JP2016003371A - Non-oriented magnetic steel sheet having good entire circumferential magnetic property - Google Patents

Non-oriented magnetic steel sheet having good entire circumferential magnetic property Download PDF

Info

Publication number
JP2016003371A
JP2016003371A JP2014124757A JP2014124757A JP2016003371A JP 2016003371 A JP2016003371 A JP 2016003371A JP 2014124757 A JP2014124757 A JP 2014124757A JP 2014124757 A JP2014124757 A JP 2014124757A JP 2016003371 A JP2016003371 A JP 2016003371A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
rolling
hot
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014124757A
Other languages
Japanese (ja)
Other versions
JP6432173B2 (en
Inventor
熊野 知二
Tomoji Kumano
知二 熊野
藤倉 昌浩
Masahiro Fujikura
昌浩 藤倉
紘二郎 堀
Kojiro Hori
紘二郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2014124757A priority Critical patent/JP6432173B2/en
Publication of JP2016003371A publication Critical patent/JP2016003371A/en
Application granted granted Critical
Publication of JP6432173B2 publication Critical patent/JP6432173B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-oriented magnetic steel sheet that is excellent in entire circumferential direction magnetic property and that is good in surface quality.SOLUTION: The non-oriented magnetic steel sheet has a steel content satisfying C: 0.0030% or less, Si: 2.0 to 3.0%, Al: 1.0 to 2.0%, Mn: 0.10 to 1.0%, and 3.5≤Si+Al≤4.75% and has a magnetic flux density (B50) in a direction forming 45° with respect to the rolling direction of the steel sheet of 0.83 or more of the saturation magnetic flux density Bs (=2.1561-0.0413[Si]-0.0198[Mn]-0.0604[Al]) of the steel sheet. The steel sheet is produced by subjecting the steel sheet to a hot-rolled steel strip annealing at 950 to 1050°C for 30 to 90 seconds to make the circle-equivalent crystal grain average diameter after the annealing of 100 μm or more and the cold-rolling ratio of 55 to 90%, and subjecting the steel sheet to a finish annealing at 950°C or more for 20 to 120 seconds.

Description

本発明は、主に回転電気機器の鉄芯として用いられる無方向性電磁鋼板に関するもので、特に、高効率の回転機器分野で用いられる鉄芯用材料に関するものである。   The present invention relates to a non-oriented electrical steel sheet mainly used as an iron core of rotating electrical equipment, and particularly to an iron core material used in the field of highly efficient rotating equipment.

昨今の輸送機器分野では、電気駆動機器の材料として磁気特性が優れた電磁鋼板が注目され、使用されており、これらの機器においては、高効率化のための、周波数が商用より高い分野での鉄損特性の向上、及び、小型化に資するための高磁束密度化、特に全周方向の良好な電磁鋼板が求められている。   In the field of transportation equipment in recent years, electrical steel sheets with excellent magnetic properties have attracted attention and are used as materials for electric drive equipment. In these equipment, in order to increase efficiency, the frequency is higher than that of commercial use. There is a need for a magnetic steel sheet that is improved in iron loss characteristics and has a high magnetic flux density that contributes to downsizing, in particular, a good electrical steel sheet in the entire circumferential direction.

この分野の機器に用いられる電磁鋼板は、冶金学的には一次再結晶を活用して生産されるので、無方向性電磁鋼板の範疇に含まれ、主に回転機器の鉄芯として用いられる。その製作は円形をベースとし、駆動機器のコスト低減や生産性向上の為に、一体の打ち抜きで製作されることが望ましく、一般には、鋼板圧延面内での磁気特性が各方向で均一で良好なこと、すなわち全周方向の磁気特性が優れた無方向性電磁鋼板が強く求められている。
しかし、現在のメタラジーでは、この様な磁気特性が良好なキューブ系集合組織({100}<0vw>)の工業生産は実現できていない。
Electrical steel sheets used for equipment in this field are produced metallurgically using primary recrystallization, and thus are included in the category of non-oriented electrical steel sheets and are mainly used as iron cores for rotating equipment. Its production is based on a circle, and it is desirable to produce it by integral punching in order to reduce the cost of drive equipment and improve productivity. In general, the magnetic properties within the rolled steel sheet surface are uniform and good in each direction. In other words, there is a strong demand for non-oriented electrical steel sheets having excellent magnetic properties in the entire circumferential direction.
However, in the current metallurgy, industrial production of such a cube texture ({100} <0vw>) with good magnetic properties cannot be realized.

ところで、無方向性電磁鋼板の歴史を顧みるに、日本工業規格(JIS C 2552)にある35A440、50A470より高級の冷延無方向性電磁鋼板製造については、メタラジーの観点では、(x)磁気特性の向上、(y)磁気時効に対する対策、(z)リジング(表面性状)に対する対策という課題を、インゴット鋳造−分塊圧延による熱延素材の製造から連続鋳造による製造への生産構造変化に伴い低コストで行う方法の開発であった。   By the way, in view of the history of non-oriented electrical steel sheets, the production of cold-rolled non-oriented electrical steel sheets higher than 35A440 and 50A470 in Japanese Industrial Standards (JIS C 2552) is (x) magnetic properties in terms of metallurgy. (Y) Countermeasures against magnetic aging, (z) Countermeasures against ridging (surface properties), as the production structure changes from production of hot-rolled material by ingot casting-bundling rolling to production by continuous casting. It was the development of a method to do at cost.

(y)の磁気時効対策については、現在では、磁気時効の抑制に必要な極低C溶製技術が精錬技術の発達で確立している。
すなわち、磁気時効を抑制するには、最終製品のC含有量を減じることが必須である。溶製段階で高いCを最終製品までの工程で極低Cに減ずるか、溶製段階で極低Cとするかである。冷延無方向性電磁鋼板の製造初期には、溶製段階で極低Cとすることは技術的には困難であったので、途中焼鈍工程または、最終焼鈍工程で脱炭されていた。現在では、精錬技術の発達で極低C溶製技術が確立している。
Regarding the magnetic aging countermeasure of (y), at present, the ultra-low C melting technology necessary for suppression of magnetic aging has been established by the development of refining technology.
That is, to suppress magnetic aging, it is essential to reduce the C content of the final product. Either high C in the melting stage is reduced to extremely low C in the process up to the final product, or is extremely low C in the melting stage. In the initial stage of production of the cold-rolled non-oriented electrical steel sheet, since it was technically difficult to achieve extremely low C at the melting stage, it was decarburized in the intermediate annealing process or the final annealing process. At present, ultra-low C melting technology has been established with the development of refining technology.

しかし、その他の開発において、次のような課題がある。
(x)の無方向性電磁鋼板の磁気特性には、磁束密度(B50)と鉄損があり、共に優れていることが求められる。
従来の磁気特性確保は、最終焼鈍雰囲気の調整、集合組織の制御、良粒成長性の確保、磁壁ピン止め不純物の低減で行われる。具体的には、それぞれ、光輝最終焼鈍化、冷延率の適正化及び(熱延鋼帯)焼鈍、不純物元素の低減であった。
また、鉄損は、板厚を薄くするとか、比抵抗の増加による渦電流損の低減、不純物の低減、結晶粒界低減等による履歴損の低減がある。しかし、集合組織改善に依る履歴損の低減には限界に達していた。
しかし、無方向性電磁鋼板の磁気特性の材料段階での評価は、圧延方向とその直角方向の2方向の合算で行われていたので、その集合組織の特性より材料段階での評価(圧延方向とその直角方向のみ)と実際の電気機器での評価(材料の全方向が反映される)が合致しないことがあった。
However, other developments have the following problems.
The magnetic properties of the non-oriented electrical steel sheet (x) include magnetic flux density (B50) and iron loss, and both are required to be excellent.
Conventionally, magnetic properties are secured by adjusting the final annealing atmosphere, controlling the texture, ensuring good grain growth, and reducing domain wall pinning impurities. Specifically, they were bright final annealing, optimization of the cold rolling rate, (hot rolled steel strip) annealing, and reduction of impurity elements, respectively.
Further, the iron loss includes a reduction in hysteresis loss due to a reduction in plate thickness, a reduction in eddy current loss due to an increase in specific resistance, a reduction in impurities, a reduction in grain boundaries, and the like. However, the reduction of history loss due to texture improvement has reached its limit.
However, the evaluation of the magnetic properties of the non-oriented electrical steel sheet at the material stage was performed by adding the two directions of the rolling direction and the direction perpendicular to the rolling direction. And only in the direction perpendicular to it) and evaluation with actual electrical equipment (reflecting all directions of the material) may not match.

