JP5263012B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP5263012B2
JP5263012B2 JP2009134175A JP2009134175A JP5263012B2 JP 5263012 B2 JP5263012 B2 JP 5263012B2 JP 2009134175 A JP2009134175 A JP 2009134175A JP 2009134175 A JP2009134175 A JP 2009134175A JP 5263012 B2 JP5263012 B2 JP 5263012B2
Authority
JP
Japan
Prior art keywords
less
mass
oriented electrical
steel sheet
electrical steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009134175A
Other languages
Japanese (ja)
Other versions
JP2010280936A (en
Inventor
雅文 宮嵜
英明 山村
猛 久保田
洋介 黒崎
和人 川上
和実 水上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2009134175A priority Critical patent/JP5263012B2/en
Publication of JP2010280936A publication Critical patent/JP2010280936A/en
Application granted granted Critical
Publication of JP5263012B2 publication Critical patent/JP5263012B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-oriented electromagnetic steel sheet that can be produced at a low cost with excellent productivity without changing a conventional production process, is excellent in crystal grain growing property at stress relief annealing and shows good high-frequency iron loss, and a method for producing the same. <P>SOLUTION: The non-oriented electromagnetic steel sheet is composed of, by mass, &le;0.01% C, 1.0-3.5% Si, 0.2-3.0% Al, 0.1-2.0% Mn, &le;0.1% P, &le;0.005% S, 0.0015-0.01% Ti, &le;0.005% N, 0.001-0.01% Nd and the balance being iron and unavoidable impurities. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、モーター鉄芯などの高周波用途に用いられる高級グレードの無方向性電磁鋼板の鉄損を下げて、エネルギーロスを少なくし、電気機器の効率化を図り省エネに寄与する、鉄損、特に歪取焼鈍後の鉄損に優れた無方向性電磁鋼板およびその製造方法に関するものである。   The present invention reduces the iron loss of high-grade non-oriented electrical steel sheets used for high-frequency applications such as motor iron cores, reduces energy loss, contributes to energy efficiency by improving the efficiency of electrical equipment, In particular, the present invention relates to a non-oriented electrical steel sheet excellent in iron loss after strain relief annealing and a method for producing the same.

近年、地球温暖化防止の観点から省エネが大きな問題となっており、冷暖房器具のモーターや電気自動車のメインモーターなどの分野で更なる消費電力の低減が求められている。これらのモーターは高回転で使用されることが多い。このため、モーター素材となる無方向性電磁鋼板に対し、従来の商用周波数である50〜60Hzよりも高周波の400〜800Hz域での鉄損の改善が求められている。   In recent years, energy saving has become a major problem from the viewpoint of preventing global warming, and further reduction of power consumption is required in fields such as motors for air conditioning equipment and main motors for electric vehicles. These motors are often used at high speeds. For this reason, the improvement of the iron loss in the 400-800 Hz range of a high frequency is calculated | required with respect to the non-oriented electrical steel plate used as a motor raw material from 50-60 Hz which is the conventional commercial frequency.

無方向性電磁鋼板の高周波域での鉄損を改善する方策として、例えば特許文献1に記載されたように、SiやAlの含有量を増加させ電気抵抗を増加させることが従来一般的に行われている。   As a measure for improving the iron loss in the high frequency range of the non-oriented electrical steel sheet, for example, as described in Patent Document 1, it has been generally performed to increase the electric resistance by increasing the content of Si or Al. It has been broken.

WO93/08313号公報WO93 / 08313

ここで、SiやAl量の増加に伴い、合金原料に不可避的に含まれるTiが鋼板に多量に混入するようになる。鋼板中のTiが増えると、Tiは鋼板中でTiN、TiS、TiCなどの析出物(以降、「Ti介在物」と記載する場合がある。)を生成する。鋼板中にこれらの析出物が微細かつ多量に析出すると、鋼板の焼鈍時での結晶粒成長をピン止め阻害して結晶粒成長を抑制し、磁気特性を劣化させる。特に、需要家が打ち抜き加工の後に、例えば750℃×2時間程度の歪取り焼鈍を行って結晶粒を成長させる方策が択られているが、Ti介在物は歪取り焼鈍中に結晶粒界に微細かつ多量に析出し易いため、結晶粒成長を著しく損ねて磁気特性を大きく劣化させる。   Here, with an increase in the amount of Si or Al, a large amount of Ti inevitably contained in the alloy raw material comes to be mixed into the steel sheet. When Ti in the steel sheet increases, Ti generates precipitates such as TiN, TiS, and TiC (hereinafter sometimes referred to as “Ti inclusions”) in the steel sheet. If these precipitates are deposited in a fine and large amount in the steel sheet, the crystal grain growth during the annealing of the steel sheet is pinned to inhibit the crystal grain growth and the magnetic properties are deteriorated. In particular, after the punching process, for example, a measure of strain relief annealing of about 750 ° C. × 2 hours, for example, to grow crystal grains has been selected, but Ti inclusions are formed at grain boundaries during strain relief annealing. Since it is fine and easily precipitates in large quantities, crystal grain growth is remarkably impaired and magnetic properties are greatly deteriorated.

このため、鋼板中の微細なTi介在物を極力低減させることが必要である。その方策のひとつは、不純物としてのTi含有量の少ない合金原料を使用することであるが、コストアップを招くという問題がある。また鋼中のN、S、Cを低下させることもTi介在物を低減する方策のひとつであり、真空脱ガス処理などによってSやCを充分下げることは現在の技術で可能であるものの、長時間の処理が必要となり、生産性の悪化が避けられない。また、Nを溶鋼中に混入させない様に、精錬容器のシールを強化することも考えられるが、コストアップを招くとともに、この様な処置を行ってもやはりNの溶鋼への混入は避けられないという問題がある。   For this reason, it is necessary to reduce the fine Ti inclusions in the steel plate as much as possible. One of the measures is to use an alloy raw material having a small Ti content as an impurity, but there is a problem that the cost is increased. Reducing N, S, and C in steel is also one of the measures to reduce Ti inclusions, and although it is possible with current technology to sufficiently reduce S and C by vacuum degassing treatment, etc. Processing of time is necessary, and deterioration of productivity is inevitable. In addition, it is conceivable to strengthen the refining vessel seal so that N is not mixed into the molten steel, but this leads to an increase in cost, and even if such measures are taken, mixing of N into the molten steel is unavoidable. There is a problem.

本発明は、常法の製造工程を変えることなく、コストと生産性に優れて製造することが可能で、歪取り焼鈍時の結晶粒成長性に優れ、かつ高周波鉄損の良好な無方向性電磁鋼板およびその製造方法を提供することを目的とする。   The present invention can be manufactured with excellent cost and productivity without changing the conventional manufacturing process, excellent crystal grain growth during strain relief annealing, and good non-directionality of high-frequency iron loss. An object of the present invention is to provide an electromagnetic steel sheet and a method for manufacturing the same.

