TW200403346A - Nonoriented magnetic steel sheet, member for rotary machine and rotary machine - Google Patents

Nonoriented magnetic steel sheet, member for rotary machine and rotary machine Download PDF

Info

Publication number
TW200403346A
TW200403346A TW92121498A TW92121498A TW200403346A TW 200403346 A TW200403346 A TW 200403346A TW 92121498 A TW92121498 A TW 92121498A TW 92121498 A TW92121498 A TW 92121498A TW 200403346 A TW200403346 A TW 200403346A
Authority
TW
Taiwan
Prior art keywords
steel sheet
less
annealing
rotating machine
scope
Prior art date
Application number
TW92121498A
Other languages
Chinese (zh)
Other versions
TWI276693B (en
Inventor
Tadashi Nakanishi
Toshito Takamiya
Masaki Kono
Original Assignee
Jfe Steel Kk
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Kk filed Critical Jfe Steel Kk
Publication of TW200403346A publication Critical patent/TW200403346A/en
Application granted granted Critical
Publication of TWI276693B publication Critical patent/TWI276693B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Abstract

This invention provides a nonoriented magnetic steel sheet which has a chemical composition in mass% in which contents of Si and Mn are 0.1 to 1.2% and 0.005 to 0.30%, respectively, and the contents of C, Sol.Al and N are limited to 0.0050% or less, 0.0004% or less, and 0.0030% or less, respectively, all including 0%, and has a number density of grain growth inhibiting ductile non-metallic inclusions dispersed in the steel sheet of 1000 pieces/cm2 or less including 0, in which a grain growth inhibiting ductile non-metallic inclusion means an inclusion contained in a steel sheet having been subjected to finishing annealing which has a length of 3 x D to 9 x D, D representing an average particle diameter of re-crystallized grains in the steel sheet. The nonoriented magnetic steel sheet allows the production, from one steel sheet, of a rotor material exhibiting a high magnetic flux density and a high strength and a stator material exhibiting a high magnetic flux density and a low iron loss after it is subjected to strain removing annealing.

Description

(1) (1)200403346 玖、發明說明 【發明所屬技術領域】 本發明係關於組裝旋轉機所用之無方向性電磁鋼板° 本發明亦關於利用上述無方向性電磁鋼板所組裝之旋 轉機用構件以及旋轉機。 【先前技術】 欲減少旋轉機之能源浪費時,將旋轉機之鐵芯,即轉 子(Rotes )及定子(Stator )之磁通密度予以提高,同時 謀圖該等鐵芯之低鐵損化相當有效。以減低鐵損之手段, 一般乃利用提高Si、A1、Μη等之含量而增加鐵芯材料之 電阻的手段。又,該等手段之外,已知悉如日本之特開昭 5 8 - 1 5 1 4 5 3號公報所揭露的添加Β之方法、及特開平 3 — 2 8 1 75 8號公報所揭露的添加Ni之方法等。又,尙有 藉將電磁鋼板之組合結構、例如促進具{100}〈 UVW〉方 位之晶粒優先生長以提升磁性之方法,在特開昭 5 8 — 1 8 1 822號公報等已有提案。即藉使用由該等手段所 製造之無方向性電磁鋼板,乃能製造高磁通密度且低鐵損 之鐵芯。 惟,旋轉機之鐵芯所使用之無方向性電磁鋼板是由鋼 板製造業者施加最終精製退火(最終退火)以製品,板出貨 後,再由需要者組裝爲旋轉機之轉子及定子。在該組裝工 程,自鋼板衝切轉子用鐵芯板或定子用鐵芯板後,依需再 被施加應變退火。 -5- (2) (2)200403346 亦有藉改善該應變退火時之再結晶粒生長性,以獲得 更優異低鐵損之技術的提案。例如,在特公昭5 8 - 5 5 2 1 0 號公報及特開平8 - 269532號公報等,揭露有將鋼板中之 Sol.Al量分別減低爲0.0010%以下、0.003%以下,藉抑 制微細A1N之析出,以改善應變退火時之晶粒生長性, 而得到低鐵損之技術。又特開平3 - 2 4 2 2 9號公報亦揭露 將Sol.Al量減低爲0.001%以下,藉將N、v之含量積抑 制於所定値以下,而同樣改善應變退火時之晶粒生長性, 以獲得低鐵損之技術。特開平7 - 7 0 7 1 9號公報則揭露有 將Sol.Al量減低爲8ppm以下,更將Ti+Al之量控制於 2 0ppm以下等,以改善應變退火時之晶粒生長性的方法。 復在特開昭63 — 1 952 1 7號公報或特開平7 - 1 50248 號公報’又揭露有藉低A1化,再加控制Si、A1、Μη之 複合氧化物所成的夾雜物組成以防止該夾雜物之延性化, 乃能改善應變退火時之晶粒生長性,而獲得低鐵損。 然’雖以該等技術,應變退火之鐵損改善量亦非充 足’例如將最終精製退火後(出貨時)6W/kg左右之鋼 板經過應變退火或許能改善爲低於5 W / kg左右,惟將最 終精製退火後(出貨時)預先減低爲約5W/kg左右之鋼 板經過應變退火欲改善呈低於4.4W / kg左右卻十分艱 難。 P、胃造旋轉機用鐵芯時,爲維持材料之高成品 $ ’ 一*般’ Μ藉衝壓機自同一鋼板衝切轉子用鐵芯板與定 + ° I ’將該等轉子用鐵芯板與定子用鐵芯板分 -6- (3) 200403346 別予以層疊,而進行組裝轉子及定子。 其中,轉子是旋轉構件,由於隨著高速旋轉 應力’故被要求需具局強度。尤其近年,爲提 (馬達)之效率,稀土類磁鐵埋設方式之轉子相 轉子之旋轉速度顯著地變高。因此,對於構成轉 鋼板,其磁通密度及強度、例如上降伏點(YP 比習知更高。另,定子爲了旋轉機之小型化及節 有高磁通密度且低鐵損至爲重要。 如此,雖是同一馬達所使用之電磁鋼板,組 用之鋼板(以下稱爲「轉子材料」)與組裝定子 板(以下稱爲「定子材料」)被要求的特性卻相 使兩種特性並存頗爲困難。因爲習知提案之技術 能符合作爲轉子材料或作爲定子材料之特性,惟 成皆能符合雙方特性者。 【發明內容】 本發明之目的乃在提供一種自同一鋼板同時 材料及定子材料,以獲得轉子材料能達成高磁通 強度、定子材料能達成高磁通密度及低鐵損之高 無方向性電磁鋼板,更提供一種利用上述無方向 板之旋轉機用構件以及旋轉機。 本發明是; 1·以質量比含有Si: 0.1%〜1.2%及Μη: 0.30%,並被限制c: 0.0050 %以下(包含〇), 易遭受局 高旋轉機 當發展, 子之電磁 )被要求 能化,具 裝轉子使 使用之鋼 異,而欲 ,雖個別 並非被形 採取轉子 密度及高 磁通密度 性電磁鋼 0.005 〜 Sol.Al : (4) (4)200403346 0.0004%以下(包含0) ,N: 0.0030% (包含0),且以 殘部(其餘)含有Fe及不可避免的不純物,而鋼板中分 散之阻礙晶粒生長延性非金屬夾雜物(deforMable non — Metallic inclusion with grain growth inhibition )的個數 密度(nuMber of inclusion per unit area)爲 1000 個 / cm2以下(包含〇 )之旋轉機用高磁通密度無方向性電磁 鋼板。 在此,阻礙晶粒生長延性非金屬夾雜物則是指:假設 延性非金屬夾雜物之鋼板平均再結晶粒徑(再結晶粒之平 均粒徑)爲D時,長度爲3xD〜9xD的夾雜物。又,在 此,鋼板係指經過最終精製退火之製品板的狀態、即未被 應變退火之狀態的鋼板,當然,平均再結晶粒徑及延性非 金屬夾雜物之長度,還處在製品板狀態之値。又,延性非 金屬夾雜物雖是指藉軋製較易延伸(或在製品板等時延 伸)之較粗大非金屬夾雜物,惟在鋼板延伸者殆爲非金屬 夾雜物,故以後僅稱作延性夾雜物。 又,上述無方向性電磁鋼板之組成,實質上由Si、 Μη、Sol.Al、N、殘部Fe及不可避免的不純物所構成較 佳。 2. 更含有以質量%換算時,Sb: 0.005%〜0.10% 及Sn: 0.005%〜0.2%中所選擇之1種或兩種的與上述1 之發明有關的旋轉機用高磁通密度無方向性電磁鋼板。 3. 更含有以質量%換算時,P: 0.001%〜0.2%及 Ni: 0.001%〜0.2%中所選擇之1種或兩種的與上述1或 -8- (5) (5)200403346 2之發明有關的旋轉機用高磁通密度無方向性電磁鋼板。 4·更含有以質量%換算時,REM : 0.0001%〜0.10% 及Ca: 0.0001%〜0.01%中所選擇之1種或雨種的與上述 1〜3之任一發明有關的旋轉機用高磁通密度無方向性電 磁鋼板。 5. 上述不可避免的不純物中Ti、Nb及V以質量% 換算時,分別被限制於Ti : 0.0020 %以下(包含〇 ), Nb: 0.0050%以下(包含 0),及 V: 0.0060%以下(包 含0)之與上述1〜4之任一發明有關的旋轉機用高磁通 密度無方向性電磁鋼板。 6. 上述不可避免的不純物中S及Ο以質量%換算 時,分別被限制於S : 0.0050%以下(包含0 ),及〇 : 0.0100%以下(包含〇)之與上述1〜5之任一發明有關的 旋轉機用高磁通密度無方向性電磁鋼板。 7. 上述再結晶粒之平均粒徑D爲6//M〜25//M的 與上述1〜6之任一發明有關的旋轉機用高磁通密度無方 向性電磁鋼板。 8. 至少由冷軋及其後之最終精製退火所製造的鋼 板,而上述最終精製退火之溫度爲700 °C〜800 °C的與上 述1〜7之任一發明有關的旋轉機用高磁通密度無方向性 電磁鋼板。即,將無方向性電磁鋼板用扁鋼胚經過常規處 理形成具有最終板厚之冷軋鋼板後,在70(TC〜800 °C施 加最終精製退火者。 9. 與上述1〜8之任一發明有關的無方向性電磁鋼 -9- (6) 200403346 板’係在750 °C藉兩小時之應變退火,而平均再 生長兩倍以上(即應變退火結晶粒徑生長比爲2以 特徵的旋轉機用高磁通密度無方向性電磁鋼板。 10·對與上述1〜9之任一發明有關的旋轉機 通密度無方向性電磁鋼板(製品板)施加應變退火 旋轉機用高磁通密度無方向性電磁鋼板(應變退火 11·上述應變退火之溫度爲700 °C〜800。(:的 1 〇之發明有關的旋轉機用高磁通密度無方向性 板。 即,與上述1〜9之各發明有關的無方向性 板,亦能被設成:將無方向性電磁鋼板用扁鋼胚經 處理形成具有最終板厚之冷軋鋼板後,在700 °C -施加最終精製退火,復在7 0 0 °C〜8 0 0 °C予以施加 火,使其平均再結晶粒徑生長爲最終精製退火後粒 倍以上者較佳。 12.將上述1〜9之任一發明有關的旋轉機用 密度無方向性電磁鋼板最好是經過衝切後,再予以 成之旋轉機用轉子構件。 1 3 ·將上述1〜9之任一發明有關的旋轉機用 密度無方向性電磁鋼板最好是經過衝切予以層疊後 以施加應變退火所成之旋轉機用定子構件。 14.具有以同一旋轉機用局磁通密度無方向性 板爲原料的上述1 2之發明有關的轉子構件與上述 明有關的定子構件之旋轉機。 晶粒徑 上)爲 用高磁 所成之 板)。 與上述 電磁鋼 電磁鋼 過常規 -8 00 °C 應變退 徑之兩 局磁通 層疊所 局5灶通 ,再予 電磁鋼 13之發 •10- (7) (7)200403346 即,上述1〜9之各發明有關的無方向性電磁鋼板, 係可經過衝切後再予以層疊而形成高強度旋轉機轉子構 件。又,亦可經過衝切以及經層疊再施加應變退火而形成 低鐵損旋轉機定子構件。且,亦可使用自同一旋轉機用高 磁通密度無方向性電磁鋼板所得轉子構件與定子構件,以 獲得高性能之旋轉機。 【實施方式】 本發明人首先著眼於以下各點。 (1 )無方向性電磁鋼板之飽和磁通密度係由原料之 鐵含量(質量% )而定,鐵以外之元素、例如Si或Μη等 含量高時,就無法避免飽和磁通密度之下降。 (2 )磁通密度及強度由鋼板之結晶粒徑所支配。 (3 )如上述需要者依需進行應變退火,致由於該退 火可能發生結晶粒徑之增大及鐵損之減低。 經考慮上述結果,本發明人等乃發覺組合下述各方 法。 (1 )藉採用Si含量及Μη含量低之無方向性電磁鋼 板,以確保高磁通密度; (2 )最終精製退火後之製品板較細粒而高強度, 且,能確保應變退火時之結晶粒的高生長性; (3 )在轉子材料不予進行應變退火以確保強度,在 定子材料施加應變退火藉晶粒生長以達成低鐵損; 藉上述之組合,能將結晶粒徑在上述轉子及定子之製 -11 - (8) (8)200403346 造過程加以適當化,對轉子及定子分別賦予所需之特性。 本發明人等更加探求在定子組裝過程所進行之應變退 火工程中支配結晶粒徑生長的主要原因,而發覺組合下述 各方法。 (1 )將 A1之上限値以相當嚴厲的工業水準加以限 制,以抑制A1N等之微細析出物; (2)將鋼板中分散之延性夾雜物的個數密度與被最 終精製退火之鋼板的平均結晶粒徑予以發生關係限制於所 定値以下,即發覺特定之尺寸範圍的延性夾雜物支配性地 影響應變退火時之晶粒生長性,可達成更緻密且有效的延 性夾雜物控制; 而獲得藉上述組合,在需要者之定子組裝過程所進行 應變退火工程(例如在700 °C兩個小時左右)能使結晶粒 徑顯著地生長的卓見,以達成本發明。 以下,就本發明電磁鋼板之較適宜化學組成(質量 % )加以詳述。(1) (1) 200403346 发明 Description of the invention [Technical field to which the invention belongs] The present invention relates to a non-oriented electromagnetic steel plate used for assembling a rotating machine ° The present invention also relates to a member for a rotating machine assembled using the above non-oriented electromagnetic steel plate As well as spinning machines. [Previous technology] To reduce the energy waste of the rotating machine, increase the magnetic flux density of the iron core of the rotating machine, that is, the rotor (Rotes) and the stator (Stator), and try to reduce the iron loss of these iron cores. effective. In order to reduce the iron loss, it is generally a means to increase the resistance of the core material by increasing the content of Si, A1, Mn, and the like. In addition to these methods, the method of adding B as disclosed in Japanese Patent Laid-Open No. 5 8-1 5 1 4 5 3 and the method disclosed in Japanese Patent Laid-Open No. 3-2 8 1 75 8 are known. How to add Ni, etc. In addition, there is a proposal to improve the magnetic properties by combining the structure of an electromagnetic steel plate, for example, by promoting the preferential growth of crystal grains with a {100} <UVW> orientation. . That is, by using non-oriented electromagnetic steel sheets manufactured by these methods, iron cores with high magnetic flux density and low iron loss can be manufactured. However, the non-oriented electromagnetic steel sheet used in the core of the rotating machine is the final refined annealing (final annealing) applied by the steel plate manufacturer to produce the product. After the plate is shipped, it is assembled by the needy into the rotor and stator of the rotating machine. In this assembly process, a steel core plate for a rotor or a core plate for a stator is punched from a steel sheet, and then strain annealed as necessary. -5- (2) (2) 200403346 There are also proposals to improve the growth of recrystallized grains during the strain annealing to obtain more excellent low iron loss technology. For example, in JP 5-8-5 2 210 and JP 8-269532, it is disclosed that the amount of Sol.Al in the steel sheet is reduced to 0.0010% or less and 0.003% or less, respectively, by suppressing fine A1N Precipitation to improve grain growth during strain annealing, and to obtain a low iron loss technology. Also, Japanese Unexamined Patent Publication No. 3-2 4 2 2 9 also discloses that the amount of Sol.Al can be reduced to less than 0.001%, and the grain growth performance during strain annealing can be improved by suppressing the content product of N and v below a predetermined threshold. To obtain low iron loss technology. Japanese Unexamined Patent Publication No. 7-7 0 7 1 9 discloses a method for improving the grain growth property during strain annealing by reducing the amount of Sol.Al to 8 ppm or less and controlling the amount of Ti + Al to 20 ppm or less. . In JP-A No. 63 — 1 952 1 7 or JP-A No. 7-1 50248, it was also disclosed that the composition of inclusions formed by reducing the Al content and controlling the complex oxides of Si, A1, and Mη was Preventing the ductility of the inclusions can improve the grain growth properties during strain annealing and achieve low iron loss. However, although the iron loss improvement in strain annealing is not sufficient with these techniques, for example, after final annealing (at the time of shipment), a steel sheet of about 6 W / kg may be improved to less than about 5 W / kg by strain annealing. However, it is very difficult to improve the steel sheet after the final refining annealing (at the time of shipment) to about 5W / kg by strain annealing to improve it to less than about 4.4W / kg. P. In the case of iron cores for gas-rotation machines, in order to maintain the high quality of the material, it is the same as that of the core material. Μ The core plate for the rotor is punched from the same steel plate by a punching machine. The core plate for the stator and the stator is divided into -6- (3) 200403346. Do not stack the rotor and the stator. Among them, the rotor is a rotating member, and it is required to have local strength due to high-speed rotation stress'. Especially in recent years, in order to improve the efficiency of the (motor), the rotor phase of the rotor-embedded rare-earth magnet method has significantly increased the rotation speed. Therefore, the magnetic flux density and strength, such as the rising and falling points (YP) of constituent steel plates are higher than conventional ones. In addition, it is important that the stator has high magnetic flux density and low iron loss in order to reduce the size of the rotating machine. In this way, although it is the electromagnetic steel plate used in the same motor, the required characteristics of the combined steel plate (hereinafter referred to as "rotor material") and the assembled stator plate (hereinafter referred to as "stator material") make the two characteristics coexist. It is difficult because the conventionally proposed technology can meet the characteristics of a rotor material or a stator material, but it can meet the characteristics of both parties. SUMMARY OF THE INVENTION The object of the present invention is to provide a material and a stator material from the same steel plate. In order to obtain a high non-directional electromagnetic steel sheet that can achieve high magnetic flux strength for the rotor material and high magnetic flux density and low iron loss for the stator material, it also provides a rotating machine member and a rotating machine using the above-mentioned non-directional plate. The invention is: 1. It contains Si: 0.1% ~ 1.2% and Mn: 0.30% by mass ratio, and is limited to c: 0.0050% or less (including 0), which is susceptible to local high-rotation machines. Development, the electromagnetic of the child) is required to be able to be equipped with a rotor to make the steel used differently, although some are not shaped to take the rotor density and high magnetic flux density electromagnetic steel 0.005 ~ Sol.Al: (4) (4 200403346 0.0004% or less (including 0), N: 0.0030% (including 0), and the remainder (the rest) contains Fe and unavoidable impurities, and the steel sheet is dispersed and prevents the growth of ductile non-metallic inclusions (deforMable non — Metallic inclusion with grain growth inhibition) A high magnetic flux density non-directional electromagnetic steel sheet for a rotating machine with a number density (nuMber of inclusion per unit area) of 1,000 pieces / cm2 or less (inclusive). Here, ductile non-metallic inclusions that inhibit grain growth refer to inclusions with a length of 3xD to 9xD assuming that the average recrystallized grain size (average grain size of recrystallized grains) of the steel sheet of ductile nonmetallic inclusions is D . Here, the steel sheet refers to the state of the final refined and annealed product sheet, that is, the state without strain annealing. Of course, the average recrystallized grain size and the length of the ductile non-metallic inclusions are still in the state of the product sheet.値. In addition, although ductile non-metallic inclusions refer to coarser non-metallic inclusions that are easier to extend (or extend in product plates, etc.) by rolling, they are only called non-metallic inclusions in the case of steel plate elongation, so they are only referred to hereinafter as non-metallic inclusions. Ductile inclusions. The composition of the non-oriented electrical steel sheet is preferably substantially composed of Si, Mn, Sol. Al, N, residual Fe, and unavoidable impurities. 2. In the case of conversion by mass%, one or two of Sb: 0.005% to 0.10% and Sn: 0.005% to 0.2% are selected. The high magnetic flux density for a rotary machine related to the invention of item 1 above is not included. Directional electromagnetic steel plate. 3. When it is converted to mass%, it contains one or two selected from P: 0.001% to 0.2% and Ni: 0.001% to 0.2%, which is the same as the above 1 or -8- (5) (5) 200403346 2 The invention relates to a high magnetic flux density non-oriented electrical steel sheet for a rotating machine. 4. When it is converted into mass%, it is one of the REM: 0.0001% to 0.10% and Ca: 0.0001% to 0.01%, or a rain type, which is related to any one of the above inventions 1 to 3, Non-directional magnetic steel sheet with magnetic flux density. 5. When Ti, Nb and V in the above unavoidable impurities are converted by mass%, they are limited to Ti: 0.0020% or less (including 0), Nb: 0.0050% or less (including 0), and V: 0.0060% or less ( Including 0), the high magnetic flux density non-oriented electrical steel sheet for a rotating machine according to any one of the inventions 1 to 4 above. 6. When S and O in the above-mentioned unavoidable impurities are converted by mass%, they are respectively limited to S: 0.0050% or less (including 0), and 0: 0.0100% or less (including 0) and any of 1 to 5 above. The invention relates to a high magnetic flux density non-oriented electrical steel sheet for a rotating machine. 7. The high-density non-oriented electromagnetic steel sheet for a rotating machine according to any one of the above-mentioned inventions 1 to 6 having an average particle diameter D of the recrystallized grains of 6 // M to 25 // M. 8. At least steel sheet manufactured by cold rolling and subsequent final refining and annealing, and the temperature of the above final refining and annealing is 700 ° C ~ 800 ° C, and the high magnetic field for a rotary machine according to any of the above inventions 1 to 7 Flux-free non-oriented electromagnetic steel sheet. That is, a flat steel blank for a non-oriented electrical steel sheet is subjected to a conventional treatment to form a cold-rolled steel sheet having a final sheet thickness, and then a final refined and annealed at 70 ° C to 800 ° C. 9. Any one of the above 1 to 8 The non-directional electromagnetic steel of the invention-9- (6) 200403346 The plate was annealed at 750 ° C for two hours of strain annealing, and the average re-growth was more than twice (that is, the characteristic of the strain annealing crystal grain growth ratio is 2) High magnetic flux density non-oriented electromagnetic steel sheet for rotating machines. 10. Strain annealing high magnetic flux density for rotary machines by applying strain to the non-directional magnetic steel sheet (product plate) of rotary machine flux density related to any of the inventions 1 to 9 above. Non-oriented electrical steel sheet (strain annealing 11 · The temperature of the above-mentioned strain annealing is 700 ° C ~ 800. (: 10) The non-directional high magnetic flux density non-directional plate for a rotating machine according to the invention of 10. That is, the same as the above 1 ~ 9 The non-oriented sheet related to each invention can also be set as follows: After processing the flat steel blank for non-oriented electromagnetic steel sheet to form a cold-rolled steel sheet with a final thickness, apply final finishing annealing at 700 ° C- Apply at 7 0 ° C ~ 80 0 ° C It is better to make the average recrystallized grain size grow more than the size after final refining and annealing. 12. It is preferable that the density non-oriented electrical steel sheet for a rotating machine according to any one of the inventions 1 to 9 above is punched The rotor member for a rotating machine is then completed. 1 3 · The density non-oriented electrical steel sheet for a rotating machine according to any one of the inventions 1 to 9 above is preferably formed by punching and laminating and applying strain annealing. Stator member for rotating machine. 14. Rotating machine having the rotor member related to the invention of the above 12 using the same local magnetic flux density non-directional plate for the rotating machine as the raw material and the stator member related to the above. It is a plate made of high magnetism.) The two-layer magnetic flux stacking with 5 strain passes is used to pass the above-mentioned -8 00 ° C strain relief, and then the electromagnetic steel 13 is issued. • 10- (7 (7) 200403346 That is, the non-oriented electrical steel sheet according to the inventions of 1 to 9 above can be punched and then laminated to form a high-strength rotating machine rotor member. It can also be punched and laminated. Strain annealed It can be used as the stator member of the rotating machine with low iron loss. Moreover, the rotor member and the stator member obtained from the high magnetic flux density non-oriented electromagnetic steel plate for the same rotating machine can also be used to obtain a high-performance rotating machine. First focus on the following points: (1) The saturation magnetic flux density of non-oriented electromagnetic steel plates is determined by the iron content (mass%) of the raw material. When the content of elements other than iron, such as Si or Mn, is high, it cannot be avoided. Decrease in saturation magnetic flux density. (2) The magnetic flux density and strength are governed by the crystal grain size of the steel sheet. (3) If necessary, strain annealing is performed as required, because the crystal grain size may increase and the annealing may occur. Reduction of iron loss. Taking the above results into consideration, the present inventors have discovered that the following methods are combined. (1) By using non-oriented electromagnetic steel sheet with low Si content and Mn content to ensure high magnetic flux density; (2) The final refined and annealed product sheet is finer and higher strength, and it can ensure the strain annealing High growth of crystal grains; (3) Strain annealing is not performed on the rotor material to ensure strength, and strain annealing is applied to the stator material to achieve low iron loss by grain growth; by using the above combination, the crystal grain size can be within the above range. Rotor and stator manufacturing-11-(8) (8) 200403346 The manufacturing process is appropriately optimized to give the rotor and stator the required characteristics, respectively. The present inventors have further explored the main reason for controlling the growth of crystal grain size in the strain annealing process performed in the stator assembly process, and have found that the following methods are combined. (1) Limit the upper limit of A1 to a rather severe industrial level to suppress fine precipitates such as A1N; (2) The number density of ductile inclusions dispersed in the steel plate and the average of the steel plate that is finally refined and annealed The relationship between the crystal grain size is limited to the specified value, that is, it is found that ductile inclusions in a specific size range dominate the grain growth during strain annealing, and can achieve more dense and effective control of ductile inclusions. The above combination, the strain annealing process (for example, at about 700 ° C for two hours) during the stator assembly process of the consumer can make the crystal grain size grow remarkably, so as to achieve the cost of invention. Hereinafter, a more suitable chemical composition (mass%) of the electromagnetic steel sheet of the present invention will be described in detail.