近年、回転機器の特性を更に向上せしめ、更に、低コスト化のために、無方向性電磁鋼板の一体での打ち抜きが強く求められている。この場合、全周特性が優れていることが必要であり、また打ち抜き性が良好である無方向性電磁鋼板が求められる。従来は、全周特性が均一な無方向性電磁鋼板は得ることは可能であったが、集合組織的に劣る<111>方向の圧延面内ランダム配向であり、その絶対値特性は劣っていた。   In recent years, there has been a strong demand for punching of non-oriented electrical steel sheets in an integrated manner in order to further improve the characteristics of rotating equipment and further reduce costs. In this case, the non-oriented electrical steel sheet is required to have excellent all-around characteristics and good punchability. Conventionally, it was possible to obtain a non-oriented electrical steel sheet having uniform circumferential characteristics, but it had a random orientation in the rolled surface in the <111> direction, which was inferior in texture, and its absolute value characteristics were inferior. .

さらに、電動機の高効率化要求の増大に伴い、従来より高い周波数域での使用が促進されており、特に輸送機器で用いられる電動機において強く求められてきた。
従来より高い周波数での鉄損の向上のためには、渦電流損の低減の為、板厚の薄手化に加えて、固有抵抗大化に資する元素の添加が(添加元素は、基本的にSi、Alである)あるが、鉄以外の元素の割合が増加すると、飽和磁束密度を低下せしめるので、鉄損と磁束密度の関係は、トレードオフの関係になり技術的困難に直面していた。
このように、従来にない全周特性磁気特性が優れている無方向性電磁鋼板の提供が求められていた。
Furthermore, with an increase in demand for higher efficiency of electric motors, use in a higher frequency range has been promoted, and there has been a strong demand especially for electric motors used in transportation equipment.
In order to improve the iron loss at a higher frequency than before, in order to reduce the eddy current loss, in addition to reducing the thickness of the plate, addition of an element that contributes to increasing the specific resistance (the additive element is basically However, if the ratio of elements other than iron increases, the saturation magnetic flux density decreases, so the relationship between iron loss and magnetic flux density is in a trade-off relationship and faces technical difficulties. .
Thus, there has been a demand for providing a non-oriented electrical steel sheet that is superior in the all-round magnetic characteristics, which has not been conventionally obtained.

(z)のリジングとは、スラブ段階での柱状晶に起因し、多くの特定方向の結晶粒があたかも単結晶の様に振る舞って組織が揃う現象で、表面が凹凸状に「うねる」欠陥である。電磁鋼板では占績率の低下を来たすので避けなければならない。このリジングは、変態が無いα単相組織の高級無方向性電磁鋼板で生じる。
また、リジングは、炭素(C)とも密接に関係しており、Cが高いと鋳造時にγ相が存在するので、柱状晶率が減じリジングは生じない。溶製段階で極低Cが可能となった当初はインゴット鋳造であったので、造塊(分塊)工程があり、柱状晶は破壊されリジングの発生は無かった。その後、連続鋳造となり分塊工程が省略されると、溶製での極低C化でα単相となる高級無方向性電磁鋼板の場合は、依然としてリジングが問題となっている。
そこで、電磁撹拌の適用により柱状晶率の低減が試みられ、特別な場合(冷延率が高い、熱間圧延鋼帯での再結晶が不十分等の場合)以外は、リジングは改善している。
The ridging in (z) is caused by columnar crystals at the slab stage, and is a phenomenon in which grains in a specific direction behave like a single crystal and the structure is aligned. is there. Magnetic steel sheets must be avoided because they cause a decrease in the occupancy rate. This ridging occurs in a high-grade non-oriented electrical steel sheet having an α single phase structure without transformation.
In addition, ridging is also closely related to carbon (C). If C is high, a γ phase is present during casting, so the columnar crystal ratio is reduced and ridging does not occur. Since ingot casting was performed at the beginning when extremely low C was possible at the melting stage, there was an ingot forming (bundling) process, columnar crystals were destroyed, and no ridging was generated. After that, when the continuous casting is performed and the lump process is omitted, ridging is still a problem in the case of a high-grade non-oriented electrical steel sheet that becomes α single phase by extremely low C in melting.
Therefore, reduction of the columnar crystal ratio was attempted by applying electromagnetic stirring, and ridging was improved except in special cases (when the cold rolling rate is high, recrystallization in the hot rolled steel strip is insufficient, etc.). Yes.

ここで、本発明に関する先行技術に付いて記す。
特許文献1には、Si:4%以下、Al:2%以下の真円度に優れた無方向性電磁鋼板の打ち抜き方法が開示されているが、その製造方法、電磁気特性については、具体的に言及されておらない。また、Alを含有する範囲の理由については、添加コストで規定されているのみである。
また、特許文献2においても、同様な技術が開示されているが、この場合、熱間圧延板焼鈍が箱型である。
特許文献3に至っては、窒化処理が施され、厚さ方向の硬度が異なる無方向性電磁鋼板の開示がある。
特許文献4においては、Alは0.2〜3.0%としているが、実施例は、最大0.60%であり、それ以上の添加に関しては、何ら言及していない。
Here, it describes about the prior art regarding this invention.
Patent Document 1 discloses a method of punching a non-oriented electrical steel sheet having excellent roundness of Si: 4% or less and Al: 2% or less. The manufacturing method and electromagnetic characteristics are specifically described. Is not mentioned. Moreover, the reason for the range containing Al is only defined by the addition cost.
Also, Patent Document 2 discloses a similar technique. In this case, the hot-rolled sheet annealing is a box shape.
Patent Document 3 discloses a non-oriented electrical steel sheet that is subjected to nitriding treatment and has different hardness in the thickness direction.
In Patent Document 4, Al is 0.2 to 3.0%, but the maximum is 0.60% in Examples, and no further mention is made regarding addition beyond that.

特開平10−24333号公報Japanese Patent Laid-Open No. 10-24333 特開2001−059145号公報JP 2001-059145 A 特開2008−031490号公報JP 2008-031490 A 特開2009−291346号公報JP 2009-291346 A 特開昭53−066816号公報JP-A-53-066816 特公平06−051889号公報Japanese Patent Publication No. 06-051889 特開2008−260996号公報JP 2008-260996 A

磁束密度が高く、鉄損も低い無方向電磁鋼板を製造する技術として、途中に中間焼鈍を挟む2回冷延法による方法が知られている。特許文献5では、このような方法が開示されているが、この方法では、中間焼鈍と仕上げ焼鈍の温度と時間に関して、焼鈍時間が最短2分で実施例では5分と非常に長い。時間が長いことは生産性が低く、高コストであることを意味する。さらに、一次冷間圧延率を20%以上とかなり広い範囲にしているが、低圧延率域では、集合組織的には冷間圧延をしない場合と同様であり、一次冷間圧延率の意味が無いと推定される。
即ち、Si、Alを多く含み、Cが少ないα単相の電磁鋼板を、通常の連続鋳造で鋳込み、2回冷延法によって製造しようとする場合、一次冷間圧延率が低いとリジングといわれる表面欠陥が生じる。このリジングは、高柱状晶率、低一次冷延率、高最終冷延率、不完全な冷延前再結晶、焼鈍時の高張力等により発生し、またその程度が著しくなる。
さらに、この2回冷延による方法では、圧延方向に対して45°の方向の磁気特性は良好でなく、寧ろ劣化し、引いては全周方向の特性も劣る。この理由は、所謂Goss方位の発達である。また、冷延が二回ありコスト増になるので避けられることが多い。
As a technique for producing a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, a method based on a double cold rolling method in which intermediate annealing is sandwiched in the middle is known. Patent Document 5 discloses such a method, but in this method, the annealing time is as short as 2 minutes and the example is very long as 5 minutes in terms of the temperature and time of intermediate annealing and finish annealing. Longer time means lower productivity and higher cost. Furthermore, the primary cold rolling rate is set to a fairly wide range of 20% or more, but in the low rolling rate region, the texture is the same as in the case where cold rolling is not performed, and the meaning of the primary cold rolling rate is Presumed to be absent.
That is, when α single-phase electrical steel sheet containing a large amount of Si and Al and having a small amount of C is cast by ordinary continuous casting and is produced by the double cold rolling method, it is said to be ridging when the primary cold rolling rate is low. Surface defects occur. This ridging occurs due to a high columnar crystal ratio, a low primary cold rolling rate, a high final cold rolling rate, incomplete recrystallization before cold rolling, a high tension during annealing, and the degree thereof becomes remarkable.
Further, in this method by cold rolling twice, the magnetic properties in the direction of 45 ° with respect to the rolling direction are not good, rather they are deteriorated, and the properties in the entire circumferential direction are also poor. The reason for this is the development of the so-called Goss orientation. Also, it is often avoided because there are two cold rolling and the cost increases.