本発明の要旨は次の通りである。
(1) 質量%で、C:0.01%以下、Si:1.0%以上3.5%以下、Al:0.2%以上3.0%以下、Mn:0.1%以上2.0%以下、P:0.1%以下、S:0.005%以下、Ti:0.0015%以上0.01%以下、N:0.005%以下、Nd:0.001%以上0.01%以下からなり、残部が鉄および不可避的不純物であることを特徴とする無方向性電磁鋼板。
(2) 質量%で、さらに、Cu:0.5%以下あるいはCr:20%以下の何れか1種以上を含有することを特徴とする(1)に記載の無方向性電磁鋼板。
(3) 質量%で、さらに、SnまたはSbの何れか1種以上の合計量が0.3%以下含有することを特徴とする(1)または(2)に記載の無方向性電磁鋼板。
(4) 質量%で、さらに、Ni:1.0%以下含有することを特徴とする(1)〜(3)のいずれかに記載の無方向性電磁鋼板。
(5) 質量%で、C:0.01%以下、Si:1.0%以上3.5%以下、Al:0.2%以上3.0%以下、Mn:0.1%以上2.0%以下、P:0.1%以下、S:0.005%以下、Ti:0.0015%以上0.01%以下、N:0.005%以下、Nd:0.001%以上0.01%以下に溶鋼成分を調整し、該溶鋼を鋳造して得られた鋳片を熱間圧延し、得られた熱延板に対して1000℃〜1200℃の範囲内に10分以上保持する熱処理を行うことを特徴とする無方向性電磁鋼板の製造方法。
(6) 前記の溶鋼成分を調整する際に、さらに、質量%で、Cu:0.5%以下あるいはCr:20%以下の何れか1種以上を添加することを特徴とする(5)に記載の無方向性電磁鋼板の製造方法。
(7) 前記の溶鋼成分を調整する際に、さらに、質量%で、SnまたはSbの一種または二種をその合計量で0.3%以下添加することを特徴とする(5)または(6)に記載の無方向性電磁鋼板の製造方法。
(8) 前記の溶鋼成分を調整する際に、さらに、質量%で、Ni:1.0%以下を添加することを特徴とする(5)〜(7)のいずれかに記載の無方向性電磁鋼板の製造方法。
The gist of the present invention is as follows.
(1) By mass%, C: 0.01% or less, Si: 1.0% to 3.5%, Al: 0.2% to 3.0%, Mn: 0.1% to 2. 0% or less, P: 0.1% or less, S: 0.005% or less, Ti: 0.0015% or more and 0.01% or less, N: 0.005% or less, Nd: 0.001% or more. A non-oriented electrical steel sheet comprising 01% or less, the balance being iron and inevitable impurities.
(2) The non-oriented electrical steel sheet according to (1), further comprising at least one of Cu: 0.5% or less or Cr: 20% or less in mass%.
(3) The non-oriented electrical steel sheet according to (1) or (2), characterized in that the total amount of at least one of Sn and Sb is 0.3% by mass or less by mass%.
(4) The non-oriented electrical steel sheet according to any one of (1) to (3), further containing Ni: 1.0% or less in mass%.
(5) By mass%, C: 0.01% or less, Si: 1.0% or more and 3.5% or less, Al: 0.2% or more and 3.0% or less, Mn: 0.1% or more. 0% or less, P: 0.1% or less, S: 0.005% or less, Ti: 0.0015% or more and 0.01% or less, N: 0.005% or less, Nd: 0.001% or more. The molten steel component is adjusted to 01% or less, the slab obtained by casting the molten steel is hot-rolled, and is retained in the range of 1000 ° C. to 1200 ° C. for 10 minutes or more with respect to the obtained hot rolled sheet. A method for producing a non-oriented electrical steel sheet, characterized by performing a heat treatment.
(6) When adjusting the above-mentioned molten steel component, further, by mass%, any one or more of Cu: 0.5% or less or Cr: 20% or less is added to (5) The manufacturing method of the non-oriented electrical steel sheet of description.
(7) When adjusting the above-mentioned molten steel component, it is further characterized by adding 0.3% or less of Sn or Sb as a total amount in an amount of 0.3% or less by mass%. ) Manufacturing method of the non-oriented electrical steel sheet.
(8) When adjusting the molten steel component, the non-directional property according to any one of (5) to (7), wherein Ni: 1.0% or less is further added by mass%. A method for producing electrical steel sheets.

本発明により、SiやAlの含有量が高い無方向性電磁鋼板中に内存する微細なTi介在物を充分抑制することができ、焼鈍時の結晶粒成長性を改善でき、高周波域での鉄損に優れた無方向性電磁鋼板を、コストと生産性に優れて製造することが可能となり、モーター特性を改善して省エネに貢献できる。   According to the present invention, the fine Ti inclusions present in the non-oriented electrical steel sheet having a high Si and Al content can be sufficiently suppressed, the crystal grain growth during annealing can be improved, and the iron in the high frequency range can be improved. Non-oriented electrical steel sheets with excellent loss can be manufactured with excellent cost and productivity, and can contribute to energy saving by improving motor characteristics.

鋼中のNd含有量と歪取り焼鈍後の鉄損値との関係を示す。The relationship between Nd content in steel and the iron loss value after stress relief annealing is shown.

以下に、本発明について具体的に述べる。   The present invention will be specifically described below.

無方向性電磁鋼(以下、鋼と略記する)へNdを添加すると、鋼中のTiSの形成が抑制され、かつTiNの析出・成長が促進されて鋼中に粗大TiNが生成し、さらに歪取り焼鈍後の製品板におけるTiCが著しく減少し、以上によって微細なTi介在物が減少し、微細Ti介在物による結晶粒成長の抑制が緩和され、結晶粒成長性が大幅に改善されることが、鋭意調査の結果明らかとなった。以下、これについて詳細に説明する。なお、Ndは原子番号60の元素であり、ランタノイドの一種である。   When Nd is added to a non-oriented electrical steel (hereinafter abbreviated as “steel”), TiS formation in the steel is suppressed, precipitation and growth of TiN are promoted, coarse TiN is generated in the steel, and strain is further increased. TiC in the product plate after pre-annealing is significantly reduced, fine Ti inclusions are reduced by the above, suppression of crystal grain growth by fine Ti inclusions is alleviated, and crystal grain growth is greatly improved. As a result of earnest investigation, it became clear. This will be described in detail below. Nd is an element having an atomic number of 60 and is a kind of lanthanoid.