Si : 0.1 〜1.2% 欲將鋼板之電阻增大並減低鐵損,至少需要含有0.1 % Si。惟,Si含量如超過1.2%時,磁通密度即降低, 硬度亦上升,更劣化加工性。因此,將Si含量定於〇· 1〜 1 . 2 %之範圍。 Μη : 0.005 〜0.30% Μη是爲獲得良好之熱軋時的加工性所需之成份’因 此需要含有0.005 %以上。然,如超過0.30%時’磁通密 -12- (9) 200403346 度即會下降。於是將Μη含量設定於0.005〜〇·30 % C : 0.0050%以下(包含〇 ) C爲抑制磁性時效劣化需要盡量壓低。又,在 採用之極低Α1化的條件下欲使組合結構之改善效 發揮就需要減低爲0.0050%以下。惟,此種C之 並非一定需要在起始材料之鋼液或扁鋼胚的階段 可。即,只要在鋼板製造過程之最終精製退火結束 則可。代表性之脫碳手段爲脫碳退火。又,在製造 行脫碳時,起始材料之C含量在0.0050%〜0.1% 較宜。Si: 0.1 to 1.2% To increase the electrical resistance of the steel sheet and reduce iron loss, it is necessary to contain at least 0.1% Si. However, if the Si content exceeds 1.2%, the magnetic flux density decreases and the hardness increases, further deteriorating the workability. Therefore, the Si content is set to a range of 0.1 to 1.2%. Mn: 0.005 to 0.30% Mn is a component required to obtain good workability at the time of hot rolling. Therefore, it must contain 0.005% or more. However, if it exceeds 0.30%, the magnetic flux density -12- (9) 200403346 degrees will decrease. Therefore, the Mη content is set to 0.005 to 0.30% C: 0.0050% or less (including 0). C must be kept as low as possible in order to suppress magnetic aging deterioration. In addition, under the conditions of extremely low A1, the improvement effect of the combined structure needs to be reduced to 0.0050% or less. However, such C does not necessarily need to be at the stage of molten steel or flat steel billet of the starting material. In other words, it is only necessary to finish the finish refining annealing in the steel sheet manufacturing process. A typical decarburization method is decarburization annealing. In the decarburization process, the C content of the starting material is preferably 0.0050% to 0.1%.