そこで、本発明は、コスト低下のためには、2回の冷間圧延を行うことなく、1回の冷間圧延による電磁鋼板の製造方法において、全周方向の磁気特性が優れ、かつ表面性状が良好な無方向性電磁鋼板が得られるようにすることを課題とする。   Therefore, the present invention is excellent in the magnetic properties in the entire circumferential direction and the surface properties in the method for producing the electrical steel sheet by one cold rolling without performing the cold rolling twice in order to reduce the cost. It aims at making it possible to obtain a non-oriented electrical steel sheet with favorable.

本発明者らは、このうち、最も冶金学的に知見を必要とする集合組織制御に関して鋭意検討を重ね、キューブ系集合組織に近い、全周方向に均一に磁気特性の優れた本当の意味での「無方向性電磁鋼板」を見出すに至った。
発明者らは鋭意検討して、Alを多量添加し、製造工程条件を適正化すると、集合組織制御により、全周方向の磁束密度が向上し、鉄損も確保できること、及び、無方向性電磁鋼板の全周方向の磁気特性を表す、飽和磁束密度Bs(T)に対する圧延方向と45°を成す方向の磁束密度(B50)の比を一定値以上にできること、を見出した。
即ち、Alの多量添加、工程条件の適正化により集合組織が所謂split Goss({101}<272>〜{101}<010>)を形成することに成功した。
本発明の冷延率で得られる再結晶集合組織は、split Goss({101}<272>〜{101}<010>)が主方位となり全周磁気特性が向上する。
さらに、リジングについては、冷延前に充分に再結晶をさせること、即ち、熱間圧延板焼鈍後の平均粒径を100μm以上に大きくすることでリジングの危惧もないことを見出した。
このような本発明の要旨は、以下のとおりである。
Of these, the inventors have made extensive studies on the texture control that requires the most metallurgical knowledge, and in the true sense that the magnetic properties are uniformly uniform in the entire circumferential direction, close to the cube texture. Of "Non-oriented electrical steel sheet".
The inventors diligently studied, and by adding a large amount of Al and optimizing the manufacturing process conditions, the texture control improves the magnetic flux density in the entire circumferential direction and can secure iron loss. It has been found that the ratio of the magnetic flux density (B50) in the direction of 45 ° to the saturation magnetic flux density Bs (T), which represents the magnetic properties in the entire circumferential direction of the steel sheet, can be a certain value or more.
That is, the texture succeeded in forming so-called split Goss ({101} <272> to {101} <010>) by adding a large amount of Al and optimizing the process conditions.
The recrystallized texture obtained by the cold rolling ratio of the present invention has split Goss ({101} <272> to {101} <010>) as the main orientation, and the all-around magnetic characteristics are improved.
Further, it has been found that there is no risk of ridging with respect to ridging by sufficiently recrystallizing before cold rolling, that is, by increasing the average particle size after hot-rolled sheet annealing to 100 μm or more.
The gist of the present invention is as follows.

[1] 質量%で、C:0.0030%以下、Si:2.0〜3.0%、Al:1.0〜2.0%、Mn:0.10〜1.0%、かつ3.5≦Si+Al≦4.75%を満足し、残部Feおよび不可避的不純物からなり、鋼板の圧延方向と45°を成す方向の磁束密度(B50)が、下記式(1)で示される鋼板の飽和磁束密度Bs(T)の0.830以上を有することを特徴とする全周方向の磁気特性が優れた無方向性電磁鋼板。
Bs=2.1561−0.0413[Si]−0.0198[Mn]−0.0604[Al] ・・・(1)
ここで、[]付元素は、各元素の含有量(質量%)を表す。
[1] By mass%, C: 0.0030% or less, Si: 2.0 to 3.0%, Al: 1.0 to 2.0%, Mn: 0.10 to 1.0%, and 3 0.5 ≦ Si + Al ≦ 4.75%, consisting of the balance Fe and unavoidable impurities, and the magnetic flux density (B50) in the direction of 45 ° with the rolling direction of the steel plate is that of the steel plate represented by the following formula (1). A non-oriented electrical steel sheet having an excellent magnetic property in the entire circumferential direction, having a saturation magnetic flux density Bs (T) of 0.830 or more.
Bs = 2.1561−0.0413 [Si] −0.0198 [Mn] −0.0604 [Al] (1)
Here, the element with [] represents the content (% by mass) of each element.

[2] 質量%で、C:0.0030%以下、Si:2.0〜3.0%、Al:1.0〜2.0%、Mn:0.10〜1.0%、かつ3.5≦Si+Al≦4.75%を満足し、残部Feおよび不可避的不純物からなる鋼スラブを、連続鋳造法で製造し、次いで前記鋼スラブに熱間圧延を施し、次いで熱間圧延鋼帯焼鈍を施し、一回の冷間圧延を施し、仕上焼鈍を行って無方向性電磁鋼板を製造する方法であって、前記熱間圧延鋼帯焼鈍を950〜1050℃で30〜90秒間施し、該焼鈍後の円相当結晶粒平均直径を100μm以上とし、前記冷間圧延の圧延率を55〜90%とし、その後、前記仕上焼鈍を950℃以上で20〜120秒間施すことを特徴とする全周方向の磁気特性が優れた無方向性電磁鋼板の製造方法。 [2] By mass%, C: 0.0030% or less, Si: 2.0 to 3.0%, Al: 1.0 to 2.0%, Mn: 0.10 to 1.0%, and 3 .5 ≦ Si + Al ≦ 4.75%, a steel slab consisting of the balance Fe and inevitable impurities is manufactured by a continuous casting method, then hot-rolled to the steel slab, and then hot-rolled steel strip annealed And performing a single cold rolling, finish annealing to produce a non-oriented electrical steel sheet, subjecting the hot rolled steel strip annealing to 950-1050 ° C. for 30-90 seconds, The circle-equivalent crystal grain average diameter after annealing is set to 100 μm or more, the rolling rate of the cold rolling is set to 55 to 90%, and then the finish annealing is performed at 950 ° C. or more for 20 to 120 seconds. A method for producing a non-oriented electrical steel sheet having excellent directional magnetic properties.

本発明を適用すれば、全周磁気特性に優れ、かつ表面性状が良好な電磁鋼板が低コストで製造できる。そして、この電磁鋼板を用いることにより効率が良好な回転機器の製造が可能となる。   By applying the present invention, an electrical steel sheet having excellent all-round magnetic properties and good surface properties can be produced at low cost. By using this electromagnetic steel sheet, it is possible to manufacture a rotating device with good efficiency.

以下、本発明の無方向性電磁鋼板及びその製造方法の特徴とする技術要件の限定理由を順次説明する。なお、以下の説明で、各元素の含有量は質量%で表すものとし、質量の記載を省略する。   Hereinafter, the reasons for limiting the technical requirements characteristic of the non-oriented electrical steel sheet and the manufacturing method thereof according to the present invention will be sequentially described. In the following description, the content of each element is expressed by mass%, and the description of mass is omitted.