真空溶解を用いたラボ実験を行い、質量%で、C:0.01%以下、Si:1.0%以上3.5%以下、Al:0.2%以上3.0%以下、Mn:0.1%以上2.0%以下、P:0.1%以下、S:0.005%以下、Ti:0.0015%以上0.01%以下、N:0.0004%以上0.005%以下、の成分の溶鋼をベースとして、Nd:0%超0.05%以下の範囲内で成分を変化させた種々の溶鋼を製造し、凝固した後、ラボで熱延、熱延板焼鈍、冷延、仕上げ焼鈍、歪取り焼鈍の順で実験を行って製品サンプルを製造し、以下の方法により介在物ならびに結晶粒の調査を行った。   A laboratory experiment using vacuum melting was performed, and in mass%, C: 0.01% or less, Si: 1.0% to 3.5%, Al: 0.2% to 3.0%, Mn: 0.1% or more and 2.0% or less, P: 0.1% or less, S: 0.005% or less, Ti: 0.0015% or more and 0.01% or less, N: 0.0004% or more and 0.005 Based on molten steel with a component of less than or equal to%, Nd: Various molten steels with components changed within a range of more than 0% and less than 0.05% are manufactured, solidified, and then hot-rolled and annealed in a laboratory Experiments were carried out in the order of cold rolling, finish annealing and strain relief annealing to produce product samples, and inclusions and crystal grains were investigated by the following method.

介在物調査方法の一例を説明する。サンプルを表面から適宜厚さにまで研磨して鏡面とし、後述のエッチングを施した後にレプリカを採取し、レプリカに転写された介在物をフィールドエミッション型透過式電子顕微鏡およびフィールドエミッション型走査式電子顕微鏡により観察した。なお、前者の場合、レプリカでなく薄膜を作成して観察してもよい。   An example of the inclusion investigation method will be described. The sample is polished from the surface to an appropriate thickness to make a mirror surface, and after performing etching described later, a replica is collected, and the inclusions transferred to the replica are subjected to a field emission transmission electron microscope and a field emission scanning electron microscope. Was observed. In the former case, instead of replicas, a thin film may be prepared and observed.

エッチング方法は、例えば、黒沢らの方法(黒沢文夫、田口 勇、松本龍太郎:日本金属学会誌、43(1979),p.1068)により非水溶性溶媒液中でサンプルを電解腐食し、介在物を残したまま鋼のみ溶解させて介在物を抽出した。   The etching method is, for example, electrolytic corrosion of a sample in a non-aqueous solvent solution by the method of Kurosawa et al. (Fumio Kurosawa, Isamu Taguchi, Ryutaro Matsumoto: Journal of the Japan Institute of Metals, 43 (1979), p. 1068). The inclusions were extracted by dissolving only steel while leaving

また、結晶粒径はサンプルの断面を鏡面研磨し、ナイタールエッチングを施して結晶粒を現出させて平均結晶粒径を測定した。   The crystal grain size was measured by mirror-polishing the cross section of the sample, performing nital etching to reveal crystal grains, and measuring the average crystal grain size.

上述の結果、製品サンプルにおいて、質量%で0.001%以上のNdを含有させた場合に、歪取り焼鈍後の製品サンプルにおけるTi介在物が著しく減少し、結晶粒成長性が大幅に改善されることが、鋭意調査の結果明らかとなった。このメカニズムについて以下に詳細に説明する。   As a result, when the product sample contains Nd of 0.001% or more by mass%, the Ti inclusions in the product sample after the strain relief annealing are remarkably reduced, and the crystal grain growth property is greatly improved. As a result of earnest investigation, it became clear. This mechanism will be described in detail below.

鋼中で形成されるTi析出物の種類にはTiN、TiSおよびTiCがある。それぞれ析出開始する温度が異なり、TiNは1000℃以上で、TiSは1000℃未満で、TiCは800℃以下で析出する。これらは通常、結晶粒界や転位等を析出サイトにして微細に多数析出し、鋼の結晶粒成長をピン止め阻害する。   Types of Ti precipitates formed in steel include TiN, TiS and TiC. The temperature at which the precipitation starts is different, TiN is 1000 ° C. or higher, TiS is lower than 1000 ° C., and TiC is precipitated at 800 ° C. or lower. These usually precipitate a large number of fine grain boundaries, dislocations and the like as precipitation sites, and inhibit the grain growth of steel.

鋼中にNdをSと結合してNdSを形成する量を超えて添加した場合、Ndの一部は溶鋼段階でSと結合してNdSを形成する。これにより鋼中のSはNdSとして固定され、TiSやMnS等の硫化物の形成が抑制される。   When Nd is added to the steel in an amount exceeding the amount that forms NdS by combining with S, a part of Nd combines with S at the molten steel stage to form NdS. Thereby, S in the steel is fixed as NdS, and formation of sulfides such as TiS and MnS is suppressed.

また、残りのNdは鋼中に固溶する。固溶したNdにより鋼中におけるTiNおよびTiCの形成は促進される。このメカニズムは明らかでないが、固溶Ndが鋼中のTiの活量を上げることにより、Ti析出物の析出、成長が促進されたものと考えられる。   The remaining Nd dissolves in the steel. The formation of TiN and TiC in the steel is promoted by the dissolved Nd. Although this mechanism is not clear, it is considered that precipitation and growth of Ti precipitates were promoted by increasing the activity of Ti in the solid solution Nd.

しかしながら、鋼は熱間圧延などにおいて1000℃超の高温から冷却されるが、このとき固溶Ndの効果によってTi析出物の形成が促進された場合、TiCより高温で析出を開始するTiNの析出・成長が促進され、鋼中のTiがTiNの析出によって消費される。このため、Ti量が0.01質量%以下であれば、TiはTiNの析出により、ほとんど消費され、残りのTiが大幅に減少するため、TiCの析出は寧ろ抑制される。   However, the steel is cooled from a high temperature exceeding 1000 ° C. in hot rolling or the like. At this time, if the formation of Ti precipitates is promoted by the effect of solute Nd, precipitation of TiN that starts precipitation at a higher temperature than TiC. -Growth is promoted and Ti in the steel is consumed by precipitation of TiN. For this reason, if the amount of Ti is 0.01% by mass or less, Ti is almost consumed by the precipitation of TiN, and the remaining Ti is greatly reduced, so that the precipitation of TiC is rather suppressed.

この様に、TiNの析出・成長が促進させるためには、Ti量が0.0015質量%以上存在する必要があることも、併せて知見している。   Thus, it has also been found that the Ti content must be 0.0015% by mass or more in order to promote TiN precipitation / growth.

すなわち、Ti量が0.0015〜0.01質量%の範囲で、同一のTi含有量で比較すると、Ndを添加した場合、TiNの析出、成長がより促進され、TiSおよびTiCの析出、成長はより抑制されることが判明した。このとき、TiNは析出が促進されるのみならず成長も促進されるため、TiNのサイズがより大きくなって微細なTiNが無くなり、結晶粒成長のピン止め効果がより小さくなり、結晶粒成長性が改善される。   That is, when the Ti content is in the range of 0.0015 to 0.01% by mass and the same Ti content is compared, when Nd is added, precipitation and growth of TiN are further promoted, and precipitation and growth of TiS and TiC. Turned out to be more suppressed. At this time, since TiN not only promotes precipitation but also promotes growth, the size of TiN becomes larger and fine TiN disappears, and the pinning effect of crystal grain growth becomes smaller. Is improved.

