JP4280197B2 - Non-oriented electrical steel sheet and manufacturing method thereof - Google Patents

Non-oriented electrical steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JP4280197B2
JP4280197B2 JP2004135675A JP2004135675A JP4280197B2 JP 4280197 B2 JP4280197 B2 JP 4280197B2 JP 2004135675 A JP2004135675 A JP 2004135675A JP 2004135675 A JP2004135675 A JP 2004135675A JP 4280197 B2 JP4280197 B2 JP 4280197B2
Authority
JP
Japan
Prior art keywords
less
mass
inclusions
rem
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004135675A
Other languages
Japanese (ja)
Other versions
JP2005336503A (en
Inventor
渡 大橋
明人 清瀬
雅文 宮嵜
健一郎 宮本
猛 久保田
洋介 黒崎
吉宏 有田
隆 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004135675A priority Critical patent/JP4280197B2/en
Publication of JP2005336503A publication Critical patent/JP2005336503A/en
Application granted granted Critical
Publication of JP4280197B2 publication Critical patent/JP4280197B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Description

本発明は、モーター鉄芯などに用いられる無方向性電磁鋼板の鉄損を下げて、エネルギーロスを少なくし、電気機器の効率化を図り、省エネに寄与すべく、鉄損、特に、歪取焼鈍後の鉄損に優れた無方向性電磁鋼板を提供することを目的とする。   The present invention reduces the iron loss of non-oriented electrical steel sheets used for motor iron cores, etc., reduces energy loss, increases the efficiency of electrical equipment, and contributes to energy saving. It aims at providing the non-oriented electrical steel sheet excellent in the iron loss after annealing.

無方向性電磁鋼板は、結晶粒径が150μm程度で鉄損が最小となることが知られている。このため、製品特性の観点から、あるいは、製造の簡略化、高生産性化の観点から、仕上げ焼鈍での結晶粒成長性のより良い鋼板が望まれている。   Non-oriented electrical steel sheets are known to have a minimum iron loss when the crystal grain size is about 150 μm. For this reason, from the viewpoint of product characteristics, or from the viewpoint of simplification of production and high productivity, a steel sheet having better crystal grain growth in finish annealing is desired.

一方、需要家によって鉄心の打ち抜き加工が施される際には、打ち抜き加工における打ち抜き精度は、結晶粒が細かいほど良く、結晶粒径は、例えば40μm以下が好ましい。このように、結晶粒径に対する鉄損と打ち抜き加工精度の要求が相反する場合もある。   On the other hand, when an iron core is punched by a customer, the punching accuracy in punching is better as the crystal grains are finer, and the crystal grain size is preferably, for example, 40 μm or less. As described above, there is a case where the iron loss with respect to the crystal grain size and the requirement of the punching accuracy are contradictory.

特に、この相反する要求を満たす場合は、製品板の結晶粒径を細かいまま出荷し、需要家の打ち抜き加工の後に、例えば、750℃×2時間程度の歪取り焼鈍を行って、結晶粒を成長させる方策が択られている。   In particular, when satisfying these conflicting requirements, the product plate is shipped with the crystal grain size being fine, and after punching by the customer, for example, 750 ° C. × 2 hours of strain relief annealing is performed to obtain the crystal grains. Measures to grow are selected.

近年、需要家より低鉄損材の要求ニーズが強く、また、需要家の生産性向上によって歪取り焼鈍の短時間化が志向されてきており、歪取り焼鈍での結晶粒成長性のより良い製品板のニーズが増大してきた。   In recent years, demand for low iron loss materials has been stronger than customers, and shortening of strain relief annealing has been aimed at by improving productivity of customers, and better grain growth in strain relief annealing. The need for product plates has increased.

結晶粒成長を阻害する主たる要因のひとつは、鋼中に微細に分散する介在物である。製品中に含まれる介在物の個数がより多くなるほど、また、大きさが小さくなるほど、結晶粒成長が阻害されることが知られている。   One of the main factors that hinders grain growth is inclusions that are finely dispersed in the steel. It is known that the larger the number of inclusions contained in the product and the smaller the size, the more the grain growth is inhibited.

すなわち、ゼナー(Zener)が提示したように、介在物の球相当半径rと鋼中に占める介在物の体積占有率fで表されるr/f値がより小さいほど、結晶粒成長は、より悪化する。したがって、結晶粒成長を良好化するためには、介在物の個数をより少なくすることは勿論、介在物の大きさを、より粗大化させることが肝要である。   In other words, as suggested by Zener, the smaller the r / f value represented by the sphere equivalent radius r of inclusions and the volume occupancy f of inclusions in the steel, the more the grain growth becomes. Getting worse. Therefore, in order to improve the crystal grain growth, it is important not only to reduce the number of inclusions but also to increase the size of the inclusions.

無方向性電磁鋼板の介在物の径および個数の好ましい範囲に関しては、例えば、特許文献1において、介在物径が0.1[μm]から1[μm]ならびに1[μm]超の介在物を、単位断面積当たり、それぞれ、5000以上105以下[個/mm2]ならびに500以下[個/mm2]の範囲内にすることが開示されている。 Regarding a preferable range of the diameter and the number of inclusions in the non-oriented electrical steel sheet, for example, in Patent Document 1, inclusions having an inclusion diameter of 0.1 [μm] to 1 [μm] and more than 1 [μm] are used. In addition, it is disclosed that the unit cross-sectional area is within the range of 5000 to 10 5 [piece / mm 2 ] and 500 or less [piece / mm 2 ], respectively.

実態がより理解しやすいように、この数値を単位体積の鋼中に存在する介在物の個数、すなわち、介在物の個数密度に換算すると、それぞれ、5×106から1×109[個/mm3]ならびに5×105以下[個/mm3]の範囲となる。 In order to make the actual situation easier to understand, when this number is converted into the number of inclusions present in a unit volume of steel, that is, the number density of inclusions, 5 × 10 6 to 1 × 10 9 [pieces / piece], respectively. mm 3 ] and 5 × 10 5 or less [pieces / mm 3 ].

無方向性電磁鋼板の結晶粒成長を阻害する介在物としては、シリカやアルミナなどの酸化物、硫化マンガンなどの硫化物、窒化アルミや窒化チタンなどの窒化物が知られている。   Known inclusions that inhibit the grain growth of non-oriented electrical steel sheets include oxides such as silica and alumina, sulfides such as manganese sulfide, and nitrides such as aluminum nitride and titanium nitride.

これらの介在物を除去するために、溶鋼段階で高純化を図ればよいことは自明であるが、別法として、種々の元素を鋼に添加して介在物の無害化を図る方法が、いくつか知られている。   In order to remove these inclusions, it is obvious that high purity can be achieved at the molten steel stage. However, as an alternative method, there are several methods for detoxifying inclusions by adding various elements to steel. Is known.

酸化物に関しては、技術進歩により、強脱酸元素であるAlを充分量添加し、酸化物の浮上除去時間を充分に採ることにより、溶鋼段階で酸化物を除去し無害化することが可能となっている。   Regarding oxides, it is possible to remove the oxides at the molten steel stage and make them harmless by adding a sufficient amount of Al, which is a strong deoxidizing element, and taking sufficient time to lift and remove the oxides. It has become.

硫化物に関しては、溶鋼段階で高純化を図る他、例えば、特許文献2、特許文献3、特許文献4などに開示されるように、脱硫元素REMなどの添加によってSを固定する方法が知られている。また、窒化物に関しても、特許文献5あるいは特許文献6などに開示されるように、Bの添加によって粗大介在物としてNを固定する方法が知られている。   Regarding sulfides, in addition to purifying at the molten steel stage, as disclosed in, for example, Patent Document 2, Patent Document 3, and Patent Document 4, a method of fixing S by adding a desulfurization element REM or the like is known. ing. As for nitrides, as disclosed in Patent Document 5 or Patent Document 6 or the like, a method of fixing N as coarse inclusions by adding B is known.

特開2001−271147号公報JP 2001-271147 A 特開昭51−62115号公報JP 51-62115 A 特開昭56−102550号公報JP 56-102550 A 特許3037878号公報Japanese Patent No. 3037878 特許1167896号公報Japanese Patent No. 11678896 特許1245901号公報Japanese Patent No. 1245901

しかし、溶鋼段階での高純化は、製鋼コストアップが避けられないので好ましくなく、上述の添加元素による方法も、製品板の仕上げ焼鈍あるいは打ち抜き加工後の歪取り焼鈍などの、さらなる低温短時間化に伴う結晶粒成長の良好化ならびに鉄損の低減は、不十分であった。   However, high purity in the molten steel stage is not preferable because it is inevitable that steelmaking costs are unavoidable, and the methods using the above-mentioned additive elements are also capable of further shortening the temperature at a lower temperature, such as finish annealing of the product plate or strain relief annealing after punching. The improvement of the crystal grain growth and the reduction of the iron loss accompanying the above were insufficient.

特に記すべきは、前述の特許文献1に開示された推奨範囲内に介在物の個数密度を調整しても、歪取り焼鈍をより低温短時間化すると、結晶粒成長が依然として改善されない場合があった。   It should be noted in particular that even if the number density of inclusions is adjusted within the recommended range disclosed in the above-mentioned Patent Document 1, if the strain relief annealing is performed at a lower temperature for a shorter time, crystal grain growth may still not be improved. It was.

この原因は、従来知見に基づいて調整した介在物径や個数密度が、結晶粒成長を実際に阻害する介在物の組成や径や個数密度と異なるためであることが、後述の様に明らかであった。   The reason for this is that the inclusion diameter and number density adjusted based on conventional knowledge are different from the composition, diameter and number density of inclusions that actually inhibit crystal grain growth, as will be described later. there were.

本発明は、結晶粒を充分に粗大成長させて低鉄損化することが可能であり、特に、打ち抜き加工後の焼鈍がより低温かつより短時間であっても、結晶粒を充分に粗大成長させて低鉄損化することが可能な無方向性電磁鋼板を提供することを目的とする。   The present invention makes it possible to reduce the iron loss by sufficiently growing the crystal grains sufficiently, and in particular, sufficiently growing the crystal grains even if the annealing after punching is performed at a lower temperature and for a shorter time. An object of the present invention is to provide a non-oriented electrical steel sheet that can be reduced in iron loss.

本発明の要旨は次の通りである。   The gist of the present invention is as follows.

