するので上限を0.01%とした。   Ti is a constituent element of the precipitate that expresses the present invention, and for that purpose, it is necessary to contain 0.0015% or more. However, if it exceeds 0.010%, the amount of precipitates increases and iron loss deteriorates, so the upper limit was made 0.01%.

Snは集合組織を改善する効果と歪取焼鈍時の窒化や酸化を抑制する効果があるため、それらの効果が享受できる0.01%以上0.10%以下の範囲で添加してもよい。 Sn has an effect of improving the texture and an effect of suppressing nitridation and oxidation at the time of strain relief annealing. Therefore, Sn may be added in a range of 0.01% or more and 0.10% or less that can enjoy these effects.

続いて本発明におけるTi析出物の大きさと個数、および結晶粒径の数値限定理由について説明する。   Next, the reason for limiting the numerical values of the size and number of Ti precipitates and the crystal grain size in the present invention will be described.

直径0.01μm以上のTi析出物は本発明の効果を発現させる上で最も重要である。本発明では歪取焼鈍中にこれを析出させることを目的としており、そのためには歪取焼鈍前において極力Tiが固溶していることが重要であるため、その析出物数を10000個/mm2未満に抑制する必要がある。 Ti precipitates having a diameter of 0.01 μm or more are the most important in achieving the effects of the present invention. The purpose of the present invention is to precipitate this during strain relief annealing.To that end, it is important that Ti is dissolved as much as possible before strain relief annealing, so the number of precipitates is 10,000 / mm. It is necessary to suppress to less than 2 .

歪取焼鈍前の結晶粒径については、40μmを超えると打抜き加工性が悪化するのに加え、歪取焼鈍時の粒成長を悪化させてしまうことから、40μm以下にする必要がある。   The crystal grain size before strain relief annealing needs to be 40 μm or less because when it exceeds 40 μm, punching workability deteriorates and grain growth during strain relief annealing deteriorates.

次に本発明における製造条件の限定理由について説明する。本発明では歪取焼鈍前の段階においてTiを極力固溶させ、かつ析出させないようにする必要から、以下の通りとした。   Next, the reasons for limiting the manufacturing conditions in the present invention will be described. In the present invention, it is necessary to dissolve Ti as much as possible and prevent it from precipitating before the strain relief annealing.

熱延の条件は、Tiの固溶を維持するために仕上温度を850℃以上とし、Tiの析出を回避するために巻取温度を650℃未満とした。   The hot rolling conditions were such that the finishing temperature was 850 ° C. or higher in order to maintain the solid solution of Ti, and the winding temperature was lower than 650 ° C. in order to avoid Ti precipitation.

熱延板焼鈍は省略することもできるが、磁性や形状改善を目的に行なわれる。そのためには900℃以上で60秒以上の焼鈍を行なう必要がある。ただし焼鈍温度が高すぎるとコスト増を招くので上限を1150℃とした。熱延同様にTiの析出回避を目的とするため、少なくとも650℃までの冷却速度は15℃/sec以上とした。   Although hot-rolled sheet annealing can be omitted, it is performed for the purpose of magnetism and shape improvement. For this purpose, it is necessary to perform annealing at 900 ° C. or more for 60 seconds or more. However, if the annealing temperature is too high, the cost increases, so the upper limit was set to 1150 ° C. In order to avoid Ti precipitation as in hot rolling, the cooling rate to at least 650 ° C. was set to 15 ° C./sec or more.

仕上焼鈍は、昇温速度が遅いとTiは再結晶する前に均一に分散して析出してしまうので、昇温速度を15℃/sec以上とした。   In finish annealing, if the rate of temperature rise is slow, Ti is uniformly dispersed and precipitated before recrystallization, so the rate of temperature rise was set to 15 ° C./sec or more.

以上に規定した以外の製造条件は、無方向性電磁鋼板における周知の条件を用いることができる。   As manufacturing conditions other than those specified above, known conditions for non-oriented electrical steel sheets can be used.

次に歪取焼鈍条件の限定理由であるが、15℃/secを超える昇温速度ではTiを結晶粒界に十分に析出させることができないため、昇温速度を15℃/sec以下に規定した。焼鈍温度と時間については750℃未満、30分未満ではTi析出物が固溶しないため、750℃以上で30分以上と規定した。上限についてはコストと生産性を考慮し、900℃以下で3時間以下とした。   Next, the reason for the limitation of strain relief annealing is that Ti cannot be sufficiently precipitated at the grain boundaries at a temperature rising rate exceeding 15 ° C / sec. . As for the annealing temperature and time, Ti precipitates were not dissolved at less than 750 ° C. and less than 30 minutes. The upper limit was set to 900 ° C or less and 3 hours or less in consideration of cost and productivity.