ここで、TiNのサイズが大きくなる理由については以下のように考えられる。TiNが結晶粒界や転位等を析出サイトにして析出するとき、Ndを添加してもサイト数は変わらない。ここで、Tiの活量増加によってTi析出物の形成が促進されると、TiNの析出数は変わらず、TiNがより成長するようになる。   Here, the reason why the size of TiN increases is considered as follows. When TiN precipitates with crystal grain boundaries and dislocations as precipitation sites, the number of sites does not change even if Nd is added. Here, when the formation of Ti precipitates is promoted by increasing the activity of Ti, the number of TiN precipitates does not change, and TiN grows more.

次に、NdによるTiNの析出、成長の促進効果をさらに好ましくするための、TiNの成長を促進させる熱処理について説明する。TiNは1000℃以上で析出するが、成長をより効率的に促進させるためにはより高温での熱処理が好ましい。但し、高温域ではスケールの多量生成などの問題が副次的に発生するため、1200℃から1000℃の温度域で10分以上保持すればよいことを実験的に知見した。   Next, heat treatment for promoting the growth of TiN for further promoting the effect of promoting the precipitation and growth of TiN by Nd will be described. TiN precipitates at 1000 ° C. or higher, but heat treatment at a higher temperature is preferable in order to promote growth more efficiently. However, since problems such as a large amount of scale generation occur in the high temperature range, it has been experimentally found that the temperature range from 1200 ° C. to 1000 ° C. may be maintained for 10 minutes or more.

以上のメカニズムにより、Ti量が0.0015〜0.01質量%の範囲で、鋼中にNdをSと結合してNdSを形成する量を超えて添加すると、TiNのサイズが大きくなり、かつTiSおよびTiCが減少し、結晶粒成長のピン止め抑制力が小さくなって結晶粒成長が改善される。このときさらに、Tiを不可避的不純物レベルでなく、むしろ高めることによってTiNの成長を促進させ、Tiの無害化を図ることができる。これにより、熱延板焼鈍あるいは冷延板仕上げ焼鈍のみならず、特に歪取り焼鈍におけるTiCの抑制によって、各焼鈍における結晶粒成長が著しく改善される。   By the above mechanism, when the Ti amount is in the range of 0.0015 to 0.01 mass% and Nd is added to the steel in excess of the amount that forms NdS by combining with S, the size of TiN increases, and TiS and TiC are reduced, and the crystal grain growth is improved by reducing the pinning suppression force of the crystal grain growth. At this time, the TiN growth is promoted by increasing the Ti rather than the inevitable impurity level, thereby making the Ti harmless. Thereby, not only hot-rolled sheet annealing or cold-rolled sheet finish annealing, but also the grain growth in each annealing is remarkably improved by suppressing TiC particularly in strain relief annealing.

次に、本発明における成分の限定理由について説明する。   Next, the reasons for limiting the components in the present invention will be described.

[C]:Cは、鋼中でTiCを形成して磁気特性を劣化させるだけでなく、Cの析出による磁気時効が著しくなるので、上限を0.01質量%とした。下限は0質量%を含む。   [C]: C not only deteriorates the magnetic properties by forming TiC in the steel, but also the magnetic aging due to the precipitation of C becomes remarkable, so the upper limit was made 0.01 mass%. The lower limit includes 0% by mass.

[Si]:Siは鉄損を減少させる元素である。下限の1.0質量%より少ないと充分な低鉄損が得られない。なお、鉄損をさらに減少させる観点から、好ましい下限は1.5質量%、より好ましくは2.0質量%である。また、上限の3.5質量%を超えると加工性が著しく不良となるため、上限を3.5質量%とした。なお、上限としてより好ましい値は、冷延性がより良好な3.1質量%であり、さらに好ましい値は3.0質量%であり、一層好ましい値は2.5質量%である。   [Si]: Si is an element that reduces iron loss. If it is less than the lower limit of 1.0% by mass, sufficient low iron loss cannot be obtained. In addition, from a viewpoint of further reducing an iron loss, a preferable minimum is 1.5 mass%, More preferably, it is 2.0 mass%. Further, if the upper limit of 3.5% by mass is exceeded, the workability becomes remarkably poor, so the upper limit was set to 3.5% by mass. A more preferable value as the upper limit is 3.1% by mass with better cold rolling properties, a further preferable value is 3.0% by mass, and a more preferable value is 2.5% by mass.

[Al]:AlはSi同様に鉄損を減少させる元素である。下限の0.2質量%より少ないと充分な低鉄損が得られない。上限の3.0質量%を超えるとコストの増加が著しい。Alの下限は、鉄損の観点から、好ましくは0.3質量%、より好ましくは0.4質量%、さらに好ましくは0.5質量%とする。Alの上限は、コストの観点から、好ましくは2.5質量%、より好ましくは2.0質量%、さらに好ましくは1.8質量%とする。   [Al]: Al is an element that reduces iron loss in the same manner as Si. If it is less than the lower limit of 0.2% by mass, sufficient low iron loss cannot be obtained. When the upper limit of 3.0% by mass is exceeded, the cost increases remarkably. The lower limit of Al is preferably 0.3% by mass, more preferably 0.4% by mass, and still more preferably 0.5% by mass from the viewpoint of iron loss. The upper limit of Al is preferably 2.5% by mass, more preferably 2.0% by mass, and still more preferably 1.8% by mass from the viewpoint of cost.

[Mn]:Mnは鋼板の硬度を増加させ、打抜性を改善するために、0.1質量%以上添加する。なお、上限の2.0質量%は経済的理由によるものである。   [Mn]: Mn is added in an amount of 0.1% by mass or more in order to increase the hardness of the steel sheet and improve the punchability. The upper limit of 2.0% by mass is due to economic reasons.

[P]:Pは材料の強度を高め、加工性を改善するため、下限0質量%超を含有させる。但し過剰な場合は冷延性を損ねるため、0.1質量%以下が好ましい。   [P]: P increases the strength of the material and improves workability, so that the lower limit exceeds 0% by mass. However, if it is excessive, cold rolling properties are impaired, so 0.1% by mass or less is preferable.

[S]:SはTiS等を形成し、結晶粒成長性を悪化させ、鉄損を悪化させる。NdによってNdSを形成することにより無害化されるものの、NdSが過剰に生成すると、NdSによって結晶粒成長が阻害される。NdSの過剰生成を防止する上限として0.005質量%とした。なお、より好ましい上限は0.003質量%である。下限は0質量%を含む。   [S]: S forms TiS or the like, worsens crystal grain growth, and worsens iron loss. Although it is rendered harmless by forming NdS with Nd, when NdS is excessively produced, crystal grain growth is inhibited by NdS. The upper limit for preventing the excessive production of NdS was 0.005% by mass. In addition, a more preferable upper limit is 0.003 mass%. The lower limit includes 0% by mass.