Sol.Al : 0.0004% 以下(包含 〇 ) 爲獲得優異的晶粒生長性與磁性,鋼板之A1 要減至0.0004%以下。A1含量如超過0.0004%時 中乃析出A1N,經過最終精製退火之製品板的磁通 降低。又,應變退火時之再結晶粒生長性亦降低, 到本發明之能顯著減低鐵損量的優越效果。 N : 0.0030%以下(包含〇 ) N除了與A1結合構成氮化物(A1N)析出原因 與Ti等結合形成各種氮化物,成爲促成經過最終 火之製品磁通密度減低的原因。又,阻礙應變退火 結晶粒生長,而成爲阻礙鐵損値充分下降之原因。 含量需求減低爲0.0030%以下。較佳爲0.0025%以 本發明之無方向性電磁鋼板,除了以上之基 外’對應目的的鋼板特性亦可添加S b、S η、P、N i 本發明 果充分 減低, 達成不 前達成 過程進 範圍內 含量需 ,鋼板 密度即 無法得 外,亦 精製退 時之再 因此N 下。 本組成 REM、 -13- (10) (10)200403346Sol.Al: 0.0004% or less (including 〇) In order to obtain excellent grain growth and magnetic properties, the A1 of the steel sheet should be reduced to 0.0004% or less. If the content of A1 exceeds 0.0004%, A1N is precipitated, and the magnetic flux of the final refined and annealed product plate is reduced. In addition, the growth of recrystallized grains during strain annealing is also reduced, and the superior effect of the present invention that can significantly reduce the amount of iron loss. N: 0.0030% or less (including 0) N causes precipitation of nitrides (A1N) in combination with A1 and causes the formation of various nitrides in combination with Ti, which contributes to a decrease in the magnetic flux density of the final fired product. In addition, the growth of the crystal grains in the strain annealing is hindered, which causes the iron drop to be sufficiently reduced. The content demand is reduced to less than 0.0030%. It is preferably 0.0025% of the non-oriented electrical steel sheet according to the present invention. In addition to the above, the steel sheet characteristics corresponding to the purpose can also be added with S b, S η, P, N i. When the content is within the range, the density of the steel plate cannot be obtained, and the refining time is also N. Composition REM, -13- (10) (10) 200403346

Ca之至少任一種。該等之較佳含量容後再述。上述以 外,如含有C r : 5 %以下,C u : 5 %以下之至少任一種, 對獲取本發明之效果亦不成爲障礙。 又,以其他不可避免的不純物較代表性者有Ti、Nb、 V、S、0,就該等之較適當範圍容後述之。且,亦被容許 Cu: 0.2% 以下,Cr: 0.08% 以下,Zr: 〇·〇〇5% 以下, As: 0.01% 以下,Mo: 0.005% 以下,W : 0.005% 以下等 之不可避免的不純物。 本發明之無方向性電磁鋼板,雖具有以上之基本組 成,惟僅是組成之控制並無法達成本發明之目的。經過最 終精製退火之鋼板內所分散非金屬夾雜物中,將鋼板(被 最終精製退火之製品板)之平均再結晶粒徑假設爲D 時,長度爲3 X D〜9 X D之延性夾雜物(延性非金屬夾 雜物)的個數密度需要爲1〇〇〇個/ cm2以下(包含〇)。 以後即將該長度爲3 X D〜9 X D之延性非金屬夾雜物定 義爲阻礙晶粒生長延性非金屬夾雜物。 在此,平均再結晶粒徑係測定鋼板〇 . 5 cm2面積中所 存在的結晶粒個數,且依據其算出每一結晶粒之平均面 積,再算出相同該平均面積之圓的直徑,而採用該直徑。 此種平均再結晶粒徑藉觀察鋼板之垂直於板幅方向所裁切 的剖面(所謂L剖面)可加以測定。 延性夾雜物則是沿軋製方向延長之棒狀夾雜物、及沿 軋製方向連續排列的夾雜物之謂。又’處在1 〇 // Μ以內 距離之2以上夾雜物沿軋製方向以± 5 °以內之方向排列 -14- (11) (11)200403346 時,將該等夾雜物當作連繫著’以一個延性夾雜物視之。 又,夾雜物除了上述延性夾雜物外尙有孤立之圓形夾 雜物。此並非延性夾雜物’不算是延性夾雜物。且,將夾 雜物長徑爲短徑兩倍以下者當作圓形、超過兩倍者當作延 性夾雜物予以分類。 代表性延性夾雜物,有S i 0 2、A 1 2 0 3、M n 0、C a 0或該 等若干所成之複合氧化物(但有時由於組成變爲非延 性)。 延性夾雜物之長度是指底鐵(母相結構)與夾雜物界 面之任意兩點間所劃線段的最大値、即延性夾雜物之兩端 間的距離(將此作爲長徑)。所定長度之延性夾雜物的存 在個數測定,係以其次步驟加以進行。 硏磨鋼板之垂直於板幅方向的剖面,以光學顯微鏡觀 察硏磨原樣(不進行腐鈾處理)之面,將與底鐵部分色彩 不同之小領域認定爲延性夾雜物。針對一個試樣將觀察視 野設定爲5mm2,就上述認定之夾雜物中可認爲所定長度 延性夾雜物形態者測算其個數,自其個數換算每1 cm2之 之個數而作爲個數密度。 以下,顯示爲調查對於延性夾雜物之晶粒生長性的影 響所進行之實驗及其結果。 (實驗1 ) 以 C : 0.002 %,Si : 0.7 %,Μη : 0.2 %,Sol· A1 : 0.0004%以下,S: 0.002%,殘部(其餘)之不可避免的 (12) (12)200403346 不純物爲基本成分,而製造針對該基本成分N在0.0010 〜0.00 60%之範圍變動的扁鋼胚。 將所得扁鋼胚加熱至ll〇〇°C經熱軋爲2.3mm厚後, 予以酸洗,再經冷軋精加工呈〇.35mm之最終板厚,復又 施加800 °C、15秒鐘之最終精製退火(再結晶退火)而製 成最終精製退火板(製品板)。又,延性夾雜物之存在量 (個數密度)、及形態(長度)之調整,乃藉例如: 變更含氧量與含A1量以控制氧化物之量及組成; 變更扁鋼胚之厚度等,而變更熱軋時之輥壓程序以控 制夾雜物之延伸量; 等進行之。 且,就所得製品進行測定平均結晶粒徑同時,進行觀 察夾雜物,測定延性夾雜物之長度及個數密度。並對上述 製品,在氬(Ar )氣氛施加7 5 0 °C、兩小時之退火(以下 簡稱爲「應變退火」),與最終精製退火板同樣進行測定 平均結晶粒徑。又,上述退火條件是相當於需要者之應變 退火的條件。 圖1爲對於如此所得最終精製退火後之鋼板平均結晶 粒徑的應變退火後之鋼板平均結晶粒徑的比(以下簡稱爲 「應變退火結晶粒生長比」或「晶粒生長比」)與N含 墓之關係顯不圖表。在此’對應將最終精製退火後之平均 結晶粒徑設爲D時,長度爲3 X D〜9 X D之夾雜物(稱 謂阻礙晶粒生長延性非金屬夾雜物)的個數密度,而使用 不同之標記。 •16- (13) (13)200403346 自圖1可知’ N含量爲30ppm (質量ppm)以下 且 阻礙晶粒生長延性非金屬夾雜物之個數密度如1 〇 〇 0 _ γ cm2以下時,應變退火結晶粒生長比即爲2以上。惟,阻 礙晶粒生長延性非金屬夾雜物雖是1 0 0 0個/ c m2以τ,N 含量如超過0.003 0 %時,或阻礙晶粒生長延性非金屬夾雜 物之個數密度超過1〇〇〇個/ cm2時,應變退火結晶粒生 長比就變爲未滿2。 (實驗2 ) 同樣結果亦能由其次實驗2得到確認。即,製造具有 表一所示組成、殘部鐵及不可避免的夾雜物所成厚度 2 5 0mm之3條扁鋼胚,藉機械加工自該等扁鋼胚分別衝 切厚度25mm、50mm、100mm及200mm之試樣。之後, 將該等試樣加熱爲1 0 7 0 °C,在熱軋設成2.5 mm厚後,經 酸洗復由冷軋精加工呈最終板厚0.5mm。接著,將連續退 火型之最終精製退火(再結晶退火)的條件調整於700〜 8 00 °C範圍,製成平均再結晶粒徑(在實驗例、實施例僅 稱爲平均結晶粒徑)爲1 2 // m或1 4 // m之製品板。 對所得製品板在Ar氣氛中施加7 5 0 °C、兩小時之應 變退火。將該等製品板(最終精製退火板)及應變退火板 之垂直於板幅方向的剖面以光學顯微鏡加以觀察,而測定 其平均結晶粒徑。又,對製品板進行測定阻礙晶粒生長延 性非金屬夾雜物之個數密度。在表二顯示其結果,如同表 所示,製品板之阻礙晶粒生長延性非金屬夾雜物的個數密 -17- (14) (14)200403346 度爲1 000個/ cm2以下之試樣,其應變退火結晶粒生長 比較大。 表1 鋼編號 化學組成(mass%) C Si Μη Sol.Al N 0 Ti Nb V 1 0.0027 0.50 0.27 0.0003 0.0015 0.0090 0.0003 0.002 0.0010 2 0.0021 0.50 0.23 0.0003 0.0019 0.0085 0.0004 0.002 0.0010 3 0.0026 0.60 0.22 0.0001 0.0018 0.0070 0.0003 0.001 0.0010 -18- (15)200403346 表2 鋼編號 鋼胚扁厚 平均結晶粒徑 應變退火 阻礙晶粒生長延性 備考 度(mm) 應變退火前 應變退火後 結晶粒生 非金屬夾雜物個數 (//m) (^m) 長比 密度(個/cm2) 25 50 4.2 0.3 發明例 50 34 2.8 61 發明例 1 100 22 1.8 1012 比較例 200 17 1.4 3581 比較例 25 46 3.8 0.7 發明例 50 36 3.0 65 發明例 2 100 12 26 2.2 811 發明例 200 19 1.6 2778 比較例 25 47 3.9 0.3 發明例 50 43 3.6 19 發明例 3 100 26 2.2 286 發明例 200 22 1.8 1024 比較例 25 50 3.7 0.3 發明例 50 32 2.4 42 發明例 1 100 26 2.0 828 發明例 200 16 1.2 3731 比較例 25 44 3.1 0.5 發明例 50 34 2.4 35 發明例 2 100 14 28 2.0 657 發明例 200 22 1.6 2824 比較例 25 50 3.6 0.1 發明例 50 43 3.1 11 發明例 3 100 31 2.2 220 發明例 200 23 1.6 1038 比較例 -19- (16) (16)200403346 藉上述予以限制組成,並適當地限制阻礙晶粒生長延 性非金屬夾雜物的個數密度,則能將應變退火後之鋼板 (被組裝爲定子之鐵芯材料)的平均結晶粒徑促成上述最 終精製退火後之粒徑的兩倍以上。藉此,定子之鐵損可大 大地減低。 另,轉子藉以被最終精製退火之狀態予以使用,其結 晶粒徑相對地變呈較小狀態,可維持高強度、特別是高上 降伏點(以下略稱爲YP)。 且,藉使用上述轉子及定子,乃能有效率地組裝高速 旋轉用之高性能旋轉機。 参 對轉子要求之強度水準,由於隨著旋轉機之特性相 異,因此鋼板強度之支配因素的平均結晶粒徑之大小,對 應被要求轉子之強度水準加以設計即可。惟,如是一般性 旋轉機,鋼板之最終精製退火的平均結晶粒徑以6〜25 //m爲佳。此時,鋼板之強度爲YP 200〜400Mpa左右、 維氏硬度Hv爲100〜170左右。 又,雖非欲賦予本發明之權利範圍的解釋有所影響, 然,由於阻礙晶粒生長延性非金屬夾雜物之個數密度而應 變退火結晶粒生長比被支配之理由可如下予以推想。 首先,推想與結晶粒徑相同程度之長度的夾雜物,最 會阻礙晶粒生長性。因爲延性夾雜物係橫越一個或兩個以 上之結晶粒界存在,阻礙其結晶粒之生長性的機率較局所 致。 惟,電磁鋼板中所存在非金屬夾雜物之總量如一定 -20- (17) (17)200403346 時,由於其鋼中所佔體積分率可視爲略一定,根據齊納 (Zener )之式所示,比起結晶粒徑極端長之夾雜物阻礙 晶粒生長性的可能性較低。 換言之,延性夾雜物阻礙晶粒生長性的程度,隨著夾 雜物之長度而異,依據本發明人等之認知,延性夾雜物之 長度爲最終精製退火板之平均結晶粒徑的3〜9倍時,即 阻礙晶粒生長延性非金屬夾雜物時,呈最大。因此,由於 該範圍長之延性夾雜物、即「阻礙晶粒生長延性非金屬夾 雜物」之個數密度,致「應變退火結晶粒生長比」遭受影 響。 又,所謂齊納之式則是表示抑制劑之晶粒生長抑制力 I的下式。 1= (3/4) x(Vxaxp /r〇) 其中,V爲母相之摩爾體積,σ爲晶界能,p爲析出 物之體積分率,r α爲析出物之平均粒半徑。 如上述,藉將無方向性電磁鋼板之 Si、Mn、C、 S ο 1.A1及N的含量分別予以控制,且將阻礙晶粒生長延性 非金屬夾雜物之個數密度抑制於1〇〇〇個/ cm2以下,係 能增大應變退火結晶粒生長比,而製成適合旋轉機用之高 磁通密度無方向性電磁鋼板。復又,藉對於鋼板組成限制 Ti、Nb及V之含量,或添加Sb、Sn,乃能更加提升其效 果。此情,由以下之實驗可確認之。 (實驗3 ) -21 - (18) 200403346 製造表三所示組成、殘部鐵及不可避免的不純 之鋼塊,將該等鋼塊加熱至10 7 〇t後,經熱軋爲 厚,予以酸洗,再經冷軋呈〇.5mm之最終板厚。 加8 0 0 °C、1 0秒鐘之最終精製退火(再結晶退火) 製品板後,再施加7 5 0 °C、兩小時之應變退火予以 變退火板。且自所得製品板及應變退火板沿平行於At least any one of Ca. The preferred content of these will be described later. In addition to the above, if at least one of Cr: 5% or less and Cu: 5% or less is contained, the effect of the present invention is not hindered. In addition, other representative unavoidable impurities are Ti, Nb, V, S, and 0, and a more appropriate range of these will be described later. In addition, unavoidable impurities such as Cu: 0.2% or less, Cr: 0.08% or less, Zr: 〇 · 〇〇5% or less, As: 0.01% or less, Mo: 0.005% or less, W: 0.005% or less . Although the non-oriented electrical steel sheet of the present invention has the above basic composition, the control of the composition alone cannot achieve the purpose of the present invention. When the average recrystallized grain size of the steel sheet (finished and annealed product sheet) is dispersed in the non-metallic inclusions dispersed in the final refined and annealed steel sheet, the length is 3 XD ~ 9 XD ductile inclusions (ductility) The number density of non-metallic inclusions) needs to be 10000 pieces / cm2 or less (including 0). In the future, ductile non-metallic inclusions having a length of 3 X D to 9 X D will be defined as ductile non-metallic inclusions that hinder grain growth. Here, the average recrystallized grain size is determined by measuring the number of crystal grains existing in the area of 0.5 cm2 of the steel sheet, and calculating the average area of each crystal grain based on it, and then calculating the diameter of a circle having the same average area, and using The diameter. This average recrystallized grain size can be measured by observing the cross-section (so-called L-section) of the steel sheet which is cut perpendicular to the web direction. Ductile inclusions are rod-shaped inclusions that extend in the rolling direction and inclusions that are continuously arranged in the rolling direction. In addition, the inclusions at a distance of 2 or more within 1 〇 / Μ are aligned along the rolling direction within ± 5 °. -14- (11) (11) 200403346, the inclusions are regarded as connected 'Look at it as a ductile inclusion. In addition to the ductile inclusions described above, the inclusions have isolated circular inclusions. This is not a ductile inclusion 'and it is not a ductile inclusion. In addition, the inclusions are classified as round when the major diameter is less than twice the minor diameter, and those which are more than twice as ductile are classified as ductile inclusions. Typical ductile inclusions include S i 0 2, A 1 2 0 3, M n 0, C a 0, or some of these composite oxides (but sometimes they become non-ductile due to their composition). The length of ductile inclusions refers to the maximum length of the line drawn between the bottom iron (parent structure) and any two points on the inclusion interface, that is, the distance between the ends of the ductile inclusions (this is taken as the long diameter). The measurement of the number of ductile inclusions of a predetermined length is performed in the next step. The cross section of the honing steel plate perpendicular to the width direction of the honing steel plate was observed with an optical microscope to observe the original honing surface (without uranium-corrosion treatment), and the small area different from the color of the bottom iron was identified as ductile inclusions. Set the observation field of view to 5mm2 for one sample. Calculate the number of ductile inclusions of a given length that can be considered as the inclusions identified above, and convert the number per 1 cm2 from the number to determine the number density. . The following shows the results of experiments conducted to investigate the effect of grain growth on ductile inclusions. (Experiment 1) With C: 0.002%, Si: 0.7%, Mη: 0.2%, Sol · A1: 0.0004% or less, S: 0.002%, the inevitable (12) (12) 200403346 impurities of the remainder (the rest) are The basic component is manufactured from a flat steel blank that varies from 0.0010 to 0.00 60% of the basic component N. The obtained flat steel slab was heated to 100 ° C and hot-rolled to a thickness of 2.3mm, and then pickled, and then cold-rolled to a final thickness of 0.35mm, and then applied at 800 ° C for 15 seconds. The final refined annealing (recrystallization annealing) is performed to make a final refined annealed sheet (product sheet). In addition, the amount of ductile inclusions (number density) and shape (length) are adjusted by, for example: changing the oxygen content and the A1 content to control the amount and composition of oxides; changing the thickness of the flat steel slab, etc. , And change the rolling process during hot rolling to control the amount of inclusions; and so on. In addition, while measuring the average crystal grain size of the obtained product, the inclusions were observed to measure the length and number density of ductile inclusions. The above products were annealed at 750 ° C for two hours (hereinafter referred to as "strain annealing") in an argon (Ar) atmosphere, and the average crystal grain size was measured in the same manner as the final purified annealed plate. The annealing conditions described above are conditions corresponding to strain annealing of the demander. Figure 1 is the ratio of the average grain size of the steel sheet after strain annealing (hereinafter referred to as "strain-annealed crystal grain growth ratio" or "grain growth ratio") to N for the average grain size of the steel sheet after the final refined annealing thus obtained The relationship with the grave is not shown graphically. Here, when the average crystal grain size after final refining and annealing is set to D, the number density of inclusions with a length of 3 XD to 9 XD (called non-metallic inclusions that inhibit grain growth and ductility) is used. mark. • 16- (13) (13) 200403346 It can be seen from Fig. 1 that when the N content is 30 ppm (mass ppm) or less and the number density of ductile non-metallic inclusions that prevent grain growth is less than 1 000 _ γ cm2, the strain The annealing grain growth ratio is 2 or more. However, although the number of ductile non-metallic inclusions that hinder the growth of grains is 1 000 pieces / c m2 with τ, N content exceeding 0.003 0%, or the number density of ductile non-metallic inclusions that hinder the growth of grains exceeds 10%. When the number is 0 / cm2, the crystal grain growth ratio in strain annealing becomes less than 2. (Experiment 2) The same result can be confirmed by the next experiment 2. That is, three flat steel blanks having a thickness of 250 mm formed by the composition shown in Table 1, residual iron, and unavoidable inclusions were manufactured, and the thicknesses of 25 mm, 50 mm, 100 mm, and 200mm sample. After that, the samples were heated to 1070 ° C, and after hot rolling was set to a thickness of 2.5 mm, they were pickled and then cold-rolled to a final thickness of 0.5 mm. Next, the conditions for the final refining annealing (recrystallization annealing) of the continuous annealing type were adjusted to a range of 700 to 800 ° C, and the average recrystallization particle size (referred to as the average crystal particle size in the experimental examples and examples) was set as 1 2 // m or 1 4 // m product board. The resulting product panel was subjected to a strain annealing at 750 ° C for two hours in an Ar atmosphere. The cross sections of these product plates (finally refined annealed plates) and strain annealed plates perpendicular to the web width direction were observed with an optical microscope, and their average crystal grain sizes were measured. In addition, the number density of non-metallic inclusions that inhibit grain growth and ductility was measured on the product sheet. The results are shown in Table 2. As shown in the table, the number of ductile non-metallic inclusions that hinder the grain growth of the product board is dense. -17- (14) (14) 200403346 Samples with a degree of 1 000 / cm2 or less, The growth of strain annealed crystal grains is relatively large. Table 1 Chemical composition of steel number (mass%) C Si Mn Sol.Al N 0 Ti Nb V 1 0.0027 0.50 0.27 0.0003 0.0015 0.0090 0.0003 0.002 0.0010 2 0.0021 0.50 0.23 0.0003 0.0019 0.0085 0.0004 0.002 0.0010 3 0.0026 0.60 0.22 0.0001 0.0018 0.0070 0.0003 0.001 0.0010 -18- (15) 200403346 Table 2 Steel No. Slab Thickness Average Crystal Size Strain Annealing Resistance to Grain Growth Ductility Remarks (mm) Number of non-metallic inclusions in crystal grains after strain annealing before strain annealing (// m) (^ m) Length Specific Density (pcs / cm2) 25 50 4.2 0.3 Invention Example 50 34 2.8 61 Invention Example 1 100 22 1.8 1012 Comparative Example 200 17 1.4 3581 Comparative Example 25 46 3.8 0.7 Invention Example 50 36 3.0 65 Invention Example 2 100 12 26 2.2 811 Invention example 200 19 1.6 2778 Comparative example 25 47 3.9 0.3 Invention example 50 43 3.6 19 Invention example 3 100 26 2.2 286 Invention example 200 22 1.8 1024 Comparative example 25 50 3.7 0.3 Invention example 50 32 2.4 42 Invention Example 1 100 26 2.0 828 Invention Example 200 16 1.2 3731 Comparative Example 25 44 3.1 0.5 Invention Example 50 34 2.4 35 Invention Example 2 100 14 28 2.0 657 Inventive Example 200 22 1.6 2824 Comparative Example 25 50 3.6 0.1 Inventive Example 50 43 3.1 11 Inventive Example 3 100 31 2.2 220 Inventive Example 200 23 1.6 1038 Comparative Example-19- (16) (16) 200403346 The composition is limited by the above, and Properly limiting the number density of ductile non-metallic inclusions that hinder grain growth, the average crystal grain size of the steel sheet after strain annealing (assembled as the core material of the stator) can contribute to the above-mentioned final grain size More than twice. By this, the iron loss of the stator can be greatly reduced. In addition, the rotor is used in a state where it is finally refined and annealed, and its crystal grain size is relatively small, so that it can maintain high strength, especially a high yield point (hereinafter referred to as YP). Furthermore, by using the rotor and the stator, a high-performance rotating machine for high-speed rotation can be efficiently assembled. As for the strength level required for the rotor, as the characteristics of the rotating machine are different, the size of the average crystal grain size that governs the strength of the steel plate can be designed according to the strength level of the required rotor. However, if it is a general rotating machine, the average crystal grain size of the final refining and annealing of the steel plate is preferably 6 to 25 // m. At this time, the strength of the steel sheet is about YP 200 to 400 Mpa, and the Vickers hardness Hv is about 100 to 170. In addition, although the interpretation of the scope of the right to be imparted to the present invention is not affected, the reason why the growth rate of the annealed crystal grains is dominated by the number density of ductile non-metallic inclusions that hinder grain growth can be presumed as follows. First, it is thought that inclusions having the same length as the crystal grain size will most inhibit the grain growth property. Because ductile inclusions exist across one or more crystal grain boundaries, the probability of hindering the growth of the crystal grains is more localized. However, if the total amount of non-metallic inclusions in the electromagnetic steel plate is -20- (17) (17) 200403346, the volume fraction of the steel can be considered to be slightly constant. According to the formula of Zener It is shown that it is less likely that inclusions having extremely long crystal grain sizes will inhibit grain growth. In other words, the extent to which ductile inclusions impede grain growth varies with the length of the inclusions. According to the inventors' knowledge, the length of ductile inclusions is 3 to 9 times the average grain size of the final refined annealed plate. It is the largest when the ductile non-metallic inclusions that hinder the growth of grains. Therefore, due to the number density of ductile inclusions that are long in this range, that is, "ductive non-metallic inclusions that inhibit grain growth", the "strain annealing grain growth ratio" is affected. The Zener formula is the following formula showing the grain growth inhibitory force I of the inhibitor. 1 = (3/4) x (Vxaxp / r0) where V is the molar volume of the parent phase, σ is the grain boundary energy, p is the volume fraction of the precipitate, and r α is the average particle radius of the precipitate. As described above, by controlling the Si, Mn, C, S ο 1.A1 and N contents of the non-oriented electrical steel sheet, respectively, the number density of ductile non-metallic inclusions that prevent grain growth is suppressed to 100%. 〇 / cm2 or less, can increase the strain annealing crystal grain growth ratio, and is made of high magnetic flux density non-oriented electromagnetic steel plate suitable for rotating machines. Furthermore, by limiting the content of Ti, Nb, and V, or adding Sb, Sn, to the composition of the steel sheet, the effect can be further enhanced. This can be confirmed by the following experiments. (Experiment 3) -21-(18) 200403346 Manufactured the ingots of the composition shown in Table 3, the remaining iron, and the unavoidable impurities. After heating these ingots to 10 〇t, they were thickened by hot rolling and acid Washed and cold rolled to a final sheet thickness of 0.5mm. After adding 80 ° C and 10 seconds of final refining and annealing (recrystallization annealing) to the finished product plate, a further 75 ° C and two hours of strain annealing were applied to change the annealing plate. And from the obtained product plate and strain annealing plate parallel to