<鋼の化学成分>
Cは、0.0030%より多いと磁気時効が生じるので0.0030%以下とする。0.0030%を超えて0.005%までCを含有した場合、400時間程度の短時間の時効評価処理では磁気特性(特に鉄損)の劣化は認められないが、10,000時間を超える長時間の時効処理では磁気特性は劣化する。特に輸送機器に用いられるような高級電磁鋼板では、完全に磁気時効が無いことが求められる点も考慮して、Cの上限は0.0030%とする。0.0030%以下であれば、磁気時効は生じないものの、不純物として鉄損を劣化せしめるので、Cは、0.0015%以下であることが好ましい。
<Chemical composition of steel>
If C is more than 0.0030%, magnetic aging occurs, so 0.0030% or less. When C is contained in an amount exceeding 0.0030% to 0.005%, deterioration of magnetic properties (particularly iron loss) is not observed in the aging evaluation process for about 400 hours, but it exceeds 10,000 hours. Magnetic properties deteriorate with prolonged aging treatment. In particular, in a high-grade electrical steel sheet used for transportation equipment, the upper limit of C is set to 0.0030% in consideration of the point that the magnetic aging is required to be completely eliminated. If 0.0030% or less, magnetic aging does not occur, but iron loss is deteriorated as an impurity, so C is preferably 0.0015% or less.

また、Cは、製造時のスラブの段階で0.0030%以下とする。
スラブ段階で0.0030%を超えていると最終製品までの間に0.0030%以下まで脱炭をしなければならない。
脱炭する方法としては、熱延板焼鈍または最終焼鈍時(仕上げ焼鈍)を湿雰囲気で行う方法があるが、熱延板焼鈍での脱炭は、板厚が厚く、非常に非効率的である。また、最終焼鈍(仕上げ焼鈍)での脱炭は、酸洗後に行うので本発明の様な高合金鋼(酸素との親和力が強いSi、Alの含有量が多い)の場合は、表面に酸化層が厚く形成され、最終製品の高磁場特性が劣り、更に冷間圧延時にスカム(汚れ)の発生が多くなるので避けるべきであり、溶製段階で低くすることが最も望ましい。
このため、本発明の製造方法では、溶製段階でのC量を、途中工程での脱炭を特に必要としない0.0030%以下とする。
C is made 0.0030% or less at the stage of slab during production.
If it exceeds 0.0030% at the slab stage, it must be decarburized to 0.0030% or less before the final product.
As a decarburization method, there is a method of performing hot-rolled sheet annealing or final annealing (finish annealing) in a humid atmosphere. However, decarburization in hot-rolled sheet annealing is very inefficient because the plate thickness is thick. is there. In addition, since decarburization in final annealing (finish annealing) is performed after pickling, in the case of a high alloy steel such as the present invention (a high Si and Al content has a strong affinity for oxygen), the surface is oxidized. The layer is formed thick, the high magnetic field characteristics of the final product are inferior, and more scum (dirt) is generated during cold rolling, so it should be avoided.
For this reason, in the manufacturing method of the present invention, the C amount in the melting stage is set to 0.0030% or less which does not particularly require decarburization in the intermediate process.

Siは、固有抵抗の増加ならしめ鉄損を向上させるために添加される。2.0%より少ないと良好な鉄損が得られず、3.0%を超えると冷延が極めて困難となり工業生産に適していない。好ましい範囲は、2.4〜2.8%である。   Si is added to increase the specific resistance and improve the iron loss. If it is less than 2.0%, good iron loss cannot be obtained, and if it exceeds 3.0%, cold rolling becomes extremely difficult and it is not suitable for industrial production. A preferable range is 2.4 to 2.8%.

AlもSi同様に固有抵抗を増加ならしめ、鉄損を向上させるために添加される。更に、本発明では、集合組織制御に大きな効果を与え、2.0%を超えると集合組織改善効果に依る全周方向の磁気特性向上は低下するし、コストが上昇する。1.0%より少ないと以上のような効果が少なく、2.0%を超えると鋳造性の劣化や冷間圧延ロールの摩耗が著しくなる。
Alでは単純にSi含有量を上げるよりも、比抵抗は向上するが加工性も確保される。ところで、Siのみでは、硬度が高くなりSiの一部をAlに置き換えると固有抵抗は確保されて硬度の著しい上昇を抑えることは、既に述べた様に特許文献2に開示されている。しかし、熱間圧延板焼鈍条件が全くことなり、集合組織の改善の観点が欠落している。好ましい範囲は、1.5〜1.9%である。
Al, like Si, is added to increase the specific resistance and improve iron loss. Furthermore, in the present invention, a great effect is exerted on the texture control, and if it exceeds 2.0%, the improvement of the magnetic properties in the circumferential direction due to the texture improvement effect is lowered and the cost is increased. When the content is less than 1.0%, the above effects are small, and when the content exceeds 2.0%, deterioration of castability and wear of the cold rolling roll become remarkable.
In the case of Al, the specific resistance is improved but the workability is secured rather than simply increasing the Si content. By the way, Patent Document 2 discloses, as already mentioned, that the hardness increases only with Si, and if a part of Si is replaced with Al, the specific resistance is secured and the remarkable increase in hardness is suppressed. However, the hot-rolled sheet annealing conditions are completely different, and the viewpoint of improving the texture is lacking. A preferable range is 1.5 to 1.9%.

Mnは0.10%より少ないと加工性が劣り、1.0%より多いとMn−(O,S)系の介在物を形成し粒成長が妨げられ鉄損が劣る。更に、多くMnを含有せしめる場合、フェロマンガン合金鉄からCのピックアップが有り、Cの値が0.0030%を超えることが度々生じ、精錬の生産性が著しく劣る。0.1〜0.3%である。   When Mn is less than 0.10%, workability is inferior, and when it is more than 1.0%, Mn- (O, S) -based inclusions are formed, grain growth is hindered, and iron loss is inferior. Further, when a large amount of Mn is contained, there is a pickup of C from ferromanganese alloy iron, and the value of C often exceeds 0.0030%, so that refining productivity is extremely inferior. 0.1 to 0.3%.

固有抵抗向上の為に、Si、Alを適度に含有するし、冷間圧延性の改善の為にSi量とAl量のバランスを適切に保つ必要がある。 更に、SiとAlの含有量の合計(Si+Al)について、3.5%≦Si+Al≦4.75%とする。磁気特性の観点から、Siの上限を3.0%、Alの上限を2.0%としたが、これらを合計で4.75%を超えて含有すると加工性が著しく劣化し、冷間圧延が困難になり工業生産出来ない。 In order to improve the specific resistance, it is necessary to appropriately contain Si and Al, and in order to improve the cold rolling property, it is necessary to appropriately maintain the balance between the Si amount and the Al amount. Further, the total content of Si and Al (Si + Al) is set to 3.5% ≦ Si + Al ≦ 4.75%. From the viewpoint of magnetic properties, the upper limit of Si is set to 3.0% and the upper limit of Al is set to 2.0%. However, if these elements exceed 4.75% in total, workability deteriorates significantly, and cold rolling is performed. Becomes difficult and cannot be industrially produced.

その他、上記以外の元素については、下記に示す通りである。
Snは本発明の如く一回冷延法において添加は必須ではない。なぜならば、Snは、Goss方位集合組織を増長せしめるので、本発明のsplit Gossとは、若干趣を異にし、本発明の主旨である全周方向の特性の向上にあまり寄与しない。通常は不可避的不純物として0.01%程度含有量される。
Bの添加も考えられるが、本発明の成分範囲ではα単相であるので、Bは微細析出物をNと形成し、粒成長性を阻害するので添加はしない。不純物として含有する場合でも0.0005%以下であることが好ましい。
Other elements other than those described above are as shown below.
Addition of Sn is not essential in the single cold rolling method as in the present invention. This is because Sn increases the Goss orientation texture, which is slightly different from the split goss of the present invention and does not contribute much to the improvement of the characteristics in the entire circumferential direction, which is the gist of the present invention. Usually, the content is about 0.01% as an inevitable impurity.
Although addition of B is also conceivable, since it is an α single phase in the component range of the present invention, B forms a fine precipitate with N and inhibits grain growth, so it is not added. Even when contained as an impurity, the content is preferably 0.0005% or less.

また、N、S、Cu、Cr、Ni、Mo、Sb、P、W、O、Ti、Nb、As、Mg、Ca、Se、V、Bi、Zr等は不可避的不純物として含有される場合があり、粒成長性の観点からこれらの元素は極力少ない方が好ましいが、工業的な生産では、コストなどの面から下記のようにその含有が許容される。   In addition, N, S, Cu, Cr, Ni, Mo, Sb, P, W, O, Ti, Nb, As, Mg, Ca, Se, V, Bi, Zr, etc. may be contained as inevitable impurities. However, from the viewpoint of grain growth, it is preferable that these elements are as few as possible. However, in industrial production, their inclusion is allowed as follows from the viewpoint of cost and the like.