[N]:NはTiNなどの窒化物となり鉄損を悪化させる。本発明によって無害化されるものの、TiNが過剰に生成すると、焼鈍してもTiNを充分成長させて微細TiNを無くすことができなくなる。よって許容できる上限として0.005質量%とした。なお、上限として好ましくは0.003質量%、より好ましくは0.002質量%である。また、前記の理由により、Nはできる限り少ないほうが好ましいが、0質量%に限りなく近づけるには工業的な制約が大きいため、下限を0質量%超とする。なお、工業製造プロセスで可能な脱窒素の下限として0.001質量%を目安とする。さらに極限的に脱窒素した場合、0.0005質量%まで下げると窒化物がさらに抑制されてより好ましい。   [N]: N becomes a nitride such as TiN and worsens iron loss. Although detoxified by the present invention, if TiN is excessively produced, TiN cannot be sufficiently grown even after annealing, and fine TiN cannot be eliminated. Therefore, the allowable upper limit is set to 0.005% by mass. The upper limit is preferably 0.003 mass%, more preferably 0.002 mass%. For the above reasons, it is preferable that N is as small as possible. However, since there are large industrial restrictions to make it as close as possible to 0% by mass, the lower limit is made more than 0% by mass. In addition, 0.001 mass% is a standard as a minimum of the denitrification possible in an industrial manufacturing process. Further, in the case of denitrification to the limit, it is more preferable to reduce the content to 0.0005% by mass because the nitride is further suppressed.

[Ti]:TiはTiN、TiS、TiCなどの微細介在物を生成し、結晶粒成長性を悪化させ、鉄損を悪化させる。本発明によりTiを高めることによってTiN成長を促進させることによりTi介在物が無害化されるものの、TiNが過剰に生成すると、焼鈍してもTiNを充分成長させて微細TiNを無くすことができなくなる。よって許容できる上限として0.01質量%とした。また、上記の理由により、上限として好ましくは0.005質量%である。なお、0.0015質量%を下回るとTi析出物が過少となり、TiNの析出・成長を促進させるためには、Ti量が0.0015質量%以上存在する必要がある。また、Ti量が0.0015質量%を下回ると結晶粒成長の阻害効果が実質的に問題なくなるため、この観点からも、下限は0.0015質量%とする。   [Ti]: Ti generates fine inclusions such as TiN, TiS, and TiC, thereby worsening crystal grain growth and iron loss. Although Ti inclusions are made harmless by promoting TiN growth by increasing Ti according to the present invention, when TiN is excessively produced, it becomes impossible to sufficiently grow TiN and eliminate fine TiN even after annealing. . Therefore, the allowable upper limit is set to 0.01% by mass. For the above reason, the upper limit is preferably 0.005% by mass. If the amount is less than 0.0015% by mass, the amount of Ti precipitates becomes too small. In order to promote TiN precipitation / growth, the amount of Ti needs to be 0.0015% by mass or more. Further, if the Ti content is less than 0.0015% by mass, the effect of inhibiting the growth of crystal grains is substantially eliminated. From this viewpoint, the lower limit is made 0.0015% by mass.

ちなみに、Ti量が多いほど、TiNの析出・成長を促進させることができるため、下限として好ましくは0.002質量%であり、より好ましくは0.0025質量%であり、さらにより好ましくは0.003質量%である。   Incidentally, since the precipitation and growth of TiN can be promoted as the amount of Ti increases, the lower limit is preferably 0.002% by mass, more preferably 0.0025% by mass, and still more preferably 0.00. 003 mass%.

[Nd]:Ndは脱硫元素であり、鋼中でNdSを形成してSを固定する。また、NdをSと結合してNdSを形成する量を超えて添加されたNdは、鋼中に固溶したNdとなり、これによりTiNの析出と成長を促進する。これにより、微細なTiSやTiCの生成を防止または抑制する。Sが0.005質量%以下の鋼中であっても、Ndが0.001質量%未満の場合は、NdSの形成によってNdが消費されて固溶Ndが充分に存在しないことが実験的に確認された。よって、固溶Ndをつくるための下限値として0.001質量%以上であればNdの効果が発揮される。ここで、その効果をより発揮するためには、0.003質量%以上であれば好ましく、0.005質量%を超えればより好ましい。また上限値として0.01質量%を超えるとコストの観点から好ましくない。よって、0.001質量%以上0.01質量%以下とする。   [Nd]: Nd is a desulfurization element, which forms NdS in steel and fixes S. Further, Nd added in an amount exceeding the amount of Nd combined with S to form NdS becomes Nd dissolved in the steel, thereby promoting TiN precipitation and growth. This prevents or suppresses the generation of fine TiS and TiC. Even in steel with S of 0.005% by mass or less, when Nd is less than 0.001% by mass, Nd is consumed due to the formation of NdS and there is no sufficient solute Nd. confirmed. Therefore, the effect of Nd is exhibited if the lower limit for producing solute Nd is 0.001% by mass or more. Here, in order to exhibit the effect more, if it is 0.003 mass% or more, it is preferable, and if it exceeds 0.005 mass%, it is more preferable. Moreover, when it exceeds 0.01 mass% as an upper limit, it is unpreferable from a viewpoint of cost. Therefore, it is set as 0.001 mass% or more and 0.01 mass% or less.

なお、Ndは、原子番号が57のランタンから71のルテシウムまでの15元素からなるランタノイドの一種であるが、上記の効果はNdのみ特異的に有するものであり、その他のランタノイド元素は含有量に含まない。   Nd is a kind of lanthanoid consisting of 15 elements from lanthanum having an atomic number of 57 to lutesium having 71, but the above effect is specific to Nd, and other lanthanoid elements are contained in the content. Not included.

以下に、選択元素について説明する。尚、これらの含有量の下限値は、微量でも含有されていれば良いため、すべて0質量%超とする。   Below, a selective element is demonstrated. In addition, since the lower limit of these content should just be contained even if it is trace amount, it is all over 0 mass%.

[Cu]:Cuは耐食性を向上させ、また固有抵抗を高めて鉄損を改善する。但し、過剰な場合は製品板の表面にヘゲ疵などが発生して表面品位を損ねるため、0.5質量%以下が好ましい。   [Cu]: Cu improves corrosion resistance and increases specific resistance to improve iron loss. However, if the amount is excessive, scabs or the like are generated on the surface of the product plate and the surface quality is impaired, so 0.5 mass% or less is preferable.