実験室の真空溶解炉にて、質量%で、C:0.0030%、Si:1.5%、Al:0.5%、Mn:0.5%、Ti:0.0025%、S:0.0015%、N:0.0025%を含有した鋼片を作製した。この鋼片を加熱温度1150℃、仕上温度を800〜900℃、巻取温度を500〜700℃に変化させて熱延し板厚2.0mmとした。この熱延板に酸洗を施し、板厚0.35mmに冷延後、昇温速度15℃/secで仕上焼鈍を行ない、昇温速度10℃/secにて775℃で1時間の歪取焼鈍を施した。こうして作製した試料について、結晶粒径と鉄損を測定し、透過型電子顕微鏡でTi析出物を観察した。   In a laboratory vacuum melting furnace, contained by mass: C: 0.0030%, Si: 1.5%, Al: 0.5%, Mn: 0.5%, Ti: 0.0025%, S: 0.0015%, N: 0.0025% A steel piece was prepared. The steel slab was hot-rolled at a heating temperature of 1150 ° C., a finishing temperature of 800-900 ° C., and a coiling temperature of 500-700 ° C. to a thickness of 2.0 mm. This hot-rolled sheet is pickled, cold-rolled to a thickness of 0.35 mm, and then finish-annealed at a heating rate of 15 ° C / sec. Was given. With respect to the sample thus prepared, the crystal grain size and iron loss were measured, and Ti precipitates were observed with a transmission electron microscope.

その結果、表4に示す通り、仕上温度が850℃以上でかつ巻取温度が650℃未満であった試料6〜8,11〜13において、歪取焼鈍前における直径0.01μm以上のTi析出物が10000個/mm2未満であり、歪取焼鈍後に粗大粒が得られ、低鉄損が図れることを知見した。 As a result, as shown in Table 4, in samples 6 to 8, 11 to 13 whose finishing temperature was 850 ° C. or higher and the coiling temperature was less than 650 ° C., Ti precipitates having a diameter of 0.01 μm or more before strain relief annealing Is less than 10000 pieces / mm 2 , and it has been found that coarse grains can be obtained after strain relief annealing and low iron loss can be achieved.

Figure 0004267439
Figure 0004267439

実験室の真空溶解炉にて、質量%で、C:0.0050%、Si:3.0%、Al:1.0%、Mn:0.2%、Ti:0.0045%、S:0.0025%、N:0.0030%、Sn:0.020%を含有した鋼片を作製した。この鋼片を加熱温度1130℃、仕上温度を875℃、巻取温度を630℃で熱延して板厚1.8mmとし、950℃×90秒で650℃までの冷却速度1,15,30℃/secの熱延板焼鈍を施し、酸洗を施し、板厚0.30mmに冷延した。そして昇温速度20℃/secで仕上焼鈍を行ない、歪取焼鈍前の結晶粒径を20〜50μmに変化させた後、昇温速度15℃/secで800℃、1時間の歪取焼鈍を施した。こうして作製した試料について、結晶粒径と鉄損を測定し、透過型電子顕微鏡でTi析出物を観察した。   In a laboratory vacuum melting furnace, in mass%, C: 0.0050%, Si: 3.0%, Al: 1.0%, Mn: 0.2%, Ti: 0.0045%, S: 0.0025%, N: 0.0030%, Sn: A steel slab containing 0.020% was prepared. This steel slab is heated to 1130 ° C, the finishing temperature is 875 ° C, the coiling temperature is 630 ° C, hot rolled to a thickness of 1.8mm, and the cooling rate to 650 ° C in 950 ° C x 90 seconds is 1,15,30 ° C / sec hot-rolled sheet annealing was performed, pickling was performed, and the sheet was cold-rolled to a thickness of 0.30 mm. Then, finish annealing is performed at a heating rate of 20 ° C / sec, the crystal grain size before strain relief annealing is changed to 20-50μm, and then strain relief annealing is performed at 800 ° C for 1 hour at a temperature elevation rate of 15 ° C / sec. gave. With respect to the sample thus prepared, the crystal grain size and iron loss were measured, and Ti precipitates were observed with a transmission electron microscope.

