JP2015212403A - Method for manufacturing nonoriented electromagnetic steel sheet - Google Patents

Method for manufacturing nonoriented electromagnetic steel sheet Download PDF

Info

Publication number
JP2015212403A
JP2015212403A JP2014094592A JP2014094592A JP2015212403A JP 2015212403 A JP2015212403 A JP 2015212403A JP 2014094592 A JP2014094592 A JP 2014094592A JP 2014094592 A JP2014094592 A JP 2014094592A JP 2015212403 A JP2015212403 A JP 2015212403A
Authority
JP
Japan
Prior art keywords
rolling
mass
less
finish
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014094592A
Other languages
Japanese (ja)
Other versions
JP6146582B2 (en
Inventor
和久 岩永
Kazuhisa Iwanaga
和久 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014094592A priority Critical patent/JP6146582B2/en
Publication of JP2015212403A publication Critical patent/JP2015212403A/en
Application granted granted Critical
Publication of JP6146582B2 publication Critical patent/JP6146582B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a nonoriented electromagnetic steel sheet capable of hot rolling a low ally-based nonoriented electromagnetic steel sheet having γ→α transformation with high productivity without reducing magnetic properties.SOLUTION: In a method for a nonoriented electromagnetic steel sheet including re-heating, then hot rolling including rough rolling and finishing rolling, cold rolling and finishing rolling a slab having a component composition containing, by mass%, C:0.005% or less, Si:0.05 to 1.0%, Mn:1% or less, Al:1.0% or less, P:0.2% or less, S:0.005% or less and N:0.005% or less and the balance Fe with inevitable impurities and having γ-α transformation, total rolling reduction rate in the finishing rolling is 93% or more, rolling finishing temperature of Artransformation point or less and the finishing rolling is conducted at maximum rolling speed of a finishing rolling device.

Description

本発明は、無方向性電磁鋼板の製造方法に関し、具体的には、熱間圧延における生産性を高めることができる無方向性電磁鋼板の製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a method for manufacturing a non-oriented electrical steel sheet, and more specifically, to a method for manufacturing a non-oriented electrical steel sheet that can increase productivity in hot rolling.

無方向性電磁鋼板は、電気機器のモーターやトランス等の鉄心材料として幅広く用いられている。この無方向性電磁鋼板には、近年における世界的な省エネルギー指向を背景にして、高磁束密度化、低鉄損化が強く求められている。   Non-oriented electrical steel sheets are widely used as iron core materials for motors and transformers of electrical equipment. This non-oriented electrical steel sheet is strongly required to have a high magnetic flux density and a low iron loss against the background of global energy saving in recent years.

無方向性電磁鋼板を高磁束密度化する方法の1つとして、熱間圧延後の鋼板に熱延板焼鈍を施して集合組織を改善する方法がある。すなわち、熱延板に焼鈍を施して、冷延前の粒径を粗大化させておくことで、冷間圧延後の再結晶焼鈍における、磁気特性に有利な{110}再結晶粒の形成を促進し、磁気特性に不利な{111}再結晶粒の形成を抑制することができるからである。しかし、熱延板焼鈍を行うことは、製造コストの上昇を招く。そのため、低合金系の無方向性電磁鋼板(以降、「低級鋼」とも称する)では、生産コストを削減するため、熱延板焼鈍を省略したいという要求がある。   One method for increasing the magnetic flux density of a non-oriented electrical steel sheet is to improve the texture by subjecting the steel sheet after hot rolling to hot rolling. That is, by annealing the hot-rolled sheet and coarsening the grain size before cold rolling, the formation of {110} recrystallized grains advantageous for magnetic properties in recrystallization annealing after cold rolling This is because it can promote and suppress the formation of {111} recrystallized grains that are disadvantageous to magnetic properties. However, performing hot-rolled sheet annealing causes an increase in manufacturing cost. For this reason, low-alloy non-oriented electrical steel sheets (hereinafter also referred to as “lower steel”) are required to omit hot-rolled sheet annealing in order to reduce production costs.

このような低級鋼の成分系の鋼素材は、高温から低温に降温する際、γ→α変態を起こすのが一般的であり、熱間圧延の仕上圧延においては、γ相からα相へと相変態しながら圧延される。したがって、熱間圧延後の粒径を大きくして磁束密度の向上を図るためには、上記仕上圧延において、γ相からα相への変態を促進するよう、制御して圧延することによって結晶粒の粗大化することが好ましいといえる。   Such a low-grade steel component steel material generally undergoes a γ → α transformation when the temperature is lowered from a high temperature to a low temperature. In the finish rolling of hot rolling, from the γ phase to the α phase. Rolled while undergoing phase transformation. Therefore, in order to increase the grain size after hot rolling and improve the magnetic flux density, in the above finish rolling, the crystal grains are controlled by rolling so as to promote the transformation from the γ phase to the α phase. It can be said that it is preferable to coarsen.

そこで、例えば、特許文献1には、熱間圧延の仕上圧延の圧下率、仕上圧延終了温度等を制御することによって、冷延前の結晶組織すなわち熱間圧延後の結晶粒を粗大化させて高磁束密度化を図る技術が提案されている。
また、特許文献2には、素材のスラブの成分組成を適正化するとともに、熱間圧延および仕上焼鈍における温度条件を適正化することで、熱延板焼鈍を施すことなく、歪取焼鈍における粒成長性を改善する技術が提案されている。
Therefore, for example, in Patent Document 1, by controlling the reduction ratio of finish rolling in hot rolling, the finish rolling finish temperature, etc., the crystal structure before cold rolling, that is, the crystal grains after hot rolling are coarsened. Technologies for increasing the magnetic flux density have been proposed.
In addition, Patent Document 2 discloses that the composition of the slab of the material is optimized and the temperature conditions in the hot rolling and finish annealing are optimized, so that the grains in the strain relief annealing can be performed without performing hot rolling sheet annealing. Technologies for improving growth have been proposed.