[Cr]:Crは耐食性を向上させ、また固有抵抗を高めて鉄損を改善する。但し、過剰な添加はコスト高となるため、20質量%を上限とした。   [Cr]: Cr improves the corrosion resistance and increases the specific resistance to improve the iron loss. However, excessive addition increases the cost, so 20 mass% was made the upper limit.

[Sn]および[Sb]:SnまたはSbは偏析元素であり、磁気特性を悪化させる(111)面の集合組織を阻害し、磁気特性を改善する。これらは1種だけ用いても、あるいは2種を組み合わせて用いても、上記の効果を発揮する。但し、0.3質量%を超えると冷延性が悪化するため、0.3質量%を上限とした。   [Sn] and [Sb]: Sn or Sb is a segregating element, which inhibits the texture of the (111) plane that deteriorates the magnetic properties and improves the magnetic properties. Even if these are used alone or in combination of the two, the above-described effects can be exhibited. However, if it exceeds 0.3% by mass, the cold rollability deteriorates, so 0.3% by mass was made the upper limit.

[Ni]:Niは磁気特性に有利な集合組織を発達させ、鉄損を改善する。但し、過剰な添加はコスト高となるため、1.0質量%を上限とした。   [Ni]: Ni develops a texture favorable to magnetic properties and improves iron loss. However, excessive addition increases the cost, so 1.0 mass% was made the upper limit.

また、以上に述べた成分以外の元素で、本願の鋼の効果を大きくさまたげるものでなければ、含有していても良く、本願発明範囲とする。   In addition, elements other than the components described above may be contained as long as the effects of the steel of the present application are not greatly affected, and are included in the scope of the present invention.

なお、不可避的不純物には以下の元素が含まれる。   Inevitable impurities include the following elements.

[Zr]:Zrは微量でも結晶粒成長を阻害し、歪取り焼鈍後の鉄損を悪化させる。よって、できる限り低減して、0.01質量%以下とすることが好ましい。   [Zr]: Zr inhibits crystal grain growth even in a small amount, and worsens iron loss after strain relief annealing. Therefore, it is preferable to reduce it as much as possible to 0.01% by mass or less.

[V]:Vは窒化物あるいは炭化物を形成し、磁壁移動や結晶粒成長を阻害する。このため、0.01質量%以下とすることが好ましい。   [V]: V forms nitrides or carbides and inhibits domain wall movement and crystal grain growth. For this reason, it is preferable to set it as 0.01 mass% or less.

[Mg]:Mgは脱硫元素であり、鋼中のSと反応してサルファイドを形成し、Sを固定する。含有量が多くなると脱硫効果が強化されるものの、上限の0.05質量%を超えると、過剰なMg硫化物により結晶粒成長が妨げられる。よって0.05質量%以下とすることが好ましい。   [Mg]: Mg is a desulfurization element, reacts with S in steel to form sulfide, and fixes S. If the content is increased, the desulfurization effect is enhanced, but if the upper limit of 0.05% by mass is exceeded, crystal grain growth is hindered by excessive Mg sulfide. Therefore, it is preferable to set it as 0.05 mass% or less.

[O]:Oは0.005質量%より多く含有されると、酸化物が多数生成し、この酸化物によって磁壁移動や結晶粒成長が阻害される。よって、0.005質量%以下とすることが好ましい。   [O]: When O is contained in an amount of more than 0.005% by mass, a large number of oxides are generated, and domain wall movement and crystal grain growth are inhibited by the oxides. Therefore, it is preferable to set it as 0.005 mass% or less.

[B]:Bは粒界偏析元素であり、また窒化物を形成する。この窒化物によって粒界移動が妨げられ、鉄損が悪化する。よって、できる限り低減して、0.005質量%以下とすることが好ましい。   [B]: B is a grain boundary segregation element and forms a nitride. Grain boundary movement is hindered by this nitride, and iron loss deteriorates. Therefore, it is preferable to reduce as much as possible to 0.005 mass% or less.

次に、本発明における好ましい製造条件ならびにその規定理由について説明する。   Next, preferable manufacturing conditions and the reason for the definition in the present invention will be described.

製鋼段階において、転炉や2次精錬炉などの常法により精錬し、所望の組成範囲内に溶製し、溶鋼を取鍋に受け、タンディッシュを介して鋳型に注入し、連続鋳造ないしインゴット鋳造によりスラブ等の鋳片を鋳造する。   In the steelmaking stage, it is refined by conventional methods such as converters and secondary refining furnaces, melted within the desired composition range, the molten steel is taken into a ladle, poured into a mold through a tundish, and continuously cast or ingot A slab or other slab is cast by casting.

この後さらに、熱間圧延し、一回または中間焼鈍を挟む二回以上の冷間圧延、および必要に応じて酸洗処理を施し、製品厚に仕上げる。その際に、本発明の無方向性電磁鋼板を得るためには、熱間圧延後、あるいは冷間圧延前において、鋼中のTiNを成長させるために、1200℃〜1000℃の範囲で10分以上の熱処理を行うことが重要である。次いで仕上げ焼鈍し、絶縁皮膜を塗布する。   Thereafter, the product is further hot-rolled and subjected to one or more cold rollings with intermediate annealing and pickling treatment as necessary to finish the product. At that time, in order to obtain the non-oriented electrical steel sheet of the present invention, after hot rolling or before cold rolling, TiN in the steel is grown for 10 minutes in the range of 1200 ° C to 1000 ° C. It is important to perform the above heat treatment. Next, finish annealing is performed and an insulating film is applied.

以上述べた方法により、鋼板中のTi介在物を制御することが可能となる。   By the method described above, Ti inclusions in the steel sheet can be controlled.

以下に、本発明の効果を実施例に基づいて説明する。
(実施例1)
質量%で、C:0.0019%、Si:2.5%、Mn:0.3%、P:0.05%、N:0.0025%、Al:1.2%、および表1に示す種々元素からなり、残部が鉄および不可避的不純物からなる成分の溶鋼を、転炉と真空脱ガス装置により精錬し、金属Ndを溶鋼に添加して取鍋に受鋼し、タンディッシュを経て、浸漬ノズルにより鋳型内に溶鋼を供給して連続鋳造し鋳片を得た。その後、鋳片を熱延し、1050℃×15分の熱処理をバッチ炉で行い、厚さ0.35mmに冷延し、950℃×30秒の仕上げ焼鈍を行い、絶縁皮膜を塗布し、さらに750℃×2時間の歪取り焼鈍を行い、製品を得た。製品板の析出物および結晶粒径は前記の方法により調査し、製品板の鉄損は、製品板を25cm長に切断してJIS−C−2550に示すエプスタイン法により調査した。ここで、直径50nm以下の析出物が結晶粒界をピン止めしていたのが観察されたので、直径50nm以下の析出物の存在に着目した。
Below, the effect of the present invention is explained based on an example.
Example 1
% By mass, C: 0.0019%, Si: 2.5%, Mn: 0.3%, P: 0.05%, N: 0.0025%, Al: 1.2%, and Table 1 It consists of various elements shown in the figure, and the remainder is composed of iron and inevitable impurities. The refined steel is refined by a converter and vacuum degassing equipment, and the metal Nd is added to the molten steel and received in the ladle. The molten steel was supplied into the mold by an immersion nozzle and continuously cast to obtain a slab. Thereafter, the slab is hot rolled, heat treatment at 1050 ° C. for 15 minutes is performed in a batch furnace, cold rolled to a thickness of 0.35 mm, finish annealing at 950 ° C. for 30 seconds, an insulating film is applied, The product was obtained by performing strain relief annealing at 750 ° C. for 2 hours. The precipitates and crystal grain size of the product plate were investigated by the above method, and the iron loss of the product plate was examined by the Epstein method shown in JIS-C-2550 after cutting the product plate into 25 cm length. Here, since it was observed that precipitates having a diameter of 50 nm or less pinned the grain boundaries, attention was paid to the existence of precipitates having a diameter of 50 nm or less.