Nは、AlやTiと結合して析出物を形成するので、0.0030%以下とすることが望ましい。Sも同様な理由で、0.003%以下であることが望ましい。
Cu、Cr、Ni、Moは工業生産では不可避的に0.02%程度以下で含有される。この程度であれば、著しい磁気特性の劣化は起こさない。
Sbは、Snと同様な集合組織効果はあるものの毒性があり、また絶縁被膜の密着性を阻害するので、工業生産には適していない。工業生産では、不可避的に0.01%以下含有することを妨げない。
N binds to Al and Ti to form precipitates, so it is desirable that N be 0.0030% or less. For the same reason, S is preferably 0.003% or less.
Cu, Cr, Ni, and Mo are unavoidably contained in industrial production at about 0.02% or less. If it is this level, the magnetic characteristic will not deteriorate significantly.
Sb is not suitable for industrial production because it has the same texture effect as Sn but is toxic and inhibits the adhesion of the insulating coating. In industrial production, it is unavoidable to contain 0.01% or less.

Pは、0.04%以下であれば、磁気特性も機械特性も劣化しない。機械強度調整等のために、Pは0.04%を上限に含有しても良い。その程度であれば、本発明の磁気特性に特に影響はない。
W、Oは磁気特性確保(特に鉄損)のためには、0.005%以下が好ましい。Oは、本発明の様なSi、Alを多く含有する高合金鋼であれば、特別な溶製を行わない限り0.003%以下となり不都合は無い。
更に、通常の無方向性電磁鋼板の製造においては、Ti、Nb、As、Mg、Ca、Se、V、Bi、Zrが有害元素として認識されるが、夫々0.003%以下であることが好ましい。
If P is 0.04% or less, neither magnetic characteristics nor mechanical characteristics are deteriorated. For mechanical strength adjustment and the like, P may contain 0.04% at the upper limit. If it is that degree, there will be no influence in particular on the magnetic characteristic of this invention.
W and O are preferably 0.005% or less for securing magnetic properties (particularly iron loss). In the case of high alloy steel containing a large amount of Si and Al as in the present invention, O is 0.003% or less unless there is a special melting, and there is no inconvenience.
Furthermore, in the production of ordinary non-oriented electrical steel sheets, Ti, Nb, As, Mg, Ca, Se, V, Bi, and Zr are recognized as harmful elements, but each may be 0.003% or less. preferable.

<鋼板の磁気特性>
電磁鋼板の鉄損は、履歴損と渦電流損からなり、履歴損は結晶方位、不純物含有量、結晶粒径、内部歪等に、渦電流損は板厚、固有抵抗等に大きく依存する。本発明は、従来からの生産されている範囲の板厚(0.65〜0.20mm)において、このうち結晶方位、(消す)を主な因子として改善することが目的である。当然、固有抵抗向上の為に、Si、Alを適度に含有するし、冷間圧延性の改善の為にSi量とAl量のバランスを適切に保つ必要がある。
<Magnetic properties of steel sheet>
The iron loss of an electrical steel sheet is composed of hysteresis loss and eddy current loss. Hysteresis loss depends largely on crystal orientation, impurity content, crystal grain size, internal strain, etc., and eddy current loss depends largely on plate thickness, specific resistance, and the like. The object of the present invention is to improve the crystal orientation and (extinguishment) as main factors in the plate thickness (0.65 to 0.20 mm) in the range of production in the past. Of course, it is necessary to contain Si and Al in order to improve the specific resistance, and to keep the balance between the Si amount and the Al amount appropriately in order to improve the cold rolling property.

<鋼帯の圧延方向と45°を成す方向の磁束密度(45°方向B50)と飽和磁束密度Bsの関係>
既に述べた様に、回転機に用いられる無方向性電磁鋼板において、磁気特性が圧延方向に対する方向に大きく依存する(圧延方向で磁気特性が異なる)と、たとえ、全体として磁気特性が良好であっても、機器コアでの磁束の流れが不均一になり、それを組み込んだ機器としての性能が劣る。
このため、絶対値特性が良好なことに加えて、磁気特性の圧延方向依存性を減じることが求められる。本発明では、磁気特性が最も劣る圧延方向に対して45°の方向の磁束密度(圧延方向に対して45°の方向に磁化力5000A/mで励磁した場合の磁束密度、以下、「45°方向B50」と略記する場合がある。)に着目し、磁気特性の圧延方向依存性を、下記式(1)で表される鋼板の飽和磁束密度Bs(T)に対する45°方向B50の比(45°方向B50/Bs)で評価する。
この比の値の上限は1に限りなく近い程良く、下限は0.830である。好ましくは、0.850である。
Bs=2.1561−0.0413[Si]−0.0198[Mn]−0.0604[Al] ・・・(1)
ここで、[]付元素は、各元素の含有量(質量%)を表す。
この式(1)は、特許文献7によるが、より正確には、Mn含有量も考慮しなければならず、特許文献7の式にMn項も付けくわえた本式を適用する。
<Relationship between the rolling direction of the steel strip and the magnetic flux density in the direction of 45 ° (45 ° direction B50) and the saturation magnetic flux density Bs>
As already mentioned, in non-oriented electrical steel sheets used in rotating machines, if the magnetic properties depend greatly on the direction relative to the rolling direction (the magnetic properties differ in the rolling direction), the magnetic properties as a whole are good. However, the flow of magnetic flux in the device core becomes non-uniform, and the performance as a device incorporating it becomes inferior.
For this reason, in addition to good absolute value characteristics, it is required to reduce the dependence of magnetic characteristics on the rolling direction. In the present invention, the magnetic flux density in the direction of 45 ° with respect to the rolling direction having the least magnetic properties (the magnetic flux density when excited with a magnetizing force of 5000 A / m in the direction of 45 ° with respect to the rolling direction, hereinafter referred to as “45 °. Focusing on the rolling direction dependency of the magnetic properties, the ratio of the 45 ° direction B50 to the saturation magnetic flux density Bs (T) of the steel sheet represented by the following formula (1) ( 45 ° direction B50 / Bs).
The upper limit of the value of this ratio should be as close as possible to 1, and the lower limit is 0.830. Preferably, it is 0.850.
Bs = 2.1561−0.0413 [Si] −0.0198 [Mn] −0.0604 [Al] (1)
Here, the element with [] represents the content (% by mass) of each element.
This equation (1) is based on Patent Document 7, but more precisely, the Mn content must be taken into consideration, and this equation in which the Mn term is added to the equation of Patent Document 7 is applied.

<製造条件>
以上述べた無方向性電磁鋼板は、次のような製造方法で製造できる。
(スラブ鋳造)
上記の化学成分を有する無方向性電磁鋼板用の鋼スラブを得るための鋳造は、従来の連続鋳造とする。スラブ加熱を容易にするために、連続鋳造スラブに分塊法を適用することは妨げないが、既述の如くコストが上昇するので極力避けるべきであり、さらに本発明の製造法ではリジングの心配は無くなるので、分塊法は本発明から除外する。
<Production conditions>
The non-oriented electrical steel sheet described above can be manufactured by the following manufacturing method.
(Slab casting)
Casting for obtaining a steel slab for a non-oriented electrical steel sheet having the above chemical components is a conventional continuous casting. In order to facilitate the heating of the slab, it is not impeded to apply the lump method to the continuous casting slab, but it should be avoided as much as possible because the cost increases as described above. Therefore, the block method is excluded from the present invention.