)質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、REM:0.0003%以上0.05%以下、Ti:0.0015%超0.02%以下、S:0.005%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[Al]で示されたAlの質量%、[N]で示されたNの質量%、および、[Ti]で示されたTiの質量%が、下記(1)式を満たし、鋼板内に含まれる球相当径100nm未満の介在物の個数密度が1×10 10 [個/mm ]以下であることを特徴とする無方向性電磁鋼板。
log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
(2)質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、REM:0.0003%以上0.05%以下、Ti:0.0015%超0.02%以下、S:0.005%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[Al]で示されたAlの質量%、[N]で示されたNの質量%、および、[Ti]で示されたTiの質量%が、下記(1)式を満たし、鋼板内に含まれる球相当径50nm未満の介在物の個数密度が2.5×10 [個/mm ]以下であることを特徴とする無方向性電磁鋼板。
log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
( 1 ) By mass%, C: 0.01% or less, Si: 0.1% or more and 7.0% or less, Al: 0.1% or more and 3.0% or less, Mn: 0.1% or more. 0% or less, REM: 0.0003% to 0.05%, Ti: more than 0.0015%, 0.02% or less, S: 0.005% or less, N: 0.005% or less, the balance Is composed of iron and inevitable impurities, and the mass% of Al shown by [Al], the mass% of N shown by [N], and the mass% of Ti shown by [Ti] meets the following equation (1), non-oriented electrical steel sheet you wherein a number density of inclusions of less than equivalent spherical diameter 100nm contained within the steel sheet is 1 × 10 10 [pieces / mm 3] or less .
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)
(2) By mass%, C: 0.01% or less, Si: 0.1% or more and 7.0% or less, Al: 0.1% or more and 3.0% or less, Mn: 0.1% or more. 0% or less, REM: 0.0003% to 0.05%, Ti: more than 0.0015%, 0.02% or less, S: 0.005% or less, N: 0.005% or less, the balance Is composed of iron and inevitable impurities, and the mass% of Al shown by [Al], the mass% of N shown by [N], and the mass% of Ti shown by [Ti] The non-oriented electrical steel sheet satisfying the following formula (1) and having a number density of inclusions having a sphere equivalent diameter of less than 50 nm contained in the steel sheet is 2.5 × 10 9 [pieces / mm 3 ] or less. .
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)

)前記鋼板が、さらに、質量%で、P:0.1%以下、Cu:0.5%以下の一種以上を含有することを特徴とする前記(1)または(2)に記載の無方向性電磁鋼板。 (3) the steel sheet further contains, by mass%, P: 0.1% or less, Cu: according to the which is characterized by containing one or more under 0.5% or less (1) or (2) Non- oriented electrical steel sheet.

)質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、REM:0.0003%以上0.05%以下、Ti:0.0015%超0.02%以下、S:0.005%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[Al]で示されたAlの質量%、[N]で示されたNの質量%、および、[Ti]で示されたTiの質量%が、下記(1)式を満たす鋼を、1200℃以上1300℃以下の温度範囲に1分間以上経過させることを特徴とする無方向性電磁鋼板の製造方法。
log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
( 4 ) By mass%, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2. 0% or less, REM: 0.0003% to 0.05%, Ti: more than 0.0015%, 0.02% or less, S: 0.005% or less, N: 0.005% or less, the balance Is composed of iron and inevitable impurities, and the mass% of Al shown by [Al], the mass% of N shown by [N], and the mass% of Ti shown by [Ti] the steel satisfies the following formula (1), the manufacturing method of the non-oriented electrical steel sheet you characterized thereby over one minute to a temperature range of 1200 ° C. or higher 1300 ° C. or less.
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)

)前記鋼が、さらに、質量%で、P:0.1%以下、Cu:0.5%以下の一種以上を含有することを特徴とする前記()に記載の無方向性電磁鋼板の製造方法。 (5) the steel further contains, by mass%, P: 0.1% or less, Cu: non-oriented according to the characterized in that it contains one or more kinds of under 0.5% or less (4) A method for producing electrical steel sheets.

本発明により、無方向性電磁鋼板中に内包される微細な介在物のサイズと個数密度を適正範囲内にでき、従来に比べてより簡易な仕上げ焼鈍や歪取り焼鈍でも充分良好な磁気特性を示すことが可能となり、需要家のニーズを満たしつつ省エネに貢献できる。   According to the present invention, the size and number density of fine inclusions contained in a non-oriented electrical steel sheet can be within an appropriate range, and magnetic characteristics sufficiently good even with simple finish annealing and strain relief annealing compared to conventional ones. Can contribute to energy saving while meeting the needs of consumers.

以下に、本発明について具体的に述べる。   The present invention will be specifically described below.

本発明者は、無方向性電磁鋼板における磁気特性は、鋼板中に内包される微細な介在物が影響していることに着目し、磁気特性や打ち抜き性を良好に示すための介在物のサイズと個数密度の適正範囲を新たに見出した。   The present inventor noted that the fine magnetic inclusions included in the steel sheet have an influence on the magnetic characteristics of the non-oriented electrical steel sheet, and the size of the inclusions for showing good magnetic characteristics and punchability. And the appropriate range of number density was found.

介在物のサイズおよび個数密度が、磁気特性へ及ぼす影響について、以下に示す鋼を用いて説明する。但し、この鋼は一例であり、本発明は、これに限定されるものではない。   The influence of the size and number density of inclusions on the magnetic properties will be described using the steel shown below. However, this steel is an example, and the present invention is not limited to this.

C、Si、Al、Mn、REM、Ti、S、Nを含有し、残部が鉄および不可避的不純物からなる成分の鋼を連続鋳造し、熱延し、熱延板を熱延板焼鈍し、厚さ0.5mmに冷延し、850℃×30秒の仕上げ焼鈍を行い、さらに、絶縁皮膜を塗布して製品とした製品板に、750℃×1.5時間の歪取り焼鈍を施した。   Containing C, Si, Al, Mn, REM, Ti, S, N, the steel of the component consisting of iron and inevitable impurities in the remainder, continuously hot-rolled, hot-rolled sheet annealed, Cold-rolled to a thickness of 0.5 mm, subjected to final annealing at 850 ° C. for 30 seconds, and further subjected to strain relief annealing at 750 ° C. for 1.5 hours on the product plate coated with an insulating film. .

そして、歪取り焼鈍後の製品板における介在物と結晶粒径と鉄損を調査した。その結果を、表1、ならびに、図1および図2に示す。   The inclusions, crystal grain size, and iron loss in the product plate after strain relief annealing were investigated. The results are shown in Table 1 and FIGS.

表1および図1から明らかなように、焼鈍後の結晶粒径および鉄損は、介在物の球相当直径(以降、本発明の介在物については、球相当直径を介在物径または径と記載する。)100nm未満の介在物個数密度と相関があり、介在物個数密度が1×1010[個/mm3]以下で、結晶粒成長ならびに鉄損は良好であった。 As is clear from Table 1 and FIG. 1, the crystal grain size and iron loss after annealing are the equivalent sphere diameter of inclusions (hereinafter, the inclusion equivalent diameter is referred to as inclusion diameter or diameter for inclusions of the present invention). There was a correlation with the inclusion number density of less than 100 nm, the inclusion number density was 1 × 10 10 [pieces / mm 3 ] or less, and the crystal grain growth and the iron loss were good.

また、図2に示すように、介在物径50nm未満の介在物個数密度が2.5×109[個/mm3]以下の場合に、際立って、特性が良好であった。 In addition, as shown in FIG. 2, when the inclusion number density with an inclusion diameter of less than 50 nm is 2.5 × 10 9 [pieces / mm 3 ] or less, the characteristics are markedly good.

一方、介在物径100nm以上の介在物の個数密度が1×109[個/mm3]以下であっても、介在物径100nm未満の介在物個数密度が1×1010[個/mm3]超であれば、特性不良であった。 On the other hand, even if the number density of inclusions with an inclusion diameter of 100 nm or more is 1 × 10 9 [pieces / mm 3 ] or less, the number density of inclusions with an inclusion diameter of less than 100 nm is 1 × 10 10 [pieces / mm 3]. ] If it was over, it was a characteristic defect.

特記すべきことは、介在物径0.1μm(=100nm)以上の介在物の個数密度が1×109[個/mm3]以下であったサンプルにも、多数の100nm未満の介在物が検知されたことであり、介在物径100nm未満、特に、介在物径50nm未満の微細な介在物が結晶粒成長の主たる阻害要因であり、ひいては、鉄損の悪化を引き起こす原因であることを特定できた。 It should be noted that there are many inclusions of less than 100 nm in a sample in which the number density of inclusions having an inclusion diameter of 0.1 μm (= 100 nm) or more was 1 × 10 9 [pieces / mm 3 ] or less. Specified that inclusions with an inclusion diameter of less than 100 nm, in particular fine inclusions with an inclusion diameter of less than 50 nm, are the main impeding factors for crystal grain growth, and in turn cause deterioration of iron loss. did it.

なお、以上の結果は、歪取り焼鈍を750℃×1.5時間行った場合であり、一般的に行われている歪取り焼鈍750℃×2時間より短時間で行った結果であるが、従来レベルの歪取り焼鈍を行った場合には、微細介在物のピン止め作用による結晶粒成長差がより顕著化するので、以上述べた結晶粒成長性ならびに鉄損の適不適が、一層明確になることは言うまでもない。   In addition, the above result is a case where the strain relief annealing is performed at 750 ° C. × 1.5 hours, and is a result obtained by performing the strain relief annealing at 750 ° C. × 2 hours in a short time, When conventional strain relief annealing is performed, the difference in crystal grain growth due to the pinning action of fine inclusions becomes more prominent. Needless to say.

以上により、従来知見を参考にして介在物径100nm以上の介在物の個数密度を特定するだけでは、必ずしも望ましい製品特性が得られないことが判明した。さらに、径100nm未満の介在物個数密度を特定することによって、好ましい製品特性が得られることと、径50nm未満の介在物個数密度を特定することによって、さらに良好な製品特性を得られることが今回明らかとなった。   From the above, it has been found that desirable product characteristics cannot always be obtained simply by specifying the number density of inclusions having an inclusion diameter of 100 nm or more with reference to conventional knowledge. Furthermore, by specifying the inclusion number density with a diameter of less than 100 nm, it is possible to obtain preferable product characteristics, and by specifying the inclusion number density with a diameter of less than 50 nm, it is possible to obtain even better product characteristics. It became clear.

なお、本発明では、鋼板中の介在物のサイズおよび個数密度が、本発明の範囲を満足していれば、良好な製品特性が発揮されるので、鋼を構成する成分は、特に限定されるものではない。   In the present invention, if the size and number density of inclusions in the steel sheet satisfy the scope of the present invention, good product characteristics are exhibited, so the components constituting the steel are particularly limited. It is not a thing.