Figure 0005263012
Figure 0005263012

結果を表1ならびに図1に示す。本発明に準拠したNo.1〜5は、製品板中に径50nm以下の微細なTiN、TiSおよびTiCは見られなかった。結晶粒は比較的粗大に成長し、鉄損値は良好であった。一方、比較例のNo.6はNdを添加しなかった例であり、またNo.7はNd添加量が本発明範囲を下回った例であるが、製品板中のTiNが径50nm以下の微細なサイズに止まり、TiCの析出が認められた。またNdを添加しなかったNo.6にはTiSが観察され、結晶粒成長および鉄損値は発明例に比べて劣位であった。また、比較例のNo.8は鋼中S量が本発明範囲の上限を上回る例であるが、NdによるS固定が不十分でTiSが析出し、結晶粒成長および鉄損値は発明例に比べて劣位であった。さらにまた、比較例のNo.9は鋼中Ti量が本発明範囲の上限を上回る例であるが、TiNが粗大化し、TiSが析出しなかったものの、余剰のTiによるTiCが析出し、結晶粒成長および鉄損値は発明例に比べて劣位であった。
(実施例2)
質量%で、C:0.0015%、Si:3.0%、Mn:0.4%、P:0.1%、S:0.0021%、Al:0.6%、Ti:0.002%、N:0.0022%、Nd:0.0035%からなり、残部が鉄および不可避的不純物からなる成分の鋼を、高周波真空溶解装置により溶解し、鋳型に注入してインゴットを得た。その後、インゴットを熱延し、熱延板に表2に示す種々の焼鈍処理を行った後、厚さ0.35mmに冷延し、950℃×30秒の仕上げ焼鈍を行い、鋼板サンプルを得、製品板の析出物および結晶粒径を前記の方法により調査した。
The results are shown in Table 1 and FIG. In Nos. 1 to 5 according to the present invention, fine TiN, TiS and TiC having a diameter of 50 nm or less were not observed in the product plate. The crystal grains grew relatively coarse and the iron loss value was good. On the other hand, No. 6 in the comparative example is an example in which Nd was not added, and No. 7 was an example in which the amount of Nd added was below the range of the present invention. The size of the TiC film was small and precipitation of TiC was observed. Further, TiS was observed in No. 6 to which Nd was not added, and the crystal grain growth and iron loss values were inferior to those of the inventive examples. Comparative Example No. 8 is an example in which the amount of S in the steel exceeds the upper limit of the range of the present invention, but S fixation by Nd is insufficient, TiS precipitates, and the grain growth and iron loss values are in the invention example. It was inferior in comparison. Furthermore, No. 9 of the comparative example is an example in which the amount of Ti in the steel exceeds the upper limit of the range of the present invention. The grain growth and iron loss values were inferior to those of the inventive examples.
(Example 2)
In mass%, C: 0.0015%, Si: 3.0%, Mn: 0.4%, P: 0.1%, S: 0.0021%, Al: 0.6%, Ti: 0.00. 002%, N: 0.0022%, Nd: 0.0035%, the remainder of the steel composed of iron and inevitable impurities was melted by a high-frequency vacuum melting device and injected into a mold to obtain an ingot . Thereafter, the ingot was hot-rolled and subjected to various annealing treatments shown in Table 2 on the hot-rolled sheet, and then cold-rolled to a thickness of 0.35 mm and subjected to finish annealing at 950 ° C. × 30 seconds to obtain a steel plate sample. The precipitates on the product plate and the crystal grain size were investigated by the method described above.

Figure 0005263012
Figure 0005263012

結果を表2に示す。本発明に準拠したNo.1〜4は製品板中に平均直径65〜80nmの比較的粗大なTiNが見られ、結晶粒径は115〜130μmと充分に成長した。また製品板の表面にはスケール疵が発生しなかった。一方、焼鈍温度が1250℃と本発明範囲を上回ったNo.5は、製品板中のTiNは平均直径で105nmと比較的粗大であり、結晶粒径は140μmと充分に成長したが、製品板の表面にスケールの押し込み疵が多数発生し、製品として不可であった。また、No.6は焼鈍時間が、No.7は焼鈍温度が、No.8は焼鈍温度および時間が、本発明範囲を下回った例であるが、いずれも製品板中のTiNの平均直径が20〜30nmと比較的微細に止まり、結晶粒径は80〜90μmであり本発明例より劣位であることが明らかであった。   The results are shown in Table 2. In Nos. 1 to 4 according to the present invention, relatively coarse TiN having an average diameter of 65 to 80 nm was found in the product plate, and the crystal grain size was sufficiently grown to 115 to 130 μm. In addition, scale wrinkles did not occur on the surface of the product plate. On the other hand, No. 5, which has an annealing temperature of 1250 ° C., which exceeds the range of the present invention, has a relatively coarse TiN average diameter of 105 nm and a crystal grain size of 140 μm. Many indentations of the scale occurred on the surface of the product, which was not possible as a product. No. 6 is an annealing time, No. 7 is an annealing temperature, and No. 8 is an example in which the annealing temperature and time are below the range of the present invention, both of which have an average diameter of TiN in the product plate. The crystal grain size was 80 to 90 μm, which was relatively inferior to the examples of the present invention.

以上説明した通り、無方向性電磁鋼板中に内包される微細なTi析出物を充分抑制することにより、充分良好な磁気特性を得ることが可能となり、需要家のニーズを満たしつつ省エネに貢献できる。   As explained above, by sufficiently suppressing the fine Ti precipitates contained in the non-oriented electrical steel sheet, it becomes possible to obtain sufficiently good magnetic properties, which can contribute to energy saving while satisfying customer needs. .