向及垂直於軋製方向各衝切同數之試樣,依據JIS 進行測定磁通密度及鐵損。將測定結果拼示於表三 又,各製品板之平均結晶粒徑爲10〜20//m。 製品板之阻礙晶粒生長延性非金屬夾雜物之個數 1000個/ cm2以下。 物所成 2.5mm 復又施 而製成 製成應 軋製方 C 2 5 5 0 〇 又,各 密度爲 -22- (19)200403346 鐵損(W/kg) 應變退 火後 T— CD 00 LO in CO 七 CNJ CNI 00 CO 卜 CO CD CO 卜 CO 卜 CO 應變退 火前 卜 CD CNJ CO 寸 CO CO mi OJ LO T— isi CNJ io CO lO CN ιό CNJ ιό CNJ ui 03 E I I I I I I I 0.01 I 0.03 0.08 I I I I I I ί I 0.01 0.02 I 0.19 &gt; 0.0010 0.0020 0.0065 I 0.0020 0.0020 0.0050 0.0010 0.0010 0.0020 ! 0.0020 0.0010 0.002 0.006 0.001 0.004 0.002 0.003 0.001 0.002 0.001 0.002 0.001 - 0.0024 I 0.0006 0.0010 0.0009 0.0015 0.0004 0.0006 0.0005 0.0004 0.0004 0.0003 〇 0.0065 i 0.0060 I 0.0065 0.0070 0.0060 0.0055 0.0055 0.0055 0.0060 0.0065 _I I 0.0065 iif 2: I 0.0017 0.0022 0.0021 0.0015 0.0020 0.0017 0.0015 0.0022 0.0013 0.0015 0.0024 Sol.AI 0.0001 I 0.0002 | 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 I 0.0001 C I | 0.15 0.17 0.16 0.17 0.18 0.17 0.15 0.17 0.17 0.19 0.15 〇5 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 I 0.90 j 0.90 〇 0.0018 0.0017 0.0025 0.0019 0.0023 0.0021 0.0018 0.0018 0.0022 0.0024 0.0017 鋼編號 τ— CM CO 寸 (D 00 σ&gt;The same number of samples were punched in each direction and perpendicular to the rolling direction, and the magnetic flux density and iron loss were measured in accordance with JIS. The measurement results are shown in Table 3. The average crystal grain size of each product plate is 10 to 20 // m. The number of ductile non-metallic inclusions that hinder the grain growth of the product board is 1000 pieces / cm2 or less. The material is 2.5mm, and it is made again. It should be rolled into squares C 2 5 5 0 〇, each density is -22- (19) 200403346 Iron loss (W / kg) After strain annealing T— CD 00 LO in CO VII CNJ CNI 00 CO COCO CD CO COCO COCO Strain Annealing before CD CNJ CO Inch CO CO mi OJ LO T— isi CNJ io CO lO CN ιό CNJ ιό CNJ ui 03 EIIIIIII 0.01 I 0.03 0.08 IIIIII ί I 0.01 0.02 I 0.19 &gt; 0.0010 0.0020 0.0065 I 0.0020 0.0020 0.0050 0.0010 0.0010 0.0020! 0.0020 0.0010 0.002 0.006 0.001 0.004 0.002 0.003 0.001 0.002 0.001 0.002 0.001-0.0024 I 0.0006 0.0010 0.0009 0.0015 0.0004 0.0006 0.0005 0.0004 0.0004 0.0004 0.0003 〇0.0065 i 0.0060 I 0.0065 0.0070 0.0060 0.0055 0.0055 0.0055 0.0060 0.0065 _I I 0.0065 iif 2: I 0.0017 0.0022 0.0021 0.0015 0.0020 0.0017 0.0015 0.0022 0.0013 0.0015 0.0024 Sol.AI 0.0001 I 0.0002 | 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 I 0.0001 CI | 0.15 0.17 0.16 0.17 0.18 0.17 0.15 0.17 0.17 0.19 0.15 〇5 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 I 0. 90 j 0.90 〇 0.0018 0.0017 0.0025 0.0019 0.0023 0.0021 0.0018 0.0018 0.0022 0.0024 0.0017 Steel number τ— CM CO inch (D 00 σ &gt;

-23- (20) (20)200403346 自表三可知,藉限制 Ti爲 0.0020 %以下、Nb爲 0.0050%以下、及V量爲0.0060%以下,係能促成應變退 火後之磁性更加良好。 且,藉添加s b或S η之一種或兩種可大幅度地改善應 變退火後之鐵損。 藉減低Ti、Nb及V量可改善磁性之理由雖非十分明 確,惟能如次加以推想。Ti及Nb、與V均爲氮化物及碳 化物之形成元素,由於該等氮化物之微細析出,而與A1N 之微細析出同樣,會賦予組合結構之形成及結晶粒徑之生 長性不良影響所致。因此,可推想藉減低該等元素予以防 止上述害處結果,方能獲得良好的磁性。-23- (20) (20) 200403346 As can be seen from Table 3, by limiting Ti to 0.0020% or less, Nb to 0.0050% or less, and V content to 0.0060% or less, it can promote better magnetic properties after strain annealing. Moreover, by adding one or both of s b or S η, the iron loss after strain annealing can be greatly improved. Although the reason for reducing the amount of Ti, Nb, and V to improve the magnetic properties is not very clear, it can be inferred as follows. Ti, Nb, and V are all elements that form nitrides and carbides. Because of the fine precipitation of these nitrides, similar to the fine precipitation of A1N, it will adversely affect the formation of the combined structure and the growth of the crystal grain size. To. Therefore, it is conceivable that by reducing these elements to prevent the harmful effects mentioned above, good magnetic properties can be obtained.