ここで、介在物調査方法の一例を説明する。サンプルである製品板を表面から適宜厚さにまで研磨して鏡面とし、後述のエッチングを施した後にレプリカを採取し、レプリカに転写された介在物をフィールドエミッション型透過電子顕微鏡により観察した。この場合、レプリカでなく薄膜を作成して観察してもよい。   Here, an example of the inclusion investigation method will be described. The product plate as a sample was polished from the surface to an appropriate thickness to give a mirror surface, and after performing etching described later, the replica was collected, and the inclusions transferred to the replica were observed with a field emission type transmission electron microscope. In this case, instead of replicas, a thin film may be created and observed.

介在物の径と個数密度は一定観察面積中の介在物を全て計測して評価し、また、介在物の組成は、エネルギー分散型エックス線分析装置ならびにディフラクションパターン解析により決定した。   The diameter and number density of inclusions were evaluated by measuring all inclusions in a fixed observation area, and the composition of inclusions was determined by an energy dispersive X-ray analyzer and a diffraction pattern analysis.

介在物の最小サイズに関しては、介在物の格子定数が数オングストローム程度であるので、それ以下のサイズは存在し得ないのは明白であるが、安定的に存在する介在物核の径の下限値は、およそ5nm程度であるので、そのレベルまで観察できる方法(例えば倍率など)を選択すればよい。   Regarding the minimum size of inclusions, since the lattice constant of inclusions is about several angstroms, it is clear that no smaller size can exist, but the lower limit of the diameter of inclusion nuclei that exist stably Is about 5 nm, and a method (for example, magnification) that allows observation up to that level may be selected.

エッチング方法は、例えば、黒沢らの方法(黒沢文夫、田口 勇、松本龍太郎:日本金属学会誌、43(1979),p.1068)により、非水溶溶媒液中でサンプルを電解腐食し、介在物を残したまま鋼のみ溶解させて、介在物を抽出した。   Etching is performed by, for example, electrolytic corrosion of a sample in a non-aqueous solvent solution by the method of Kurosawa et al. (Fumio Kurosawa, Isamu Taguchi, Ryutaro Matsumoto: Journal of the Japan Institute of Metals, 43 (1979), p. 1068). Only the steel was dissolved with the remaining, and inclusions were extracted.

このような方法により、前述の様なTiを含有する鋼の、製品中の微細介在物の組成を調査した結果、径100nm未満の介在物のうち、主たるもの(個数にして50%以下)は、TiN、TiS、または、TiCなどのTi化合物であることが判明した。   As a result of investigating the composition of fine inclusions in the product of the steel containing Ti as described above by such a method, the main inclusions (the number is 50% or less) among the inclusions having a diameter of less than 100 nm. , TiN, TiS, or Ti compounds such as TiC.

これについて、以下に説明する。電磁鋼において、TiN、TiS、および、TiCの生成開始温度は、それぞれ、1200〜1300℃、1000〜1100℃、および、700〜800℃の範囲内にあることが、別途検討により明らかである。   This will be described below. In the electromagnetic steel, it is clear from separate examination that the generation start temperatures of TiN, TiS, and TiC are in the ranges of 1200 to 1300 ° C, 1000 to 1100 ° C, and 700 to 800 ° C, respectively.

すなわち、TiNは、スラブ等鋳造後の冷却過程で生成し、TiSおよびTiCは、スラブ等鋳造後の冷却過程で生成した後、常法の焼鈍工程にて融解し、その後の冷却により再生成する。   That is, TiN is generated in a cooling process after casting such as a slab, and TiS and TiC are generated in a cooling process after casting such as a slab, and then melted in an ordinary annealing process and then regenerated by subsequent cooling. .

この時、鋼中でのTiの拡散移動速度が、それぞれの生成開始温度領域において、他の金属元素に比して数分の一程度に遅いため、Ti化合物は、他の介在物に比して充分に成長しきれず、Ti化合物は、介在物径100nm以上になり得ず、介在物径100nm未満、あるいは場合により、介在物径50nm未満の微細となる。   At this time, the Ti diffusion rate in the steel is about a fraction of that of other metal elements in each production start temperature region, so the Ti compound is in comparison with other inclusions. The Ti compound cannot be increased to an inclusion diameter of 100 nm or more, and becomes fine with an inclusion diameter of less than 100 nm or, in some cases, an inclusion diameter of less than 50 nm.

なお、介在物径がより微細なほうが、介在物の個数密度が必然的に増えるので、結晶粒成長をより強く阻害することは、前述の通り自明である。   As the inclusion diameter is finer, the number density of inclusions inevitably increases, and as described above, it is obvious that the crystal grain growth is more strongly inhibited.

しかし、電磁鋼における結晶粒成長を特により強く阻害する主たる介在物が、介在物径100nm未満の微細介在物であり、これらの個数密度を限定することにより、結晶粒成長、ひいては、鉄損が著しく改善されること、そして、これら介在物径100nm未満の介在物の多くが、TiN、TiS、または、TiCなどのTi化合物であることは、本発明により初めて開示された知見である。   However, the main inclusion that particularly strongly inhibits the grain growth in the electromagnetic steel is a fine inclusion having an inclusion diameter of less than 100 nm. By limiting the number density of these inclusions, the grain growth and thus the iron loss is reduced. It is a finding for the first time disclosed by the present invention that it is remarkably improved and that many inclusions having an inclusion diameter of less than 100 nm are Ti compounds such as TiN, TiS, or TiC.

なお、Tiは、製造工程において微量の混入を防ぐことが、通常、困難である。すなわち、通常の製鋼工程では、電磁鋼以外にもTiを相当量含有する鋼種も製造されるので、耐火物への付着鋼や付着スラグから、電磁鋼には不可避的にTiが混入することがある。   Note that it is usually difficult to prevent a small amount of Ti from being mixed in the manufacturing process. In other words, in the normal steelmaking process, steel types containing a considerable amount of Ti are produced in addition to electromagnetic steel, so that Ti may be inevitably mixed into electromagnetic steel from steel adhering to refractories and adhering slag. is there.

あるいは、電磁鋼のみの製造においても、例えば、Siの成分調整に用いるフェロシリコン合金からの混入や、あるいは、スラグと溶鋼が反応してスラグ内の酸化チタンが還元されて、鋼中に金属Tiが覆するなどにより、鋼中にTiが混入することがある。   Alternatively, even in the production of only electromagnetic steel, for example, contamination from a ferrosilicon alloy used for Si component adjustment, or slag and molten steel react to reduce titanium oxide in the slag, so that metal Ti is contained in the steel. When Ti is covered, Ti may be mixed in the steel.

従来、不可避的に微量混入するTiが結晶粒成長を阻害することは知られていたが、本発明者による調査によって、不可避的に混入するTiを許容し、さらには、好ましいTi範囲になるように積極的な添加によってTi量をコントロールすることにより、結晶粒成長性のより良い無方向性電磁鋼板を得ることが可能であることが判明した。   Conventionally, it was known that Ti inevitably contained in a small amount inhibits crystal grain growth, but according to the investigation by the present inventor, Ti inevitably mixed in is allowed, and further, a preferable Ti range is obtained. It was found that a non-oriented electrical steel sheet with better crystal grain growth can be obtained by controlling the amount of Ti by vigorously adding it.

以下に、介在物への鋼成分の影響について、より詳細に検討した内容を説明する。   Below, the content examined in detail about the influence of the steel component to inclusions is explained.

Ti化合物のうちTiSを無害化するにあたりREMを用いる技術、すなわち、REM添加によりSを固定して硫化物系介在物を減少させる技術は、従来から知られている。   A technique using REM for detoxifying TiS among Ti compounds, that is, a technique for fixing S by adding REM to reduce sulfide inclusions has been conventionally known.

ここで、REMとは、原子番号が57のランタンから71のルテシウムまでの15元素に原子番号が21のスカンジウムと原子番号が39のイットリウムを加えた合計17元素の総称である。   Here, REM is a generic name for a total of 17 elements including 15 elements from lanthanum having an atomic number of 57 to lutesium having an atomic number of 57 plus scandium having an atomic number of 21 and yttrium having an atomic number of 39.

本発明者が、REM添加により起こる現象を仔細に検討した結果、REMがオキシサルファイドないしサルファイドとしてSを固定することにより、微細なTiSの生成を抑制できるのみならず、REMオキシサルファイドないしREMサルファイド上にTiNが複合して析出することによってTiを無害化できる適正な成分範囲を見出すに至った。   As a result of detailed study of the phenomenon caused by the addition of REM, the present inventor not only can suppress the formation of fine TiS by fixing S as oxysulfide or sulfide, but also on REM oxysulfide or REM sulfide. As a result, TiN was combined and precipitated, and an appropriate component range capable of detoxifying Ti was found.

すなわち、電磁鋼において、TiNとAlNの生成開始温度は近いが、量的には圧倒的にAlが優勢なので、AlNの生成開始温度が僅かでもTiNの生成開始温度を上回る場合には、鋼中のNはAlと優先的に結合してAlNの生成に消費され、Alに比べて量的に僅少なTiとNが結合するチャンスが著しく少なくなる。   That is, in the electromagnetic steel, TiN and AlN production start temperatures are close, but since Al is predominant in quantity, if the AlN production start temperature is slightly higher than the TiN production start temperature, N is preferentially bonded to Al and consumed for the generation of AlN, and the chance of bonding Ti and N which is slightly smaller than that of Al is remarkably reduced.

しかしながら、TiNが生成する条件下であるためTiNは生成するが、N量が不十分なために充分に成長できず、また、REMオキシサルファイドないしREMサルファイド上で成長するチャンスを奪われるため、その結果、TiNは、単独で微細に生成することとなるのである。   However, TiN is produced under the conditions that TiN is produced. However, since the amount of N is insufficient, it cannot grow sufficiently, and the opportunity to grow on REM oxysulfide or REM sulfide is deprived. As a result, TiN is finely produced alone.

よって、微細TiNの生成を左右する要件は、TiNの生成温度がAlNの生成温度を上回ることであり、これは、溶解度積によって決定される。   Thus, a requirement that governs the production of fine TiN is that the TiN production temperature exceeds the AlN production temperature, which is determined by the solubility product.

すなわち、[Ti]でTiの質量%、[N]でNの質量%、[Al]でAlの質量%を表した場合、TiNならびにAlNの生成温度は、それぞれ、[Ti]×[N]、[Al]×[N]に応じたものとなる。   That is, when [Ti] represents the mass% of Ti, [N] represents the mass% of N, and [Al] represents the mass% of Al, the generation temperatures of TiN and AlN are respectively [Ti] × [N]. , [Al] × [N].

本発明者は、鋭意検討の結果、REM量が0.0003〜0.05質量%の範囲内にある場合において、成分値が下記(1)式を満たす場合に、REMオキシサルファイドないしREMサルファイドによって、TiNとしてTiが固定され、微細TiNの生成が抑制されることを見出した。   As a result of intensive studies, the present inventor, when the amount of REM is in the range of 0.0003 to 0.05 mass% and the component value satisfies the following formula (1), the REM oxysulfide or REM sulfide is used. The present inventors have found that Ti is fixed as TiN and the production of fine TiN is suppressed.

log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
但し、[Ti]はTiの質量%、[N]はNの質量%、[Al]はAlの質量%を示す。
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)
However, [Ti] represents mass% of Ti, [N] represents mass% of N, and [Al] represents mass% of Al.

これにより、鋼板内に含まれる球相当径100nm未満の介在物の個数密度を1×1010[個/mm3]以下、または、鋼板内に含まれる球相当径50nm未満の介在物の個数密度を2.5×109[個/mm3]以下とすることができ、そのため、同一の焼鈍条件でも結晶粒成長がより良く、よって、焼鈍を短時間化できる無方向性電磁鋼板を提供することが可能となった。 Accordingly, the number density of inclusions having a sphere equivalent diameter of less than 100 nm contained in the steel sheet is 1 × 10 10 [pieces / mm 3 ] or less, or the number density of inclusions having a sphere equivalent diameter of less than 50 nm contained in the steel sheet. Can be made 2.5 × 10 9 [pieces / mm 3 ] or less, and therefore, the grain growth is better even under the same annealing conditions, and therefore a non-oriented electrical steel sheet capable of shortening the annealing time is provided. It became possible.

特に、歪取り焼鈍において、低温短時間で良好な鉄損が得られるようになった。また、従来の一般的な歪取り焼鈍条件である750℃×2時間の焼鈍により、更なる低鉄損が得られるようになった。   In particular, in the strain relief annealing, a good iron loss can be obtained in a short time at a low temperature. Moreover, the further low iron loss came to be obtained by 750 degreeC x 2 hour annealing which is the conventional general distortion removal annealing conditions.

以下に、具体的に、表2を用いて説明する。   Specific description will be given below with reference to Table 2.

No.11は、質量%で、C:0.0024%、Si:2.1%、Al:0.32%、Mn:0.2%、S:0.0025%、Ti:0.0016%、N:0.0019%、REM:0.0045%を含有した鋼である。   No. 11 is mass%, C: 0.0024%, Si: 2.1%, Al: 0.32%, Mn: 0.2%, S: 0.0025%, Ti: 0.0016%, N : 0.0019%, REM: Steel containing 0.0045%.

また、No.13、No.15からNo.20は、質量%で、C:0.0024%、Si:2.1%、Mn:0.2%、S:0.0025%、P:0.02%、Cu:0.01%を含有し、さらに、Al、Ti、NおよびREMの含有量を、表2に示すとおりに種々変更した鋼である。 No. 1 3, No. 1 15 to No. 20 is mass% and contains C: 0.0024%, Si: 2.1%, Mn: 0.2%, S: 0.0025%, P: 0.02%, Cu: 0.01% In addition, the steel has various contents of Al, Ti, N and REM as shown in Table 2.

これらの鋼を連続鋳造し、熱間圧延し、熱延板焼鈍し、厚さ0.50mmに冷間圧延し、850℃×30秒の仕上げ焼鈍を施し、絶縁皮膜を塗布して製品板を作成した。このときの製品板の結晶粒径は、いずれも、30〜33μmの範囲内にあった。   These steels are continuously cast, hot-rolled, hot-rolled sheet annealed, cold-rolled to a thickness of 0.50 mm, finish-annealed at 850 ° C x 30 seconds, coated with an insulating film, Created. The crystal grain size of the product plate at this time was in the range of 30 to 33 μm.

次に、これら製品板に、従来一般的に行われるより短時間の750℃×1.5時間の歪取り焼鈍を施した。その後に、結晶粒径ならびに磁気特性の調査を行った。結果を表2、ならびに、図3〜図5に示す。 Next, these product plates were subjected to strain relief annealing at 750 ° C. for 1.5 hours, which is shorter than conventionally performed. Thereafter, the crystal grain size and magnetic properties were investigated. Results Table 2, and, 3 to 5.

No.11およびNo.1に示すように、製品成分値が適正であり、介在物量が本発明の範囲内にある場合には、歪取り焼鈍を施した後の結晶粒径は67〜71μmと粒成長し、また、磁気特性(鉄損:W15/50)は2.7[W/kg]以下と良好であった。 No. 11 and no . As shown in 1 3, an appropriate product component value, if the intervening amount is within the scope of the present invention, the crystal grain size after subjected to stress relief annealing is 67~71μm and grain growth, also The magnetic properties (iron loss: W15 / 50) were as good as 2.7 [W / kg] or less.

この製品板中の介在物の径、個数密度ならびに組成を、前述の方法により調査した結果、No.11には、径100nm未満のMnSが0.6×1010[個/mm3]存在し、No.1には、径100nm未満のCu2Sが0.3×1010[個/mm3]存在し、いずれも、1.0×1010[個/mm3]以下であった。また、製品中には、径が0.2[μm]〜2.0[μm]のREMオキシサルファイドならびにREMサルファイドが見られた。 As a result of investigating the diameter, number density and composition of inclusions in the product plate by the above-mentioned method, No. 11 contains 0.6 × 10 10 [pieces / mm 3 ] of MnS having a diameter of less than 100 nm. The 1 3, Cu 2 S is less than the diameter 100nm is 0.3 × 10 10 [pieces / mm 3] exists, both were below 1.0 × 10 10 [pieces / mm 3]. In the product, REM oxysulfide and REM sulfide having a diameter of 0.2 [μm] to 2.0 [μm] were observed.

図3に、REMオキシサルファイドの一例を示す。図3に示すように、含REM介在物の周辺にはTiNが複合析出し粗大化しているのが見られた。   FIG. 3 shows an example of REM oxysulfide. As shown in FIG. 3, it was observed that TiN was compositely precipitated and coarsened around the REM inclusions.

このように、鋼中のREMがオキシサルファイドないしREMサルファイドを形成してSを固定することにより、微細サルファイドの生成が防止または抑制され、さらに、REMオキシサルファイドないしREMサルファイド上に、径数十nm超のTiNが複合析出して、Tiが固定されたことにより、微細な含Ti介在物の生成が防止されたことが明らかとなった。   In this way, REM in steel forms oxysulfide or REM sulfide and fixes S, thereby preventing or suppressing the formation of fine sulfide, and further, on the REM oxysulfide or REM sulfide, the diameter is several tens of nm. It became clear that the formation of fine Ti-containing inclusions was prevented by superprecipitation of TiN and the fixation of Ti.

No.15は、REM量が0.0003〜0.05質量%の範囲内にあるものの、Ti量が0.02質量%を超えており、この製品板中には、径100nm未満のTiSが2.5×1010[個/mm3]認められ、これにより、結晶粒成長が阻害され、歪取り焼鈍を施した後の結晶粒径は35[μm]に留まり、W15/50値は3.06[W/kg]と不良であった。 No. No. 15 has a REM amount in the range of 0.0003 to 0.05% by mass, but the Ti amount exceeds 0.02% by mass. In this product plate, TiS having a diameter of less than 100 nm is 2. 5 × 10 10 [pieces / mm 3 ] was observed, whereby the crystal grain growth was hindered, the crystal grain size after strain relief annealing remained at 35 μm, and the W15 / 50 value was 3.06. [W / kg] and poor.

この場合、径100nm超の介在物としては、TiNが付随したREMオキシサルファイドならびにREMサルファイドが観察されたので、前述のように、Tiの無害化効果が発生した状態であったものの、Ti過多のために、REMオキシサルファイドないしREMサルファイドに固定しきれず、鋼中にTiが残留した。この鋼中Tiにより、熱延工程以降の温度履歴にて、TiCが相当量生成した。よって、Ti量の上限は0.02質量%が好ましい。   In this case, as inclusions having a diameter of more than 100 nm, REM oxysulfide and REM sulfide accompanied by TiN were observed. As described above, although the detoxifying effect of Ti was generated, Therefore, it could not be fixed to REM oxysulfide or REM sulfide, and Ti remained in the steel. Ti in this steel produced a considerable amount of TiC in the temperature history after the hot rolling step. Therefore, the upper limit of the Ti amount is preferably 0.02% by mass.

No.16、No.17、No.18は、REM量が0.0003〜0.05質量%の範囲内にあり、かつ、Ti量が0.02質量%以下であるものの、成分値が、前述の評価式(1)で規定される範囲から外れており、この製品板中には、径100nm超の介在物としてAlNが観察された。   No. 16, no. 17, no. No. 18 has a REM amount in the range of 0.0003 to 0.05% by mass and a Ti amount of 0.02% by mass or less, but the component value is defined by the above-described evaluation formula (1). In this product plate, AlN was observed as inclusions having a diameter of more than 100 nm.

また、径100nm未満のTiNが1.6〜1.8×1010[個/mm3]認められた。これにより、歪取り焼鈍を施した後の結晶粒径は38〜41[μm]であり、W15/50が2.76〜2.83[W/kg]と不良であった。 Further, 1.6 to 1.8 × 10 10 [pieces / mm 3 ] TiN having a diameter of less than 100 nm was observed. Thereby, the crystal grain size after performing strain relief annealing was 38 to 41 [μm], and W15 / 50 was poor at 2.76 to 2.83 [W / kg].

次に、図4に、前記(1)式の左辺の値と、介在物径100nm未満の微細TiNの有無との関係を示す。図中明らかなように、前記(1)式が満たされる場合には、微細TiNが抑制されることが判る。   Next, FIG. 4 shows the relationship between the value of the left side of the equation (1) and the presence or absence of fine TiN having an inclusion diameter of less than 100 nm. As is apparent from the figure, it is understood that fine TiN is suppressed when the expression (1) is satisfied.

また、図5に、前記(1)式の左辺の値と、焼鈍後の結晶粒径ならびに鉄損値との関係を示す。図中明らかなように、前記(1)式が満たされる場合には、結晶粒成長性が良く、かつ、鉄損値が良好であることが判る。   FIG. 5 shows the relationship between the value on the left side of the equation (1), the crystal grain size after annealing, and the iron loss value. As can be seen from the figure, when the formula (1) is satisfied, the crystal grain growth is good and the iron loss value is good.

ここで特記すべきは、No.17およびNo.18に示すように、Ti量が少ない場合に、却って微細TiNが生成する場合があることである。これは前記(1)式からも示唆されるとおり、Ti量が過少な場合には、AlNの生成がより優先されるからである。   Here, it should be noted that no. 17 and no. As shown in FIG. 18, when the amount of Ti is small, fine TiN may be generated. This is because the generation of AlN is given higher priority when the amount of Ti is too small, as suggested from the equation (1).

従来知見によると、Ti量は極力少ないほうが好ましいので、多大な労力を払ってでも、鋼中へのTiの混入防止が必要とされていたが、本発明によると、低Ti化に対する多大な労力を必要とせず、場合によっては積極的にTiを添加して、不可避的に混入するTi量よりも鋼中のTi量を高めるアクションを取る。   According to conventional knowledge, it is preferable that the amount of Ti is as small as possible. Therefore, even if a great deal of effort has been taken, it has been necessary to prevent Ti from being mixed into the steel. However, according to the present invention, a great deal of effort is required to reduce Ti. In some cases, Ti is actively added, and an action is taken to increase the amount of Ti in the steel rather than the amount of Ti inevitably mixed.

これにより、REMオキシサルファイド上またはREMサルファイド上にTiNが複合生成して、Tiが固定されるため、熱延以降の熱履歴でTiNが再溶解し、単独で微細に再析出することがなくなる。このため、熱延スケジュールの設定自由度が増す上に、良好な製品特性を得ることが可能となる。   Thereby, since TiN is complex-formed on REM oxysulfide or REM sulfide and Ti is fixed, TiN is re-dissolved in the heat history after hot rolling and does not reprecipitate finely alone. For this reason, it is possible to obtain good product characteristics while increasing the degree of freedom in setting the hot rolling schedule.

すなわち、粒成長性良く鉄損に優れた電磁鋼板を得るために、上記に述べたTi量の好適範囲となるように、積極的なTi添加により制御を行う点や、または、Ti混入を抑制する場合にはTi混入量の制限を緩和できる点で、本発明の技術は、従来の技術と決定的に異なっている。   That is, in order to obtain an electrical steel sheet with good grain growth and excellent iron loss, control is performed by aggressive addition of Ti so as to be within the preferable range of Ti amount described above, or Ti contamination is suppressed. In this case, the technique of the present invention is decisively different from the conventional technique in that the restriction of the Ti content can be relaxed.

さらに、また、TiNの生成開始温度が、AlNの生成開始温度をより確実に上回る条件であれば、微細TiNの生成をより安定的に抑制することが可能となる。上記のTiNとAlNの生成開始温度の差として、約10℃程度以上を目安としている。   Furthermore, if the TiN production start temperature is more reliably higher than the AlN production start temperature, the production of fine TiN can be more stably suppressed. The difference between the TiN and AlN generation start temperatures is about 10 ° C. or more.

これを達成するための条件は、Ti、N、Alの各質量%値が、下記(2)式を満たせばよいことを、本発明者は併せて見出した。   The inventor has also found that the conditions for achieving this are as follows: each mass% value of Ti, N, and Al should satisfy the following formula (2).

log([Ti]×[N])−1.19×log([Al]×[N])
+1.70>0 ・・・(2)
但し、[Ti]はTiの質量%、[N]はNの質量%、[Al]はAlの質量%を示す。
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.70> 0 (2)
However, [Ti] represents mass% of Ti, [N] represents mass% of N, and [Al] represents mass% of Al.

あるいは、また、TiNとAlNの生成開始温度の差が約15℃以上であれば、TiNの生成開始温度が、AlNの生成開始温度をさらに確実に上回り、微細TiNの生成を、さらに安定的に抑制することが可能となるため、さらに好ましい。   Alternatively, if the difference between the TiN and AlN production start temperatures is about 15 ° C. or more, the TiN production start temperature more reliably exceeds the AlN production start temperature, and the production of fine TiN is more stable. Since it becomes possible to suppress, it is more preferable.

これを達成するための条件は、Ti、N、Alの各質量%値が、下記(3)式を満たせばよいことを、本発明者は併せて見出した。   The inventors of the present invention have also found that, as conditions for achieving this, each mass% value of Ti, N, and Al should satisfy the following formula (3).

log([Ti]×[N])−1.19×log([Al]×[N])
+1.58>0 ・・・(3)
但し、[Ti]はTiの質量%、[N]はNの質量%、[Al]はAlの質量%を示す。
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.58> 0 (3)
However, [Ti] represents mass% of Ti, [N] represents mass% of N, and [Al] represents mass% of Al.

あるいは、また、TiNとAlNの生成開始温度の差が約20℃以上であれば、TiNの生成開始温度が、AlNの生成開始温度を一層確実に上回り、微細TiNの生成を、一層安定的に抑制することが可能となるため、一層好ましい。   Alternatively, if the difference between the TiN and AlN production start temperatures is about 20 ° C. or more, the TiN production start temperature more reliably exceeds the AlN production start temperature, and the production of fine TiN is more stable. Since it becomes possible to suppress, it is more preferable.

これを達成するための条件は、Ti、N、Alの各質量%値が、下記(4)式を満たせばよいことを、本発明者は併せて見出した。   The inventors of the present invention have also found that, as conditions for achieving this, each mass% value of Ti, N, and Al should satisfy the following formula (4).

log([Ti]×[N])−1.19×log([Al]×[N])
+1.49>0 ・・・(4)
但し、[Ti]はTiの質量%、[N]はNの質量%、[Al]はAlの質量%を示す。
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.49> 0 (4)
However, [Ti] represents mass% of Ti, [N] represents mass% of N, and [Al] represents mass% of Al.

さらに好ましくは、Ti、N、Alの各質量%値が、下記(5)式を満たせばよいことを、本発明者は併せて見出した。   More preferably, the present inventors have also found that each mass% value of Ti, N, and Al should satisfy the following formula (5).

log([Ti]×[N])−1.19×log([Al]×[N])
+1.35>0 ・・・(5)
但し、[Ti]はTiの質量%、[N]はNの質量%、[Al]はAlの質量%を示す。
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.35> 0 (5)
However, [Ti] represents mass% of Ti, [N] represents mass% of N, and [Al] represents mass% of Al.

ところで、No.19はREMを全く含有せず、また、No.20はREM量が0.0002質量%であり、いずれも0.0003質量%に満たなかった。この製品板中の介在物を、前述の方法により調査した結果、微細なTiSが2.3〜2.9×1010[個/mm3]存在していた。よって、この場合には、REMによるSの固定が不十分であったことが判る。 By the way, no. No. 19 does not contain any REM, and no. No. 20 had a REM amount of 0.0002% by mass, and all of them were less than 0.0003% by mass. As a result of investigating the inclusions in the product plate by the above-mentioned method, fine TiS was found to be 2.3 to 2.9 × 10 10 [pieces / mm 3 ]. Therefore, in this case, it can be seen that the fixation of S by REM was insufficient.

これらの焼鈍後の結晶粒径は33〜36[μm]に留まって粒成長せず、また、W15/50値は3.0[W/kg]前後と不良であった。   The crystal grain size after annealing remained at 33 to 36 [μm] and no grain growth occurred, and the W15 / 50 value was poor at around 3.0 [W / kg].

ところで、以上の結果は、歪取り焼鈍を従来一般的に行われているより短時間で行った結果であるが、従来レベルの歪取り焼鈍を行った場合には、微細介在物のピン止め作用による結晶粒成長差がより顕著化するので、以上述べた結晶粒成長性、ならびに、鉄損の適不適が一層明確になることは言うまでもない。   By the way, the above results are the results of performing the strain relief annealing in a shorter time than conventionally performed, but when the conventional level of strain relief annealing is performed, the pinning action of the fine inclusions Of course, the difference in crystal grain growth due to the above becomes more prominent, and it is needless to say that the above-described crystal grain growth property and the suitability of iron loss are further clarified.

次に、本発明における成分組成の含有量の限定理由について説明する。 Next, a description will be given reasons for limiting the free organic amount of component composition of the present invention.

[C]:Cは、磁気特性に有害となるばかりか、Cの析出による磁気時効が著しくなるので、上限を0.01質量%とした。下限は0質量%を含む。   [C]: C is not only harmful to magnetic properties, but also magnetic aging due to precipitation of C becomes remarkable, so the upper limit was made 0.01 mass%. The lower limit includes 0% by mass.

[Si]:Siは、鉄損を減少させる元素である。Siが、下限の0.1質量%より少ないと、鉄損が悪化する。なお、鉄損をさらに減少させる観点から、好ましい下限は0.3質量%、より好ましくは0.7質量%、さらに好ましくは1.0質量%である。   [Si]: Si is an element that reduces iron loss. When Si is less than the lower limit of 0.1% by mass, the iron loss is deteriorated. From the viewpoint of further reducing the iron loss, the preferable lower limit is 0.3% by mass, more preferably 0.7% by mass, and still more preferably 1.0% by mass.

また、Siが、上限の7.0質量%を超えると、加工性が著しく不良となるため、上限を7.0質量%とした。なお、上限としてより好ましい値は、冷延性がより良好な4.0質量%であり、さらに好ましい値は3.0質量%であり、一層好ましい値は2.5質量%である。   Further, when Si exceeds the upper limit of 7.0% by mass, the workability becomes extremely poor, so the upper limit was set to 7.0% by mass. A more preferable value as the upper limit is 4.0% by mass with better cold-rollability, a further preferable value is 3.0% by mass, and a more preferable value is 2.5% by mass.

[Al]:Alは、Si同様に鉄損を減少させる元素である。Alが、下限の0.1質量%未満では、鉄損が悪化し、上限の3.0質量%を超えると、コストの増加が著しい。Alの下限は、鉄損の観点から、好ましくは0.2質量%、より好ましくは0.3質量%、さらに好ましくは0.6質量%とする。   [Al]: Al is an element that reduces the iron loss similarly to Si. When Al is less than the lower limit of 0.1% by mass, the iron loss is deteriorated, and when it exceeds 3.0% by mass of the upper limit, the cost is remarkably increased. The lower limit of Al is preferably 0.2% by mass, more preferably 0.3% by mass, and still more preferably 0.6% by mass from the viewpoint of iron loss.

[Mn]:Mnは、鋼板の硬度を増加させ、打抜性を改善するために、0.1質量%以上添加する。なお、上限の2.0質量%は経済的理由によるものである。   [Mn]: Mn is added in an amount of 0.1% by mass or more in order to increase the hardness of the steel sheet and improve the punchability. The upper limit of 2.0% by mass is due to economic reasons.

[S]:Sは、MnSやTiS等の硫化物となり、粒成長性を悪化させ、鉄損を悪化させる。本発明により、REM介在物として固定されるものの、その実用上の上限として0.005質量%、より好ましくは0.003質量%とした。下限は0質量%を含む。   [S]: S becomes a sulfide such as MnS or TiS, which deteriorates grain growth and iron loss. Although it is fixed as a REM inclusion according to the present invention, its practical upper limit is 0.005% by mass, more preferably 0.003% by mass. The lower limit includes 0% by mass.

[N]:Nは、AlNやTiNなどの窒化物となり鉄損を悪化させる。本発明によって、REM介在物にTiNとして固定されるものの、その実用上の上限として、0.005質量%とした。なお、上記の理由により、上限として、好ましくは0.003質量%、より好ましくは0.0025質量%、さらに好ましくは0.002質量%である。   [N]: N becomes a nitride such as AlN or TiN and deteriorates the iron loss. According to the present invention, although TiN is fixed to the REM inclusion, the practical upper limit is set to 0.005% by mass. For the above reason, the upper limit is preferably 0.003% by mass, more preferably 0.0025% by mass, and still more preferably 0.002% by mass.

また、前記の理由により、Nは、できる限り少ないほうが好ましいが、0質量%に限りなく近づけるには、工業的な制約が大きいため、下限を0質量%超とする。なお、実用上の下限として0.001質量%を目安とし、0.0005質量%まで下げると、窒化物が抑制されてより好ましく、0.0001質量%まで下げると、さらに好ましい。   For the above reasons, it is preferable that N is as small as possible. However, in order to make it as close as possible to 0% by mass, there are many industrial restrictions, so the lower limit is made more than 0% by mass. As a practical lower limit, 0.001% by mass is taken as a guide, and if it is reduced to 0.0005% by mass, nitride is suppressed, more preferably, and if it is reduced to 0.0001% by mass, it is more preferable.

[Ti]:Tiは、TiN、TiSなどの微細介在物を生成し、粒成長性を悪化させ、鉄損を悪化させる。本発明により、REM介在物にTiNとして固定されるものの、その実用上の上限として0.02質量%とした。なお、上記の理由により、上限として、好ましくは0.01質量%、より好ましくは0.005質量%である。   [Ti]: Ti produces fine inclusions such as TiN and TiS, and deteriorates grain growth and iron loss. According to the present invention, although TiN is fixed to the REM inclusion, the practical upper limit is 0.02% by mass. For the above reason, the upper limit is preferably 0.01% by mass, more preferably 0.005% by mass.

但し、Ti量が過少な場合には、REM介在物への固定効果が発揮されない。 However , when the amount of Ti is too small, the fixing effect to the REM inclusion is not exhibited.

Ti量0.0015質量%を超えれば、REM介在物への固定効果が強化されて好ましく、さらに0.002質量%以上であれば、なお好ましく、さらに0.0025質量%以上であれば、一層好ましい。 If the amount of Ti exceeds 0.0015% by mass , the effect of fixing to the REM inclusion is preferably enhanced, more preferably 0.002% by mass or more, and further preferably 0.0025% by mass or more. Even more preferred.

[REM]:REMは、オキシサルファイドないしサルファイドを形成してSを固定し、微細サルファイドの生成を防止または抑制する。また、TiNの複合生成サイトとなり、Tiの固定効果を発揮する。   [REM]: REM forms oxysulfide or sulfide to fix S and prevents or suppresses the formation of fine sulfide. Moreover, it becomes a TiN composite production site and exerts a Ti fixing effect.

下限値の0.0003質量%未満の場合は、上記効果が充分でなく、また、上限値の0.05質量%を超えると、含REM介在物により結晶粒成長が阻害されるため、0.0003質量%以上0.05質量%以下を適正範囲とした。   When the lower limit is less than 0.0003% by mass, the above effect is not sufficient, and when the upper limit of 0.05% by mass is exceeded, crystal grain growth is inhibited by the REM-containing inclusions. 0003 mass% or more and 0.05 mass% or less was made into the suitable range.

また、REMの元素であれば、1種だけ用いても、あるいは、2種以上の元素を組み合わせて用いても、本発明の範囲内であれば、上記効果は発揮される。   Moreover, even if it uses only 1 type if it is an element of REM, or it uses combining 2 or more types of elements, the said effect will be exhibited if it is in the range of this invention.

なお、Sを固定する効果は、REM量に比例して高まるため、REMの下限値としては、0.001質量%が好ましく、0.002質量%がより好ましく、0.0025質量%がさらに好ましく、0.003質量%が一層好ましい。   Since the effect of fixing S increases in proportion to the amount of REM, the lower limit of REM is preferably 0.001% by mass, more preferably 0.002% by mass, and further preferably 0.0025% by mass. 0.003 mass% is more preferable.

また、前述の通り、REMオキシサルファイドないしREMサルファイド上にTiNが生成し成長することによって、Tiが固定されるので、Ti量に対するREM量が多い程、TiN生成サイトとしてのREMオキシサルファイド、ないし、REMサルファイドが増えるため、上記効果が促進されるのは自明である。   In addition, as described above, Ti is fixed by forming and growing on REM oxysulfide or REM sulfide. Therefore, as the amount of REM relative to the amount of Ti increases, REM oxysulfide as a TiN generation site, or It is obvious that the above effect is promoted because REM sulfide is increased.

実用的には、Ti量に対するREM量の比率、すなわち、[REM]/[Ti]値が0.25を超えれば所用に足るが、[REM]/[Ti]値が0.5を超えれば、上記効果が促進されて好ましく、さらに、[REM]/[Ti]値が1.0を超えれば、さらに好ましく、さらに、[REM]/[Ti]値が1.25を超えれば、一層好ましい。   Practically, if the ratio of the REM amount to the Ti amount, that is, the [REM] / [Ti] value exceeds 0.25, it is sufficient, but if the [REM] / [Ti] value exceeds 0.5, it is sufficient. The above effect is preferably promoted, more preferably [REM] / [Ti] value exceeding 1.0, and further preferably [REM] / [Ti] value exceeding 1.25. .

以上、述べてきた成分以外の元素で、本発明の鋼の効果を大きくさまたげるものでなければ、含有していてもよく、本発明の範囲とする。   As long as it is an element other than the components described above and does not greatly interfere with the effect of the steel of the present invention, it may be contained and is included in the scope of the present invention.

以下に、選択元素について説明する。なお、これらの含有量の下限値は、微量でも含有されていればよいため、すべて0質量%超とする。   Below, a selective element is demonstrated. In addition, since the lower limit of these content should just be contained even if it is trace amount, it is all over 0 mass%.

[P]:Pは、材料の強度を高め、加工性を改善する。但し、過剰な場合は冷延性を損ねるため、0.1質量%以下が好ましい。   [P]: P increases the strength of the material and improves workability. However, if excessive, the cold rolling property is impaired, so 0.1% by mass or less is preferable.

[Cu]:Cuは、耐食性を向上させ、また、固有抵抗を高めて鉄損を改善する。但し、過剰な場合は、製品板の表面にヘゲ疵などが発生して表面品位を損ねるため、0.5質量%以下が好ましい。   [Cu]: Cu improves corrosion resistance and increases specific resistance to improve iron loss. However, if the amount is excessive, scabs or the like are generated on the surface of the product plate and the surface quality is impaired, so 0.5 mass% or less is preferable.

[Ca]および[Mg]:CaおよびMgは、脱硫元素であり、鋼中のSと反応してサルファイドを形成し、Sを固定する。しかし、REMと異なり、TiNを複合して析出させる効果は小さい。添加量を多くすれば、脱硫効果が強化されるが、上限の0.05質量%を超えると、過剰なCaおよびMgのサルファイドにより粒成長が妨げられる。よって、0.05質量%以下が好ましい。   [Ca] and [Mg]: Ca and Mg are desulfurization elements, react with S in steel to form sulfide, and fix S. However, unlike REM, the effect of compounding and depositing TiN is small. If the addition amount is increased, the desulfurization effect is enhanced, but if the upper limit of 0.05% by mass is exceeded, grain growth is hindered by excess Ca and Mg sulfide. Therefore, 0.05 mass% or less is preferable.

[Cr]:Crは、耐食性を向上させ、また、固有抵抗を高めて鉄損を改善する。但し、過剰な添加はコスト高となるため、20質量%を上限とした。   [Cr]: Cr improves the corrosion resistance and increases the specific resistance to improve the iron loss. However, excessive addition increases the cost, so 20 mass% was made the upper limit.

[Ni]:Niは、磁気特性に有利な集合組織を発達させ、鉄損を改善する。但し、過剰な添加はコスト高となるため、1.0質量%を上限とした。   [Ni]: Ni develops a texture favorable to magnetic properties and improves iron loss. However, excessive addition increases the cost, so 1.0 mass% was made the upper limit.

[Sn]および[Sb]:SnまたはSbは、偏析元素であり、磁気特性を悪化させる(111)面の集合組織を阻害し、磁気特性を改善する。これらは、1種だけ用いても、あるいは、2種を組み合わせて用いても、上記効果を発揮する。但し、0.3質量%を超えると冷延性が悪化するため、0.3質量%を上限とした。   [Sn] and [Sb]: Sn or Sb is a segregating element, which inhibits the texture of the (111) plane that deteriorates the magnetic properties and improves the magnetic properties. Even if these are used singly or in combination of the two, the above-described effects are exhibited. However, if it exceeds 0.3% by mass, the cold rollability deteriorates, so 0.3% by mass was made the upper limit.

[Zr]:Zrは、微量でも結晶粒成長を阻害し、歪取り焼鈍後の鉄損を悪化させる。よって、できる限り低減して、0.01質量%以下とすることが好ましい。   [Zr]: Zr inhibits crystal grain growth even in a small amount, and worsens iron loss after strain relief annealing. Therefore, it is preferable to reduce it as much as possible to 0.01% by mass or less.

[V]:Vは、窒化物あるいは炭化物を形成し、磁壁移動や結晶粒成長を阻害する。このため、0.01質量%以下とすることが好ましい。   [V]: V forms nitrides or carbides and inhibits domain wall movement and crystal grain growth. For this reason, it is preferable to set it as 0.01 mass% or less.

[O]:Oは、0.005質量%より多く含有されると、酸化物が多数生成し、この酸化物によって、磁壁移動や結晶粒成長が阻害される。よって、0.005質量%以下とすることが好ましい。   [O]: When O is contained in an amount of more than 0.005% by mass, a large number of oxides are generated, and domain wall movement and crystal grain growth are inhibited by the oxides. Therefore, it is preferable to set it as 0.005 mass% or less.

[B]:Bは、粒界偏析元素であり、また、窒化物を形成する。この窒化物によって粒界移動が妨げられ、鉄損が悪化する。よって、できる限り低減して、0.005質量%以下とすることが好ましい。   [B]: B is a grain boundary segregation element and forms a nitride. Grain boundary movement is hindered by this nitride, and iron loss deteriorates. Therefore, it is preferable to reduce as much as possible to 0.005 mass% or less.

以上の他にも、公知の元素を添加することが可能であり、例えば、磁気特性を改善する元素として、Bi、Geなどを用いることができ、これらを、所用の磁気特性に応じて、適宜選択すればよい。   In addition to the above, a known element can be added. For example, Bi, Ge, or the like can be used as an element for improving magnetic characteristics, and these can be appropriately selected according to the required magnetic characteristics. Just choose.

次に、本発明における好ましい製造条件ならびにその規定理由について説明する。   Next, preferable manufacturing conditions and the reason for the definition in the present invention will be described.

まず、製鋼段階において、転炉や2次精錬炉などの常法により精錬する際、スラグの酸化度、すなわち、スラグ中のFeO+MnOの質量比を1.0〜3.0%の範囲内とすることが好ましい。   First, at the steelmaking stage, when refining by a conventional method such as a converter or secondary refining furnace, the oxidation degree of slag, that is, the mass ratio of FeO + MnO in the slag is set within a range of 1.0 to 3.0%. It is preferable.

この理由は、スラグの酸化度が1.0%未満であれば、電磁鋼のSi範囲内では、Siの影響によりTiの活量が上がるため、スラグからの覆Tiを有効に防止し難く、鋼中のTi量が不必要に上がり、また、スラグの酸化度が3.0%超であれば、スラグからの酸素供給によって、溶鋼中のREMが不必要に酸化されて含硫化物とならず、鋼中Sの固定が不十分となるからである。   The reason for this is that if the degree of oxidation of the slag is less than 1.0%, within the Si range of the electromagnetic steel, the activity of Ti rises due to the influence of Si, so it is difficult to effectively prevent the covered Ti from the slag, If the amount of Ti in steel rises unnecessarily and the degree of oxidation of slag exceeds 3.0%, the REM in the molten steel is oxidized unnecessarily by the supply of oxygen from the slag to become a sulfide. This is because the fixing of S in steel becomes insufficient.

さらに、炉材耐火物などを吟味して外来性の酸化源を極力排除することも重要である。さらに、また、REM添加時に、不可避的に生成するREMオキサイドの浮上に足る時間を確保するため、REM添加から鋳造までの時間を10分以上おくことが好ましい。以上述べた対策によって、狙い通りの組成範囲内の鋼を製造することが可能となる。   It is also important to examine the furnace material refractories and to eliminate foreign oxidation sources as much as possible. Furthermore, it is preferable that the time from the addition of REM to casting is set to 10 minutes or more in order to ensure a sufficient time for the REM oxide to be inevitably generated when REM is added. By the measures described above, it becomes possible to produce steel within the intended composition range.

上記のような方法によって、所望の組成範囲内の溶鋼を溶製した後、連続鋳造、ないし、インゴット鋳造により、スラブ等の鋳片を鋳造する。   After the molten steel within the desired composition range is melted by the method as described above, a slab or other slab is cast by continuous casting or ingot casting.

その際に、鋼中のREMオキシサルファイドないしREMサルファイドにTiNが複合生成するが、鋳片の冷却を不必要に早めないことが、複合生成するTiNの成長に足る時間を確保する観点から重要であり、ひいては、本発明に規定する大きさの介在物の個数密度を得るために肝要である。   At this time, TiN is complex-formed in REM oxysulfide or REM sulfide in steel, but it is important from the viewpoint of securing sufficient time for growth of TiN to be complexly formed not to accelerate the cooling of the slab unnecessarily. In other words, it is essential to obtain the number density of inclusions having a size defined in the present invention.

すなわち、TiNの生成開始温度である1200℃以上1300℃以下の温度範囲に存在する時間を、適正に調整することが重要である。   That is, it is important to appropriately adjust the time existing in the temperature range of 1200 ° C. to 1300 ° C., which is the TiN production start temperature.

ここで付記すべきことは、所望の組成範囲内の鋼が、高温状態からTiNの生成開始温度に初めて到達した時に、TiNが初めて生成するが、その際に、1200℃以上1300℃以下の温度範囲を速やかに通過すると、含REM介在物に付随して生成したTiNが十分に成長できず、固定が不十分となる。   What should be added here is that, when the steel in the desired composition range reaches the TiN production start temperature for the first time from a high temperature state, TiN is produced for the first time. When passing through the range quickly, TiN generated accompanying the REM inclusions cannot be sufficiently grown, and fixing becomes insufficient.

そして、一旦、固定し損ねると、Tiは、TiSやTiCなどのTiNより低温で生成する介在物となり、後工程の熱処理によって再溶解し再析出して微細な介在物となる。したがって、前記の温度範囲を最初に通過する際の温度コントロールが重要である。   And once it fails to fix, Ti becomes inclusions generated at a lower temperature than TiN, such as TiS and TiC, and is re-dissolved and re-precipitated by subsequent heat treatment to become fine inclusions. Therefore, temperature control when passing the temperature range for the first time is important.

なお、最適な温度パターンは、製造する成分によって種々異なるのであるが、TiNの生成開始温度である1200℃以上1300℃以下の範囲において、少なくとも1分以上、好ましくは5分以上、より好ましくは20分以上の時間を経ることが重要である。鋼の温度の測定方法としては、放射温度計等を用いる測定や、伝熱計算による計算解析が適用できる。   The optimum temperature pattern varies depending on the components to be produced, but in the range of 1200 ° C. to 1300 ° C., which is the TiN production start temperature, at least 1 minute, preferably 5 minutes or more, more preferably 20 It is important to spend more than a minute. As a method for measuring the temperature of steel, measurement using a radiation thermometer or the like and calculation analysis by heat transfer calculation can be applied.

前記の表2において、No.11、1200℃以上1300℃以下の温度範囲を1分以上20分未満で経過させたものであるが、No.13、さらに数倍の時間にわたり、緩冷却となるべく温度パターンを調節したものであり、歪取り焼鈍後の結晶粒径ならびに鉄損値が、さらに改善されているのがわかる。 In Table 2 above, no. No. 11 is a temperature range of 1200 ° C. or higher and 1300 ° C. or lower in 1 minute or more and less than 20 minutes. No. 13 is obtained by adjusting the temperature pattern as much as possible for slow cooling over several times, and it can be seen that the crystal grain size and the iron loss value after strain relief annealing are further improved.

このとき、別途調査により、径100nmよりさらに微細な径50nm未満の介在物を調査した結果、No.13製品中に含まれる径50nm未満の介在物の個数密度は、それぞれ、2.1×109[個/mm3あって、2.5×109[個/mm3]以下であった。 At this time, as a result of separately investigating inclusions smaller than 50 nm in diameter and less than 50 nm in diameter, No. The number density of inclusions of size less than 50nm included in the product of 13, respectively, a 2.1 × 10 9 [pieces / mm 3], 2.5 × 10 9 [ pieces / mm 3] or less there were.

すなわち、1200℃以上1300℃以下の温度範囲に存在する時間をより長時間化すると、前記のTi固定効果がより顕著になって、50nm未満の微細な介在物の個数密度がより減少するため、製品特性がより向上することが明らかであった。   That is, when the time existing in the temperature range of 1200 ° C. or more and 1300 ° C. or less is made longer, the Ti fixing effect becomes more prominent, and the number density of fine inclusions less than 50 nm is further reduced. It was clear that the product characteristics were further improved.

なお、上記の1200℃以上1300℃以下の温度範囲に存在する時間は一例であり、これに限定されるものではない。   In addition, the time which exists in said temperature range of 1200 to 1300 degreeC is an example, and is not limited to this.

1200℃以上1300℃以下の範囲に存在する時間を調整する方法は、鋳造設備により様々であるが、鋳片を保温する設備を用いればよいのはもちろん、保温設備がなくとも、例えば、冷却水量密度の調整、あるいは、鋳造サイズおよび鋳造速度の調整などによっても達成できる。   There are various methods for adjusting the time existing in the range of 1200 ° C. or more and 1300 ° C. or less, depending on the casting equipment. It can also be achieved by adjusting the density, or adjusting the casting size and casting speed.

この後、さらに、熱間圧延し、必要に応じて熱延板焼鈍し、一回または中間焼鈍を挟む二回以上の冷間圧延により製品厚に仕上げ、次いで、仕上げ焼鈍し、絶縁皮膜を塗布する。以上述べた方法により、製品板中の介在物を、本発明の範囲内に制御することが可能となる。   After this, it is further hot-rolled, hot-rolled sheet annealed as necessary, finished to product thickness by one or more cold rollings sandwiching intermediate annealing, then finish-annealed and coated with insulating film To do. By the method described above, the inclusions in the product plate can be controlled within the scope of the present invention.

質量%で、C:0.0024%、Si:2.1%、Mn:0.2%、S:0.0025%を含有し、かつ、表2に示す成分を含有する鋼、ならびに、さらに、P:0.02%、Cu:0.01%を含む鋼を、それぞれ溶解精錬し、スラブを連続鋳造し、その際に、スラブの温度が1300℃から1200℃に低下する時間を3分に調整し、その後に、熱間圧延、熱延板焼鈍、冷間圧延を経て板厚0.5mmの冷延板を製造した。   Steel containing, by mass%, C: 0.0024%, Si: 2.1%, Mn: 0.2%, S: 0.0025% and containing the components shown in Table 2, and , P: 0.02%, Cu: 0.01% steel was melted and refined, and the slab was continuously cast. At that time, the time for the slab temperature to drop from 1300 ° C to 1200 ° C was 3 minutes. After that, a cold-rolled sheet having a thickness of 0.5 mm was manufactured through hot rolling, hot-rolled sheet annealing, and cold rolling.

次いで、850℃×30秒の仕上げ焼鈍を施し、絶縁皮膜を塗布して製品板を製造し、さらに、750℃×1.5時間の歪取り焼鈍を施した後に、製品板中の介在物調査、結晶粒径調査ならびに25cmエプスタイン法による磁気特性調査を行った。   Next, finish annealing at 850 ° C. × 30 seconds is performed, an insulating film is applied to produce a product plate, and further, after 750 ° C. × 1.5 hours of strain relief annealing, inclusions in the product plate are investigated. Then, the crystal grain size was investigated and the magnetic properties were investigated by 25 cm Epstein method.

介在物調査は、前述の要領で行い、結晶粒径は、板厚断面を鏡面研磨し、ナイタールエッチングを施して結晶粒を現出させて、平均結晶粒径を測定した。   The inclusion investigation was performed as described above, and the crystal grain size was measured by mirror-polishing the plate thickness cross section, performing nital etching to reveal crystal grains, and measuring the average crystal grain size.

前記の表2から明らかなように、本発明に準拠する製品板は、結晶粒成長ならびに鉄損値に関して良好な結果が得られた。一方、本発明の範囲外の製品板は、結晶粒成長ならびに鉄損値が劣る結果が得られた。   As is apparent from Table 2 above, the product plate according to the present invention obtained good results with respect to crystal grain growth and iron loss values. On the other hand, the product plate outside the scope of the present invention was inferior in crystal grain growth and iron loss value.

以上説明したとおり、本発明によれば、無方向性電磁鋼板中に内包される微細な介在物のサイズと個数密度を適正範囲内にすることにより、簡易な焼鈍でも充分良好な磁気特性が得られ、特に、簡易な歪取り焼鈍でも充分良好な磁気特性を得ることが可能となり、需要家のニーズを満たしつつ省エネに貢献できる。よって、本発明は、産業上の利用可能性の大きいものである。   As described above, according to the present invention, sufficiently good magnetic properties can be obtained even by simple annealing by setting the size and number density of fine inclusions included in the non-oriented electrical steel sheet within an appropriate range. In particular, it is possible to obtain sufficiently good magnetic characteristics even with simple strain relief annealing, which can contribute to energy saving while satisfying the needs of consumers. Therefore, the present invention has great industrial applicability.

鋼中における径100nm未満の介在物の存在密度に対する、焼鈍後の結晶粒径ならびに鉄損値との関係を示す図である。It is a figure which shows the relationship between the crystal grain diameter after annealing, and the iron loss value with respect to the density of inclusions having a diameter of less than 100 nm in steel. 鋼中における径50nm未満の介在物の存在密度に対する、焼鈍後の結晶粒径ならびに鉄損値との関係を示す図である。It is a figure which shows the relationship between the crystal grain diameter after annealing, and the iron loss value with respect to the density of inclusions having a diameter of less than 50 nm in steel. REMオキシサルファイドの周辺にTiNが複合した介在物を示す図である。It is a figure which shows the inclusion which the TiN compounded around the REM oxysulfide. 成分値と前記(1)式により計算される指標と製品中の微細TiNの存在との関係を示す図である。It is a figure which shows the relationship between the component value, the parameter | index calculated by said Formula (1), and presence of fine TiN in a product. 成分値と前記(1)式により計算される指標と、焼鈍後の結晶粒径ならびに鉄損値との関係を示す図である。It is a figure which shows the relationship between the component value, the parameter | index calculated by said Formula (1), the crystal grain diameter after annealing, and an iron loss value.

Claims (5)

質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、REM:0.0003%以上0.05%以下、Ti:0.0015%超0.02%以下、S:0.005%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[Al]で示されたAlの質量%、[N]で示されたNの質量%、および、[Ti]で示されたTiの質量%が、下記(1)式を満たし、鋼板内に含まれる球相当径100nm未満の介在物の個数密度が1×10 10 [個/mm ]以下であることを特徴とする無方向性電磁鋼板。
log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
In mass%, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2.0% REM: 0.0003% or more and 0.05% or less, Ti: more than 0.0015% and 0.02% or less, S: 0.005% or less, N: 0.005% or less, with the balance being iron and It consists of inevitable impurities, and the mass% of Al indicated by [Al], the mass% of N indicated by [N], and the mass% of Ti indicated by [Ti] are expressed by the following (1 ) meets equation non-oriented electrical steel sheet you wherein a number density of inclusions of less than equivalent spherical diameter 100nm contained within the steel sheet is 1 × 10 10 [pieces / mm 3] or less.
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)
質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、REM:0.0003%以上0.05%以下、Ti:0.0015%超0.02%以下、S:0.005%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[Al]で示されたAlの質量%、[N]で示されたNの質量%、および、[Ti]で示されたTiの質量%が、下記(1)式を満たし、鋼板内に含まれる球相当径50nm未満の介在物の個数密度が2.5×10 [個/mm ]以下であることを特徴とする無方向性電磁鋼板。
log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
In mass%, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2.0% REM: 0.0003% or more and 0.05% or less, Ti: more than 0.0015% and 0.02% or less, S: 0.005% or less, N: 0.005% or less, with the balance being iron and It consists of inevitable impurities, and the mass% of Al indicated by [Al], the mass% of N indicated by [N], and the mass% of Ti indicated by [Ti] are expressed by the following (1 ) meets equation non-oriented electrical steel sheet you wherein a number density of inclusions of less than equivalent spherical diameter 50nm included in the steel sheet 2.5 × 10 9 [pieces / mm 3] or less.
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)
前記鋼板が、さらに、質量%で、P:0.1%以下、Cu:0.5%以下の一種以上を含有することを特徴とする請求項1または2に記載の無方向性電磁鋼板。 Said steel sheet further contains, by mass%, P: 0.1% or less, Cu: non-oriented electrical steel sheet according to claim 1 or 2, characterized in that it contains one or more under 0.5% or less . 質量%で、C:0.01%以下、Si:0.1%以上7.0%以下、Al:0.1%以上3.0%以下、Mn:0.1%以上2.0%以下、REM:0.0003%以上0.05%以下、Ti:0.0015%超0.02%以下、S:0.005%以下、N:0.005%以下を含有し、残部が鉄および不可避的不純物からなり、かつ、[Al]で示されたAlの質量%、[N]で示されたNの質量%、および、[Ti]で示されたTiの質量%が、下記(1)式を満たす鋼を、1200℃以上1300℃以下の温度範囲に1分間以上経過させることを特徴とする無方向性電磁鋼板の製造方法。
log([Ti]×[N])−1.19×log([Al]×[N])
+1.84>0 ・・・(1)
In mass%, C: 0.01% or less, Si: 0.1% to 7.0%, Al: 0.1% to 3.0%, Mn: 0.1% to 2.0% REM: 0.0003% or more and 0.05% or less, Ti: more than 0.0015% and 0.02% or less, S: 0.005% or less, N: 0.005% or less, with the balance being iron and It consists of inevitable impurities, and the mass% of Al indicated by [Al], the mass% of N indicated by [N], and the mass% of Ti indicated by [Ti] are expressed by the following (1 ) steel satisfying expression method for producing a non-oriented electrical steel sheet you characterized thereby over one minute to a temperature range of 1200 ° C. or higher 1300 ° C. or less.
log ([Ti] × [N]) − 1.19 × log ([Al] × [N])
+1.84> 0 (1)
前記鋼が、さらに、質量%で、P:0.1%以下、Cu:0.5%以下の一種以上を含有することを特徴とする請求項に記載の無方向性電磁鋼板の製造方法。 Said steel further contains, by mass%, P: 0.1% or less, Cu: Production of non-oriented electrical steel sheet according to claim 4, characterized in that it contains one or more kinds of under 0.5% or less Method.
JP2004135675A 2003-05-06 2004-04-30 Non-oriented electrical steel sheet and manufacturing method thereof Active JP4280197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004135675A JP4280197B2 (en) 2003-05-06 2004-04-30 Non-oriented electrical steel sheet and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003128309 2003-05-06
JP2004029386 2004-02-05
JP2004130034 2004-04-26
JP2004135675A JP4280197B2 (en) 2003-05-06 2004-04-30 Non-oriented electrical steel sheet and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005336503A JP2005336503A (en) 2005-12-08
JP4280197B2 true JP4280197B2 (en) 2009-06-17

Family

ID=35490396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004135675A Active JP4280197B2 (en) 2003-05-06 2004-04-30 Non-oriented electrical steel sheet and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4280197B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816226B1 (en) * 2004-11-04 2011-04-13 Nippon Steel Corporation Non-oriented electrical steel sheet superior in core loss.
JP6043808B2 (en) * 2011-12-28 2016-12-14 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
WO2013121924A1 (en) 2012-02-14 2013-08-22 新日鐵住金株式会社 Non-oriented electromagnetic steel sheet
KR101482354B1 (en) * 2012-12-27 2015-01-13 주식회사 포스코 Grain-oriented electrical steel having excellent magnetic properties
CN105132808B (en) * 2015-10-14 2017-05-03 安徽工业大学 Method for preparing compound element processed non-oriented silicon steel for high-efficiency motor
JP6679948B2 (en) * 2016-01-19 2020-04-15 日本製鉄株式会社 Non-oriented electrical steel sheet and method for manufacturing the same
KR101901313B1 (en) 2016-12-19 2018-09-21 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP7180059B2 (en) * 2017-08-16 2022-11-30 日本製鉄株式会社 Non-oriented electrical steel sheet
JP6969219B2 (en) * 2017-08-16 2021-11-24 日本製鉄株式会社 Non-oriented electrical steel sheet and its manufacturing method
JP7111014B2 (en) * 2019-02-06 2022-08-02 東京電力ホールディングス株式会社 Flow measurement system, flow measurement device and flow measurement method
CN112359287A (en) * 2020-11-16 2021-02-12 湖南上临新材料科技有限公司 Non-oriented silicon steel for high-efficiency motor and preparation method thereof

Also Published As

Publication number Publication date
JP2005336503A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
KR100742420B1 (en) Non-oriented electromagnetic steel sheet excellent in iron loss and its manufacturing method
JP4568190B2 (en) Non-oriented electrical steel sheet
KR102095142B1 (en) Non-oriented electrical steel sheet and production method thereof
KR100912974B1 (en) Non-oriented magnetic steel sheet with low iron loss
JP5733409B2 (en) Non-oriented electrical steel sheet
JP4681689B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR101950620B1 (en) Production method for grain-oriented electrical steel sheet and primary recrystallized steel sheet for production of grain-oriented electrical steel sheet
JP5360336B1 (en) Non-oriented electrical steel sheet
JP2010024531A (en) Method for producing nonoriented magnetic steel slab for high frequency
JP4280197B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5263012B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
KR20010100866A (en) Low iron loss non-oriented electrical steel sheet excellent in workability and method for producing the same
KR950005791B1 (en) Method of manufacturing silicon steel sheet having grains precisely arranged in goss orientation
TW201502288A (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP4280224B2 (en) Non-oriented electrical steel sheet with excellent iron loss
JP2018165383A (en) Nonoriented electromagnetic steel sheet
CN100476004C (en) Non-oriented silicon steel sheet having excellent core loss and production method thereof
JP4280223B2 (en) Non-oriented electrical steel sheet with excellent iron loss
JP4267437B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties after strain relief annealing and its manufacturing method
EP3859036A1 (en) Non-oriented electrical steel sheet and manufacturing method therefor
JP2002080948A (en) Nonoriented silicon steel sheet having excellent blanking workability
TWI751812B (en) Non-oriented electromagnetic steel sheet, manufacturing method thereof, and hot-rolled steel sheet
JP4276613B2 (en) Non-oriented electrical steel sheet and ladle refining method for molten steel for non-oriented electrical steel sheet
TWI746297B (en) Non-oriented electromagnetic steel sheet, manufacturing method thereof, and hot-rolled steel sheet
TWI757156B (en) Hot-rolled steel sheet for non-oriented electrical steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4280197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350