特開平11−172333号公報Japanese Patent Laid-Open No. 11-172333 特開2007−217744号公報JP 2007-217744 A

しかしながら、上記の従来技術においては、熱間圧延中のγ→α変態を促進するために、仕上圧延の圧下率を高めた上で、熱間圧延終了温度をγ→α変態完了温度(Ar変態点)以下に設定しているが、熱間圧延終了温度を低くするためには、仕上圧延速度を低下させる必要があり、生産性を阻害する要因となっていた。 However, in the above prior art, in order to promote the γ → α transformation during hot rolling, the hot rolling finish temperature is set to the γ → α transformation completion temperature (Ar 1) after increasing the rolling reduction ratio of finish rolling. Although the transformation point is set below, in order to lower the hot rolling end temperature, it is necessary to reduce the finish rolling speed, which has been a factor that hinders productivity.

本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、γ→α変態を有する低合金系の無方向性電磁鋼板を、磁気特性の低下を伴うことなく、高い生産性をもって熱間圧延することができる無方向性電磁鋼板の製造方法を提案することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and the purpose thereof is to produce a low alloy non-oriented electrical steel sheet having a γ → α transformation without deteriorating magnetic properties. The object is to propose a method for producing a non-oriented electrical steel sheet that can be hot-rolled with high productivity.

発明者らは、上記課題の解決に向けて、熱間圧延における冷却速度と圧下パターンとの関係に着目して鋭意検討を重ねた。
その結果、熱間圧延における圧延性を高めるためには、まず、仕上圧延での圧延速度を所望する高い圧延速度に定め、そして、その実現のためには、仕上圧延における上記圧延速度を達成するために必要な仕上圧延機における平均冷却速度の下限値を算出し、次いで、上記平均冷却速度の下限値が得られる最大シートバー厚を算出し、その結果に基いて熱間圧延を実施すればよいことを想到し、本発明を開発するに至った。
In order to solve the above-mentioned problems, the inventors have made extensive studies by paying attention to the relationship between the cooling rate and the reduction pattern in hot rolling.
As a result, in order to increase the rollability in hot rolling, first, the rolling speed in finish rolling is set to a desired high rolling speed, and in order to realize this, the above rolling speed in finish rolling is achieved. When calculating the lower limit value of the average cooling rate in the finishing mill necessary for the above, then calculating the maximum sheet bar thickness at which the lower limit value of the average cooling rate is obtained, and performing hot rolling based on the result We came up with a good idea and developed the present invention.

すなわち、本発明は、C:0.005mass%以下、Si:0.05〜1.0mass%、Mn:1mass%以下、Al:1.0mass%以下、P:0.2mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、該成分組成はγ−α変態を有するスラブを再加熱した後、粗圧延および仕上圧延からなる熱間圧延し、冷間圧延し、仕上焼鈍する無方向性電磁鋼板の製造方法において、上記仕上圧延の総圧下率を93%以上、圧延終了温度をAr変態点以下に設定するとともに、上記仕上圧延の圧延速度を定め、該圧延速度で圧延するために必要な仕上圧延機における平均冷却速度の下限値を算出し、次いで、上記下限値以上の平均冷却速度が得られる最大シートバー厚および仕上圧延における上記総圧下率を満たす最小シートバー厚を算出して目標シートバー厚を決定し、それらの結果に基いて、粗圧延においては、スラブを上記目標シートバー厚に圧延し、仕上圧延においては、上記シートバーを上記算出した冷却速度で冷却しつつ圧延することを特徴とする無方向性電磁鋼板の製造方法を提案する。 That is, the present invention is C: 0.005 mass% or less, Si: 0.05 to 1.0 mass%, Mn: 1 mass% or less, Al: 1.0 mass% or less, P: 0.2 mass% or less, S: 0 0.005 mass% or less and N: 0.005 mass% or less, the remainder having a component composition consisting of Fe and inevitable impurities, and the component composition is reheated to a slab having a γ-α transformation, In a method for producing a non-oriented electrical steel sheet comprising hot rolling, cold rolling, and finish annealing comprising rough rolling and finish rolling, the total rolling reduction of the above finish rolling is 93% or more, and the rolling end temperature is Ar 1 transformation point. The following is set, the rolling speed of the finish rolling is determined, the lower limit value of the average cooling rate in the finishing mill necessary for rolling at the rolling speed is calculated, and then the lower limit value or more The target sheet bar thickness is determined by calculating the maximum sheet bar thickness at which a uniform cooling rate can be obtained and the minimum sheet bar thickness that satisfies the above-mentioned total rolling reduction in finish rolling.Based on these results, in rough rolling, the slab is A method for producing a non-oriented electrical steel sheet is proposed in which the sheet bar is rolled to the target sheet bar thickness and the sheet bar is rolled while being cooled at the calculated cooling rate.

本発明の無方向性電磁鋼板の製造方法に用いる上記スラブは、上記成分組成に加えてさらに、Sn:0.005〜0.1mass%およびSb:0.005〜0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする。   The slab used in the method for producing a non-oriented electrical steel sheet of the present invention is selected from Sn: 0.005-0.1 mass% and Sb: 0.005-0.1 mass% in addition to the above component composition. It is characterized by containing 1 type or 2 types.

本発明によれば、γ−α変態を有する低合金系の無方向性電磁鋼板においても、磁束密度に優れる無方向性電磁鋼板を生産性よく製造することが可能となるので、製造コストの低減に大いに寄与する。   According to the present invention, even in a low alloy non-oriented electrical steel sheet having a γ-α transformation, it becomes possible to manufacture a non-oriented electrical steel sheet having excellent magnetic flux density with high productivity, thereby reducing manufacturing costs. Greatly contributes to.

まず、本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)が有すべき成分組成について説明する。
C:0.005mass%以下
Cは、製品鋼板中に含まれる量が0.005mass%を超えると、磁気時効を起こして、鉄損特性が経時的に低下する。また、Cは、Ar変態点を下げる効果があるので、生産性を確保する観点からは、できるだけ低減することが望ましい。そこで、本発明の無方向性鋼板は、C含有量を0.005mass%以下とする。
First, the component composition which the steel raw material (slab) used for manufacture of the non-oriented electrical steel sheet of the present invention should have is described.
C: 0.005 mass% or less When C is contained in the product steel plate in an amount exceeding 0.005 mass%, magnetic aging occurs and the iron loss characteristics deteriorate with time. Moreover, since C has an effect of lowering the Ar 1 transformation point, it is desirable to reduce it as much as possible from the viewpoint of ensuring productivity. Then, the non-oriented steel plate of this invention makes C content 0.005 mass% or less.

Si:0.05〜1.0mass%
Siは、鋼の比抵抗を高めて渦電流損を低減するため、鉄損の低減に有効な元素である。また、SiはAr変態点を上げる効果もある。これらの効果を得るためには、Siは、少なくとも0.05mass%の添加が必要である。一方、1.0mass%を超えると、磁束密度が低下したり、リジングと称される欠陥が発生し易くなったりする。よって、Siは0.05〜1.0mass%の範囲とする。好ましくは0.1〜0.5mass%の範囲である。
Si: 0.05 to 1.0 mass%
Si is an element effective in reducing iron loss because it increases the specific resistance of steel and reduces eddy current loss. Si also has the effect of increasing the Ar 1 transformation point. In order to obtain these effects, it is necessary to add at least 0.05 mass% of Si. On the other hand, if it exceeds 1.0 mass%, the magnetic flux density is lowered, or a defect called ridging is likely to occur. Therefore, Si is set to a range of 0.05 to 1.0 mass%. Preferably it is the range of 0.1-0.5 mass%.

Mn:1mass%以下
Mnは、Ar変態点を下げる効果があり、飽和磁束密度の低下させる有害元素でもある。これらの悪影響は、1mass%を超えると大きくなるため、上限を1mass%とする。好ましくは0.5mass%以下である。ただし、Mnは、Feよりも酸化し難しい元素であり、製鋼プロセスで過度に除去するのはコストの増加を伴う。また、熱間加工性を改善する効果もある。よって、製造コストの観点からは、0.1mass%以上含有させるのが好ましい。
Mn: 1 mass% or less Mn has an effect of lowering the Ar 1 transformation point and is also a harmful element that lowers the saturation magnetic flux density. Since these adverse effects increase when the mass exceeds 1 mass%, the upper limit is set to 1 mass%. Preferably it is 0.5 mass% or less. However, Mn is an element that is more difficult to oxidize than Fe, and excessive removal in the steelmaking process is accompanied by an increase in cost. It also has the effect of improving hot workability. Therefore, it is preferable to contain 0.1 mass% or more from a viewpoint of manufacturing cost.

Al:1.0mass%以下
Alは、含有量が微量の場合には、窒化物を形成し、結晶粒の粗大化を抑制する元素であるが、多量に含有する場合には、熱間圧延中の冷却段階で、各種窒化物が微細に析出するのを抑制したり、焼鈍、特に歪取焼鈍における粒成長を促進したりする効果がある。また、鋼の比抵抗を高めて渦電流損を低減する効果や、Ar変態点を上げる効果もあるので、0.2mass%以上添加してもよい。しかし、1.0mass%を超えて添加すると、磁束密度が低下したり、リジングが発生し易くなったりする等のデメリットが大きくなる。よって、Alを含有させる場合は1.0mass%以下とする。好ましくは0.6mass%以下である。
Al: 1.0 mass% or less Al is an element that forms a nitride and suppresses the coarsening of crystal grains when the content is very small, but during hot rolling when it contains a large amount In this cooling stage, there are effects of suppressing the fine precipitation of various nitrides and promoting grain growth in annealing, particularly strain relief annealing. The effects and to reduce the eddy current loss by increasing the specific resistance of the steel, so has the effect of increasing the Ar 1 transformation point, may be added more than 0.2 mass%. However, if added over 1.0 mass%, disadvantages such as a decrease in magnetic flux density and an increase in ridging are likely to occur. Therefore, when it contains Al, it is 1.0 mass% or less. Preferably it is 0.6 mass% or less.

P:0.2mass%以下
Pは、鋼板の硬さを高めて、打抜加工における「だれ」や「かえり」の発生を防止する目的で添加する元素である。しかし、0.2mass%を超えて添加すると、鋼が硬質化し過ぎ、加工性自体が低下する。よって、Pの含有量は0.2mass%以下とする。好ましくは0.05〜0.15mass%の範囲である。
P: 0.2 mass% or less P is an element added for the purpose of increasing the hardness of the steel sheet and preventing the occurrence of “sag” and “burr” in the punching process. However, if added over 0.2 mass%, the steel becomes too hard and the workability itself decreases. Therefore, the content of P is set to 0.2 mass% or less. Preferably it is the range of 0.05-0.15 mass%.

S:0.005mass%以下
Sは、MnやCu等と硫化物を形成して析出し、焼鈍、特に歪取焼鈍における粒成長性を阻害する元素であるので、できる限り低減するのが望ましい。特に、含有量が0.005mass%を超えると、この影響が無視できなくなる。よって、Sは0.005mass%以下とする。好ましくは0.001mass%以下である。
S: 0.005 mass% or less S is an element that forms a sulfide with Mn, Cu, or the like and precipitates, and hinders grain growth in annealing, particularly strain relief annealing, so it is desirable to reduce it as much as possible. In particular, when the content exceeds 0.005 mass%, this influence cannot be ignored. Therefore, S is set to 0.005 mass% or less. Preferably it is 0.001 mass% or less.

N:0.005mass%以下
Nは、AlやTi,V等と窒化物を形成して析出し、焼鈍、特に歪取焼鈍における粒成長を妨げる元素であり、できる限り低減するのが望ましい。特に、含有量が0.005mass%を超えると、この影響が無視できなくなる。よって、Nは0.005mass%以下とする。好ましくは0.001mass%以下である。
N: 0.005 mass% or less N is an element that forms a nitride with Al, Ti, V, or the like, precipitates, and hinders grain growth in annealing, particularly strain relief annealing, and is preferably reduced as much as possible. In particular, when the content exceeds 0.005 mass%, this influence cannot be ignored. Therefore, N is set to 0.005 mass% or less. Preferably it is 0.001 mass% or less.

本発明に用いる鋼素材は、上記成分以外にSnおよびSbのうちから選ばれる1種または2種をそれぞれ0.005〜1.0mass%の範囲で含有していてもよい。
SnやSbは、集合組織の改善や焼鈍時の酸化や窒化、浸炭を防止する効果がある。しかし、どちらの元素も、0.005mass%以下では上記効果は小さく、1.0mass%を超えると、上記効果が飽和する。よって、添加する場合は上記範囲で添加するのが好ましい。
The steel material used for this invention may contain 1 type or 2 types chosen from Sn and Sb other than the said component in 0.005-1.0 mass%, respectively.
Sn and Sb are effective in improving the texture and preventing oxidation, nitridation, and carburization during annealing. However, in both elements, the effect is small at 0.005 mass% or less, and the effect is saturated when it exceeds 1.0 mass%. Therefore, when adding, it is preferable to add in the said range.

本発明に用いる鋼素材は、上記成分以外の残部はFeおよび不可避的不純物である。ただし、本発明の効果を阻害しない範囲内であれば、上記以外の成分の含有を拒むものではない。   In the steel material used in the present invention, the balance other than the above components is Fe and inevitable impurities. However, as long as the effects of the present invention are not impaired, the inclusion of components other than those described above is not rejected.

なお、本発明に用いる上記鋼素材は、上記成分組成から、熱間圧延における降温時にγからαに変態(γ→α変態)が生じるAr変態点を有することが特徴である。ここで、本発明における上記Ar変態点とは、C≧0.02mass%の領域で、オーステナイトがフェライトとセメンタイトに変態する温度(約720℃)ではなく、C≦0.02mass%の領域で、オーステナイトがフェライトに変態を完了する温度のことであり、Cが低いほど、Ar変態点は上昇し、A点(約910℃)に近づく。 The steel material used in the present invention is characterized by having an Ar 1 transformation point at which a transformation from γ to α (γ → α transformation) occurs when the temperature falls during hot rolling due to the above component composition. Here, the Ar 1 transformation point in the present invention is a region of C ≧ 0.02 mass%, not a temperature at which austenite transforms into ferrite and cementite (about 720 ° C.), but a region of C ≦ 0.02 mass%. This is the temperature at which austenite completes transformation to ferrite, and the lower the C, the higher the Ar 1 transformation point and the closer to the A 3 point (about 910 ° C.).

次に、本発明の無方向性電磁鋼板の製造方法について説明する。
本発明の無方向性電磁鋼板の製造方法は、上記に説明した成分組成を有する鋼素材(スラブ)を再加熱した後、粗圧延および仕上圧延からなる熱間圧延し、冷間圧延し、仕上焼鈍する一連の工程からなる製造方法であり、スラブの成分組成および熱間圧延工程を除いて、従来公知の無方向性電磁鋼板の製造方法と違いはない。
Next, the manufacturing method of the non-oriented electrical steel sheet of this invention is demonstrated.
In the method for producing a non-oriented electrical steel sheet according to the present invention, after reheating a steel material (slab) having the above-described component composition, hot rolling including rough rolling and finish rolling, cold rolling, and finishing are performed. This is a manufacturing method comprising a series of annealing steps, and there is no difference from the conventionally known methods for manufacturing non-oriented electrical steel sheets, except for the slab component composition and the hot rolling process.

まず、本発明の無方向性電磁鋼板の製造に用いる鋼素材(スラブ)は、上記成分組成を満たす鋼を、転炉および真空脱ガス装置等を用いた通常公知の精錬プロセスで溶製し、造塊−分塊圧延法あるいは連続鋳造法で製造するのが好ましい。また、直接鋳造法で、100mm以下の薄スラブをとしてもよい。   First, the steel material (slab) used for the production of the non-oriented electrical steel sheet of the present invention is a steel that satisfies the above component composition, which is melted by a generally known refining process using a converter, a vacuum degassing apparatus, etc. It is preferable to produce by the ingot-making-slab rolling method or the continuous casting method. Moreover, it is good also as a thin slab of 100 mm or less by a direct casting method.

次いで、上記スラブは、その後、所定の温度に再加熱した後、熱間圧延に供する。上記スラブの再加熱方法は、特に限定されるものではなく、公知の方式を適用することができる。また、スラブの再加熱温度は、1000〜1200℃の範囲とすることが好ましい。1000℃未満では、熱間圧延が困難となり、一方、1200℃を超えると、熱エネルギーコストの面で好ましくないからである。
なお、後述する熱間圧延温度を確保できる場合には、連続鋳造したスラブを、再加熱することなく、直ちに熱間圧延する直接圧延を採用してもよい。
Next, the slab is then reheated to a predetermined temperature and then subjected to hot rolling. The reheating method of the slab is not particularly limited, and a known method can be applied. Moreover, it is preferable that the reheating temperature of a slab shall be the range of 1000-1200 degreeC. If it is less than 1000 ° C., hot rolling becomes difficult. On the other hand, if it exceeds 1200 ° C., it is not preferable in terms of thermal energy cost.
In addition, when the hot rolling temperature mentioned later is securable, you may employ | adopt the direct rolling which carries out the hot rolling immediately, without reheating the continuously cast slab.

続く熱間圧延は、本発明において最も重要な工程であり、粗圧延および仕上圧延からなる通常公知の熱間圧延方法を適用できるが、以下の条件を満たすことが必要である。
まず、本発明の熱間圧延における仕上圧延は、仕上圧延中にγ相からα相への変態が完了し、α相域で圧延を終了する、すなわち、仕上圧延終了温度FDTをAr変態点以下とすることが必要である。FDTが、Ar変態点超えの温度では、熱間圧延終了後にγ−α変態が生じるため、結晶粒が微細化し、磁気特性が劣化してしまうからである。
The subsequent hot rolling is the most important step in the present invention, and a generally known hot rolling method including rough rolling and finish rolling can be applied, but the following conditions must be satisfied.
First, in the finish rolling in the hot rolling of the present invention, the transformation from the γ phase to the α phase is completed during the finish rolling, and the rolling is finished in the α phase region, that is, the finish rolling finish temperature FDT is set to the Ar 1 transformation point. It is necessary to: This is because when the FDT exceeds the Ar 1 transformation point, the γ-α transformation occurs after the end of hot rolling, so that the crystal grains become finer and the magnetic properties deteriorate.

また、本発明における仕上圧延は、総圧下率を93%以上とすることが必要である。仕上圧延の総圧下率が93%未満であると、FDTをAr変態点以下としても、γ→α変態の駆動力が不足し、仕上圧延中にγ→α変態が完了せず、仕上圧延終了後もγ→α変態を起こすため、結晶粒が微細化し、磁気特性が劣化するおそれがあるからである。 In the finish rolling in the present invention, the total rolling reduction needs to be 93% or more. If the total rolling reduction of the finish rolling is less than 93%, the driving force of the γ → α transformation is insufficient even if the FDT is below the Ar 1 transformation point, and the γ → α transformation is not completed during the finish rolling. This is because the γ → α transformation occurs even after the completion of the process, so that the crystal grains become finer and the magnetic properties may be deteriorated.

さらに、本発明における熱間圧延は、上記条件を満たした上で、さらに、熱間圧延機の生産性を高めるために、まずは上記仕上圧延において、所望する圧延速度を設定することが肝要である。
ここで、上記圧延速度は、仕上圧延機出側(最終スタンド出側)の鋼板速度のことをいう。仕上圧延機の生産性は、仕上圧延機の圧延速度に比例関係にあるからである。
Furthermore, in the hot rolling in the present invention, it is important to first set a desired rolling speed in the finish rolling in order to further improve the productivity of the hot rolling mill after satisfying the above conditions. .
Here, the said rolling speed means the steel plate speed | rate of a finishing rolling mill delivery side (final stand delivery side). This is because the productivity of the finishing mill is proportional to the rolling speed of the finishing mill.