スラブ製造では、公知の連続鋳造法により、初期の厚みが150mmから300mmの範囲、好ましくは200mmから250mmの範囲のスラブを製造する。連続鋳造の際に、柱状晶率を減じてリジング発生の低減させる目的で、電磁撹拌の適用や過冷却の制御操業等が行われているが、特にそれらを妨げるものではない。
また、近年、通常の連続熱間圧延を補完するものとして、厚み30mm〜100mmの薄スラブ鋳造、直接鋼帯を得る鋼帯鋳造(ストリップキャスター)が実用化されているが、急冷状態でMnS、AlN等の残留不純物の微細析出状態が形成されるので、適用は避けることが望ましい。
In the slab manufacturing, a slab having an initial thickness in the range of 150 mm to 300 mm, preferably in the range of 200 mm to 250 mm, is manufactured by a known continuous casting method. In continuous casting, for the purpose of reducing the columnar crystal ratio and reducing the generation of ridging, application of electromagnetic stirring, control operation of supercooling, and the like are performed, but this does not particularly hinder them.
Also, in recent years, as a supplement to normal continuous hot rolling, thin slab casting with a thickness of 30 mm to 100 mm and steel strip casting (strip caster) to obtain a direct steel strip have been put into practical use. Since a fine precipitation state of residual impurities such as AlN is formed, it is desirable to avoid application.

(スラブ再加熱)
熱間圧延に先立つスラブ再加熱の際の温度の条件は、無方向性電磁鋼板の製造において非常に重要である。これは、不純物元素の固溶、析出に関係するためである。再加熱後の不純物元素を含む化合物の微細析出を防止するためには、スラブ再加熱温度は、1150℃以下が好ましい。もちろん、主な有害元素であるS,N等の含有量の絶対値を低減できれば、スラブ加熱温度を上げることも可能であるが、その場合は、それらの含有量を共に0.0005%以下にすることが求められるので、工業生産としては、現実的ではない。
(Slab reheating)
The temperature condition during slab reheating prior to hot rolling is very important in the production of non-oriented electrical steel sheets. This is because it relates to the solid solution and precipitation of impurity elements. In order to prevent fine precipitation of the compound containing an impurity element after reheating, the slab reheating temperature is preferably 1150 ° C. or lower. Of course, if the absolute value of the content of S, N, etc., which are the main harmful elements, can be reduced, the slab heating temperature can be raised, but in that case, both of these contents should be 0.0005% or less. It is not realistic for industrial production because it is required to do so.

(熱間圧延)
スラブの熱間圧延条件は、スラブの低温度抽出・高温度圧延が原則であるが、本発明では熱間圧延鋼帯焼鈍を行うので、巻き取り温度は極端に高くする必要はなく、むしろ、高温度圧延はデスケーリング性の観点から好ましくない。
このため、仕上熱間圧延における入口温度は900℃〜1000℃、出口温度は830〜900℃とし、巻き取り温度は600℃〜700℃とする条件を適用することが好ましい。
(Hot rolling)
The hot rolling conditions of the slab are basically low temperature extraction and high temperature rolling of the slab, but in the present invention, since the hot rolled steel strip is annealed, the coiling temperature does not need to be extremely high, rather, High temperature rolling is not preferable from the viewpoint of descaling property.
For this reason, it is preferable to apply conditions in which the inlet temperature in finish hot rolling is 900 ° C to 1000 ° C, the outlet temperature is 830 to 900 ° C, and the winding temperature is 600 ° C to 700 ° C.

(熱間圧延鋼帯焼鈍)
本発明において、熱間圧延後の鋼帯を焼鈍することは必須である。また、熱間圧延鋼帯焼鈍後の結晶粒径が、円相当の平均直径で100μm以上であることも必須である。結晶粒径がこれより小さいと集合組織において{111}系が増大して磁気特性が劣る。100μm以上であれば再結晶が充分であるので、リジングの課題も消滅する。好ましくは、120μm以上である。上限は、特に規定しないが、焼鈍コストとの兼ね合いで200μmが限界である。
なお、焼鈍後の結晶粒径を上記範囲とするには、焼鈍温度と時間を、次に説明する範囲内で、鋼帯の厚みや鋼組成に応じて適宜調整することにより容易に実施できる。
(Hot rolled steel strip annealing)
In the present invention, it is essential to anneal the steel strip after hot rolling. It is also essential that the crystal grain size after annealing of the hot-rolled steel strip is 100 μm or more with an average diameter equivalent to a circle. If the crystal grain size is smaller than this, the {111} system increases in the texture, resulting in poor magnetic properties. Since recrystallization is sufficient when the thickness is 100 μm or more, the problem of ridging disappears. Preferably, it is 120 μm or more. The upper limit is not particularly specified, but 200 μm is the limit in consideration of the annealing cost.
In order to make the crystal grain size after annealing within the above range, the annealing temperature and time can be easily adjusted within the ranges described below by appropriately adjusting the thickness of the steel strip and the steel composition.

焼鈍温度は、950〜1050℃の範囲である。温度が950℃より低いと、焼鈍時間が長くなりコストが上昇する。また、温度が1050℃を超えると、AlN、MnS等の析出物が、再固溶して焼鈍後に微細に析出し、仕上げ焼鈍時の粒成長を妨げるようになる。好ましい温度範囲は、970℃〜1010℃である。焼鈍時間は、30〜90秒の範囲である。時間が30秒より短いと粒成長が十分でなく、90秒を超えても品質上は問題ないものの焼鈍設備の生産性が低下してコストアップになる。   The annealing temperature is in the range of 950 to 1050 ° C. When temperature is lower than 950 degreeC, annealing time will become long and cost will rise. On the other hand, when the temperature exceeds 1050 ° C., precipitates such as AlN and MnS are re-dissolved and finely precipitated after annealing, which hinders grain growth during finish annealing. A preferred temperature range is 970 ° C. to 1010 ° C. The annealing time is in the range of 30 to 90 seconds. If the time is shorter than 30 seconds, the grain growth is not sufficient, and even if it exceeds 90 seconds, there is no problem in quality, but the productivity of the annealing equipment is lowered and the cost is increased.

(冷間圧延)
焼鈍した熱間圧延鋼帯を冷間圧延して最終板厚の冷間圧延鋼帯とする。鋼帯のSi、Al含有量が多いので、冷間圧延での脆性の問題が生じることがある。このため、冷間圧延は、リバース(可逆式)圧延機で行うことが望ましい。もちろん、タンデム(連続)冷間圧延機でも行うことができるが、破断等のトラブルで生産を阻害することがあるので十分注意すべきである。
(Cold rolling)
The annealed hot-rolled steel strip is cold-rolled to obtain a cold-rolled steel strip having the final thickness. Due to the high Si and Al content of the steel strip, the problem of brittleness in cold rolling may occur. For this reason, it is desirable to perform cold rolling with a reverse (reversible) rolling mill. Of course, it can also be performed with a tandem (continuous) cold rolling mill, but care should be taken because production may be hindered by troubles such as breakage.

冷間圧延の圧延率は、55〜90%とする。冷間圧延率が55%未満の低冷間圧延率領域では、集合組織は{111}系が主方位となり磁気特性が劣る。冷間圧延率が90%を超えると、再度{111}系が増加し、磁気特性が劣化する。全周方向の磁気特性の観点からは60〜80%の冷延率が好ましく、更に好ましくは、65%〜78%である。   The rolling rate of cold rolling is 55 to 90%. In the low cold rolling rate region where the cold rolling rate is less than 55%, the texture is inferior in magnetic properties because the {111} system is the main orientation. When the cold rolling rate exceeds 90%, the {111} system increases again, and the magnetic properties deteriorate. From the viewpoint of magnetic properties in the entire circumferential direction, a cold rolling rate of 60 to 80% is preferable, and more preferably 65% to 78%.

なお、本発明は1回の冷間圧延による製造法であるため、2回冷延法の一次冷間圧延後の所謂中間焼鈍は不要となる。   In addition, since this invention is a manufacturing method by one cold rolling, what is called an intermediate annealing after the primary cold rolling of a 2 times cold rolling method becomes unnecessary.

(仕上げ焼鈍)
冷間圧延鋼帯の仕上げ焼鈍には連続焼鈍が適用される。本発明では、従来の技術より時間が短いことが特徴である。
仕上げ焼鈍は、時間と温度に大きく影響され、焼鈍時間短縮の為には温度が高い方が良いが、現状は連続焼鈍炉設備仕様で規定され、1075℃が最高温度である。低温度側は、950℃未満であると、ややはり長い時間の均熱が必要となる。
仕上焼鈍の保持時間が、20秒未満であると、粒成長が十分でなく、120秒を超えてもそれ以上の粒成長は生じないので20〜120秒の範囲とする。950℃以下では、粒成長が十分では無く、1075℃を超える温度での連続焼鈍の操業は、現在技術的に確立されていない。
なお、集合組織を改善させるために、750〜1150℃の温度への加熱を133℃/秒以上の速度とすることが特許文献6で提案されている。本発明でもこの技術を適用することを妨げない。
(Finish annealing)
Continuous annealing is applied to finish annealing of cold rolled steel strip. The present invention is characterized by a shorter time than the prior art.
Finish annealing is greatly affected by time and temperature, and a higher temperature is better for shortening the annealing time, but the current state is defined by the specifications of continuous annealing furnace equipment, and 1075 ° C. is the maximum temperature. If the temperature is lower than 950 ° C. on the low temperature side, soaking for a long time is still necessary.
If the holding time of finish annealing is less than 20 seconds, the grain growth is not sufficient, and even if it exceeds 120 seconds, no further grain growth occurs, so the range is set to 20 to 120 seconds. Below 950 ° C., the grain growth is not sufficient, and the operation of continuous annealing at a temperature exceeding 1075 ° C. has not been technically established at present.
In order to improve the texture, Patent Document 6 proposes heating to a temperature of 750 to 1150 ° C. at a rate of 133 ° C./second or more. The present invention does not prevent the application of this technique.

(絶縁被膜塗布)
電磁鋼板は積層して使用されるので、層間抵抗を確保するために、絶縁被膜を表面に塗布する。Crを含むものが従前適用されているが、昨今、Crフリーの被膜も開発されており、どちらでも構わない。
(Insulation coating)
Since electromagnetic steel sheets are used by being laminated, an insulating coating is applied to the surface in order to ensure interlayer resistance. A material containing Cr has been applied in the past, but recently, a Cr-free coating has also been developed, and either one may be used.

<実施例1>
表1に示す成分を有する溶製した溶鋼を、通常の連続鋳造機でリジングの軽減の為に電磁撹拌を適用して鋳造して、250mm厚のスラブを得、1150℃でスラブ再加熱後、従来の連続熱間圧延を行い、温度650±30℃で巻き取り、厚さ1.8mmの熱延鋼帯を得た。その後、1000℃で90秒の熱延鋼帯焼鈍を施し、酸洗後、0.50mmに冷間圧延した(圧延率72.2%)。その後、水素30%、残部窒素、露点−40℃の雰囲気で、1025℃で30秒の仕上焼鈍を施した。
表1に得られた無方向電磁鋼板の磁気特性の測定結果を示す。化学成分が本発明の要件を満たし、適切な製造条件で製造されたものは、45°方向B50/Bsの値が0.830以上となり、全周方向の磁気特性が優れた無方向性電磁鋼板が得られることが確認された。
<Example 1>
The molten molten steel having the components shown in Table 1 was cast by applying electromagnetic stirring to reduce ridging in an ordinary continuous casting machine to obtain a 250 mm thick slab, and after reheating the slab at 1150 ° C, Conventional continuous hot rolling was performed, and the coil was wound at a temperature of 650 ± 30 ° C. to obtain a hot-rolled steel strip having a thickness of 1.8 mm. Then, hot-rolled steel strip annealing was performed at 1000 ° C. for 90 seconds, pickled, and cold-rolled to 0.50 mm (rolling rate: 72.2%). Thereafter, a finish annealing was performed at 1025 ° C. for 30 seconds in an atmosphere of 30% hydrogen, the remaining nitrogen, and a dew point of −40 ° C.
Table 1 shows the measurement results of the magnetic properties of the non-oriented electrical steel sheet obtained. A non-oriented electrical steel sheet having a chemical composition that satisfies the requirements of the present invention and is manufactured under appropriate manufacturing conditions has a value of 45 ° B50 / Bs of 0.830 or more and excellent magnetic properties in the entire circumferential direction. It was confirmed that

Figure 2016003371
Figure 2016003371

<実施例2>
表1の成分A10の溶鋼から通常の方法でスラブを得て、実施例1の条件で、種々の厚みの熱延鋼帯を得て、実施例1に加え、更に表2の条件で工程処理した。表2に得られた無方向電磁鋼板の磁気特性の測定結果及びリジング判定の結果を示す。
なお、鉄損は、従来より周波数が高い400ヘルツ、磁束密度1.0Tで評価した。また、リジングの判定は、JIS B 0601に準じて表面粗度計で冷延方向に垂直方向(板幅方向)に測定し行った。例えば、判定は、18mm測定し、両端の1mmを除き、粗度値(輪郭曲線要素の高さの最大値Zt)で行い、その判定基準は、経験に依り表3の通りである。
<Example 2>
A slab is obtained from the molten steel of component A10 in Table 1 by a usual method, and hot-rolled steel strips of various thicknesses are obtained under the conditions of Example 1, and in addition to Example 1, further processed in the conditions of Table 2. did. Table 2 shows the measurement results of the magnetic properties of the non-oriented electrical steel sheets obtained and the results of ridging determination.
The iron loss was evaluated at 400 Hz, which has a higher frequency than before, and a magnetic flux density of 1.0T. In addition, ridging was determined by measuring in a direction perpendicular to the cold rolling direction (plate width direction) with a surface roughness meter according to JIS B 0601. For example, the determination is made by measuring 18 mm, excluding 1 mm at both ends, and using the roughness value (maximum value Zt of the height of the contour curve element). The determination criteria are as shown in Table 3 depending on experience.

製造条件が本発明の要件を満たすものは、製造上問題なく、45°方向B50/Bsの値が0.830以上で、磁気特性に優れた無方向性電磁鋼板が製造できることが確認された。これに対し、製造条件が本発明の要件を満たさないものは、磁気特性が劣っているか、製造上問題があった。
b1は、熱間圧延鋼帯焼鈍温度が高く、b8は仕上焼鈍温度が低く、b9は、仕上焼鈍時間が短く、焼鈍条件が適切でなかったので、粒成長性が劣り、鉄損が劣位であった。
b2は、熱間圧延鋼帯焼鈍温度が低く、b3は、熱間圧延鋼帯焼鈍時間が短かく、b5は、熱間圧延鋼帯焼鈍温度が低く、焼鈍条件が適切でなく、磁束密度比が劣位であった。
b4、b10は熱間圧延鋼帯焼鈍時間が長く、製造上問題があった。
b6、b7は冷間圧延率が適切でなく、b6は、冷間圧延率が高すぎ、磁束密度が低く、b7は、板厚が厚いことを含めて鉄損が劣位であった。
It was confirmed that a non-oriented electrical steel sheet having a manufacturing condition that satisfies the requirements of the present invention can be manufactured without problems in manufacturing and having a 45 ° B50 / Bs value of 0.830 or more and excellent in magnetic properties. On the other hand, when the manufacturing conditions do not satisfy the requirements of the present invention, the magnetic properties are inferior or there are manufacturing problems.
b1 has a high hot-rolled steel strip annealing temperature, b8 has a low finish annealing temperature, b9 has a short finish annealing time, and the annealing conditions are not appropriate, so the grain growth is inferior and the iron loss is inferior. there were.
b2 has a low hot-rolled steel strip annealing temperature, b3 has a short hot-rolled steel strip annealing time, b5 has a low hot-rolled steel strip annealing temperature, the annealing conditions are not suitable, and the magnetic flux density ratio Was inferior.
b4 and b10 had a problem in manufacturing due to the long annealing time of the hot-rolled steel strip.
b6 and b7 had an inappropriate cold rolling rate, b6 had an excessively high cold rolling rate and a low magnetic flux density, and b7 had an inferior iron loss including a thick plate.

Figure 2016003371
Figure 2016003371

Figure 2016003371
Figure 2016003371

Claims (2)

質量%で、C:0.0030%以下、Si:2.0〜3.0%、Al:1.0〜2.0%、Mn:0.10〜1.0%、かつ3.5≦Si+Al≦4.75%を満足し、残部Feおよび不可避的不純物からなり、鋼板の圧延方向と45°を成す方向の磁束密度(B50)が、下記式(1)で示される鋼板の飽和磁束密度Bs(T)の0.830以上を有することを特徴とする全周方向の磁気特性が優れた無方向性電磁鋼板。
Bs=2.1561−0.0413[Si]−0.0198[Mn]−0.0604[Al] ・・・(1)
ここで、[]付元素は、各元素の含有量(質量%)を表す。
In mass%, C: 0.0030% or less, Si: 2.0 to 3.0%, Al: 1.0 to 2.0%, Mn: 0.10 to 1.0%, and 3.5 ≦ The magnetic flux density (B50) satisfying Si + Al ≦ 4.75%, consisting of the balance Fe and inevitable impurities, and forming a direction of 45 ° with the rolling direction of the steel sheet is the saturation magnetic flux density of the steel sheet represented by the following formula (1). A non-oriented electrical steel sheet having excellent magnetic properties in the entire circumferential direction, having Bs (T) of 0.830 or more.
Bs = 2.1561−0.0413 [Si] −0.0198 [Mn] −0.0604 [Al] (1)
Here, the element with [] represents the content (% by mass) of each element.
質量%で、C:0.0030%以下、Si:2.0〜3.0%、Al:1.0〜2.0%、Mn:0.10〜1.0%、かつ3.5≦Si+Al≦4.75%を満足し、残部Feおよび不可避的不純物からなる鋼スラブを、連続鋳造法で製造し、次いで前記鋼スラブに熱間圧延を施し、次いで熱間圧延鋼帯焼鈍を施し、一回の冷間圧延を施し、仕上焼鈍を行って無方向性電磁鋼板を製造する方法であって、前記熱間圧延鋼帯焼鈍を950〜1050℃で30〜90秒間施し、該焼鈍後の円相当結晶粒平均直径を100μm以上とし、前記冷間圧延の圧延率を55〜90%とし、その後、前記仕上焼鈍を950℃以上で20〜120秒間施すことを特徴とする全周方向の磁気特性が優れた無方向性電磁鋼板の製造方法。   In mass%, C: 0.0030% or less, Si: 2.0 to 3.0%, Al: 1.0 to 2.0%, Mn: 0.10 to 1.0%, and 3.5 ≦ A steel slab satisfying Si + Al ≦ 4.75% and comprising the balance Fe and inevitable impurities is manufactured by a continuous casting method, then hot-rolled to the steel slab, and then subjected to hot-rolled steel strip annealing, A method of producing a non-oriented electrical steel sheet by performing a single cold rolling and performing a finish annealing, wherein the hot rolling steel strip annealing is performed at 950 to 1050 ° C. for 30 to 90 seconds, and after the annealing An average magnetic grain diameter of 100 μm or more, a rolling ratio of the cold rolling of 55 to 90%, and then the finish annealing is performed at 950 ° C. or more for 20 to 120 seconds. A method for producing a non-oriented electrical steel sheet having excellent characteristics.
JP2014124757A 2014-06-17 2014-06-17 Non-oriented electrical steel sheet with good all-round magnetic properties Active JP6432173B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014124757A JP6432173B2 (en) 2014-06-17 2014-06-17 Non-oriented electrical steel sheet with good all-round magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014124757A JP6432173B2 (en) 2014-06-17 2014-06-17 Non-oriented electrical steel sheet with good all-round magnetic properties

Publications (2)

Publication Number Publication Date
JP2016003371A true JP2016003371A (en) 2016-01-12
JP6432173B2 JP6432173B2 (en) 2018-12-05

Family

ID=55222893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014124757A Active JP6432173B2 (en) 2014-06-17 2014-06-17 Non-oriented electrical steel sheet with good all-round magnetic properties

Country Status (1)

Country Link
JP (1) JP6432173B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133100A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP2018117046A (en) * 2017-01-18 2018-07-26 新日鐵住金株式会社 Transformer
JP2018145492A (en) * 2017-03-07 2018-09-20 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor, motor core and manufacturing method therefor
JP2018165383A (en) * 2017-03-28 2018-10-25 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet
EP3556884A4 (en) * 2016-12-19 2019-10-23 Posco Non-oriented electrical steel sheet and manufacturing method therefor
EP3435520A4 (en) * 2016-03-23 2019-11-20 Nippon Steel Corporation Non-oriented electrical steel sheet manufacturing method and claw pole motor
CN110612358A (en) * 2017-06-02 2019-12-24 日本制铁株式会社 Non-oriented electromagnetic steel sheet
JP2020509245A (en) * 2016-12-19 2020-03-26 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
WO2020166718A1 (en) * 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049402A (en) * 1999-08-02 2001-02-20 Kawasaki Steel Corp Nonoriented silicon steel sheet with minimal magnetic anisotropy and high magnetic flux density, and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001049402A (en) * 1999-08-02 2001-02-20 Kawasaki Steel Corp Nonoriented silicon steel sheet with minimal magnetic anisotropy and high magnetic flux density, and its manufacture

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133100A (en) * 2016-01-27 2017-08-03 Jfeスチール株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
EP3435520A4 (en) * 2016-03-23 2019-11-20 Nippon Steel Corporation Non-oriented electrical steel sheet manufacturing method and claw pole motor
US11060162B2 (en) 2016-12-19 2021-07-13 Posco Non-oriented electrical steel sheet and manufacturing method therefor
EP3556884A4 (en) * 2016-12-19 2019-10-23 Posco Non-oriented electrical steel sheet and manufacturing method therefor
US11254997B2 (en) 2016-12-19 2022-02-22 Posco Non-oriented electrical steel sheet and manufacturing method therefor
JP2020509245A (en) * 2016-12-19 2020-03-26 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof
JP2018117046A (en) * 2017-01-18 2018-07-26 新日鐵住金株式会社 Transformer
JP2018145492A (en) * 2017-03-07 2018-09-20 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor, motor core and manufacturing method therefor
JP2018165383A (en) * 2017-03-28 2018-10-25 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet
CN110612358B (en) * 2017-06-02 2021-10-01 日本制铁株式会社 Non-oriented electromagnetic steel sheet
CN110612358A (en) * 2017-06-02 2019-12-24 日本制铁株式会社 Non-oriented electromagnetic steel sheet
TWI729701B (en) * 2019-02-14 2021-06-01 日商日本製鐵股份有限公司 Non-oriented electrical steel sheet
KR20210112365A (en) * 2019-02-14 2021-09-14 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel sheet
WO2020166718A1 (en) * 2019-02-14 2020-08-20 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
JPWO2020166718A1 (en) * 2019-02-14 2021-10-21 日本製鉄株式会社 Non-oriented electrical steel sheet
EP3926060A4 (en) * 2019-02-14 2022-07-20 Nippon Steel Corporation Non-oriented electromagnetic steel sheet
JP7180700B2 (en) 2019-02-14 2022-11-30 日本製鉄株式会社 Non-oriented electrical steel sheet
KR102554094B1 (en) 2019-02-14 2023-07-12 닛폰세이테츠 가부시키가이샤 non-oriented electrical steel

Also Published As

Publication number Publication date
JP6432173B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP6432173B2 (en) Non-oriented electrical steel sheet with good all-round magnetic properties
JP4880467B2 (en) Improved manufacturing method of non-oriented electrical steel sheet
JP4126479B2 (en) Method for producing non-oriented electrical steel sheet
TWI457443B (en) Manufacturing method of non - directional electromagnetic steel sheet
TWI445828B (en) High strength non - directional electromagnetic steel plate
JP2006501361A5 (en)
JP4860783B2 (en) Non-oriented electrical steel sheet
KR20190093615A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2023507435A (en) Non-oriented electrical steel sheet and manufacturing method thereof
TW202003875A (en) Non-oriented electromagnetic steel sheet and method for manufacturing same
JP2024041844A (en) Method for producing non-oriented magnetic steel sheet
JP2007162097A (en) Method for manufacturing non-oriented electromagnetic steel sheet for rotor
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JPH0443981B2 (en)
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP2015212403A (en) Method for manufacturing nonoriented electromagnetic steel sheet
JP4211447B2 (en) Method for producing grain-oriented electrical steel sheet
JP2898793B2 (en) Method for producing non-oriented electrical steel sheet having high magnetic flux density and low iron loss
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP7288215B2 (en) Non-oriented electrical steel sheet
JP4604449B2 (en) Oriented electrical steel sheet
JP4852804B2 (en) Non-oriented electrical steel sheet
JPH05171291A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH0726154B2 (en) Manufacturing method of low iron loss non-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181022

R151 Written notification of patent or utility model registration

Ref document number: 6432173

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350