Ti、Nb及V量之減低賦予應變退火後之磁性的影響 雖亦不明確,但可作如次推想。Ti、Nb及V之含量如 多,在熱軋板退火或再結晶退火時氮化物或碳化物會部分 的固溶。且,在應變退火時氮化物或碳化物會再度析出阻 礙磁壁之移動,故能料想上述各元素多時會發生鐵損之劣 化。又’將V等減低於上述較佳範圍之鋼亦無法避免某 程度的V等之析出。因此,可推想減低V等之鋼亦能發 揮添加s b或S η之效果。 又,自從習知已知,無方向性電磁鋼板爲了改善組合 結構等以減低鐵損而添加S b或S η (例如日本特公昭 56 - 54370號公報、特開 2000 — 129409號公報, T.Kubota, T. Nagai ; J. Mater. Eng .perforM. 1 ( 1 992 ), p · 2 1 9等)。惟,在極度減低A1、n等,延性夾雜物亦加 • 24- (21) (21)200403346 以控制之無方向性電磁鋼板’ Sb或Sn之添加能顯著促進 應變退火之鐵損改善效果卻是以往未被知曉的現象。 如此藉限制混入於鐵水或Si原料之Ti、Nb及V的在 鋼中之量,能更加提高上述Sol· A1之減低所致的微細析 出物防止效果同時,尙能達成磁性之更加提升。尤其,在 極力減低A1之成分系統,限制Ti及Nb量加上限制v量 是頗爲有利。其效果,就改善應變退火後之鐵損這一點特 別地大。將上述微量元素之限制加以歸納即如以下。The effect of reducing the amount of Ti, Nb, and V on the magnetic properties after strain annealing is not clear, but it can be assumed as follows. If the content of Ti, Nb and V is too large, nitrides or carbides will be partially solid-dissolved during annealing of a hot-rolled sheet or recrystallization annealing. In addition, during strain annealing, nitrides or carbides will re-precipitate and hinder the movement of the magnetic wall. Therefore, it is expected that iron loss will be deteriorated when each of the above elements is large. It is also impossible to prevent the precipitation of V and the like to some extent by reducing the V and the like below the above-mentioned preferable range. Therefore, it is conceivable that steels with reduced V or the like can exert the effect of adding s b or S η. Further, it has been known that S b or S η is added to non-oriented electromagnetic steel sheets in order to improve the combined structure and the like to reduce iron loss (for example, Japanese Patent Publication No. 56-54370, Japanese Patent Application Publication No. 2000-129409, and T. Kubota. , T. Nagai; J. Mater. Eng. PerforM. 1 (1 992), p. 2 1 9 etc.). However, in the extreme reduction of A1, n, etc., ductile inclusions are also added. • 24- (21) (21) 200403346 Controlled non-oriented electromagnetic steel sheet, the addition of Sb or Sn can significantly improve the iron loss improvement effect of strain annealing. It is a phenomenon that has not been known before. By limiting the amount of Ti, Nb, and V mixed in the molten iron or Si raw material in the steel in this way, the effect of preventing fine precipitates caused by the reduction of Sol · A1 can be further improved, and at the same time, the magnetic properties can be further improved. In particular, in a component system that minimizes A1, it is advantageous to limit the amount of Ti and Nb plus the amount of v. As a result, the iron loss after strain annealing is particularly large. The limitation of the above-mentioned trace elements is summarized as follows.

Ti: 0.0020% 以下(包含 〇) 、Nb: 0.0050% 以下 (包含〇)、及V:0.0060%以下(包含0)Ti: 0.0020% or less (including 〇), Nb: 0.0050% or less (including 〇), and V: 0.0060% or less (including 0)

Ti、Nb及V係會形成微細之氮化物或碳化物,而阻 礙組合結構之形成及結晶粒之生長性。尤其依照本發明, 將Sol. A1及N含量限制低之無方向性電磁鋼板,其傾向 格外顯著。將該等元素分別減低爲Ti : 0.0020 %以下、 Nb: 0.0050%以下、V: 0.0060%以下時,乃能抑制其氮 化物或碳化物之形成傾向,對於應變退火後之鐵損的改善 特別有貢獻。 又,Sb、Sn之較佳添加量爲如下述所示。 自 Sb: 0.005 〜0.10% 及 Sn: 0.005 〜0.2% 所選擇之 —種或兩種Ti, Nb, and V systems form fine nitrides or carbides, which hinder the formation of the combined structure and the growth of crystal grains. In particular, according to the present invention, the non-oriented electrical steel sheet, which has a low Sol. A1 and N content, has a particularly significant tendency. When these elements are reduced to Ti: 0.0020% or less, Nb: 0.0050% or less, and V: 0.0060% or less, the tendency to form nitrides or carbides can be suppressed, and the improvement of iron loss after strain annealing is particularly effective. contribution. The preferable addition amounts of Sb and Sn are as follows. From Sb: 0.005 to 0.10% and Sn: 0.005 to 0.2% of the selected one or two

Sb及Sn可抑制氮化物之微細析出同時,藉減低該氮 化物之阻礙晶粒生長效果,而有效地促進磁性上有利之組 合結構的形成。其效果雖出現於Sb : 0.005 %以上、Sn ·· 0.005 %以上,惟如分別超過0.10%、超過0.2%時反而會 -25· (22) (22)200403346 阻礙晶粒生長性。 除了上述,藉限制或添加下述元素,則能更有效地發 揮本發明鋼之特性。 自 P : 0.001〜0.2%及 Ni: 0.001〜0.2%所選擇之一 種或兩種 衝切時會發生塌角或壓潰,或者衝切時形成之毛刺過 大以致發生鋼板之占空因素降低等問題時,藉添加P及 Ni之至少任一俾使本發明的電磁鋼板之硬度上升,而能 回避該等問題。因此,在不傷害電磁特性、特別是磁通密 度之範圍內,可對應需要者之要求添加該等元素。 自 REM: 0.0001 〜0.10% 及 Ca: 0.0001 〜0.01% 所選 擇之一種或兩種 REM及Ca係具有粗大化硫化物與提升(即減低)鐵 損之作用。因此,能將該等元素在其效果顯現的範圍、即 REM : 0.000 1 〜0.10% 及 C a : 0 · 0 0 0 1 〜0 · 0 1 % 之範圍適當 地予以添加。 S: 0.0050% 以下(包含 0) ,〇: 0.0100% 以下(包 含〇 ) S如超過0.0050%時,與Μη或混入元素(主要是由 廢鋼鐵屑混入之元素)Cu等結合而形成MnS或Cu2s之 傾向變強,會妨害結晶粒之生長。因此將該等元素限制於 上述範圍內較宜。 無方向性電磁鋼板被要求之強度水準或鐵損水準,乃 隨著所製造旋轉機之特性而變化。因此’在本發明,最終 -26- (23) (23)200403346 精製退火之鋼板結晶粒徑不必一律地加以決定。惟,將平 均再結晶粒徑D設定爲6〜2 5 &quot; m,對於先前所述採取較 大應變退火結晶粒生長比、例如3以上,則會有利地作 用。 上述本發明有關無方向性電磁鋼板之製造方法,並無 特別之限制。以較代表性,可由下述方法製造之。 首先,將被調整爲較適佳成分組成之鐵水藉例如連續 鑄造法予以形成扁鋼胚。繼之,將其熱軋形成熱軋板。且 依需施加熱軋板退火後,復依需挾著中間退火施加一次以 上之冷軋,而精加工呈最終板厚。接著對所得冷軋板進行 連續退火(最終精製退火)後,依需施加絕緣塗敷。又, 扁鋼胚之碳含量如比本發明成分爲多時,在熱軋後適當地 施加脫碳退火。 在本發明,夾雜物中之延性夾雜物的量及存在形態的 控制、尤其將長度對於平均結晶粒徑處在所定範圍內之延 性夾雜物予以減少至爲重要。即,將阻礙晶粒生長延性非 金屬夾雜物之量控制於1 000個/ cm2以下。此種控制藉 以下手段之任一或該等之組合可達成之。 首先,係有藉減低含氧量而減少扁鋼胚中非金屬夾雜 物之絕對量的手段。 又,將扁鋼胚中非金屬夾雜物藉增加A1或Μη量予 以延性化,或相反地藉減低Α1或Μη量予以非延性化 (微細化)之手段亦屬有效。 又,藉控制製造條件、尤其控制軋製條件進行調整非Sb and Sn can suppress the fine precipitation of nitrides, and at the same time, can effectively promote the formation of a magnetically favorable combination structure by reducing the effect of the nitrides on hindering grain growth. Although its effect appears in Sb: 0.005% or more and Sn · 0.005% or more, if it exceeds 0.10% and 0.2%, respectively, it will -25 · (22) (22) 200403346 hinder grain growth. In addition to the above, by limiting or adding the following elements, the characteristics of the steel of the present invention can be more effectively exerted. From P: 0.001 to 0.2% and Ni: 0.001 to 0.2%, one or both of the punching methods will cause a collapse or crushing, or the burrs formed during punching will be too large to reduce the duty factor of the steel sheet. In this case, by adding at least one of P and Ni, the hardness of the electromagnetic steel sheet of the present invention is increased, and these problems can be avoided. Therefore, within the range that does not harm the electromagnetic characteristics, especially the magnetic flux density, these elements can be added according to the requirements of those who need it. From REM: 0.0001 to 0.10% and Ca: 0.0001 to 0.01%. One or two of the selected REM and Ca series have the effect of coarsening sulfide and increasing (ie reducing) iron loss. Therefore, these elements can be appropriately added in a range in which their effects appear, that is, in the range of REM: 0.000 1 to 0.10% and C a: 0 · 0 0 0 1 to 0 · 0 1%. S: 0.0050% or less (including 0), 〇: 0.0100% or less (including 0) If S exceeds 0.0050%, it is combined with Cu or mixed elements (mainly elements mixed with scrap iron and steel scrap) to form MnS or Cu2s. The tendency to become stronger will hinder the growth of crystal grains. Therefore, it is preferable to limit these elements to the above range. The required strength level or iron loss level of non-oriented electromagnetic steel sheet varies with the characteristics of the rotating machine manufactured. Therefore, in the present invention, the final -26- (23) (23) 200403346 refined and annealed steel grain size need not be uniformly determined. However, setting the average recrystallized particle diameter D to 6 to 2 5 &quot; m is advantageous for crystal grain growth ratios, such as 3 or more, which have been annealed with a large strain as described above. The method for manufacturing a non-oriented electrical steel sheet according to the present invention is not particularly limited. It is typically produced by the following method. First, molten iron adjusted to a more suitable composition is formed into a flat steel blank by, for example, a continuous casting method. Then, it was hot-rolled to form a hot-rolled sheet. After hot-rolled sheet annealing is applied as required, cold rolling is applied more than once with intermediate annealing applied, and the final sheet thickness is achieved by finishing. Then, the obtained cold-rolled sheet is subjected to continuous annealing (final finish annealing), and then an insulation coating is applied as required. In addition, if the carbon content of the flat steel slab is more than the component of the present invention, decarburization annealing is appropriately performed after hot rolling. In the present invention, it is important to control the amount and form of ductile inclusions in the inclusions, and in particular, it is important to reduce the length to ductile inclusions whose average crystal grain size is within a predetermined range. That is, the amount of ductile non-metallic inclusions that hinder grain growth is controlled to 1,000 or less / cm2. Such control may be achieved by any one or a combination of the following means. First, there is a means to reduce the absolute amount of non-metallic inclusions in the flat steel blank by reducing the oxygen content. It is also effective to increase the amount of A1 or Mη in non-metallic inclusions in the flat steel billet to make it ductile, or to decrease the amount of A1 or Mη to make it non- ductile (refinement). In addition, by controlling the manufacturing conditions, especially the rolling conditions,