そして、本発明では、上記に設定した仕上圧延機の圧延速度を達成するため、以下の手順で熱間圧延を実施する。
・まず、仕上圧延機の仕様・能力および圧延する鋼板の鋼種、寸法、熱延温度条件等から、仕上圧延機における最大圧延速度(仕上圧延終了時の仕上圧延機出側の鋼板速度)を考慮し、その最大圧延速度に近くなるような任意の圧延速度を設定する。
・次いで、上記決定した圧延速度に基づき、仕上圧延機内における鋼板の冷却速度の下限値を決定する。
・次いで、上記下限値以上の冷却速度を得ることができる最大シートバー厚、および、仕上圧延における総圧下率(93%以上)を満たすために必要な最小シートバー厚を求め、両者を満たすシートバー厚を決定する。なお、上記粗圧延後のシートバー厚の決定は、計算により求めてもよいが、鋼種ごとに蓄積された過去の仕上圧延実績におけるシートバー厚と冷却速度との関係から推定してもよい。
・次いで、上記決定に従い熱間圧延を行う。すなわち、粗圧延においては、スラブを上記決定したシートバー厚に圧延し、仕上圧延においては、α相域で仕上圧延を終了する、すなわち、仕上圧延終了温度をAr変態点とするため、上記した冷却速度の下限値以上で鋼板を冷却しつつ、最大圧延速度で所定の板厚に圧延する。
And in this invention, in order to achieve the rolling speed of the finishing mill set to the above, hot rolling is implemented in the following procedures.
・ First, consider the maximum rolling speed in the finishing mill (steel speed at the end of finishing rolling at the end of finishing rolling) from the specifications and capabilities of the finishing mill and the steel type, dimensions, hot rolling temperature, etc. Then, an arbitrary rolling speed that is close to the maximum rolling speed is set.
-Next, based on the determined rolling speed, the lower limit value of the cooling rate of the steel sheet in the finishing mill is determined.
Next, the maximum sheet bar thickness capable of obtaining a cooling rate equal to or higher than the above lower limit value and the minimum sheet bar thickness required to satisfy the total rolling reduction (93% or more) in finish rolling are obtained, and the sheet satisfying both Determine the bar thickness. In addition, although the determination of the sheet bar thickness after the said rough rolling may be calculated | required by calculation, you may estimate from the relationship between the sheet bar thickness and the cooling rate in the past finishing rolling results accumulate | stored for every steel type.
Next, hot rolling is performed according to the above determination. That is, in rough rolling, the slab is rolled to the above-determined sheet bar thickness, and in finish rolling, finish rolling is finished in the α phase region, that is, the finish rolling finish temperature is set as the Ar 1 transformation point. The steel plate is rolled to a predetermined plate thickness at the maximum rolling speed while the steel plate is cooled at the lower limit value or more of the cooling rate.

次いで、上記熱間圧延した鋼板(熱延板)は、冷間圧延し、仕上焼鈍し、必要に応じて絶縁被膜を被成し、製品板とする。
上記冷間圧延は、通常公知の方法を適用することができ、特に制限はない。
また、上記冷間圧延に続く仕上焼鈍は、特に制限しないが、650〜800℃で2〜60秒間均熱保持する連続焼鈍を採用することが好ましい。均熱温度が650℃未満あるいは均熱時間が2秒未満では、結晶粒が十分に成長せず、本発明の主眼である良好な磁気特性が得られないおそれがある。一方、均熱温度が800℃超えあるいは均熱時間が60秒超えでは、逆に結晶粒が粗大化し過ぎ、打抜加工性が低下するおそれがあるからである。
また、製品板に被成する絶縁被膜は、特に制限はなく、通常公知のものを用いることができる。
Subsequently, the hot-rolled steel sheet (hot-rolled sheet) is cold-rolled and finish-annealed, and an insulating film is formed as necessary to obtain a product plate.
For the cold rolling, a generally known method can be applied, and there is no particular limitation.
Moreover, although the finish annealing following the said cold rolling is not restrict | limited in particular, It is preferable to employ | adopt the continuous annealing hold | maintained at 650-800 degreeC for 2 to 60 seconds. If the soaking temperature is less than 650 ° C. or the soaking time is less than 2 seconds, the crystal grains do not grow sufficiently, and the good magnetic properties that are the main point of the present invention may not be obtained. On the other hand, if the soaking temperature exceeds 800 ° C. or the soaking time exceeds 60 seconds, the crystal grains are excessively coarsened and the punching processability may be deteriorated.
Further, the insulating film formed on the product plate is not particularly limited, and generally known ones can be used.

転炉で溶製し、真空脱ガス処理を施して、C:0.003mass%、Si:0.12mass%、Mn:0.25mass%、P:0.08mass%、S:0.003mass%、Al:0.001mass%およびN:0.002mass%を含有し、残部がFeおよび不可避的不純物からなる成分組成に調整した鋼を連続鋳造してスラブとした。なお、上記鋼の成分組成から、Ar変態点は約865℃である。
次いで、上記スラブを、1100℃の温度に再加熱した後、粗圧延し、圧延終了温度を830℃(Ar変態点温度未満)として仕上圧延する熱間圧延して、板厚2.6mmの熱延板とした。ここで、上記熱間圧延に用いた仕上圧延機の能力等を考慮して、上記鋼板の圧延速度を950m/minに設定した。
Melted in a converter and subjected to vacuum degassing, C: 0.003 mass%, Si: 0.12 mass%, Mn: 0.25 mass%, P: 0.08 mass%, S: 0.003 mass%, A steel containing Al: 0.001 mass% and N: 0.002 mass%, with the balance being composed of Fe and inevitable impurities, was continuously cast into a slab. In addition, from the component composition of the steel, the Ar 1 transformation point is about 865 ° C.
Next, the slab was reheated to a temperature of 1100 ° C., then rough-rolled, hot-rolled to finish rolling at a rolling end temperature of 830 ° C. (lower than the Ar 1 transformation temperature), and a plate thickness of 2.6 mm A hot-rolled sheet was used. Here, the rolling speed of the steel sheet was set to 950 m / min in consideration of the capability of the finishing mill used for the hot rolling.

なお、上記熱間仕上圧延は、下記の4条件で圧延した。
・条件A:上記仕上圧延機において上記に設定した圧延速度を達成するのに必要な仕上圧延時の冷却速度の下限を85℃/sと定め、次いで、該下限以上の冷却速度が得られる最大シートバー厚、および、仕上圧延の総圧下率が93%以上となる最小シートバー厚から粗圧延における目標シートバー厚を、同様の成分組成を有する鋼板の過去の圧延実績に基いて決定し、その結果に基いて、粗圧延においては、スラブを上記目標シートバー厚に圧延し、仕上圧延では、上記シートバーを上記冷却速度の下限値以上で冷却しつつ、上記設定した圧延速度で目標板厚(2.6mm)に圧延する(発明例)
・条件B:上記冷却速度やシートバー厚の制御を行うことなく熱間圧延する(比較例1)
・条件C:条件Aにおいて、仕上圧延終了温度をAr変態点以上として圧延する(比較例2)
・条件D:条件Aにおいて、粗圧延後のシートバー厚を変えて、仕上圧延における総圧下率を90%として熱間圧延する(比較例3)
この際、熱間仕上圧延における噛み込みから尻抜けまでの圧延所要時間および仕上圧延終了時の仕上圧延機出側の鋼板速度を測定した。
The hot finish rolling was performed under the following four conditions.
Condition A: The lower limit of the cooling rate at the time of finish rolling necessary to achieve the rolling speed set above in the finishing mill is set to 85 ° C./s, and then the maximum at which a cooling rate equal to or higher than the lower limit is obtained. The sheet bar thickness, and the target sheet bar thickness in rough rolling from the minimum sheet bar thickness at which the total rolling reduction of finish rolling is 93% or more, are determined based on the past rolling performance of steel sheets having the same component composition, Based on the result, in rough rolling, the slab is rolled to the target sheet bar thickness, and in finish rolling, the target bar is cooled at the set rolling speed while the sheet bar is cooled at a value equal to or higher than the lower limit of the cooling speed. Roll to thickness (2.6 mm) (Invention example)
Condition B: Hot rolling without controlling the cooling rate and sheet bar thickness (Comparative Example 1)
-Condition C: In condition A, the finish rolling finish temperature is rolled at an Ar 1 transformation point or higher (Comparative Example 2).
Condition D: In condition A, the thickness of the sheet bar after the rough rolling is changed, and the total rolling reduction in finish rolling is set to 90% for hot rolling (Comparative Example 3).
At this time, the time required for rolling from biting to bottom end in hot finish rolling and the steel plate speed on the exit side of the finish mill at the end of finish rolling were measured.

次いで、上記熱延板を冷間圧延して板厚0.5mmの冷延板とした後、該冷延板を10vol%H−90vol%N雰囲気中で700℃×30秒の仕上焼鈍を施し、製品板(コイル)とした。なお、上記製品板は、各条件で5コイルを製造した。
斯くして得た冷延焼鈍板からエプスタイン試験片を採取し、磁束密度B50および鉄損W15/50を測定し、それぞれの平均値および標準偏差を求めた。
Subsequently, the hot-rolled sheet was cold-rolled to form a cold-rolled sheet having a thickness of 0.5 mm, and then the cold-rolled sheet was subjected to finish annealing at 700 ° C. for 30 seconds in a 10 vol% H 2 -90 vol% N 2 atmosphere. To give a product plate (coil). In addition, the said product board manufactured 5 coils on each conditions.
An Epstein test piece was collected from the cold-rolled annealed plate thus obtained, and the magnetic flux density B 50 and the iron loss W 15/50 were measured, and the average value and standard deviation of each were determined.

上記測定の結果を表1に示した。なお、表1に示した圧延所要時間は、条件Aをベースとし、条件Aに対する増減分で示した。
表1から、本発明に適合する条件で熱間圧延した鋼板は、磁気特性の平均値は、比較例と比較して同等であるが、ばらつきが約1/2に低減している、すなわち、製品板の磁気特性の最悪値が、比較例と比較して向上していることがわかる。また、本発明の方法で圧延した場合には、圧延所要時間が、比較例1と比較して約10秒短縮しており、生産性の面でも有利な効果が得られた。
The measurement results are shown in Table 1. In addition, the rolling required time shown in Table 1 is based on the condition A, and is shown as an increase or decrease relative to the condition A.
From Table 1, the steel sheet hot-rolled under the conditions suitable for the present invention has the same average magnetic property as that of the comparative example, but the variation is reduced to about 1/2. It can be seen that the worst value of the magnetic properties of the product plate is improved as compared with the comparative example. In addition, when rolling was performed by the method of the present invention, the rolling time was shortened by about 10 seconds compared with Comparative Example 1, and an advantageous effect was obtained in terms of productivity.

Figure 2015212403
Figure 2015212403

Claims (2)