その結果、表5に示す通り、熱延板焼鈍の冷却速度が15℃/sec以上の試料5〜12で歪取焼鈍前の直径0.01μm以上のTi析出物が10000個/mm2未満となり、かつ歪取焼鈍前の結晶粒径が40μm以下であった試料5,6,9〜11において、歪取焼鈍後に粗大粒が得られ、低鉄損が図れることを知見した。 As a result, as shown in Table 5, the cooling rate of hot-rolled sheet annealing is less than 10000 pieces / mm 2 of Ti precipitates with a diameter of 0.01 μm or more before strain relief annealing in samples 5 to 12 of 15 ° C./sec or more, It was also found that in Samples 5, 6, 9 to 11 whose crystal grain size before strain relief annealing was 40 μm or less, coarse grains were obtained after strain relief annealing, and low iron loss was achieved.

Figure 0004267439
Figure 0004267439

実験室の真空溶解炉にて、質量%で、Si:2.0%、Al:2.3%、Mn:0.3%、S:0.0005%、N:0.0014%、Sn:0.015%を含有し、C:0.0005〜0.0020%、Ti:0.0005〜0.0020%に変化させた鋼片を作製した。これらの鋼片を加熱温度1050℃、仕上温度を860℃、巻取温度を620℃で熱延して板厚2.3mmとし、1000℃×60秒で650℃までの冷却速度30℃/secの熱延板焼鈍を施した後、酸洗し、板厚0.50mmに冷延した。そして昇温速度15℃/secで仕上焼鈍を行ない、昇温速度3℃/secで750℃、1時間の歪取焼鈍を施した。こうして作製した試料について、結晶粒径と鉄損を測定し、透過型電子顕微鏡でTi析出物を観察した。   In a laboratory vacuum melting furnace, by mass%, Si: 2.0%, Al: 2.3%, Mn: 0.3%, S: 0.0005%, N: 0.0014%, Sn: 0.015%, C: 0.0005 ~ Steel pieces with 0.0020% and Ti changed to 0.0005 to 0.0020% were produced. These steel slabs were hot-rolled at a heating temperature of 1050 ° C, a finishing temperature of 860 ° C, a coiling temperature of 620 ° C to a thickness of 2.3 mm, and a cooling rate of 30 ° C / sec to 1000 ° C x 60 seconds to 650 ° C. After hot-rolled sheet annealing, it was pickled and cold-rolled to a thickness of 0.50 mm. Then, finish annealing was performed at a temperature increase rate of 15 ° C./sec, and strain relief annealing was performed at a temperature increase rate of 3 ° C./sec at 750 ° C. for 1 hour. With respect to the sample thus prepared, the crystal grain size and iron loss were measured, and Ti precipitates were observed with a transmission electron microscope.

その結果、表6に示す通り、Cが0.0010%以上でかつ、Tiが0.0015%以上である試料7,8,11,12,15,16において、歪取焼鈍後に粗大粒が得られ、低鉄損が図れることを知見した。   As a result, as shown in Table 6, in samples 7, 8, 11, 12, 15, and 16 where C is 0.0010% or more and Ti is 0.0015% or more, coarse grains are obtained after strain relief annealing, and low iron It was found that loss could be achieved.

Figure 0004267439
Figure 0004267439

実験室の真空溶解炉にて、質量%で、C:0.0030%、Si:2.4%、Al:0.6%、Mn:0.2%、Ti:0.0020%、S:0.0025%、N:0.0030%、Sn:0.020%を含有した鋼片を作製した。この鋼片を加熱温度1120℃、仕上温度を880℃、巻取温度を590℃で熱延して板厚2.7mmとし、950℃×90秒で650℃までの冷却速度20℃/secの熱延板焼鈍を施した後、酸洗を施し、板厚0.50mmに冷延後、昇温速度15℃/secで仕上焼鈍を行なった。こうして作製した試料について、昇温速度5℃/sec、700℃〜850℃で0.2時間〜2時間に変化させた歪取焼鈍を行ない、鉄損と結晶粒径を測定した。   In a laboratory vacuum melting furnace, by mass, C: 0.0030%, Si: 2.4%, Al: 0.6%, Mn: 0.2%, Ti: 0.0020%, S: 0.0025%, N: 0.0030%, Sn: A steel slab containing 0.020% was prepared. This steel slab was heated to 1120 ° C, the finishing temperature was 880 ° C, the coiling temperature was 590 ° C and rolled to a thickness of 2.7mm, and the heat rate was 950 ° C x 90 seconds to 650 ° C with a cooling rate of 20 ° C / sec. After performing sheet annealing, pickling was performed, and after cold rolling to a sheet thickness of 0.50 mm, finish annealing was performed at a temperature rising rate of 15 ° C./sec. The sample thus prepared was subjected to stress relief annealing at a temperature rising rate of 5 ° C./sec and 700 ° C. to 850 ° C. for 0.2 hours to 2 hours, and the iron loss and crystal grain size were measured.

その結果、表7に示す通り、歪取焼鈍温度が750℃以上でかつ0.5時間以上であった試料6〜8,10〜12,14〜16で粗大粒が得られ、低鉄損が図れることを知見した。   As a result, as shown in Table 7, coarse grains can be obtained in samples 6 to 8, 10 to 12, 14 to 16 where the stress relief annealing temperature is 750 ° C. or more and 0.5 hours or more, and low iron loss can be achieved. I found out.

Figure 0004267439
Figure 0004267439

実験室の真空溶解炉にて、質量%で、C:0.0020%、Si:3.0%、Al:0.6%、Mn:0.2%、Ti:0.0030%、S:0.0020%、N:0.0021%を含有した鋼片を作製した。この鋼片を加熱温度1140℃、仕上温度を890℃、巻取温度を600℃で熱延して板厚2.3mmとし、1050℃×90秒で650℃までの冷却速度20℃/secの熱延板焼鈍を施した後、酸洗を施し、板厚0.50mmに冷延後、昇温速度25℃/secで仕上焼鈍を行なった。こうして作製した試料について、昇温速度を1〜20℃/secまで変化させて、700〜850℃で2時間の歪取焼鈍を行ない、鉄損と結晶粒径を測定した。   In a laboratory vacuum melting furnace, contained by mass: C: 0.0020%, Si: 3.0%, Al: 0.6%, Mn: 0.2%, Ti: 0.0030%, S: 0.0020%, N: 0.0021% A steel piece was prepared. This steel slab is heated to 1140 ° C, the finishing temperature is 890 ° C, the coiling temperature is 600 ° C, hot rolled to a sheet thickness of 2.3mm, and the cooling rate to 650 ° C at 1050 ° C for 90 seconds is 20 ° C / sec. After performing sheet annealing, pickling was performed, and after cold rolling to a sheet thickness of 0.50 mm, finish annealing was performed at a heating rate of 25 ° C./sec. The sample thus prepared was subjected to strain relief annealing at 700 to 850 ° C. for 2 hours while changing the temperature rising rate to 1 to 20 ° C./sec, and the iron loss and the crystal grain size were measured.

その結果、表8に示す通り、歪取焼鈍の昇温速度が15℃/sec以下でかつ温度が750℃以上である試料5〜7,9〜11,13〜15で粗大粒が得られ、低鉄損が図れることを知見した。   As a result, as shown in Table 8, coarse grains are obtained in samples 5 to 7, 9 to 11, 13 to 15 in which the temperature raising rate of strain relief annealing is 15 ° C./sec or less and the temperature is 750 ° C. or more, We found that low iron loss can be achieved.

Figure 0004267439
Figure 0004267439

Claims (5)

質量%で、C:0.0010%以上0.010%以下、Si:3.5%以下、Al:0.2%以上3.0%以下、Mn:1.5%以下、Ti:0.0015%以上0.010%以下、S:0.0030%以下、N:0.0030%以下を含有し、残部Fe及び不可避不純物からなり、歪取焼鈍前における結晶粒径が40μm以下、直径0.01μm以上のTiを含有する析出物が10000個/mm2未満であることを特徴とする無方向性電磁鋼板。 In mass%, C: 0.0010% to 0.010%, Si: 3.5% or less, Al: 0.2% to 3.0%, Mn: 1.5% or less, Ti: 0.0015% to 0.010%, S: 0.0030% or less, N : Containing 0.0030% or less, balance Fe and unavoidable impurities, crystal grain size before strain relief annealing is 40 μm or less, and precipitates containing Ti with a diameter of 0.01 μm or more are less than 10000 pieces / mm 2 A non-oriented electrical steel sheet. 請求項1において、Sn:0.01%以上0.10%以下を含有することを特徴とする無方向性電磁鋼板。 2. The non-oriented electrical steel sheet according to claim 1, containing Sn: 0.01% or more and 0.10% or less . 請求項1または2の無方向性電磁鋼板を製造するに際し、熱延、酸洗、冷延に引き続いて仕上焼鈍を施す製造工程において、熱延の仕上温度を850℃以上、巻取温度を650℃未満とし、仕上焼鈍の昇温速度を15℃/sec以上にすることを特徴とする無方向性電磁鋼板の製造方法。   In manufacturing the non-oriented electrical steel sheet according to claim 1 or 2, in the manufacturing process in which finish annealing is performed subsequent to hot rolling, pickling, and cold rolling, the finishing temperature of hot rolling is 850 ° C. or more, and the winding temperature is 650. A method for producing a non-oriented electrical steel sheet, characterized in that the temperature is raised below 15 ° C. and the rate of temperature increase in finish annealing is 15 ° C./sec or more. 請求項1または2の電磁鋼板を製造するに際し、熱延、熱延板焼鈍、酸洗、冷延に引き続いて仕上焼鈍を施す製造工程において、熱延の仕上温度を850℃以上、巻取温度を650℃未満とし、熱延板焼鈍を900℃以上1150℃以下で60秒以上施した上で少なくとも650℃までの冷却速度を15℃/sec以上とし、仕上焼鈍の昇温速度を15℃/sec以上にすることを特徴とする無方向性電磁鋼板の製造方法。   In producing the electrical steel sheet according to claim 1 or 2, in the production process of performing hot annealing, hot rolled sheet annealing, pickling, and cold rolling followed by finish annealing, the hot rolling finishing temperature is 850 ° C or higher, the winding temperature Is heated to 900 ° C or higher and 1150 ° C or lower for 60 seconds or longer, the cooling rate to at least 650 ° C is set to 15 ° C / sec or higher, and the temperature increase rate of finish annealing is 15 ° C / second. The manufacturing method of the non-oriented electrical steel sheet characterized by making it into sec or more. 請求項3または請求項4にて製造した電磁鋼板をコアに加工後に歪取焼鈍を施すに際し、15℃/sec以下で昇温し、750℃以上900℃以下で30分以上3時間以下の焼鈍を行なうことを特徴とする無方向性電磁鋼板の歪取焼鈍方法。   When performing stress relief annealing after machining the electrical steel sheet produced in claim 3 or claim 4 into a core, the temperature is increased at 15 ° C / sec or less, and annealing is performed at 750 ° C to 900 ° C for 30 minutes to 3 hours. A method for strain relief annealing of a non-oriented electrical steel sheet, characterized in that:
JP2003423346A 2003-12-19 2003-12-19 Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method Expired - Lifetime JP4267439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423346A JP4267439B2 (en) 2003-12-19 2003-12-19 Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003423346A JP4267439B2 (en) 2003-12-19 2003-12-19 Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method

Publications (2)

Publication Number Publication Date
JP2005179746A JP2005179746A (en) 2005-07-07
JP4267439B2 true JP4267439B2 (en) 2009-05-27

Family

ID=34783912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423346A Expired - Lifetime JP4267439B2 (en) 2003-12-19 2003-12-19 Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method

Country Status (1)

Country Link
JP (1) JP4267439B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5159751B2 (en) * 2009-11-30 2013-03-13 株式会社神戸製鋼所 Manufacturing method of dust core and dust core obtained by this manufacturing method
JP5716811B2 (en) * 2013-11-07 2015-05-13 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
JP6682853B2 (en) * 2015-12-28 2020-04-15 日本製鉄株式会社 Non-oriented electrical steel sheet and method for producing non-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2005179746A (en) 2005-07-07

Similar Documents

Publication Publication Date Title
KR101682284B1 (en) Non-oriented electrical steel sheet
KR101508082B1 (en) Method of producing non-oriented electrical steel sheet
JP5605518B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
JP4613748B2 (en) Manufacturing method of electrical steel sheet
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20180089500A (en) Non-oriented electric steel sheet and manufacturing method thereof
JP2015515539A (en) Non-oriented silicon steel and method for producing the same
JP4589747B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, its manufacturing method and strain relief annealing method
JP2005120399A (en) High-strength and low-specific-gravity steel sheet having excellent ductility, and its manufacturing method
EP4001450A1 (en) 600mpa grade non-oriented electrical steel sheet and manufacturing method thereof
JP6763148B2 (en) Non-oriented electrical steel sheet
TWI551694B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
WO2019105041A1 (en) Non-oriented electrical steel sheet with excellent magnetism and manufacturing method therefor
KR101653142B1 (en) Non-orinented electrical steel sheet and method for manufacturing the same
JP6194956B2 (en) Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
JP5263012B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2017036491A (en) Non-oriented electromagnetic steel sheet excellent in iron loss and manufacturing method therefor
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method
JP2002363713A (en) Semiprocess nonoriented silicon steel sheet having extremely excellent core loss and magnetic flux density and production method therefor
JP4267439B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method
JPH05140648A (en) Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss
JP7052934B2 (en) Hot-rolled steel sheet for non-oriented electrical steel sheet
JP2004332031A (en) Method for manufacturing non-oriented electromagnetic steel sheet superior in magnetic properties
JP4235132B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R151 Written notification of patent or utility model registration

Ref document number: 4267439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term