-27- (24) 200403346 金屬夾雜物之長度,則亦能將呈最終精製退火之鋼 再結晶粒徑三倍未滿或超九倍的延性夾雜物作爲主 如,藉增減扁鋼胚厚或熱軋板厚予以增減熱軋之輕 乃能調整熱軋板之延性夾雜物長度。又,熱軋之輥 相同,但藉增減夾雜物易伸展之高溫領域的輥壓率 使延性夾雜物之長度變化。且,尙有熱軋後之累積 較大時延性夾雜物較長,累積輥壓率較小時延性夾 短之傾向,因此藉增減熱軋板厚、或增減製品板厚 整非金屬夾雜物之長度。 反之,藉變更最終精製退火之溫度或均熱時間 件而增減平均再結晶粒徑,亦能以其結果將非金屬 之長度,由平均再結晶粒徑之三倍未滿或超九倍 要。 又,在上述製造方法,將施加於被冷軋呈最終 冷軋板的連續退火(最終精製退火)之退火溫度設 °C〜800 °C,對於將平均再結晶粒徑調整爲6〜25 // 將鋼板硬度調整爲適當水準、例如維式硬度(Hv ) 1 70而言甚佳。將維式硬度設於上述範圍,自確保 強度及衝切性的觀點說之頗爲適宜。 如此製成之無方向性電磁鋼板,係能衝切爲旋 之鐵芯,而組裝呈轉子及定子。此時,由同一鋼板 切轉子與定子用鐵芯材料,分別予以層疊組裝爲轉 子構件後,僅對定子構件施加應變退火,以促進 長,而能減低其鐵損。對於轉子用鐵芯構件則不予 板平均 要。例 壓率, 壓率雖 ,亦能 輕壓率 雜物較 亦能調 等之條 夾雜物 作爲主 板厚之 爲700 m,或 1 00〜 鋼板之 轉機用 同時衝 子與定 晶粒生 進行伴 -28- (25) (25)200403346 隨晶粒生長之應變退火,令其保持高強度原樣較佳。 應變退火在700 °C〜800 °C範圍進行較宜。又退火時 間以1 〇分鐘〜3小時左右爲佳。應變退火之條件,在上 述範圍中,雖以應變退火結晶粒生長比爲2以上之條件更 佳,但例如在惰性氣體氣氛中以7 5 0 °C進行兩小時左右爲 佳。且,應變退火溫度在最終精製退火溫度以上之溫度進 行,由確保晶粒生長之觀點言之較宜。 又,被最終精製退火之無方向性電磁鋼板,亦能再賦 鲁 予輕度變形,例如賦予0 · 5〜5 %左右之軋製變形,經衝切 後,施加7〇〇 °C〜800 °C之應變退火促進再結晶,而使結 晶粒徑生長爲 3 0〜1 〇〇 # m左右。如此處理之鋼板,可利 用於特別要求低鐵損之定子的組裝。此時之較佳應變退火 條件亦如前段落所示。 (實施例) 以下,根據實施例更具體地記述本發明之實施形態。 (實施例1 ) 將具有表四所示成分組成,殘部鐵(其餘鐵)及不可 避免的不純物所成扁鋼胚以連續鑄造法加以製造。且, Ti、Nb、V、S、0之量被減低於上述較佳之範圍。將該 等扁鋼胚在1 1 1 0 °C加熱4 0分鐘後,進行熱軋以形成 2.5mm厚之熱壓板。復將所得熱壓板予以酸洗除去鐵銹 後,再藉冷軋精加工爲0.50mm厚之冷壓板。接著,在容 -29- (26) 200403346 量比爲氫:50% —氮50%之氣氛中施加780 °C、: 之最終精製退火。並對所得最終精製退火板塗敷重 與樹脂所成之半有機塗液’在3 00°C進行烘烤而形 板。 又,阻礙晶粒生長延性非金屬夾雜物之量( 度),則藉變更扁鋼胚厚度或變更熱軋之輥壓程序 動。 自所得製品板衝切試樣,依據JIS C 25 5 0進行 通密度、鐵損、上降伏點(YP )及維氏硬度( 又,上降伏點(YP )以軋製方向與軋製垂直方向 値爲之。 且,亦測定平均結晶粒徑及阻礙晶粒生長延性 夾雜物之個數密度。其測定是就垂直於寬幅方向 行。 接著,對上述製品板,在氬氣氛中施加7 5 0 °C 時之應變退火後,與對上述製品所進行之同樣的測 及平均結晶粒徑,進而算出應變退火結晶粒生長比 1 〇秒鐘 :鉻酸鹽 •成製品 個數密 :予以變 •測定磁 Hv )。 之平均 非金屬 之面進 、兩小 定鐵損 -30- 200403346 表4 鋼編號 化學組成(mass%) 扁鋼胚 厚度 (mm) C Si Μη Sol.Al N Sb,Sn 21 0.0032 0.75 0.25 0.0003 0.0025 一 200 22 0.0031 0.80 0.25 0.0004 0.0024 一 200 23 0.0031 0.55 0.26 0.0002 0.0021 — 200 24 0.0032 0.75 0.25 0.0002 0.0017 一 280 25 0.0037 0.80 0.27 0.0003 0.0021 — 280 26 0.0028 0.55 0.25 0.0004 0.0022 一 280 27 0.0031 0.55 0.26 0.004 0.0021 Sb:0.007 200 28 0.0030 0.55 0.24 0.0004 0.0022 Sb:0.007 280 29 0.0029 0.55 0.25 0.0004 0.0020 Sn:0.008 200 30 0.0029 0.55 0.24 0.0004 0.0019 Sn:0.008 280-27- (24) 200403346 The length of metal inclusions can also use ductile inclusions whose final recrystallization annealed steel is less than three times the particle size or more than nine times the size, which can be used to increase or decrease the thickness of the flat steel embryo. Or the thickness of the hot-rolled sheet can be increased or decreased. The lightness of the hot-rolled sheet can adjust the ductile inclusion length of the hot-rolled sheet. The hot rolling rolls are the same, but the length of ductile inclusions can be changed by increasing or decreasing the rolling rate in high temperature areas where inclusions tend to stretch. Moreover, there is a tendency that the accumulated large post-rolling inclusions are longer after hot rolling, and the cumulative rolling rate is smaller, and the delayed intercalation tends to be shorter. The length of things. Conversely, by changing the final refining annealing temperature or soaking time to increase or decrease the average recrystallized particle size, the length of non-metals can be changed from less than three times or more than nine times the average recrystallized particle size. . In the above manufacturing method, the annealing temperature applied to the continuous annealing (final finish annealing) applied to the cold-rolled final cold-rolled sheet is set to ° C to 800 ° C, and the average recrystallization particle size is adjusted to 6 to 25 / / It is good to adjust the hardness of the steel plate to an appropriate level, such as Vickers hardness (Hv) 1 70. Setting the Vickers hardness within the above range is quite suitable from the viewpoint of ensuring strength and punchability. The non-oriented electromagnetic steel plate thus produced can be punched into a rotating iron core, and assembled into a rotor and a stator. At this time, the rotor and the stator core material are cut from the same steel plate, and laminated and assembled as a rotor component, and only the stator component is subjected to strain annealing to promote growth and reduce its iron loss. For rotor core members, plate averaging is not required. For example, the pressure ratio, although the pressure ratio, can also be light pressure ratio debris can also be adjusted than the strip inclusions as the thickness of the main board is 700 m, or 100 ~ steel plate transfer machine with simultaneous punch and fixed grain growth -28- (25) (25) 200403346 It is better to anneal with the strain of grain growth to keep it high strength as it is. Strain annealing is preferably performed in the range of 700 ° C to 800 ° C. The annealing time is preferably about 10 minutes to 3 hours. The conditions for strain annealing are in the above-mentioned range. Although the conditions for strain-annealing the crystal grain growth ratio of 2 or more are more preferable, for example, it is preferably performed at 750 ° C for about two hours in an inert gas atmosphere. In addition, the strain annealing temperature is performed at a temperature higher than the final refining annealing temperature, which is preferable from the viewpoint of ensuring grain growth. In addition, the non-oriented electromagnetic steel sheet that is finally refined and annealed can also be slightly deformed, for example, a rolling deformation of about 0.5 to 5%, and after punching, 700 ° C to 800 is applied. Strain annealing at ° C promotes recrystallization, so that the crystal grain size grows to about 30 ~ 100 # m. The steel plate treated in this way can be used for the assembly of stators that require low iron loss. The preferred strain annealing conditions at this time are also shown in the previous paragraph. (Examples) Hereinafter, embodiments of the present invention will be described more specifically based on examples. (Example 1) A flat steel billet made of a composition of the components shown in Table 4 and the remaining iron (the remaining iron) and unavoidable impurities was manufactured by a continuous casting method. In addition, the amounts of Ti, Nb, V, S, and 0 are reduced below the preferred ranges described above. After heating these flat steel blanks at 110 ° C for 40 minutes, hot rolling was performed to form a 2.5 mm thick hot plate. After the obtained hot-pressed plate was pickled to remove rust, it was cold-rolled and finished into a cold-pressed plate with a thickness of 0.50 mm. Then, in a volume of -29- (26) 200403346, an atmosphere of hydrogen: 50%-nitrogen 50% was applied at 780 ° C, and the final purification annealing was performed. A semi-organic coating solution made of resin and resin was applied to the obtained final refined annealed plate and baked at 300 ° C to form a plate. In addition, the amount (degrees) of ductile non-metallic inclusions that prevent grain growth can be changed by changing the thickness of the flat steel slab or changing the rolling process of hot rolling. From the obtained product sheet, a blank is cut according to JIS C 2550, and the density, iron loss, upper drop point (YP), and Vickers hardness (also, the upper drop point (YP)) are measured in the rolling direction and the vertical direction of rolling. This is also the case. In addition, the average crystal grain size and the number density of ductile inclusions that hinder the growth of the grains were also measured. The measurement was performed perpendicular to the broad direction. Next, the above product plate was subjected to an argon atmosphere in an atmosphere of 7 5 After strain annealing at 0 ° C, the same measurement and average crystal grain size were performed as for the above products, and then the strain annealing crystal grain growth ratio was calculated for 10 seconds: chromate • finished product density: changed • Determination of magnetic Hv). Average non-metallic surface penetration, two small fixed iron losses -30- 200403346 Table 4 Chemical composition of steel number (mass%) Thickness of flat steel blank (mm) C Si Μη Sol.Al N Sb, Sn 21 0.0032 0.75 0.25 0.0003 0.0025 One 200 22 0.0031 0.80 0.25 0.0004 0.0024 One 200 23 0.0031 0.55 0.26 0.0002 0.0021 — 200 24 0.0032 0.75 0.25 0.0002 0.0017 One 280 25 0.0037 0.80 0.27 0.0003 0.0021 — 280 26 0.0028 0.55 0.25 0.0004 0.0022 One 280 27 0.0031 0.55 0.26 0.004 0.0021 Sb: 0.007 200 28 0.0030 0.55 0.24 0.0004 0.0022 Sb: 0.007 280 29 0.0029 0.55 0.25 0.0004 0.0020 Sn: 0.008 200 30 0.0029 0.55 0.24 0.0004 0.0019 Sn: 0.008 280

將所得結果顯示於表五。如表四及表五所示,具有依 照本發明之成分組成及阻礙晶粒生長延性非金屬夾雜物個 數密度者,其應變退火結晶粒生長比較大,於是應變退火 後之鐵損値特別低。且與製品(最終精製退火之狀態)之 上降伏點(YP )及維氏硬度(Hv )較高相輔,亦呈適合 同時衝切而製造旋轉機之轉子及定子。當然,磁通密度亦 充分地高。又,在特別添加 Sb或 Sn之發明例(27、 2 9),應變退火所帶來之磁性改善格外地顯著。 -31 - (28)200403346The obtained results are shown in Table 5. As shown in Tables 4 and 5, those having the composition of the composition according to the present invention and the number density of ductile non-metallic inclusions that hinder the growth of grains have relatively large grain growth during strain annealing, so the iron loss after strain annealing is particularly low. . It is also complementary to the higher yield point (YP) and Vickers hardness (Hv) of the product (in the state of final refined annealing). It is also suitable for punching and manufacturing rotors and stators of rotating machines at the same time. Of course, the magnetic flux density is also sufficiently high. In addition, in the invention examples (27, 2 9) in which Sb or Sn was specifically added, the magnetic improvement by strain annealing was particularly significant. -31-(28) 200403346