C:0.005mass%以下、Si:0.05〜1.0mass%、Mn:1mass%以下、Al:1.0mass%以下、P:0.2mass%以下、S:0.005mass%以下およびN:0.005mass%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、かつ、該成分組成はγ−α変態を有するスラブを再加熱した後、粗圧延および仕上圧延からなる熱間圧延し、冷間圧延し、仕上焼鈍する無方向性電磁鋼板の製造方法において、
上記仕上圧延の総圧下率を93%以上、圧延終了温度をAr変態点以下に設定するとともに、
上記仕上圧延の圧延速度を定め、該圧延速度で圧延するために必要な仕上圧延機における平均冷却速度の下限値を算出し、次いで、上記下限値以上の平均冷却速度が得られる最大シートバー厚および仕上圧延における上記総圧下率を満たす最小シートバー厚を算出して目標シートバー厚を決定し、それらの結果に基いて、粗圧延においては、スラブを上記目標シートバー厚に圧延し、仕上圧延においては、上記シートバーを上記算出した冷却速度で冷却しつつ圧延することを特徴とする無方向性電磁鋼板の製造方法。
C: 0.005 mass% or less, Si: 0.05 to 1.0 mass%, Mn: 1 mass% or less, Al: 1.0 mass% or less, P: 0.2 mass% or less, S: 0.005 mass% or less, and N : Containing 0.005 mass% or less, the remainder having a component composition consisting of Fe and inevitable impurities, and the component composition is obtained by reheating a slab having a γ-α transformation, and then performing rough rolling and finish rolling. In the method of manufacturing a non-oriented electrical steel sheet that is hot rolled, cold rolled, and finish annealed,
The total rolling reduction of the finish rolling is set to 93% or more, the rolling end temperature is set to the Ar 1 transformation point or less,
Determine the rolling speed of the above finish rolling, calculate the lower limit value of the average cooling rate in the finishing mill necessary for rolling at the rolling speed, and then obtain the maximum sheet bar thickness at which the average cooling rate equal to or higher than the lower limit value is obtained. Then, the target sheet bar thickness is determined by calculating the minimum sheet bar thickness that satisfies the above-mentioned total rolling reduction in finish rolling, and based on those results, in rough rolling, the slab is rolled to the target sheet bar thickness and finished. In rolling, the sheet bar is rolled while being cooled at the calculated cooling rate.
上記スラブは、上記成分組成に加えてさらに、Sn:0.005〜0.1mass%およびSb:0.005〜0.1mass%のうちから選ばれる1種または2種を含有することを特徴とする請求項1に記載の無方向性電磁鋼板の製造方法。

In addition to the above component composition, the slab further contains one or two selected from Sn: 0.005 to 0.1 mass% and Sb: 0.005 to 0.1 mass%. The manufacturing method of the non-oriented electrical steel sheet according to claim 1.

JP2014094592A 2014-05-01 2014-05-01 Method for producing non-oriented electrical steel sheet Active JP6146582B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014094592A JP6146582B2 (en) 2014-05-01 2014-05-01 Method for producing non-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014094592A JP6146582B2 (en) 2014-05-01 2014-05-01 Method for producing non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2015212403A true JP2015212403A (en) 2015-11-26
JP6146582B2 JP6146582B2 (en) 2017-06-14

Family

ID=54696817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014094592A Active JP6146582B2 (en) 2014-05-01 2014-05-01 Method for producing non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP6146582B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190078345A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
KR20190078408A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
WO2024136175A1 (en) * 2022-12-21 2024-06-27 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920867B1 (en) * 1969-12-22 1974-05-28
JPH0773735B2 (en) * 1987-06-24 1995-08-09 株式会社日立製作所 Finishing temperature controller
JP2001181743A (en) * 1999-10-14 2001-07-03 Nippon Steel Corp Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2007217744A (en) * 2006-02-16 2007-08-30 Jfe Steel Kk Non-oriented silicon steel sheet and its production method
JP2008156741A (en) * 2006-11-29 2008-07-10 Nippon Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4920867B1 (en) * 1969-12-22 1974-05-28
JPH0773735B2 (en) * 1987-06-24 1995-08-09 株式会社日立製作所 Finishing temperature controller
JP2001181743A (en) * 1999-10-14 2001-07-03 Nippon Steel Corp Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2007217744A (en) * 2006-02-16 2007-08-30 Jfe Steel Kk Non-oriented silicon steel sheet and its production method
JP2008156741A (en) * 2006-11-29 2008-07-10 Nippon Steel Corp Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190078345A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
KR20190078408A (en) * 2017-12-26 2019-07-04 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
KR102043525B1 (en) 2017-12-26 2019-11-12 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
KR102045655B1 (en) 2017-12-26 2019-12-05 주식회사 포스코 Thin non-oriented electrical steel sheet having excellent magnetic properties and shape and method of manufacturing the same
WO2024136175A1 (en) * 2022-12-21 2024-06-27 주식회사 포스코 Non-oriented electrical steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP6146582B2 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
JP5892327B2 (en) Method for producing non-oriented electrical steel sheet
JP5668460B2 (en) Method for producing non-oriented electrical steel sheet
KR101737871B1 (en) Method for producing grain-oriented electrical steel sheet
JP6844125B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6236470B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties
JP4586741B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5712491B2 (en) Method for producing grain-oriented electrical steel sheet
JP5760590B2 (en) Method for producing grain-oriented electrical steel sheet
JP2013139629A (en) Method for producing low iron loss grain-oriented magnetic steel sheet
JP4272557B2 (en) Method for producing unidirectional electrical steel sheet with excellent magnetic properties
JP5428188B2 (en) Method for producing grain-oriented electrical steel sheet
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP5839172B2 (en) Method for producing grain-oriented electrical steel sheet
JP6804291B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP6079580B2 (en) Method for producing grain-oriented electrical steel sheet
JP5287615B2 (en) Method for producing grain-oriented electrical steel sheet
JP2009203520A (en) Method for manufacturing non-oriented electromagnetic steel sheet
JP2018070974A (en) Production method for grain-oriented electromagnetic steel sheet
JP7245325B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP7037657B2 (en) Directional electrical steel sheet and its manufacturing method
JP4701669B2 (en) Method for producing non-oriented electrical steel sheet
JP2005002401A (en) Method for producing non-oriented silicon steel sheet
KR101110257B1 (en) Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP6676952B2 (en) Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same
JP2005187846A (en) Non-oriented electromagnetic steel sheet and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170502

R150 Certificate of patent or registration of utility model

Ref document number: 6146582

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250