Claims (8)

質量%で、C:0.01%以下、Si:1.0%以上3.5%以下、Al:0.2%以上3.0%以下、Mn:0.1%以上2.0%以下、P:0.1%以下、S:0.005%以下、Ti:0.0015%以上0.01%以下、N:0.005%以下、Nd:0.001%以上0.01%以下からなり、残部が鉄および不可避的不純物であることを特徴とする無方向性電磁鋼板。   In mass%, C: 0.01% or less, Si: 1.0% or more and 3.5% or less, Al: 0.2% or more and 3.0% or less, Mn: 0.1% or more and 2.0% or less P: 0.1% or less, S: 0.005% or less, Ti: 0.0015% or more and 0.01% or less, N: 0.005% or less, Nd: 0.001% or more and 0.01% or less A non-oriented electrical steel sheet, characterized in that the balance is iron and inevitable impurities. 質量%で、さらに、Cu:0.5%以下あるいはCr:20%以下の何れか1種以上を含有することを特徴とする請求項1に記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to claim 1, further comprising at least one of Cu: 0.5% or less or Cr: 20% or less in mass%. 質量%で、さらに、SnまたはSbの何れか1種以上の合計量が0.3%以下含有することを特徴とする、請求項1または2に記載の無方向性電磁鋼板。   3. The non-oriented electrical steel sheet according to claim 1, wherein the non-oriented electrical steel sheet according to claim 1, further comprising 0.3% or less of a total amount of at least one of Sn and Sb. 質量%で、さらに、Ni:1.0%以下含有することを特徴とする請求項1〜3のいずれかに記載の無方向性電磁鋼板。   The non-oriented electrical steel sheet according to any one of claims 1 to 3, further comprising Ni: 1.0% or less in mass%. 質量%で、C:0.01%以下、Si:1.0%以上3.5%以下、Al:0.2%以上3.0%以下、Mn:0.1%以上2.0%以下、P:0.1%以下、S:0.005%以下、Ti:0.0015%以上0.01%以下、N:0.005%以下、Nd:0.001%以上0.01%以下に溶鋼成分を調整し、該溶鋼を鋳造して得られた鋳片を熱間圧延し、得られた熱延板に対して1000℃〜1200℃の範囲内に10分以上保持する熱処理を行うことを特徴とする無方向性電磁鋼板の製造方法。   In mass%, C: 0.01% or less, Si: 1.0% or more and 3.5% or less, Al: 0.2% or more and 3.0% or less, Mn: 0.1% or more and 2.0% or less P: 0.1% or less, S: 0.005% or less, Ti: 0.0015% or more and 0.01% or less, N: 0.005% or less, Nd: 0.001% or more and 0.01% or less The molten steel component is adjusted to the above, the slab obtained by casting the molten steel is hot-rolled, and the obtained hot-rolled sheet is subjected to a heat treatment for holding in the range of 1000 ° C. to 1200 ° C. for 10 minutes or more. The manufacturing method of the non-oriented electrical steel sheet characterized by the above-mentioned. 前記の溶鋼成分を調整する際に、さらに、質量%で、Cu:0.5%以下あるいはCr:20%以下の何れか1種以上を添加することを特徴とする請求項5に記載の無方向性電磁鋼板の製造方法。   When adjusting the molten steel component, at least one of Cu: 0.5% or less or Cr: 20% or less is added by mass%. A method for producing grain-oriented electrical steel sheets. 前記の溶鋼成分を調整する際に、さらに、質量%で、SnまたはSbの一種または二種をその合計量で0.3%以下添加することを特徴とする請求項5または6に記載の無方向性電磁鋼板の製造方法。   When adjusting the said molten steel component, 0.3% or less of Sn or Sb 1 type or 2 types is further added with the total amount by the mass%, The nothing of Claim 5 or 6 characterized by the above-mentioned. A method for producing grain-oriented electrical steel sheets. 前記の溶鋼成分を調整する際に、さらに、質量%で、Ni:1.0%以下を添加することを特徴とする請求項5〜7のいずれかに記載の無方向性電磁鋼板の製造方法。   The method for producing a non-oriented electrical steel sheet according to any one of claims 5 to 7, further comprising adding Ni: 1.0% or less in mass% when adjusting the molten steel component. .
JP2009134175A 2009-06-03 2009-06-03 Non-oriented electrical steel sheet and manufacturing method thereof Active JP5263012B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134175A JP5263012B2 (en) 2009-06-03 2009-06-03 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009134175A JP5263012B2 (en) 2009-06-03 2009-06-03 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010280936A JP2010280936A (en) 2010-12-16
JP5263012B2 true JP5263012B2 (en) 2013-08-14

Family

ID=43537926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134175A Active JP5263012B2 (en) 2009-06-03 2009-06-03 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5263012B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130306200A1 (en) * 2011-02-24 2013-11-21 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing the same
WO2013121924A1 (en) * 2012-02-14 2013-08-22 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
JP6402865B2 (en) * 2015-11-20 2018-10-10 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
US11225699B2 (en) 2015-11-20 2022-01-18 Jfe Steel Corporation Method for producing non-oriented electrical steel sheet
JP6406522B2 (en) * 2015-12-09 2018-10-17 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet
JP7127308B2 (en) * 2018-03-16 2022-08-30 日本製鉄株式会社 Non-oriented electrical steel sheet

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162115A (en) * 1974-11-29 1976-05-29 Kawasaki Steel Co Tetsusonno hikuimuhokoseikeisokohan
EP0567612A4 (en) * 1991-10-22 1994-04-05 Po Hang Iron & Steel Nonoriented electrical steel sheets with superior magnetic properties, and methods for manufacturing thereof.

Also Published As

Publication number Publication date
JP2010280936A (en) 2010-12-16

Similar Documents

Publication Publication Date Title
JP4681689B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP4510911B2 (en) Method for producing high-frequency non-oriented electrical steel slabs
KR100912974B1 (en) Non-oriented magnetic steel sheet with low iron loss
JP5756862B2 (en) Oriented electrical steel sheet excellent in magnetism and method for producing the same
JP5360336B1 (en) Non-oriented electrical steel sheet
TW200422408A (en) Non-oriented electromagnetic steel plate with excellent iron loss property and the production method thereof
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TW201319273A (en) Non-grain-oriented magnetic steel sheet
JP7159311B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and its manufacturing method
TW200403346A (en) Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
TWI551694B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP5263012B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP4280197B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR100872607B1 (en) Nonoriented electromagnetic steel sheet excellent in blankability and magnetic characteristics after strain removal annealing, and method for production thereof
TWI484048B (en) Non - directional electromagnetic steel plate
JP2006131943A (en) Non-oriented electromagnetic steel sheet with excellently low iron loss
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
JP2005179710A (en) Nonoriented silicon steel sheet having excellent magnetic property after stress relieving annealing, and its production method
US20230366058A1 (en) Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet
JP2005179746A (en) Nonoriented silicon steel sheet having excellent magnetic property, production method therefor, and stress relieving annealing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R151 Written notification of patent or utility model registration

Ref document number: 5263012

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350