備考 發明例 發明例 發明例 比較例 比較例 比較例 發明例 比較例 發明例 比較例 應變退火 結晶粒生 長比 00 CO CO 寸 in cvi 00 τ— σ&gt; τ— CD T— 00 寸 CD τ— o ub X— 應變退火後特性 Bso(T) 平均結晶粒徑(//m) CO CD in S CO CvJ 00 in 00 § s W15/50 (W/kg) o 寸 σ&gt; CO 寸 寸 CO i6 LO in CD CO i〇 CO CM LO 略奧S 却髮 ^ nf S ^ _ m 750 583 955 1525 1072 1998 923 I 2004 830 1818 製品特性(應變退火前) 維氏硬度 (Hv) 113 110 115 118 115 114 118 118 119 120 &gt; | 298 294 300 295 298 309 309 310 315 τ— x~ CO 平均結晶粒徑 (β rn) CN CO CN t— CM CNI cvj t— CM CM B5〇(T) 1.75 1.76 1.76 1.73 1.72 1.72 1.75 j 1.75 i I 1.76 1.74 W15/50 (W/kg) 〜· LO uo 卜 iri 00 l〇 o cd CM CD 寸 iri τ— CD 寸 to o CD 鋼編 號 CM CNJ CO CM to CNJ CD CM CNJ 00 Csj 〇&gt; CNJ -32- (29) (29)200403346 (實施例2 ) 製造具有表六之成分組成,其餘由殘部鐵及不可避免 的不純物所成厚度210mm之連續鑄造扁鋼胚。此時,藉 製鋼程序之爐渣組成適當化與熱軋條件之適當化而將阻礙 晶粒生長延性非金屬夾雜物量控制於1 〇〇〇個/ cm2以 下。 將所得扁鋼胚與實施例1之情形同樣處理以形成製 品,並與實施例1之情形同樣進行試驗。惟,鋼編號5 8 之最終精製退火在680 °C、鋼編號之最終精製退火在850 °C分別進行。 將所得結果顯示於表七。如表七所示,具有依照本發 明之成分組成、平均結晶粒徑者均具有優異的應變退火結 晶粒生長比及強度·磁性,藉此成爲適合可同時衝切製造 旋轉機之轉子及定子。 又,可知特別將最終精製退火溫度控制於7 0 0 °C〜 8 0 0 °C,或將製品板之平均再結晶粒徑控制於6〜2 5 &quot; Μ, 對於應變退火前之高強度與應變退火後之低鐵損的兩者兼 顧的效果頗爲有利。 -33- (30) 200403346 表6 鋼編 號 化學組成(mass% ) C Si Μη Sol.Al N S 0 Ti Nb V 其他元素 31 0.0039 0.75 0.38 0.0003 0.0027 0.0045 0.0085 0.0004 0.002 0.0020 32 0.0034 0.80 0.25 0.0002 0.0023 0.0030 0.0070 0.0003 0.001 0.0020 33 0.0030 0.55 0.20 0.0001 0.0017 0.0025 0.0080 0.0003 0.004 0.0025 34 0.0022 0.30 0.25 0.0001 0.0022 0.0035 0.0080 0.0004 0.003 0.0035 35 0.0045 1.05 0.27 0.0003 0.0015 0.0030 0.0060 0.0005 0.002 0.0025 36 0.0028 0.90 0.25 0.0004 0.0021 0.0040 0.0090 0.0008 0.003 0.0030 37 0.0025 0.35 0.19 0.0003 0.0014 0.0020 0.0060 0.0005 0.004 0.0035 38 0.0023 0.95 0.25 0.0002 0.0018 0.0015 0.0050 0.0004 0.002 0.0030 39 0.0040 1.10 0.27 0.0002 0.0023 0.0013 0.0040 0.0003 0.002 0.0040 40 0.0027 1.10 0.28 0.0001 0.0024 0.0022 0.0070 0.0005 0.004 0.0020 Sb:0.008 41 0.0020 1.15 0.25 0.0002 0.0021 0.0035 0.0050 0.0004 0.002 0.0040 Sb:0.061 42 0.0025 0.95 0.26 0.0001 0.0016 0.0040 0.0045 0.0004 0.002 0.0010 SmO.OlO 43 0.0036 0.95 0.20 0.0002 0.0025 0.0035 0.0070 0.0004 0.003 0.0040 Sn:0.150 44 0.0025 0.60 0.19 0.0001 0.0022 0.0025 0.0075 0.0003 0.003 0.0050 Sb:0.052, Sn:0.048, P:0.080? Ni:0.050 45 0.0026 0.30 0.11 0.0002 0.0017 0.0022 0.0060 0.0003 0.003 0.0015 P:0.018 46 0.0038 0.28 0.09 0.0001 0.0029 0.0023 0.0040 0.0004 0.005 0.0015 Ni:0.22 47 0.0043 0.55 0.25 0.0002 0.0029 0.0020 0.0035 0.0003 0.002 0.0010 Ρ:0·040, Ni:0.151 48 0.0038 0.75 0.40 0.0003 0.0028 0.0045 0.0080 0.0004 0.002 0.0020 49 0.0033 0.80 0.24 0.0005 0.0023 0.0030 0.0065 0.0004 0.001 0.0020 50 0.0031 0.55 0.18 0.0001 0.0035 0.0025 0.0080 0.0003 0.004 0.0020 51 0.0045 1.05 0.28 0.0003 0.0016 0.0060 0.0065 0.0004 0.002 0.0020 52 0.0029 0.90 0.24 0.0004 0.0022 0.0045 0.0110 0.0009 0.003 0.0030 53 0.0025 0.35 0.21 0.0003 0.0013 0.0019 0.0065 0.0024 0.004 0.0040 54 0.0022 0.95 0.26 0.0002 0.0019 0.0015 0.0050 0.0004 0.006 0.0030 55 0.0040 1.10 0.27 0.0002 0.0022 0.0015 0.0045 0.0004 0.002 0.0060 56 0.0045 1.00 0.24 0.0003 0.0018 0.0060 0.0050 0.0004 0.002 0.0020 REM:0.01 57 0.0040 1.05 0.26 0.0003 0.0017 0.0060 0.0040 0.0004 0.002 0.0020 Ca:0.001 58 0.0040 1.10 0.28 0.0010 0.0080 0.0065 0.0110 0.0004 0.003 0.0060 59 0.0040 1.00 0.23 0.0001 0.0017 0.0015 0.0040 0.0003 0.002 0.0020 60 0.0014 0.60 0.22 0.0001 0.0014 0.0015 0.0038 0.0002 0.001 0.0020 Sn:0.015 P:0.07 61 0.0026 0.55 0.23 0.0002 0.0015 0.0017 0.0038 0.0002 0.001 0.0020 Sb:0.01, Ni:0.10 62 0.0038 0.55 0.20 0.0001 0.0020 0.0015 0.0045 0.0003 0.001 0.0030 Sb:0.007? Sn:0.006, Ca:0.001, REM:0.005 63 0.0037 0.65 0.25 0.0001 0.0011 0.0018 0.0050 0.0002 0.001 0.0020 Sn:0.030, Ca:0.002 64 0.0022 0.60 0.21 0.0001 0.0018 0.0018 0.0043 0.0003 0.000 0.0010 Sb:0.035? REM:0.02 65 0.0025 0.12 0.24 0.0002 0.013 0.0016 0.0051 0.0002 0.001 0.0020 Sb:0.007, Sn:0.010 66 0.0010 0.60 0.22 0.0001 0.0021 0.0013 0.0041 0.0002 0.001 0.0020 Sn:0.015 67 0.0012 0.60 0.19 0.0001 0.0010 0.0019 0.0036 0.0002 0.000 0.0010 Sn:0.020 -34- (31)200403346 表7 鋼編 號 製品特性(應變退火前) 應變退火後特性 應變退 火結晶 粒生長 比 備考 W15/5O (W/kg) Bso(T) 平均結晶 粒徑 (β m) 降伏點 (MPa) 維氏硬度 (Hv) W15/50 (W/kg) 平均結 晶粒徑 (β m) 31 53. 1.75 14 292 107 4.1 61 4.5 發明例 32 5.4 1.76 15 294 104 4.3 56 3.8 發明例 33 5.6 1.76 14 300 106 4.1 61 4.3 發明例 34 5.9 1.76 14 295 107 4.7 53 3.8 發明例 35 5.2 1.74 14 298 103 4.1 48 3.5 發明例 36 5.3 1.75 14 302 104 3.8 55 3.8 發明例 37 5.7 1.76 15 292 103 4.8 48 3.2 1 發明例 38 5.6 1.74 14 301 107 3.9 48 3.5 發明例 39 5.2 1.75 13 294 102 3.8 55 : 4.1 發明例 40 5.1 1.74 14 298 107 3.6 58 4.1 發明例 41 5.1 1.74 13 293 105 3.9 54 4.0 發明例 42 5.2 1.75 14 297 108 3.7 59 4.2 發明例 43 5.3 1.75 15 295 104 3.9 59 3.9 發明例 44 5.5 1.76 15 328 127 3.9 59 3.9 發明例 45 5.8 1.76 16 311 123 4.6 50 3.2 發明例 46 5.8 1.76 14 305 116 4.5 52 3.6 發明例 47 5.9 1.75 13 331 133 4.5 56 4.4 發明例 48 6.5 1.72 10 303 108 5.9 20 1.9 比較例 49 6.8 1.71 10 313 110 6.1 19 1.9 比較例 50 6.9 1.71 10 307 110 6.1 15 1.4 比較例 51 5.8 1.73 11 311 113 4.8 28 2.5 發明例 52 5.8 1.73 12 307 114 4.8 30 2.5 發明例 53 6.2 1.74 13 305 111 5.1 33 2.5 發明例 54 6.0 1.74 13 308 115 4.9 30 2.3 發明例 55 5.9 1.73 12 311 109 4.8 25 2.1 發明例 56 5.3 1.73 14 297 103 4.2 45 3.2 發明例 57 5.4 1.73 13 295 100 4.5 46 3.5 發明例 58 8.7 1.76 5 341 132 6.2 14 2.8 發明例 59 4.9 1.73 30 272 95 4.4 50 1.7 發明例 60 5.4 1.75 14 330 131 3.7 63 4.5 發明例 61 5.5 1.74 14 315 120 3.9 59 4.2 發明例 62 5.2 1.74 15 295 106 3.7 65 4.3 發明例 63 5.2 1.76 14 304 109 3.8 60 4.3 發明例 64 5.3 1.75 14 305 107 3.9 58 4.1 發明例 65 5.6 1.75 15 301 105 4.0 61 4.1 發明例 66 5.2 1.74 14 297 108 3.7 60 4.3 發明例 67 5.2 1.74 14 298 108 3.6 61 4.4 發明例Remarks Inventive Examples Inventive Examples Inventive Examples Comparative Examples Comparative Examples Inventive Examples Comparative Examples Inventive Examples Comparative Examples Strain Annealing Crystal Grain Growth Ratio 00 CO CO inch in cvi 00 τ— σ &gt; τ— CD T— 00 inch CD τ— o ub X—Characteristic Bso (T) average grain size after strain annealing (// m) CO CD in S CO CvJ 00 in 00 § s W15 / 50 (W / kg) o inch σ &gt; CO inch inch CO i6 LO in CD CO i〇CO CM LO Slightly ^ nf S ^ _ m 750 583 955 1525 1072 1998 923 I 2004 830 1818 Product characteristics (before strain annealing) Vickers hardness (Hv) 113 110 115 118 115 114 118 118 119 120 &gt; | 298 294 300 295 298 309 309 310 315 τ— x ~ CO average crystal grain size (β rn) CN CO CN t— CM CNI cvj t— CM CM B50 (T) 1.75 1.76 1.76 1.73 1.72 1.72 1.75 j 1.75 i I 1.76 1.74 W15 / 50 (W / kg) ~ · LO uo Buiri 00 l〇o cd CM CD inch iri τ— CD inch to o CD steel number CM CNJ CO CM to CNJ CD CM CNJ 00 Csj 〇 &gt; CNJ -32- (29) (29) 200403346 (Example 2) Manufactured with the composition of Table VI, and the rest is made of residual iron and unavoidable impurities It is a continuous cast flat steel blank with a thickness of 210mm. At this time, the amount of ductile non-metallic inclusions that hinder the growth of the grains is controlled to 1,000 pieces / cm2 or less by slag composition and steel rolling procedures. The obtained flat steel blank was treated in the same manner as in the case of Example 1 to form a product, and tested in the same manner as in the case of Example 1. However, the final refining annealing of steel number 5 8 is performed at 680 ° C, and the final refining annealing of steel number is performed at 850 ° C. The obtained results are shown in Table 7. As shown in Table 7, those who have the composition and average crystal grain size according to the present invention have excellent strain annealing junctions, grain growth ratio, strength, and magnetic properties, thereby becoming suitable for rotors and stators of rotary machines that can be punched and manufactured simultaneously. In addition, it is known that the final refining annealing temperature is particularly controlled to 700 ° C to 800 ° C, or the average recrystallization particle size of the product plate is controlled to 6 to 2 5 &quot; Μ, for high strength before strain annealing The effect of balancing the low iron loss after strain annealing is quite favorable. -33- (30) 200403346 Table 6 Steel number chemical composition (mass%) C Si Mn Sol.Al NS 0 Ti Nb V Other elements 31 0.0039 0.75 0.38 0.0003 0.0027 0.0045 0.0085 0.0004 0.002 0.0020 32 0.0034 0.80 0.25 0.0002 0.0023 0.0030 0.0070 0.0003 0.0003 0.001 0.0020 33 0.0030 0.55 0.20 0.0001 0.0017 0.0025 0.0080 0.0003 0.004 0.0025 34 0.0022 0.30 0.25 0.0001 0.0022 0.0035 0.0080 0.0004 0.003 0.0035 35 0.0045 1.05 0.27 0.0003 0.0015 0.0030 0.0060 0.0005 0.002 0.0025 36 0.0028 0.90 0.25 0.0004 0.0021 0.0040 0.0090 0.0008 0.003 0.0030 37 0.0025 0.35 0.19 0.0003 0.0014 0.0020 0.0060 0.0005 0.004 0.0035 38 0.0023 0.95 0.25 0.0002 0.0018 0.0015 0.0050 0.0004 0.002 0.0030 39 0.0040 1.10 0.27 0.0002 0.0023 0.0013 0.0040 0.0003 0.002 0.0040 40 0.0027 1.10 0.28 0.0001 0.0024 0.0022 0.0070 0.0005 0.004 0.0020 Sb: 0.008 41 0.0020 1.15 0.25 0.0002 0.0021 0.0035 0.0050 0.0004 0.002 0.0040 Sb: 0.061 42 0.0025 0.95 0.26 0.0001 0.0016 0.0040 0.0045 0.0004 0.002 0.0010 SmO.OlO 43 0.0036 0.95 0.20 0.0002 0.0025 0.0035 0.0070 0.0004 0.003 0.0040 Sn: 0.150 44 0.0025 0.60 0.19 0.0001 0.0022 0.0025 0.0075 0.0003 0.003 0.0050 Sb: 0.052, Sn: 0.048, P: 0.080? Ni: 0.050 45 0.0026 0.30 0.11 0.0002 0.0017 0.0022 0.0060 0.0003 0.003 0.0015 P: 0.018 46 0.0038 0.28 0.09 0.0001 0.0029 0.0023 0.0040 0.0004 0.005 0.0015 Ni: 0.22 47 0.0043 0.55 0.25 0.0002 0.0029 0.0020 0.0035 0.0003 0.002 0.0010 P: 0040, Ni: 0.151 48 0.0038 0.75 0.40 0.0003 0.0028 0.0045 0.0080 0.0004 0.002 0.0020 49 0.0033 0.80 0.24 0.0005 0.0023 0.0030 0.0065 0.0004 0.001 0.0020 50 0.0031 0.55 0.18 0.0001 0.0035 0.0025 0.0080 0.0003 0.004 0.0020 51 0.0045 1.05 0.28 0.0003 0.0016 0.0060 0.0065 0.0065 0.0004 0.002 0.0020 52 0.0029 0.90 0.24 0.0004 0.0022 0.0045 0.0110 0.0009 0.003 0.0030 0.002 53 0.0025 0.35 0.21 0.0003 0.0013 0.0019 0.0065 0.0024 0.004 0.0040 54 0.0022 0.95 0.26 0.0002 0.0019 0.0015 0.0050 0.0004 0.006 0.0030 55 0.0040 1.10 0.27 0.0002 0.0022 0.0015 0.0045 0.0004 0.002 0.0060 56 0.0045 1.00 0.24 0.0003 0.0018 0.0060 0.005 0 0.0004 0.002 0.0020 REM: 0.01 57 0.0040 1.05 0.26 0.0003 0.0017 0.0060 0.0040 0.0004 0.002 0.0020 Ca: 0.001 58 0.0040 1.10 0.28 0.0010 0.0080 0.0065 0.0110 0.0004 0.003 0.0060 59 0.0040 1.00 0.23 0.0001 0.0017 0.0015 0.0040 0.0003 0.002 0.0020 60 0.0014 0.60 0.22 0.0001 0.0014 0.0015 0.0015 0.0038 0.0002 0.001 0.0020 Sn: 0.015 P: 0.07 61 0.0026 0.55 0.23 0.0002 0.0015 0.0017 0.0038 0.0002 0.001 0.0020 Sb: 0.01, Ni: 0.10 62 0.0038 0.55 0.20 0.0001 0.0020 0.0015 0.0045 0.0003 0.001 0.0030 Sb: 0.007? Ca: 0.001 , REM: 0.005 63 0.0037 0.65 0.25 0.0001 0.0011 0.0018 0.0050 0.0002 0.001 0.0020 Sn: 0.030, Ca: 0.002 64 0.0022 0.60 0.21 0.0001 0.0018 0.0018 0.0043 0.0003 0.000 0.0010 Sb: 0.035? REM: 0.02 65 0.0025 0.12 0.24 0.0002 0.013 0.0016 0.0051 0.0002 0.001 0.0020 Sb: 0.007, Sn: 0.010 66 0.0010 0.60 0.22 0.0001 0.0021 0.0013 0.0041 0.0002 0.001 0.0020 Sn: 0.015 67 0.0012 0.60 0.19 0.0001 0.0010 0.0019 0.0036 0.0002 0.000 0.0010 Sn: 0.020 -34- (31) 200403346 Before variable annealing) Characteristics of strain annealing after strain annealing Crystal growth ratio W15 / 5O (W / kg) Bso (T) Average crystal grain size (β m) Drop point (MPa) Vickers hardness (Hv) W15 / 50 ( W / kg) Average crystal particle size (β m) 31 53. 1.75 14 292 107 4.1 61 4.5 Invention Example 32 5.4 1.76 15 294 104 4.3 56 3.8 Invention Example 33 5.6 1.76 14 300 106 4.1 61 4.3 Invention Example 34 5.9 1.76 14 295 107 4.7 53 3.8 Invention Example 35 5.2 1.74 14 298 103 4.1 48 3.5 Invention Example 36 5.3 1.75 14 302 104 3.8 55 3.8 Invention Example 37 5.7 1.76 15 292 103 4.8 48 3.2 1 Invention Example 38 5.6 1.74 14 301 107 3.9 48 3.5 Invention Example 39 5.2 1.75 13 294 102 3.8 55: 4.1 Invention Example 40 5.1 1.74 14 298 107 3.6 58 4.1 Invention Example 41 5.1 1.74 13 293 105 3.9 54 4.0 Invention Example 42 5.2 1.75 14 297 108 3.7 59 4.2 Invention Example 43 5.3 1.75 15 295 104 3.9 59 3.9 Invention Example 44 5.5 1.76 15 328 127 3.9 59 3.9 Invention Example 45 5.8 1.76 16 311 123 4.6 50 3.2 Invention Example 46 5.8 1.76 14 305 116 4.5 52 3.6 Invention Example 47 5.9 1.75 13 331 133 4.5 56 4.4 Invention Example 48 6.5 1.72 10 303 108 5 .9 20 1.9 Comparative Example 49 6.8 1.71 10 313 110 6.1 19 1.9 Comparative Example 50 6.9 1.71 10 307 110 6.1 15 1.4 Comparative Example 51 5.8 1.73 11 311 113 4.8 28 2.5 Invention Example 52 5.8 1.73 12 307 114 4.8 30 2.5 Invention Example 53 6.2 1.74 13 305 111 5.1 33 2.5 Invention Example 54 6.0 1.74 13 308 115 4.9 30 2.3 Invention Example 55 5.9 1.73 12 311 109 4.8 25 2.1 Invention Example 56 5.3 1.73 14 297 103 4.2 45 3.2 Invention Example 57 5.4 1.73 13 295 100 4.5 46 3.5 Invention Example 58 8.7 1.76 5 341 132 6.2 14 2.8 Invention Example 59 4.9 1.73 30 272 95 4.4 50 1.7 Invention Example 60 5.4 1.75 14 330 131 3.7 63 4.5 Invention Example 61 5.5 1.74 14 315 120 3.9 59 4.2 Invention Example 62 5.2 1.74 15 295 106 3.7 65 4.3 Invention Example 63 5.2 1.76 14 304 109 3.8 60 4.3 Invention Example 64 5.3 1.75 14 305 107 3.9 58 4.1 Invention Example 65 5.6 1.75 15 301 105 4.0 61 4.1 Invention Example 66 5.2 1.74 14 297 108 3.7 60 4.3 Invention Examples 67 5.2 1.74 14 298 108 3.6 61 4.4 Invention Examples

-35- (32) (32)200403346 如上述,藉本發明係能提供一種極適合製造旋轉機用 轉子及定子之無方向性電磁鋼板。 且’本發明有關之無方向性電磁鋼板,不僅如此,尙 具有優異之所謂再利用性的特徵。即,再利用習知含A1 量高之鐵芯材料鑄造馬達的旋轉軸時,鐵水表面乃進行氧 化致黏性增高。於是鐵水之鑄模內充塡性降低,有時無法 獲得健全之鑄件。是故,一般認爲含A1之廢鐵渣缺乏再 利用性’然本發明有關之無方向性電磁鋼板則爲低A1材 料’纟#造所需之再利用性極高。 產業上之可利用性 根據本發明之高磁通密度無方向性電磁鋼板,係能自 同一鋼板同時採取轉子材料及定子材料,且對轉子材料賦 予高磁通密度及高強度,對於定子材料賦予高磁通密度及 低鐵損。藉此,可大幅度地提升旋轉機用構件、進而旋轉 機之製造效率、輸出特性。況且,本發明有關之無方向性 電磁鋼板,亦優於鑄造時之再利用性,能改善再利用衝切 材料之廢鐵渣時的鑄造性。 【圖式簡單說明】 圖1爲將無方向性電磁鋼板之晶粒生長比、即應變退 火後之鋼板平均結晶粒徑對於最終精製退火後之鋼板平均 結晶粒徑的比與鋼板之N含量的關係,以阻礙晶粒生長 延性非金屬夾雜物之存在個數爲參數加以表示之圖表。 -36--35- (32) (32) 200403346 As described above, the present invention can provide a non-oriented electromagnetic steel sheet that is extremely suitable for manufacturing a rotor and a stator for a rotating machine. In addition, the non-oriented electrical steel sheet according to the present invention has not only such characteristics, but also has an excellent so-called recyclability. That is, when a rotating shaft of a motor is conventionally cast with a core material containing a high amount of A1, the surface of the molten iron is oxidized to increase the viscosity. As a result, the filling property of the molten iron mold is reduced, and sometimes a sound casting cannot be obtained. Therefore, it is generally considered that the waste iron slag containing A1 lacks recyclability. However, the non-oriented electromagnetic steel sheet according to the present invention is a low A1 material. The recyclability required for the manufacture is extremely high. Industrial Applicability The high magnetic flux density non-directional electromagnetic steel sheet according to the present invention is capable of simultaneously adopting a rotor material and a stator material from the same steel sheet, and imparting high magnetic flux density and high strength to the rotor material. High magnetic flux density and low iron loss. Thereby, the manufacturing efficiency and output characteristics of the rotating machine member and the rotating machine can be greatly improved. Moreover, the non-oriented electromagnetic steel sheet according to the present invention is also superior to the recyclability during casting, and can improve the castability when the waste iron slag of the punched material is reused. [Schematic description] Figure 1 is the ratio of the grain growth ratio of non-oriented electrical steel sheet, that is, the ratio of the average crystal grain size of the steel sheet after strain annealing to the average crystal grain size of the steel sheet after final annealing and the N content of the steel sheet. The relationship is a graph showing the number of ductile non-metallic inclusions that hinder grain growth as a parameter. -36-

Claims (1)

200403346 Π) 拾、申請專利範圍 1 · 一種無方向性電磁鋼板,其特徵爲: 以質量百分率換算時,是包含: Si : 0.1% 〜1.2% ; MN : 0.005 % 〜0.3% ; C : 0.005 0% 以下(包含 〇 ); Sol· A1 : 0.0004% 以下(包含 0 ); N : 0.003 0 % 以下(包含 〇 ); 其餘爲F e以及不可避免的雜質, 相對於再結晶粒的平均粒徑D之長度爲3 D〜9D的夾 雜物的個數密度是1000個/ cm2以下。 2 ·如申請專利範圍第1項之無方向性電磁鋼板,其 中該鋼板又含:Sb與SN的其中至少一種,其含量以質量 百分率換算時,Sb是0.005%〜0.10% ; SN是0.005%〜 0.2% 〇 3 ·如申請專利範圍第1項之無方向性電磁鋼板,其 中該鋼板又含:P與Ni的其中至少一種,其含量以質量 百分率換算時,P是0.001%〜0.2% ; Ni是0.001%〜0.2 %。 4. 如申請專利範圍第1項之無方向性電磁鋼板,其 中該鋼板又含:REM與CA的其中至少一種,其含量以質 量百分率換算時,REM是 0.000 1 %〜0.10% ; CA是 0.0001 % - 〇.〇1 % 〇 5. 如申請專利範圍第1項之無方向性電磁鋼板,其 -37- (2) 200403346 中上述不可避免的雜暂中, 、 1、Nb以及v的含量分別限 制在Ti是0.0020%以下(知 ❿ 0) ;Nb 是 0.0050% 以下 (包含 〇) ;V 是 〇.〇〇6〇%l 〇υ/〇以下(包含〇)。 6.如申請專利範圍第, 1項之無方向性電磁鋼板,其 中上述不可避免的雜質中,s 〃 以及0的含量分別限制在S 〇是 0.0100%以下(包含 是 0.005 0 %以下(包含〇 ) 0 ) 〇 7·如申請專利範_ 1工貝之無方向性電磁鋼板,其 中上述再結晶粒的平均粒徑D是〜25&quot;m。 8 .如申μ專利範圍第】項之無方向性電磁鋼板,其 中該鋼板是至少經過冷軋以及其後的最終精製退火過程所 製造的鋼板’上述最終精製退火的溫度是7〇〇&lt;t〜8〇〇 °C 。 9 ·如申請專利範圍第1項之無方向性電磁鋼板,其 中該鋼板是以7 5 0 °C經過兩個小時的應變退火,以使得再 結晶粒的平均粒徑成長到兩倍以上。 10· —種無方向性電磁鋼板,其特徵爲:是對於如申 請專利範圍第1至9項之任何一項所述的鋼板實施應變退 火而製成的。 1 1 ·如申請專利範圍第1 〇項之無方向性電磁鋼板, 其中上述應變退火的溫度是70(TC〜800°c。 1 2 · —種旋轉機用轉子構件,其特徵爲:該旋轉機用 轉子構件是將申請專利範圍第1項至第9項之任何一項所 述的無方向性電磁鋼板堆疊而成的。 -38- (3) (3)200403346 1 3 . —種旋轉機用定子構件,其特徵爲:該旋轉機用 定子構件是將申請專利範圍第1項至第9項之任何一項所 述的無方向性電磁鋼板堆疊之後,再實施應變退火而製成 的。 14. 一種旋轉機,其特徵爲: 該旋轉機具有申請專利範圍第1 2項所述的旋轉機用 轉子構件以及申請專利範圍第1 3項所述的旋轉機用定子 構件, 且該旋轉機用轉子構件與該旋轉機用定子構件都是以 同一種無方向性電磁鋼板作爲素材。200403346 Π) Pick up and apply for patent scope 1 · A non-oriented electromagnetic steel plate, characterized by: When converted by mass percentage, it contains: Si: 0.1% ~ 1.2%; MN: 0.005% ~ 0.3%; C: 0.0050 % Or less (including 0); Sol · A1: 0.0004% or less (including 0); N: 0.003 0% or less (including 0); the rest are Fe and unavoidable impurities, relative to the average particle diameter D of the recrystallized grains The number density of inclusions having a length of 3 D to 9 D is 1,000 pieces / cm 2 or less. 2 · If the non-oriented electromagnetic steel sheet of item 1 of the patent application scope, wherein the steel sheet further contains at least one of Sb and SN, when the content is converted by mass percentage, Sb is 0.005% ~ 0.10%; SN is 0.005% ~ 0.2% 〇3 · If the non-oriented electromagnetic steel sheet of the scope of application for the first item, wherein the steel sheet further contains: at least one of P and Ni, the content of which is converted by mass percentage, P is 0.001% ~ 0.2%; Ni is 0.001% to 0.2%. 4. For example, the non-oriented electromagnetic steel sheet of the scope of patent application, the steel sheet further contains: at least one of REM and CA, when the content is converted by mass percentage, REM is 0.0001% ~ 0.10%; CA is 0.0001 %-〇.〇1% 〇5. As for the non-oriented electromagnetic steel sheet in the scope of patent application, the content of -1, Nb, and v in -37- (2) 200403346 is unavoidable. It is limited to Ti being 0.0020% or less (Knowledge 0); Nb is 0.0050% or less (including 0); V is 0.0006% or less (including 0). 6. The non-oriented electrical steel sheet according to item 1 of the patent application, wherein the content of s 〃 and 0 in the unavoidable impurities is limited to S 〇 0.00.0% or less (including 0.005 0% or less (including 0) ) 0) 〇7. For example, the non-oriented electromagnetic steel sheet of 1 gigabyte, wherein the average particle diameter D of the recrystallized grain is ~ 25 &quot; m. 8. The non-oriented electrical steel sheet according to the [application patent scope item], wherein the steel sheet is a steel sheet manufactured by at least cold rolling and subsequent final refining and annealing processes; the above-mentioned final refining and annealing temperature is 700 &lt; t ~ 800 ° C. 9 · The non-oriented electrical steel sheet according to item 1 of the scope of patent application, wherein the steel sheet is annealed at 750 ° C for two hours so that the average grain size of the recrystallized grains is more than doubled. 10. A non-oriented electrical steel sheet characterized by being strain-annealed to a steel sheet as described in any one of claims 1 to 9 of the scope of patent application. 1 1 · The non-oriented electrical steel sheet according to item 10 of the scope of patent application, wherein the temperature of the strain annealing is 70 (TC ~ 800 ° c. 1 2) A rotor member for a rotating machine, characterized in that the rotation The machine rotor member is made by stacking the non-directional electromagnetic steel plates described in any one of the scope of claims 1 to 9. -38- (3) (3) 200403346 1 3. — Rotating Machine A stator member is characterized in that: the stator member for a rotating machine is made by stacking the non-oriented electromagnetic steel plates described in any one of the scope of claims 1 to 9 of the patent application, and then performing strain annealing. 14. A rotating machine, characterized in that the rotating machine has a rotor member for a rotating machine according to item 12 of the patent application scope, and a stator member for a rotating machine according to item 13 of the patent application scope, and the rotating machine Both the rotor member and the stator member for the rotating machine are made of the same non-oriented electromagnetic steel plate.
TW92121498A 2002-08-06 2003-08-06 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine TWI276693B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229251A JP4718749B2 (en) 2002-08-06 2002-08-06 High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine

Publications (2)

Publication Number Publication Date
TW200403346A true TW200403346A (en) 2004-03-01
TWI276693B TWI276693B (en) 2007-03-21

Family

ID=31492289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92121498A TWI276693B (en) 2002-08-06 2003-08-06 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine

Country Status (5)

Country Link
JP (1) JP4718749B2 (en)
KR (1) KR100567239B1 (en)
CN (1) CN1277945C (en)
TW (1) TWI276693B (en)
WO (1) WO2004013365A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI622655B (en) * 2016-01-15 2018-05-01 Jfe Steel Corp Non-oriented electromagnetic steel plate and manufacturing method thereof
TWI623629B (en) * 2015-12-28 2018-05-11 Jfe Steel Corp Non-oriented electromagnetic steel sheet and manufacturing method of non-oriented electromagnetic steel sheet
TWI634218B (en) * 2016-10-27 2018-09-01 Jfe Steel Corporation Non-oriented electromagnetic steel plate and manufacturing method thereof

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7470333B2 (en) * 2003-05-06 2008-12-30 Nippon Steel Corp. Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof
DE602004018942D1 (en) 2004-11-24 2009-02-26 Giovanni Arvedi Hot-rolled magnetic steel strip for producing stacked magnetic core sheets
WO2011013858A1 (en) * 2009-07-31 2011-02-03 Jfeスチール株式会社 Grain-oriented magnetic steel sheet
KR101110257B1 (en) * 2009-08-07 2012-02-16 주식회사 포스코 Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP5423616B2 (en) * 2009-09-14 2014-02-19 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties and method for producing cast steel strip for producing non-oriented electrical steel sheet
KR101223113B1 (en) * 2010-12-27 2013-01-17 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
CN103827333B (en) 2011-09-27 2016-09-21 杰富意钢铁株式会社 Non-oriented magnetic steel sheet
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
EP3176279B1 (en) * 2014-07-31 2018-08-15 JFE Steel Corporation Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
KR101719231B1 (en) 2014-12-24 2017-04-04 주식회사 포스코 Grain oriented electical steel sheet and method for manufacturing the same
JP6048699B2 (en) 2015-02-18 2016-12-21 Jfeスチール株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and motor core
WO2017016604A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
WO2017022360A1 (en) 2015-08-04 2017-02-09 Jfeスチール株式会社 Method for manufacturing non-oriented electromagnetic steel sheet with excellent magnetic properties
RU2694299C1 (en) * 2015-10-02 2019-07-11 ДжФЕ СТИЛ КОРПОРЕЙШН Sheet of non-textured electrical steel and method of its production
DE112016005423T5 (en) * 2015-11-27 2018-08-30 Nidec Corporation ENGINE AND MANUFACTURING METHOD OF A MOTOR
KR101728028B1 (en) 2015-12-23 2017-04-18 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
JP6627617B2 (en) * 2016-04-01 2020-01-08 トヨタ自動車株式会社 Motor manufacturing method
CN105925884B (en) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 A kind of high magnetic strength, low iron loss non-oriented silicon steel sheet and its manufacture method
JP6738047B2 (en) * 2017-05-31 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
DE102018201618A1 (en) 2018-02-02 2019-08-08 Thyssenkrupp Ag Afterglow, but not nachglühpflichtiges electrical tape
TWI729905B (en) 2018-05-21 2021-06-01 日商杰富意鋼鐵股份有限公司 Non-oriented electrical steel sheet
JP7284383B2 (en) * 2019-02-28 2023-05-31 日本製鉄株式会社 Non-oriented electrical steel sheet
EP3943632A4 (en) * 2019-03-20 2022-07-27 Nippon Steel Corporation Non-oriented electromagnetic steel sheet
CN110205462A (en) * 2019-06-28 2019-09-06 武汉钢铁有限公司 Used in high-speed motor method for producing non-oriented silicon steel
US20230366058A1 (en) * 2020-11-27 2023-11-16 Nippon Steel Corporation Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456295B2 (en) * 1995-03-31 2003-10-14 Jfeスチール株式会社 Melting method of steel for non-oriented electrical steel sheet
JPH09263908A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production
JPH10212555A (en) * 1997-01-29 1998-08-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property and its production
JP4218136B2 (en) * 1999-06-24 2009-02-04 Jfeスチール株式会社 Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2002206114A (en) * 2000-12-28 2002-07-26 Nippon Steel Corp Method for manufacturing nonoriented silicon steel sheet
CN108454769A (en) * 2018-03-29 2018-08-28 曾东斌 A kind of super labour-saving bicycle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI623629B (en) * 2015-12-28 2018-05-11 Jfe Steel Corp Non-oriented electromagnetic steel sheet and manufacturing method of non-oriented electromagnetic steel sheet
US11114227B2 (en) 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
TWI622655B (en) * 2016-01-15 2018-05-01 Jfe Steel Corp Non-oriented electromagnetic steel plate and manufacturing method thereof
US11008633B2 (en) 2016-01-15 2021-05-18 Jfe Steel Corporation Non-oriented electrical steel sheet and production method thereof
TWI634218B (en) * 2016-10-27 2018-09-01 Jfe Steel Corporation Non-oriented electromagnetic steel plate and manufacturing method thereof
US11056256B2 (en) 2016-10-27 2021-07-06 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same

Also Published As

Publication number Publication date
CN1277945C (en) 2006-10-04
JP2004068084A (en) 2004-03-04
KR20040039438A (en) 2004-05-10
CN1556869A (en) 2004-12-22
KR100567239B1 (en) 2006-04-03
JP4718749B2 (en) 2011-07-06
TWI276693B (en) 2007-03-21
WO2004013365A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
TW200403346A (en) Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
CN105950960B (en) Driving motor for electric automobile non-orientation silicon steel and preparation method thereof
TWI622655B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
KR101682284B1 (en) Non-oriented electrical steel sheet
JP5793305B2 (en) Oriented electrical steel sheet with excellent magnetic properties and method for producing the same
CN101310034B (en) Highly strong, non-oriented electrical steel sheet and method for manufacture thereof
JP6913683B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP5076510B2 (en) Non-oriented electrical steel sheet for rotor and manufacturing method thereof
TWI499677B (en) A non-oriented electrical steel sheet, a manufacturing method thereof, a laminate for a motor core, and a method of manufacturing the same
JP4860783B2 (en) Non-oriented electrical steel sheet
JP2008050686A (en) Nonoriented silicon steel sheet having excellent strength and magnetic property and its production method
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
WO2006048989A1 (en) Non-oriented magnetic steel sheet excellent in iron loss
JP2011510166A5 (en)
JP6383368B2 (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
CN110678568A (en) Non-oriented electromagnetic steel sheet and method for producing same
JP2016003371A (en) Non-oriented magnetic steel sheet having good entire circumferential magnetic property
JP7299893B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5263012B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
TWI550104B (en) Nonoriented electromagnetic steel sheet with excellent high frequency core loss property
JP2010121213A (en) Method for manufacturing high-strength low-specific gravity steel sheet excellent in ductility
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
KR20160078081A (en) Non-orinented electrical steel sheet and method for manufacturing the same
JP4415933B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JPWO2005100627A1 (en) Nondirectional electromagnetic copper plate with excellent punching workability and magnetic properties after strain relief annealing and its manufacturing method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees