JP6676952B2 - Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same - Google Patents
Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same Download PDFInfo
- Publication number
- JP6676952B2 JP6676952B2 JP2015245612A JP2015245612A JP6676952B2 JP 6676952 B2 JP6676952 B2 JP 6676952B2 JP 2015245612 A JP2015245612 A JP 2015245612A JP 2015245612 A JP2015245612 A JP 2015245612A JP 6676952 B2 JP6676952 B2 JP 6676952B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- steel sheet
- sheet
- rolling
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Manufacturing Of Steel Electrode Plates (AREA)
- Soft Magnetic Materials (AREA)
Description
本発明は、変圧器の鉄心材料に使用される一方向性電磁鋼板を製造するために用いられる析出物が制御された一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法に関する。 The present invention relates to a hot-rolled sheet for a unidirectional magnetic steel sheet in which precipitates used for manufacturing a unidirectional magnetic steel sheet used for an iron core material of a transformer are controlled, and a method for producing the hot-rolled sheet, and the unidirectionality thereof. The present invention relates to a method for manufacturing an electromagnetic steel sheet.
一方向性電磁鋼板は変圧器の鉄心材料として使用される。一方向性電磁鋼板は、磁化される方向に高い磁束密度を持つことが求められるので、二次再結晶を利用してGossと呼ばれる磁気特性に優れた結晶方位を選択的に成長させて製造する機能材料である。 The grain-oriented electrical steel sheet is used as a core material of a transformer. A grain-oriented electrical steel sheet is required to have a high magnetic flux density in the direction in which it is magnetized, and is manufactured by selectively growing a crystal orientation excellent in magnetic properties called Goss using secondary recrystallization. It is a functional material.
近年変圧器のエネルギー効率の向上のため、一方向性電磁鋼板の鉄損をさらに低減させることが求められている。一方向性電磁鋼板は板厚を薄くすると鉄損が低減できるので、薄手の一方向性電磁鋼板が求められるようになっている。 In recent years, in order to improve the energy efficiency of transformers, it has been required to further reduce iron loss of a grain-oriented electrical steel sheet. Since the iron loss can be reduced by reducing the thickness of the unidirectional electrical steel sheet, a thin unidirectional electrical steel sheet has been demanded.
一方向性電磁鋼板の鉄損を下げるためには、二次再結晶の発現機構に関連するインヒビターとなる析出物を適切に制御して、Goss集積度の高い二次再結晶組織を得て、磁束密度を向上させなければならない。インヒビターとして用いられる析出物は、一般的には硫化物(MnS等)や窒化物(AlN等)が知られている。インヒビター制御に関する研究は従来から行われているが、MnSを完全溶体化させた後、インヒビターとしてMnSを微細析出させる熱間圧延工程は、二次再結晶組織を安定化させて高磁束密度の一方向性電磁鋼板を製造することを実現する上で重要なプロセスである。また、熱間圧延工程により得られる熱延板に析出するMnSは、続く熱延板焼鈍でのAlNの析出サイトとなり、AlNとともに、冷間圧延後の鋼板にさらに続く脱炭焼鈍を行うことにより得られる一次再結晶粒の粒径を決定する。このため、熱延板に析出するMnSは、直接的または間接的に二次再結晶の挙動を支配する。 In order to reduce the iron loss of the grain-oriented electrical steel sheet, by appropriately controlling the precipitates serving as inhibitors related to the mechanism of secondary recrystallization, a secondary recrystallized structure with a high Goss accumulation degree is obtained. The magnetic flux density must be improved. Generally, sulfide (MnS or the like) or nitride (AlN or the like) is known as a precipitate used as an inhibitor. Although research on inhibitor control has been conducted in the past, the hot rolling step in which MnS is completely dissolved and then MnS is finely precipitated as an inhibitor is performed by stabilizing the secondary recrystallized structure and reducing high magnetic flux density. This is an important process in realizing the production of grain-oriented electrical steel sheets. Further, MnS precipitated in the hot-rolled sheet obtained by the hot rolling step becomes a precipitation site of AlN in the subsequent hot-rolled sheet annealing, and together with AlN, further decarburizing annealing is performed on the steel sheet after the cold rolling. Determine the particle size of the resulting primary recrystallized grains. Therefore, MnS precipitated on the hot-rolled sheet directly or indirectly governs the behavior of the secondary recrystallization.
また、二次再結晶は、仕上げ焼鈍中雰囲気の影響を受けやすい鋼板表面近傍で、AlNの酸化などによるインヒビター強度の低下を起点として開始するが、板厚が薄くなると仕上げ焼鈍中雰囲気の影響を受ける板厚方向の領域の割合が大きくなる。そのため、板厚が薄いほどAlNインヒビターの酸化によるインヒビター強度の低下は急速に起こるようになり、鋼板表面近傍におけるGoss方位粒の優先成長性が弱くなるので、正常粒成長や首振りGossの優先成長が発生しやすくなり、二次再結晶が不安定になる。さらに、鋼板表面近傍におけるGoss方位粒の優先成長性が弱くなる他の理由としては、Goss以外のランダム方位を持つ一次結晶粒がGoss方位粒よりも大きくなることも挙げられる。 In addition, secondary recrystallization starts from a decrease in inhibitor strength due to oxidation of AlN or the like near the surface of a steel sheet that is easily affected by the atmosphere during finish annealing. The ratio of the area in the thickness direction to be received increases. Therefore, as the sheet thickness becomes thinner, the inhibitor strength is rapidly reduced due to oxidation of the AlN inhibitor, and the preferential growth of Goss-oriented grains in the vicinity of the steel sheet surface is weakened. Are likely to occur, and secondary recrystallization becomes unstable. Another reason that the preferential growth of Goss-oriented grains in the vicinity of the steel sheet surface is weakened is also that primary crystal grains having random orientations other than Goss become larger than Goss-oriented grains.
したがって、二次再結晶組織を安定化させて高磁束密度の一方向性電磁鋼板を製造することを実現する上では、二次再結晶時において鋼板表面近傍におけるGoss方位粒の優先成長性をさらに高めるために、インヒビター制御や結晶粒径の制御といった一次再結晶集合組織の制御を行う必要がある。そして、このような一次再結晶集合組織の制御を行うためには、熱間圧延工程の条件を制御すればよい。 Therefore, in order to stabilize the secondary recrystallization structure and produce a high-magnetic-density unidirectional electrical steel sheet, the preferential growth of Goss-oriented grains near the steel sheet surface during the secondary recrystallization is further improved. In order to increase the crystallinity, it is necessary to control the primary recrystallization texture such as inhibitor control and crystal grain size control. In order to control such a primary recrystallization texture, the conditions of the hot rolling step may be controlled.
熱間圧延工程の条件を制御する技術としては、例えば、特許文献1〜4に開示された技術が知られている。特許文献1に開示された技術では、析出物の完全溶体化後の一方向性電磁鋼板用鋳片の熱延工程について温度および時間の条件を特定しており、徐冷却を特徴とする熱延工程によって、インヒビターとして用いられるMnSを高い分布密度で均一に微細粒として析出させて、磁気特性を向上させるものである。しかしながら、この技術では、特に薄手材で生ずる二次再結晶の不均一さを解消することはできない。 As a technique for controlling the conditions of the hot rolling step, for example, techniques disclosed in Patent Documents 1 to 4 are known. In the technique disclosed in Patent Document 1, the conditions of temperature and time are specified in a hot rolling process of a slab for a grain-oriented electrical steel sheet after a complete solution of a precipitate, and the hot rolling is characterized by slow cooling. Through the process, MnS used as an inhibitor is uniformly deposited as fine particles at a high distribution density to improve magnetic properties. However, this technique cannot eliminate the non-uniformity of secondary recrystallization, which occurs particularly with thin materials.
また、特許文献2に開示された技術では、スラブをいったん冷却後再加熱し、再加熱後のスラブに熱間圧延を施している。しかしながら、この技術は、鋼板の表面性状の改善の効果が得られるものの、二次再結晶組織を安定化させるために、インヒビター制御や結晶粒径の制御といった一次再結晶集合組織の制御を行うものではない。 Further, in the technology disclosed in Patent Document 2, the slab is once cooled and then reheated, and the slab after the reheating is subjected to hot rolling. However, although this technique can improve the surface properties of the steel sheet, it controls the primary recrystallization texture such as inhibitor control and crystal grain size control in order to stabilize the secondary recrystallization texture. is not.
また、特許文献3に開示された技術では、スラブを加熱して熱間圧延した後に再加熱し、再加熱後の鋼板を再度熱間圧延する熱間圧延工程において、圧延温度およびパス間時間を規定している。しかしながら、この技術は、超高珪素鋼を製造する場合に、熱間圧延工程において耳割れを生じさせないことを目的とするものであり、珪素濃度が3質量%前後の鋼において二次再結晶組織を安定化させるために、インヒビター制御や結晶粒径の制御といった一次再結晶集合組織の制御を行うものではない。 In the technique disclosed in Patent Document 3, the slab is heated and hot-rolled, and then reheated. In the hot rolling step of hot-rolling the reheated steel sheet again, the rolling temperature and the inter-pass time are reduced. Stipulates. However, this technique is intended to prevent the occurrence of edge cracks in the hot rolling step when producing ultra-high silicon steel, and to produce a secondary recrystallized structure in steel having a silicon concentration of about 3% by mass. It does not control the primary recrystallization texture such as inhibitor control or crystal grain size control in order to stabilize.
また、特許文献4に開示された技術では、スラブを加熱して熱間圧延した後に再加熱し、再加熱後の鋼板を再度熱間圧延することによって、結晶粒径の制御を行っている。しかしながら、この技術では、最初の熱間圧延後の再加熱時に、析出物の容体化が行われているので、二次再結晶組織を安定化させるといった効果が得られない。 In the technology disclosed in Patent Document 4, the slab is heated and hot-rolled, then reheated, and the reheated steel sheet is hot-rolled again to control the crystal grain size. However, in this technique, at the time of reheating after the first hot rolling, the precipitation is soaked, so that the effect of stabilizing the secondary recrystallization structure cannot be obtained.
本発明は、上記問題点に鑑みてなされたものであり、変圧器の効率を向上させる鉄心材料に使用される薄手の一方向性電磁鋼板において二次再結晶組織を安定化させることができるように、熱間圧延工程においてインヒビター制御や結晶粒径の制御を行った一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and can stabilize a secondary recrystallized structure in a thin unidirectional magnetic steel sheet used for an iron core material for improving the efficiency of a transformer. In addition, an object of the present invention is to provide a hot-rolled sheet for a grain-oriented electrical steel sheet and a method for producing the same, and a method for producing the grain-oriented electrical steel sheet, in which inhibitor control and grain size control are performed in a hot rolling step. .
本発明者らは、上記課題を解決すべく、薄手の一方向性電磁鋼板において不均一な二次再結晶が発現する原因を調査した。その結果、二次再結晶での優先成長性は、一次再結晶完了時に粒径が大きい方位粒で高まることから、薄手の一方向性電磁鋼板における二次再結晶組織を安定化させるためには、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒を含む結晶粒の平均粒径を中心領域よりも粗大化させておき、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を維持させることが有効であることが分かった。 The present inventors have investigated the cause of non-uniform secondary recrystallization in a thin unidirectional magnetic steel sheet in order to solve the above problems. As a result, the preferential growth in secondary recrystallization increases with the orientation grains having a large grain size at the completion of primary recrystallization, so in order to stabilize the secondary recrystallization structure in a thin unidirectional electrical steel sheet, At the point of completion of the primary recrystallization, the average grain size of the crystal grains including the Goss orientation grains in the region near the surface is made coarser than that in the central region, and the intensity of the inhibitor near the steel sheet surface decreases rapidly during the secondary recrystallization. Even if it occurs, it has been found that it is effective to maintain the preferential growth of Goss-oriented grains near the steel sheet surface.
そして、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒を含む結晶粒の平均粒径を中心領域よりも粗大化させておくことができるような熱延板および熱間圧延の条件を検討した結果、表面近傍領域における結晶粒の平均粒径が中心領域よりも大きい熱延板、および鋼板の表面近傍領域の温度が中心領域の温度よりも高い条件下で熱間圧延の全部または一部を施すことが、実用的に適用可能であるとの知見を得た。 At the time of completion of the primary recrystallization, the conditions of the hot-rolled sheet and hot-rolling were studied so that the average grain size of the crystal grains including the Goss-oriented grains in the region near the surface could be made coarser than in the central region. As a result, a hot-rolled sheet in which the average grain size of the crystal grains in the near-surface region is larger than that in the center region, and all or part of hot rolling under the condition that the temperature in the near-surface region of the steel sheet is higher than the temperature in the center region Has been found to be practically applicable.
本発明はこれらの知見を基になされたものであり、その要旨は、質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなる一方向性電磁鋼板用熱延板であって、板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径の比が1.10以上であることを特徴とする一方向性電磁鋼板用熱延板である。 The present invention has been made based on these findings, and the gist of the present invention is that, in mass%, C: 0.1% or less, Si: 2.5 to 4.0%, Mn: 0.05 to 0. 1%, S: 0.01 to 0.04%, Al: 0.01 to 0.05%, and N: 0.001 to 0.030%, with the balance being Fe and unavoidable impurities. A hot-rolled sheet for a grain-oriented electrical steel sheet, wherein the average of crystal grains in a region near the surface of a 1/10 to 1/5 layer thickness with respect to the average grain size of the crystal grains in the central region of the 1/5 layer thickness to the center A hot-rolled sheet for a grain-oriented electrical steel sheet, wherein the ratio of the particle diameters is 1.10 or more.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板であって、板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比が1.10以上であることを特徴とする一方向性電磁鋼板用熱延板である。 Another gist of the present invention is the above-described hot-rolled sheet for unidirectional magnetic steel sheets, wherein the sheet thickness is 1/5 layer to 1/10 to 1/5 layer with respect to the average grain size of MnS in the central region of the center. Wherein the ratio of the average particle size of MnS in the region near the surface is 1.10 or more.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板であって、板厚1/10〜1/5層の表面近傍領域におけるMnSの分布密度に対する板厚1/5層〜中心の中心領域におけるMnSの分布密度の比が1.10以上であることを特徴とする一方向性電磁鋼板用熱延板である。 Another gist of the present invention is the above-described hot-rolled sheet for a grain-oriented electrical steel sheet, in which the distribution thickness of MnS in the region near the surface of 1/10 to 1/5 layer thickness is 1/5 layer thickness to center. Wherein the ratio of the distribution density of MnS in the central region is 1.10 or more.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板であって、上記Feの一部に代えて、質量%で、Bi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.0002%以上0.02%以下、ならびにSb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下を含有することを特徴とする一方向性電磁鋼板用熱延板である。 Another aspect is the above-described hot-rolled sheet for a grain-oriented electrical steel sheet, wherein 1% selected from the group consisting of Bi, Pb, As, and Te in mass% instead of a part of the Fe. Species or two or more: 0.0002% to 0.02% in total, and one or two or more selected from the group consisting of Sb, Sn, and P: 0.0004% to 0.5% in total A hot-rolled sheet for a grain-oriented electrical steel sheet, comprising:
また、他の要旨は、質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなる鋳片に熱間圧延を施す熱間圧延工程において、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とすることを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Further, the other point is that, in mass%, C: 0.1% or less, Si: 2.5 to 4.0%, Mn: 0.05 to 0.1%, S: 0.01 to 0.04. %, Al: 0.01 to 0.05%, and N: 0.001 to 0.030% in a hot rolling step of hot rolling a slab composed of Fe and unavoidable impurities. The true strain of rolling applied to a steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the sheet thickness center temperature Tc1000 to 1100 ° C satisfy the relationship of Ts-Tc> 50 ° C is 40% of the true strain of the entire hot rolling. % Of the hot-rolled sheet for a grain-oriented electrical steel sheet.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記熱間圧延工程において、表面温度にして900℃以下まで冷却した上記鋳片を、雰囲気温度が1200℃以上の加熱炉に装入して、装入後1時間以内に上記加熱炉から抽出した上記鋳片に上記熱間圧延を施すことを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another aspect is a method for manufacturing a hot-rolled sheet for a unidirectional magnetic steel sheet, wherein the slab is cooled to 900 ° C. or less as a surface temperature in the hot rolling step. A hot-rolled sheet for a unidirectional magnetic steel sheet, wherein the hot-rolled sheet is charged into a heating furnace at 1200 ° C. or higher and the slab extracted from the heating furnace is subjected to the hot rolling within 1 hour after the charging. It is a manufacturing method.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記熱間圧延工程において、圧延後の鋼板を表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、上記圧延後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに圧延を施すことを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another aspect is a method for manufacturing a hot-rolled steel sheet for a unidirectional magnetic steel sheet, wherein the hot-rolled steel sheet has a surface temperature Ts of 1100 ° C. or more and 600 to 750 ° C. After cooling at an average cooling rate of 2 ° C./s or more to a temperature of not more than 2 ° C./s and maintaining the temperature in a temperature range of 600 to 750 ° C. for 0 s to 300 s, the above-mentioned rolled steel sheet is brought to a surface temperature Ts of 1100 ° C. to 1150 ° C. A method for producing a hot-rolled sheet for a grain-oriented electrical steel sheet, which further comprises rolling after heating.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記熱間圧延工程において、上記鋳片を表面温度にして1250〜1400℃に加熱した後に、上記加熱後の鋳片に上記熱間圧延を施すことを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another aspect is a method for manufacturing a hot-rolled steel sheet for a unidirectional magnetic steel sheet, in which the slab is heated to 1250 to 1400 ° C. at a surface temperature in the hot rolling step. A method for producing a hot-rolled sheet for unidirectional magnetic steel sheets, wherein the hot slab is subjected to the hot rolling described above.
また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記鋳片が、上記Feの一部に代えて、質量%で、Bi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.0002%以上0.02%以下、ならびにSb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下をさらに含有することを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another aspect is a method for manufacturing a hot-rolled sheet for a grain-oriented electrical steel sheet, wherein the cast slab is made of Bi, Pb, As, and by mass% instead of a part of the Fe. One or more selected from the group consisting of Te: 0.0002% or more and 0.02% or less in total, and one or two or more selected from the group consisting of Sb, Sn, and P: 0 in total A method for producing a hot-rolled sheet for a grain-oriented electrical steel sheet, further comprising 0.0004% to 0.5%.
さらに、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する熱延板製造工程と、上記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す熱延板焼鈍工程と、上記熱延板焼鈍後の鋼板に冷間圧延を施す冷間圧延工程と、上記冷間圧延後の鋼板に脱炭焼鈍を施す脱炭焼鈍工程と、上記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程とを有することを特徴とする一方向性電磁鋼板の製造方法である。 Further, another gist is a hot-rolled sheet manufacturing process for manufacturing a hot-rolled sheet for a unidirectional magnetic steel sheet by performing the above-described method for manufacturing a hot-rolled sheet for a unidirectional magnetic steel sheet, A hot-rolled sheet annealing step of performing hot-rolled sheet annealing on a hot-rolled sheet, a cold-rolling step of performing cold rolling on the steel sheet after the hot-rolled sheet annealing, and performing a decarburizing annealing on the cold-rolled steel sheet A method for producing a unidirectional magnetic steel sheet, comprising: a decarburizing annealing step; and a finish annealing step of subjecting the steel sheet after the decarburizing annealing to finish annealing.
また、他の要旨は、上述の一方向性電磁鋼板の製造方法であって、上記熱延板焼鈍工程において、上記一方向性電磁鋼板用熱延板を900〜1050℃の温度域に60s以上保持する熱延板焼純を施すことを特徴とする一方向性電磁鋼板の製造方法である。 Another aspect is a method for manufacturing the above-described grain-oriented electrical steel sheet, wherein the hot-rolled sheet for a grain-oriented electrical steel sheet is subjected to a temperature range of 900 to 1050 ° C. for 60 s or more in the hot-rolled sheet annealing step. This is a method for producing a grain-oriented electrical steel sheet, characterized by subjecting the retained hot-rolled sheet to annealing.
さらに、他の要旨は、上述の一方向性電磁鋼板の製造方法であって、上記脱炭焼鈍工程において、上記冷間圧延後の鋼板を、350℃以下の温度から700℃以上850℃以下の温度まで昇温する昇温過程において100℃/s以上の昇温速度で加熱した後に、上記冷間圧延後の鋼板に上記脱炭焼鈍を施すことを特徴とする一方向性電磁鋼板の製造方法である。 Furthermore, another gist is the method for manufacturing the above-described grain-oriented electrical steel sheet, wherein in the decarburizing annealing step, the steel sheet after the cold rolling is heated from a temperature of 350 ° C or less to a temperature of 700 ° C or more and 850 ° C or less. A method for producing a grain-oriented electrical steel sheet, wherein the steel sheet after the cold rolling is subjected to the decarburizing annealing after heating at a heating rate of 100 ° C./s or more in a heating process of raising the temperature to the temperature. It is.
本発明によれば、均一な二次再結晶を発現させることによって磁気特性を優れたものとした薄手の超低鉄損一方向性電磁鋼板を製造するために用いられる一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法を提供することができる。 According to the present invention, a heat treatment for a grain-oriented electrical steel sheet used for producing a thin ultra-low iron loss unidirectional electrical steel sheet having excellent magnetic properties by expressing uniform secondary recrystallization. The present invention can provide a rolled sheet, a method for manufacturing the same, and a method for manufacturing the grain-oriented electrical steel sheet.
以下、本発明の一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法について詳細に説明する。 Hereinafter, the hot-rolled sheet for a grain-oriented electrical steel sheet of the present invention, a method for producing the same, and a method for producing the grain-oriented electrical steel sheet are described in detail.
A.一方向性電磁鋼板用熱延板
本発明の一方向性電磁鋼板用熱延板は、下記化学成分を有する一方向性電磁鋼板用熱延板であって、板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径の比が1.10以上であることを特徴とするものである。以下、本発明の一方向性電磁鋼板用熱延板について詳細に説明する。
A. Hot rolled sheet for unidirectional magnetic steel sheet The hot rolled sheet for unidirectional magnetic steel sheet of the present invention is a hot rolled sheet for unidirectional magnetic steel sheet having the following chemical components, and has a thickness of 1/5 layer to the center. The ratio of the average grain size of the crystal grains in the region near the surface of the 1/10 to 1/5 layer with respect to the average grain size of the crystal grains in the central region is 1.10. Hereinafter, the hot-rolled sheet for a grain-oriented electrical steel sheet of the present invention will be described in detail.
1.化学成分
以下、本発明における化学成分の限定理由について詳細に説明する。以下において、各成分の含有量は質量%での値である。
1. Chemical Components Hereinafter, the reasons for limiting the chemical components in the present invention will be described in detail. In the following, the content of each component is a value in mass%.
(1)C
Cを添加すると、形成されるオーステナイト相によって熱延時のMnSの核生成、成長を制御できるため有用な元素であるが、0.1%を超えて添加されると脱炭または純化を困難にする。Cが製品板に残存した場合、磁気特性が劣化する時効現象を惹起するため、含有量の上限を0.1%とする。
(1) C
The addition of C is a useful element because the nucleation and growth of MnS during hot rolling can be controlled by the austenite phase formed, but if added in excess of 0.1%, decarburization or purification becomes difficult. . When C remains on the product plate, an aging phenomenon in which the magnetic properties deteriorate is caused. Therefore, the upper limit of the content is set to 0.1%.
(2)Si
Siは、固有抵抗を高めて、鉄損を低減するのに有用な元素のため、2.5〜4.0%添加する。過剰に添加した場合、熱間圧延または冷間圧延が困難になるため、含有量の上限を4.0%とする。
(2) Si
Si is added in an amount of 2.5 to 4.0% because it is a useful element for increasing the specific resistance and reducing iron loss. If added excessively, hot rolling or cold rolling becomes difficult, so the upper limit of the content is set to 4.0%.
(3)Mn
Mnは、MnSを熱間圧延中に微細析出させるために必要な元素であるため、0.05〜0.1%添加する。含有量がこれより少ない場合、十分なMnSの体積率が得られず、組織制御ができなくなるため、含有量の下限を0.05%とする。また、過剰にMnを添加しても組織制御への改善効果が得られないため、含有量の上限を0.1%とする。
(3) Mn
Mn is an element necessary for finely precipitating MnS during hot rolling, so Mn is added in an amount of 0.05 to 0.1%. If the content is less than this, a sufficient volume ratio of MnS cannot be obtained, and the structure cannot be controlled. Therefore, the lower limit of the content is set to 0.05%. Further, even if Mn is excessively added, the effect of controlling the structure cannot be improved, so the upper limit of the content is set to 0.1%.
(4)S
Sは、Mnと同様に、MnSを析出させるための必須元素であるため、0.01〜0.04%添加する。含有量がこれより少ない場合、十分なMnSの体積率が得られず、組織制御ができなくなるため、含有量の下限を0.01%とする。過剰に添加した場合、MnSが粗大化し易くなること、および赤熱脆化で熱延が困難になることから、含有量の上限を0.04%とする。
(4) S
S, like Mn, is an essential element for precipitating MnS, so is added in an amount of 0.01 to 0.04%. If the content is less than this, a sufficient volume ratio of MnS cannot be obtained and the structure cannot be controlled, so the lower limit of the content is set to 0.01%. When excessively added, MnS is likely to be coarsened, and hot rolling is difficult due to red-hot embrittlement. Therefore, the upper limit of the content is set to 0.04%.
(5)Al
Alは、MnSを微細析出せしめる熱間圧延後の熱延板を焼鈍することで、微細MnSと地鉄との界面上に微細AlNを析出させるために必要な元素であり、一方向性電磁鋼板の磁束密度を向上させることを目的として、0.01〜0.05%添加する。含有量がこれより少ない場合、AlNの有効な析出量が得られず、仕上げ焼鈍時の組織制御に寄与できず、一方向性電磁鋼板の磁束密度が向上しないため、含有量の下限を0.01%とする。また、含有量がこれより大きい場合、AlNの成長が速くなり、また熱間圧延でAlNが単独で析出しやすくなることで、AlNが比較的粗大に析出し、二次再結晶において有効なピン止め力を発揮せず、Goss方位粒の優先成長に悪影響が及んで磁束密度が低下するため、含有量の上限を0.05%とする。
(5) Al
Al is an element necessary to precipitate fine AlN on the interface between fine MnS and ground iron by annealing a hot-rolled sheet after hot rolling that causes fine precipitation of MnS. Is added for the purpose of improving the magnetic flux density of 0.01 to 0.05%. If the content is less than this, an effective precipitation amount of AlN cannot be obtained, and it cannot contribute to the structure control during finish annealing, and the magnetic flux density of the grain-oriented electrical steel sheet does not improve. 01%. On the other hand, if the content is larger than this, the growth of AlN is accelerated, and AlN is easily precipitated by hot rolling alone, so that AlN is relatively coarsely precipitated and a pin effective in secondary recrystallization is effective. Since the stop force is not exerted and the preferential growth of the Goss-oriented grains is adversely affected and the magnetic flux density decreases, the upper limit of the content is set to 0.05%.
(6)N
Nは、Alと同様に、熱延板を焼鈍して微細AlNを析出させるのに必要な元素であり、0.001〜0.030%添加する。含有量がこれより少ない場合、微細AlNの有効な析出量が得られず、仕上げ焼鈍時の組織制御に必要な粒界ピン止め力を発揮することができないから、含有量の下限を0.001%とする。また、含有量がこれより大きい場合、熱間圧延でAlNが単独析出しやすくなることで、AlNが比較的粗大に析出し、二次再結晶において有効なピン止め力を発揮せず、Goss方位粒の優先成長に悪影響が及んで磁束密度が低下するため、含有量の上限を0.030%とする。
(6) N
N, like Al, is an element necessary for annealing a hot-rolled sheet to precipitate fine AlN, and is added in an amount of 0.001 to 0.030%. If the content is less than this, an effective precipitation amount of fine AlN cannot be obtained, and the grain boundary pinning force required for controlling the structure at the time of finish annealing cannot be exerted. %. On the other hand, if the content is larger than this, AlN is apt to precipitate alone by hot rolling, so that AlN precipitates relatively coarsely, does not exhibit an effective pinning force in secondary recrystallization, and has a Goss orientation. Since the magnetic flux density is lowered by adversely affecting the preferential growth of grains, the upper limit of the content is set to 0.030%.
(7)その他
Bi、Pb、As、およびTeからなる群から選ばれる1種または2種以上を、合計で0.02%以下添加し、かつSb、Sn、およびPからなる群から選ばれる1種または2種以上を、合計で0.5%以下添加することが好ましい。後述の「B.一方向性電磁鋼板用熱延板の製造方法 1.熱間圧延工程」に記載の熱間圧延工程においては、上記加熱後の鋳片の板厚中心温度が表面温度よりも低くなることにより、粒界易動度が上記加熱後の鋳片の中心領域において表面近傍領域よりも小さくなる。さらに、上述の元素の偏析により粒界の移動速度が遅くなるため、上記加熱後の鋳片の中心領域において表面近傍領域よりも結晶粒径は顕著に小さくなる。この結果、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径を、板厚1/5層〜中心の中心領域よりも顕著に粗大化させておくことができるので、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができるからである。
なお、Sn、Bi、Tepb、SbおよびSe、ならびにSb、Sn、およびPは、Feの一部に代えて、添加されるものである。
(7) Others One or more selected from the group consisting of Bi, Pb, As, and Te are added in a total amount of 0.02% or less, and one selected from the group consisting of Sb, Sn, and P It is preferable to add at least 0.5% of a kind or two or more kinds. In the hot rolling step described in “B. Method for Manufacturing Hot Rolled Sheet for Unidirectional Electrical Steel Sheet 1. Hot Rolling Step” described later, the sheet thickness center temperature of the slab after the heating is higher than the surface temperature. By lowering, the grain boundary mobility becomes smaller in the central region of the slab after the heating than in the region near the surface. Further, since the movement speed of the grain boundary is slowed by the segregation of the above-mentioned elements, the crystal grain size is significantly smaller in the central region of the slab after the heating than in the region near the surface. As a result, in the hot-rolled sheet for unidirectional electromagnetic steel sheets, the average grain size of the crystal grains in the region near the surface of the sheet thickness of 1/10 to 1/5 layer is larger than that in the central region of the sheet thickness of 1/5 layer to the center. Since it can be remarkably coarsened, even if the inhibitor strength decreases rapidly near the steel sheet surface during the secondary recrystallization, the preferential growth of Goss orientation grains near the steel sheet surface is remarkably maintained. This is because the secondary recrystallized structure in the thin unidirectional magnetic steel sheet can be remarkably stabilized.
Note that Sn, Bi, Tepb, Sb and Se, and Sb, Sn and P are added instead of part of Fe.
(8)残部
残部はFeおよび不可避的不純物である。不可避的不純物のうち粒成長性に悪影響を及ぼすTi、V、Nb、Zrは極力低減することが望ましく、それぞれ0.008%以下とすることが好ましい。
(8) Remainder The remainder is Fe and inevitable impurities. Of the unavoidable impurities, Ti, V, Nb, and Zr, which adversely affect the grain growth, are desirably reduced as much as possible, and each is desirably 0.008% or less.
2.結晶粒の平均粒径
本発明の一方向性電磁鋼板用熱延板において、板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径の比は1.10以上である。これにより、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒を含む結晶粒の平均粒径を中心領域よりも粗大化させておくことができるので、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を安定化させることができる。
ここで、本発明において、「結晶粒の平均粒径」とは、観察された複数の結晶粒について、投影面積に対する同一面積の円の直径をそれぞれ求め、平均した値を意味する。
2. Average grain size of crystal grains In the hot-rolled sheet for a grain-oriented electrical steel sheet of the present invention, the thickness of 1/10 layer to 1/5 layer relative to the average grain size of crystal grains in the central region of the center is 1/5 layer. The ratio of the average grain size of the crystal grains in the region near the surface is 1.10 or more. Thereby, at the time of completion of the primary recrystallization, the average grain size of the crystal grains including the Goss orientation grains in the region near the surface can be made larger than that in the central region. Even if the strength rapidly decreases, the preferential growth of Goss-oriented grains near the steel sheet surface can be maintained, and the secondary recrystallized structure in the thin unidirectional magnetic steel sheet can be stabilized.
Here, in the present invention, the “average grain size of crystal grains” means a value obtained by averaging the diameters of circles having the same area with respect to the projected area for a plurality of observed crystal grains.
板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径の比は、1.10以上であることが好ましく、中でも1.20以上であることが好ましい。鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持できるからである。 The ratio of the average grain size of the crystal grains in the region near the surface of the 1/10 to 1/5 layer thickness to the average grain size of the crystal grains in the central region from the 1/5 layer thickness to the center is 1.10 or more. It is preferable that it is 1.20 or more. This is because the preferential growth of Goss-oriented grains in the vicinity of the steel sheet surface can be remarkably maintained.
3.析出物
以下、MnSの析出物について詳細に説明する。
3. Precipitates Hereinafter, the precipitates of MnS will be described in detail.
(1)平均粒径
本発明の一方向性電磁鋼板用熱延板において、板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比は1.10以上であることが好ましい。MnSが表層近傍領域よりも中心領域において微細かつ高密度になることによって、表面近傍領域において一次再結晶組織をGoss方位粒の優先成長に顕著に有利な組織にし、仕上げ焼鈍時に中心領域の一次再結晶粒の成長を顕著に抑制することができるので、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができるからである。
(1) Average Particle Size In the hot-rolled sheet for a grain-oriented electrical steel sheet of the present invention, the surface of the sheet thickness of 1/10 to 1/5 layer with respect to the average particle size of MnS in the central region of the thickness of 1/5 layer. The ratio of the average particle size of MnS in the vicinity region is preferably 1.10 or more. Since the MnS becomes finer and denser in the central region than in the region near the surface layer, the primary recrystallized structure in the region near the surface is made to be a structure that is significantly advantageous for preferential growth of Goss-oriented grains. Since the growth of crystal grains can be significantly suppressed, the preferential growth of Goss orientation grains near the steel sheet surface is remarkably maintained, and the secondary recrystallization structure in thin unidirectional magnetic steel sheets is significantly stabilized. This is because it can be done.
ここで、本発明において、「MnSの平均粒径」とは、観察された複数のMnSについて、投影面積に対する同一面積の円の直径をそれぞれ求め、平均した値を意味する。一方向性電磁鋼板用熱延板において、MnSの総析出量が同一である場合、MnSの平均粒子径が小さいほど、MnSは高い分布密度で析出する。 Here, in the present invention, the “average particle size of MnS” means a value obtained by calculating the diameters of circles having the same area with respect to the projected area for a plurality of observed MnS. In the hot-rolled sheet for unidirectional magnetic steel sheets, when the total amount of MnS precipitated is the same, MnS precipitates at a higher distribution density as the average particle size of MnS is smaller.
板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比は、中でも1.20以上であることが好ましく、特に1.30以上であることが好ましい。均質微細なMnSが中心領域で結晶粒成長を抑制するとともに、高温では中心領域の結晶粒成長を抑制しながら、表層近傍領域のMnSがオストワルド成長することで二次再結晶が開始し、結晶粒をさん食して進行する二次再結晶が顕著に起こりやすくなるからである。 The ratio of the average particle size of MnS in the region near the surface of the 1/10 to 1/5 layer thickness to the average particle size of MnS in the central region from the 1/5 layer thickness to the center should be 1.20 or more, among others. Is preferable, and it is particularly preferable that it is 1.30 or more. Homogeneous and fine MnS suppresses crystal grain growth in the central region, and suppresses crystal grain growth in the central region at a high temperature, and secondary recrystallization starts by Ostwald-grown MnS in the region near the surface layer. This is because secondary recrystallization, which progresses after eating the food, is more likely to occur.
板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径は、80nm〜300nmであることが好ましく、中でも80nm〜200nm、特に80nm〜160nmであることが好ましい。MnSがこの平均粒径にある場合、尖鋭な二次再結晶組織が得られるからである。また、板厚1/5層〜中心の中心領域におけるMnSの平均粒径は、50nm〜200nmであることが好ましく、中でも50nm〜180nm、特に50nm〜120nmであることが好ましい。中心領域に微細なMnSを分散させることで、仕上げ焼鈍中の中心領域の結晶粒成長が抑制され、二次再結晶が顕著に安定化されるからである。 The average particle size of MnS in the region near the surface of the 1/10 to 1/5 layer is preferably 80 nm to 300 nm, more preferably 80 nm to 200 nm, and particularly preferably 80 nm to 160 nm. This is because when MnS has this average particle size, a sharp secondary recrystallization structure can be obtained. Further, the average particle size of MnS in the central region from the 厚 layer thickness to the center is preferably 50 nm to 200 nm, more preferably 50 nm to 180 nm, particularly preferably 50 nm to 120 nm. This is because, by dispersing fine MnS in the central region, crystal grain growth in the central region during finish annealing is suppressed, and secondary recrystallization is significantly stabilized.
(2)分布密度
本発明の一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるMnSの分布密度に対する板厚1/5層〜中心の中心領域におけるMnSの分布密度の比は1.10以上であることが好ましい。MnSが表面近傍領域よりも中心領域において微細かつ高密度になることによって、表面近傍領域において一次再結晶組織をGoss方位粒の優先成長に顕著に有利な組織にし、仕上げ焼鈍時に中心領域の一次再結晶粒の成長を顕著に抑制することができるので、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができるからである。
(2) Distribution Density In the hot-rolled sheet for a grain-oriented electrical steel sheet of the present invention, the central region from the 1/5 layer thickness to the center with respect to the distribution density of MnS in the region near the surface of 1/10 to 1/5 layer thickness. Is preferably 1.10 or more. Since the MnS becomes finer and denser in the central region than in the near-surface region, the primary recrystallized structure in the near-surface region becomes a structure that is significantly advantageous for preferential growth of Goss-oriented grains. Since the growth of crystal grains can be significantly suppressed, the preferential growth of Goss orientation grains near the steel sheet surface is remarkably maintained, and the secondary recrystallization structure in thin unidirectional magnetic steel sheets is significantly stabilized. This is because it can be done.
ここで、本発明において、「MnSの分布密度」とは、鏡面研磨した断面を観察して数えたMnSの個数を観察視野の面積で除した値を意味する。 Here, in the present invention, “MnS distribution density” means a value obtained by dividing the number of MnS counted by observing a mirror-polished cross section by the area of the observation visual field.
4.板厚
本発明の一方向性電磁鋼板用熱延板は、薄手の一方向性電磁鋼板を製造する時に均一な二次再結晶を発現させるようなインヒビター制御を行って得られることを前提としている。そのため熱延板の板厚は2.3mm以下、好ましくは2.1mm以下、より好ましくは2.0mm以下とし、その後の冷間圧延工程では85%以上、92%以下の圧下率で冷間圧延を施し最終板厚とするのが好ましい。一方、冷間圧延後の板厚が極度に薄くなり、本発明による改善が見られないため、熱延板の板厚は1.5mm以上とするのが好ましい。
4. Plate thickness The hot-rolled sheet for unidirectional magnetic steel sheets of the present invention is premised on being obtained by performing inhibitor control such that uniform secondary recrystallization is exhibited when manufacturing thin unidirectional magnetic steel sheets. . Therefore, the thickness of the hot-rolled sheet is 2.3 mm or less, preferably 2.1 mm or less, more preferably 2.0 mm or less. In the subsequent cold rolling step, cold rolling is performed at a rolling reduction of 85% or more and 92% or less. To obtain a final plate thickness. On the other hand, the thickness of the hot-rolled sheet is preferably set to 1.5 mm or more because the sheet thickness after cold rolling becomes extremely thin and the improvement according to the present invention is not seen.
5.製造方法
本発明の一方向性電磁鋼板用熱延板は、後述の「B.一方向性電磁鋼板用熱延板の製造方法」に記載の一方向性電磁鋼板用熱延板の製造方法により製造することが好適である。
5. Manufacturing method The hot-rolled sheet for unidirectional electromagnetic steel sheets of the present invention is manufactured by the method for manufacturing a hot-rolled sheet for unidirectional electromagnetic steel sheets described in “B. It is preferred to manufacture.
B.一方向性電磁鋼板用熱延板の製造方法
本発明の一方向性電磁鋼板用熱延板の製造方法は、上述の化学成分を有する鋳片に熱間圧延を施す熱間圧延工程を有する。以下、本発明の一方向性電磁鋼板用熱延板の製造方法について説明する。
B. Method for Manufacturing Hot-Rolled Sheet for Unidirectional Electrical Steel Sheet The method for manufacturing a hot-rolled sheet for unidirectional electrical steel sheet according to the present invention includes a hot rolling step of performing hot rolling on a slab having the above-mentioned chemical composition. Hereinafter, a method for producing a hot-rolled sheet for a grain-oriented electrical steel sheet according to the present invention will be described.
1.熱間圧延工程
熱間圧延工程においては、上述の化学成分を有する鋳片に熱間圧延を施す。また、上記熱間圧延工程においては、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とする。これにより、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径を、板厚1/5層〜中心の中心領域よりも粗大化させておくことができる。この結果、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒を含む結晶粒の平均粒径を中心領域よりも粗大化させておくことができるので、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を安定化させることができる。ここで、上記熱間圧延全体の真歪みは50%以上であることが好ましい。これにより、MnSの析出が促進され、上記の効果が顕著に高まるからである。
1. Hot Rolling Step In the hot rolling step, a slab having the above-mentioned chemical components is subjected to hot rolling. In the hot rolling step, the true strain of rolling applied to the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the thickness center temperature Tc1000 to 1100 ° C satisfies the relationship of Ts-Tc> 50 ° C, 40% or more of the true strain of the entire hot rolling. Thereby, in the hot-rolled sheet for unidirectional electromagnetic steel sheets, the average grain size of the crystal grains in the region near the surface of the 1/10 to 1/5 layer thickness is larger than that in the central region of the 1/5 layer thickness to the center. It can be coarsened. As a result, at the time of completion of the primary recrystallization, the average grain size of the crystal grains including the Goss-oriented grains in the region near the surface can be made larger than that in the central region. Even if the strength rapidly decreases, the preferential growth of Goss-oriented grains near the steel sheet surface can be maintained, and the secondary recrystallized structure in the thin unidirectional magnetic steel sheet can be stabilized. Here, the true strain of the entire hot rolling is preferably 50% or more. Thereby, the precipitation of MnS is promoted, and the above-mentioned effect is significantly enhanced.
ここで、本発明において、「鋼板の表面温度Ts」とは、接触式の温度計あるいは放射温度計によって測定した温度を意味する。また、本発明において、「鋼板の板厚中心温度Tc」とは、通常公知の差分法による熱伝導解析により求めた温度を意味する。 Here, in the present invention, the “surface temperature Ts of the steel sheet” means a temperature measured by a contact-type thermometer or a radiation thermometer. Further, in the present invention, the “thickness center temperature Tc of the steel sheet” means a temperature obtained by a heat conduction analysis by a generally known difference method.
上述の化学成分を有する鋳片は、例えば、転炉または電気炉等により鋼を溶製して、必要に応じて真空脱ガス処理し、次いで連続鋳造もしくは造塊後分塊圧延することによって得られる。 A slab having the above-mentioned chemical components is obtained, for example, by melting steel in a converter or an electric furnace, subjecting the steel to vacuum degassing if necessary, and then performing continuous casting or ingot casting followed by ingot rolling. Can be
上記熱間圧延工程においては、上記鋳片に粗圧延および仕上げ圧延を施して所望の板厚の熱延板に仕上げる。このとき、後述の条件で上記鋳片を加熱した後に上記熱間圧延を施してもよい。また、上記粗圧延において1または2以上の圧延パスを施した鋼板に、後述の条件で冷却して保持した後に、さらに加熱して上記仕上げ圧延を施してもよい。 In the hot rolling step, the slab is subjected to rough rolling and finish rolling to finish a hot-rolled sheet having a desired thickness. At this time, the hot rolling may be performed after the slab is heated under the conditions described below. Further, the steel sheet which has been subjected to one or two or more rolling passes in the rough rolling may be cooled and held under the conditions described below, and then subjected to the finish rolling by further heating.
上記熱間圧延工程において、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とするとは、上記粗圧延および仕上げ圧延の全ての圧延パスから任意に選択した1または2以上の圧延パスを上記関係を満たす状態で鋼板に行い、上記関係を満たす状態で鋼板に行う上記1または2以上の圧延パスの真歪みを、上記粗圧延および仕上げ圧延の全ての圧延パスの真歪みの40%以上とすることを意味する。 In the hot rolling step, the true strain of rolling applied to the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the thickness center temperature Tc1000 to 1100 ° C satisfies the relationship of Ts-Tc> 50 ° C is determined by the hot rolling. To be 40% or more of the entire true distortion means that one or two or more rolling passes arbitrarily selected from all the rolling passes of the rough rolling and the finish rolling are performed on the steel sheet in a state satisfying the above relationship, and the above relationship is satisfied. This means that the true strain of the one or more rolling passes performed on the steel sheet in the state is 40% or more of the true strain of all the rolling passes of the rough rolling and the finish rolling.
また、上記熱間圧延工程において、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とする操業管理の条件としては、主に、以下の二つの好ましい条件がある。 Further, in the hot rolling step, the true strain of the rolling applied to the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the thickness center temperature Tc1000 to 1100 ° C satisfies the relationship of Ts-Tc> 50 ° C, As conditions for the operation management to make the true strain of the entire cold rolling 40% or more, there are mainly the following two preferable conditions.
第1の条件では、表面温度にして900℃以下まで冷却した上記鋳片を、雰囲気温度が1200℃以上の加熱炉に装入して、装入後1時間以内に上記加熱炉から抽出した上記鋳片に上記熱間圧延を施す。これにより、上記鋳片の表面温度と板厚中心温度との差が確保され、続く上記熱間圧延工程において、1または2以上の圧延パスを、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に行う。そして、上記関係を満たす状態で鋼板に行う上記1または2以上の圧延パスの真歪みを、上記熱間圧延全体の真歪みの40%以上とする。 In the first condition, the slab cooled to 900 ° C. or less as the surface temperature was charged into a heating furnace having an ambient temperature of 1200 ° C. or more, and the slab was extracted from the heating furnace within 1 hour after the charging. The slab is subjected to the above hot rolling. As a result, a difference between the surface temperature of the slab and the center temperature of the plate thickness is ensured, and in the subsequent hot rolling step, one or more rolling passes are performed with the surface temperature Ts1100 to 1200 ° C and the plate thickness center temperature Tc1000.に 1100 ° C. is performed on the steel sheet in a state where Ts−Tc> 50 ° C. is satisfied. Then, the true strain of the one or more rolling passes performed on the steel sheet while satisfying the above relationship is set to 40% or more of the true strain of the entire hot rolling.
第2の条件では、圧延後の鋼板を表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、上記圧延後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに圧延を施す。具体的には、例えば、上記粗圧延または仕上げ圧延において行われる1または2以上の圧延パス後の鋼板を、表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、上記1または2以上の圧延パス後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに仕上げ圧延において1または2以上の圧延パスを行う。 In the second condition, the rolled steel sheet is cooled at a mean cooling rate of 2 ° C./s or more from 1100 ° C. or more to 600 to 750 ° C. or less at a surface temperature Ts, and 0s to 300s in a temperature range of 600 to 750 ° C. After the holding, the rolled steel sheet is heated to a temperature of 1100 ° C. or more and 1150 ° C. or less with the surface temperature Ts, and then further rolled. Specifically, for example, the steel sheet after one or more rolling passes performed in the rough rolling or the finish rolling is subjected to an average temperature of 2 ° C./s or more from 1100 ° C. or more to 600 to 750 ° C. or less as a surface temperature Ts. After cooling at a cooling rate and maintaining 0 to 300 s in a temperature range of 600 to 750 ° C., after heating the steel sheet after the above one or more rolling passes to a surface temperature Ts and heating it to a temperature of 1100 ° C. to 1150 ° C. Further, one or more rolling passes are performed in the finish rolling.
これにより、上記粗圧延または仕上げ圧延において行われる1または2以上の圧延パス後の鋼板の表面温度と板厚中心温度の差が確保され、続く上記仕上げ圧延において行われる1または2以上の圧延パスを、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に行う。そして、上記関係を満たす状態で鋼板に行う上記1または2以上の圧延パスの真歪みを、上記熱間圧延全体の真歪みの40%以上とする。 Thereby, a difference between the surface temperature of the steel sheet and the sheet thickness center temperature after one or more rolling passes performed in the rough rolling or the finish rolling is secured, and one or more rolling passes performed in the subsequent finish rolling are performed. Is performed on the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the thickness center temperature Tc1000 to 1100 ° C satisfy the relationship of Ts-Tc> 50 ° C. Then, the true strain of the one or more rolling passes performed on the steel sheet while satisfying the above relationship is set to 40% or more of the true strain of the entire hot rolling.
また、上記熱延板製造工程においては、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に施される上述の圧延のうち表面温度Ts1100〜1150℃で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とすることが好ましく、50%以上とすることがさらに好ましい。一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径を、板厚1/5層〜中心の中心領域よりも顕著に粗大化させておくことができる。この結果、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒を含む結晶粒の平均粒径を中心領域よりも顕著に粗大化させておくことができるので、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができる。 In the above-mentioned hot rolled sheet manufacturing process, the surface temperature Ts1100 to 1200 ° C and the sheet thickness center temperature Tc1000 to 1100 ° C satisfy the relationship of Ts−Tc> 50 ° C. The true strain of the rolling applied to the steel sheet at the temperature Ts1100 to 1150 ° C is preferably 40% or more, more preferably 50% or more of the true strain of the entire hot rolling. In the hot-rolled sheet for unidirectional magnetic steel sheets, the average grain size of the crystal grains in the region near the surface of 1/10 to 1/5 layer thickness is significantly larger than that in the central region of 1/5 layer thickness to center. It can be kept. As a result, at the time of completion of the primary recrystallization, the average grain size of the crystal grains including the Goss orientation grains in the region near the surface can be remarkably coarsened as compared with the central region. The secondary recrystallized structure can be remarkably stabilized.
また、上記熱間圧延工程においては、上記鋳片を表面温度にして1250〜1400℃に加熱した後に、上記加熱後の鋳片に上記熱間圧延を施すことが好ましい。上記熱間圧延を施す前に既に析出しているMnSを完全に溶体化させることができるため、上記熱間圧延を施すことによって、板厚1/5層〜中心の中心領域においてMnSを板厚1/10〜1/5層の表面近傍領域よりも、より微細かつ高密度に析出させることができる。これにより、中心領域において結晶粒の成長を顕著に抑制することで、一次再結晶組織をGoss方位粒の優先成長に顕著に有利な組織にし、仕上げ焼鈍時に一次再結晶粒の成長を顕著に抑制することができるので、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができるからである。 In the hot rolling step, the slab is preferably heated to a surface temperature of 1250 to 1400 ° C., and then the hot slab is subjected to the hot rolling. Since the MnS already precipitated before the hot rolling can be completely solution-solutioned, the MnS is reduced in the central region from the 1/5 layer thickness to the center by performing the hot rolling. It is possible to deposit finer and more densely than the 1/10 to 1/5 layer near the surface. As a result, the growth of the crystal grains in the central region is remarkably suppressed, so that the primary recrystallized structure becomes a structure remarkably advantageous to the preferential growth of the Goss-oriented grains, and the growth of the primary recrystallized grains during the final annealing is remarkably suppressed. This is because the preferential growth of Goss-oriented grains in the vicinity of the steel sheet surface can be remarkably maintained, and the secondary recrystallized structure in the thin unidirectional magnetic steel sheet can be remarkably stabilized.
さらに、上記熱間圧延工程においては、上記鋳片が、上記Feの一部に代えて、質量%で、Bi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.02%以下、ならびにSb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.5%以下をさらに含有することが好ましい。上記熱間圧延工程においては、上記加熱後の鋳片の板厚中心温度が表面温度よりも低くなることにより、粒界易動度が上記加熱後の鋳片の中心領域において表面近傍領域よりも小さくなる。さらに、上述の元素の偏析により粒界の移動速度が遅くなるため、上記加熱後の鋳片の中心領域において表面近傍領域よりも結晶粒径は顕著に小さくなる。この結果、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径を、板厚1/5層〜中心の中心領域よりも顕著に粗大化させておくことができるので、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができるからである。 Further, in the hot rolling step, the slab is one or more selected from the group consisting of Bi, Pb, As, and Te in mass% instead of a part of the Fe: , And one or more selected from the group consisting of Sb, Sn, and P: preferably 0.5% or less in total. In the hot rolling step, the sheet thickness center temperature of the cast slab after the heating is lower than the surface temperature, so that the grain boundary mobility is greater than the surface near region in the center region of the cast slab after the heating. Become smaller. Further, since the movement speed of the grain boundary is slowed by the segregation of the above-mentioned elements, the crystal grain size is significantly smaller in the central region of the slab after the heating than in the region near the surface. As a result, in the hot-rolled sheet for unidirectional electromagnetic steel sheets, the average grain size of the crystal grains in the region near the surface of the sheet thickness of 1/10 to 1/5 layer is larger than that in the central region of the sheet thickness of 1/5 layer to the center. Since it can be remarkably coarsened, even if the inhibitor strength decreases rapidly near the steel sheet surface during the secondary recrystallization, the preferential growth of Goss orientation grains near the steel sheet surface is remarkably maintained. This is because the secondary recrystallized structure in the thin unidirectional magnetic steel sheet can be remarkably stabilized.
2.一方向性電磁鋼板用熱延板
本発明の一方向性電磁鋼板用熱延板の製造方法によって製造される一方向性電磁鋼板用熱延板としては、特に限定されるものではないが、上述の「A.一方向性電磁鋼板用熱延板」に記載の一方向性電磁鋼板用熱延板が好ましい。より均一な二次再結晶を発現させることによってより磁気特性を優れたものとした薄手の一方向性電磁鋼板を製造するために用いることができるからである。
2. Hot rolled sheet for unidirectional magnetic steel sheet The hot rolled sheet for unidirectional magnetic steel sheet manufactured by the method for manufacturing a hot rolled sheet for unidirectional magnetic steel sheet of the present invention is not particularly limited. The hot rolled sheet for unidirectional magnetic steel sheets described in “A. Hot rolled sheet for unidirectional magnetic steel sheets” is preferred. This is because it can be used to produce a thin unidirectional magnetic steel sheet having more excellent magnetic properties by expressing more uniform secondary recrystallization.
C.一方向性電磁鋼板の製造方法
本発明の一方向性電磁鋼板の製造方法は、上述の「B.一方向性電磁鋼板用熱延板の製造方法」に記載の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する熱延板製造工程と、上記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す熱延板焼鈍工程と、上記熱延板焼鈍後の鋼板に冷間圧延を施す冷間圧延工程と、上記冷間圧延後の鋼板に脱炭焼鈍を施す脱炭焼鈍工程と、上記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程とを有することを特徴とするものである。
以下、本発明の一方向性電磁鋼板の製造方法における各工程について説明する。
C. Method for Producing Unidirectional Electrical Steel Sheet The method for producing a unidirectional electrical steel sheet according to the present invention is described in the above "B. Method for producing hot rolled sheet for unidirectional electrical steel sheet". A hot-rolled sheet manufacturing step of performing a sheet manufacturing method to manufacture a hot-rolled sheet for a unidirectional electromagnetic steel sheet, and a hot-rolled sheet annealing step of performing a hot-rolled sheet annealing on the hot-rolled sheet for a unidirectional electromagnetic steel sheet, A cold rolling step of performing cold rolling on the steel sheet after the hot-rolled sheet annealing, a decarburizing annealing step of performing decarburizing annealing on the steel sheet after the cold rolling, and a finish annealing on the steel sheet after the decarburizing annealing. And a finishing annealing step to be performed.
Hereinafter, each step in the method for producing a grain-oriented electrical steel sheet of the present invention will be described.
1.熱延板製造工程
上記熱延板製造工程においては、上述の「B.一方向性電磁鋼板用熱延板の製造方法」に記載の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する。
1. Hot Rolled Sheet Manufacturing Step In the hot rolled sheet manufacturing step, the manufacturing method of the hot rolled sheet for unidirectional magnetic steel sheet described in the above “B. Method for manufacturing hot rolled sheet for unidirectional magnetic steel sheet” is performed. Manufactures hot rolled sheets for unidirectional electrical steel sheets.
熱延板製造条件は、上記「B.一方向性電磁鋼板用熱延板の製造方法 1.熱間圧延工程」の項目に記載の通りである。また、一方向性電磁鋼板用熱延板の構成は、上記「A.一方向性電磁鋼板用熱延板」の項目に記載の通りである。 The conditions for manufacturing the hot-rolled sheet are as described in the item “B. Method for manufacturing hot-rolled sheet for unidirectional magnetic steel sheet 1. Hot rolling step”. The configuration of the hot-rolled sheet for unidirectional magnetic steel sheets is as described in the above item “A. Hot-rolled sheet for unidirectional magnetic steel sheets”.
2.熱延板焼鈍工程
上記熱延板焼鈍工程においては、上記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す。
2. Hot Rolled Sheet Annealing Step In the hot rolled sheet annealing step, the hot rolled sheet for the unidirectional magnetic steel sheet is subjected to hot rolled sheet annealing.
熱延板焼鈍条件は、特に限定されるものではないが、上記熱延板焼鈍工程においては、上記一方向性電磁鋼板用熱延板を900〜1050℃の温度域に60s以上保持することが好ましい。熱延板焼鈍をこのような条件で施すことにより、AlNが析出してインヒビターとして作用する結果、二次再結晶組織におけるGoss方位への集積度が顕著に向上するからである。
上記熱延板焼鈍工程においては、上記仕上げ熱延後の鋼板をコイル状に巻き取り、自己保有熱にて上記の温度域に保持してもよいし、冷却後の熱延板に焼鈍を施して上記の温度域に保持してもよい。
The hot-rolled sheet annealing conditions are not particularly limited, but in the hot-rolled sheet annealing step, the hot-rolled sheet for unidirectional magnetic steel sheets is maintained in a temperature range of 900 to 1050 ° C for 60 s or more. preferable. This is because by performing hot-rolled sheet annealing under such conditions, AlN precipitates and acts as an inhibitor, and as a result, the degree of integration in the secondary recrystallization structure in the Goss orientation is significantly improved.
In the hot-rolled sheet annealing step, the steel sheet after the finish hot-rolling may be wound into a coil, and may be held in the above-mentioned temperature range by self-held heat, or may be subjected to annealing on the hot-rolled sheet after cooling. May be maintained in the above temperature range.
3.冷間圧延工程
上記冷間圧延工程においては、上記熱延板焼鈍後の鋼板に冷間圧延を施す。
3. Cold Rolling Step In the cold rolling step, the steel sheet after the hot-rolled sheet annealing is subjected to cold rolling.
4.脱炭焼鈍工程
上記脱炭焼鈍工程においては、上記冷間圧延後の鋼板に脱炭焼鈍を施す。
4. Decarburizing annealing step In the decarburizing annealing step, the steel sheet after the cold rolling is subjected to decarburizing annealing.
脱炭焼鈍条件は特に限定されるものではないが、上記脱炭焼鈍工程においては、上記冷間圧延後の鋼板を、350℃以下の温度から700℃以上850℃以下の温度まで昇温する昇温過程において100℃/s以上の昇温速度で加熱した後に、上記冷間圧延後の鋼板に上記脱炭焼鈍を施すことが好ましい。一次再結晶時の昇温での急速加熱の作用によって、一次再結晶完了時に、板厚方向全体においてGoss方位粒をGoss以外のランダム方位を持つ一次結晶粒よりも大きくすることができるからである。これにより、本発明における熱延板の組織による作用との相乗効果が生じることで、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径が顕著に大きくなり、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性が顕著に維持されることが期待できる。この結果、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができるからである。 The decarburizing annealing conditions are not particularly limited, but in the decarburizing annealing step, the cold-rolled steel sheet is heated from a temperature of 350 ° C or less to a temperature of 700 ° C or more and 850 ° C or less. It is preferable that the steel sheet after the cold rolling is subjected to the decarburizing annealing after heating at a heating rate of 100 ° C./s or more in the temperature process. This is because, by the action of rapid heating at an elevated temperature during primary recrystallization, when primary recrystallization is completed, Goss-oriented grains can be made larger in the entire sheet thickness direction than primary crystal grains having random orientations other than Goss. . This produces a synergistic effect with the action of the structure of the hot-rolled sheet in the present invention, so that at the time of completion of the primary recrystallization, the average grain size of the Goss-oriented grains in the region near the surface is significantly increased, and the secondary recrystallization Even if the inhibitor strength near the steel sheet surface sometimes decreases rapidly, it can be expected that the preferential growth of Goss-oriented grains near the steel sheet surface is remarkably maintained. As a result, the secondary recrystallized structure in the thin unidirectional magnetic steel sheet can be remarkably stabilized.
5.仕上げ焼鈍工程
上記仕上げ焼鈍工程においては、上記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す。これにより、上記脱炭焼鈍後の鋼板において二次再結晶を起こして一方向性電磁鋼板を得る。
5. Finish Annealing Step In the above-described finish annealing step, the steel sheet after the decarburizing annealing is subjected to finish annealing. As a result, secondary recrystallization occurs in the steel sheet after the decarburizing annealing to obtain a unidirectional magnetic steel sheet.
6.その他
本発明の一方向性電磁鋼板の製造方法は、一般的に一方向性電磁鋼板の製造方法において行われる工程をさらに有するものでもよい。上述以外の代表的な工程としては、溶解、鋳造、熱延巻取り、酸洗、窒化焼鈍、焼鈍分離剤塗布、純化焼鈍、絶縁皮膜塗布が挙げられる。これらの工程は、一つの製造装置における1回の通板で複数の工程を行ってもよい。また、これらの工程は、一定の工程を複数回繰り返すことや、順番を入れ替えて行ってもよい。
6. Others The method for producing a grain-oriented electrical steel sheet of the present invention may further include a step generally performed in the method for producing a grain-oriented electrical steel sheet. Typical steps other than those described above include melting, casting, hot rolling, pickling, nitriding annealing, application of an annealing separator, purification annealing, and application of an insulating film. These steps may be performed in a single pass through a single manufacturing apparatus. These steps may be performed by repeating a certain step a plurality of times or by changing the order.
本発明の一方向性電磁鋼板の製造方法において熱延と熱延板焼鈍で単独のAlNが析出してAlNの析出密度が不足する場合は上記脱炭焼鈍工程後上記仕上げ焼鈍工程前に、窒化焼鈍を行う窒化焼鈍工程を有してもよい。これにより、AlNの析出密度が不足するのを回避することができる。 In the method for producing a grain-oriented electrical steel sheet according to the present invention, when single AlN is precipitated by hot rolling and hot-rolled sheet annealing and the precipitation density of AlN is insufficient, nitriding is performed after the decarburizing annealing step and before the finish annealing step. A nitriding annealing process for performing annealing may be included. Thereby, it is possible to prevent the precipitation density of AlN from becoming insufficient.
上記窒化焼鈍工程においては、上記脱炭焼鈍後の鋼板を、700℃以上800℃以下の温度域に30s以上300s以下保持する窒化焼鈍を行うことが好ましい。 In the nitriding annealing step, it is preferable to perform nitriding annealing by holding the steel sheet after the decarburizing annealing in a temperature range of 700 ° C to 800 ° C for 30 s to 300 s.
本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and has the same effect. Within the technical scope of
以下、実施例および比較例を例示して、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described by way of examples and comparative examples.
(実施例1)
下記表1に示す化学成分を有する鋼番号1〜16および鋼番号20〜36の鋳片を雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして下記表2−1に示す鋳片加熱温度Ts0に加熱した後に、加熱炉から抽出した鋳片に下記表2−1に示す条件で粗圧延および仕上げ圧延を施した。また、下記表1に示す化学成分を有する鋼番号17〜19の鋳片を表面温度にして850℃に冷却した後に、雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして下記表2−1に示す鋳片加熱温度Ts0に加熱した後に、加熱炉から抽出した鋳片に下記表2−1に示す条件で粗圧延および仕上げ圧延を施した。
(Example 1)
The slabs of steel Nos. 1 to 16 and steel Nos. 20 to 36 having the chemical components shown in Table 1 below were charged into a heating furnace having an ambient temperature of 1320 ° C. and maintained for 30 minutes to obtain a surface temperature. After heating to the slab heating temperature Ts0 shown in 2-1, the slab extracted from the heating furnace was subjected to rough rolling and finish rolling under the conditions shown in Table 2-1 below. Moreover, after cooling the slabs of steel Nos. 17 to 19 having the chemical components shown in Table 1 to 850 ° C. as the surface temperature, the slabs were charged into a heating furnace having an ambient temperature of 1320 ° C. and held for 30 minutes. After the surface temperature was increased to the slab heating temperature Ts0 shown in Table 2-1 below, the slab extracted from the heating furnace was subjected to rough rolling and finish rolling under the conditions shown in Table 2-1 below.
上記粗圧延では、鋼番号1〜36の鋳片について、入側での鋼板の表面温度Ts1[℃]、板厚中心温度Tc1[℃]、および板厚t1[mm]を下記表2−1に示すようにして最初の圧延パスを行った。また、上記粗圧延および仕上げ圧延において、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおける最初の圧延パスの入側での鋼板の表面温度Tss[℃]、板厚中心温度Tcs[℃]、Tss−Tcs[℃]、および板厚ts[mm]、ならびに上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおける最終の圧延パスの出側での鋼板の表面温度Tsf[℃]、板厚中心温度Tcf[℃]、Tsf−Tcf[℃]、および板厚tf[mm]を下記表2−1に示すようにして、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスを行った。
なお、Tss、Tcs、およびtsが、Ts1、Tc1、およびt1となっている鋼番号での熱間圧延においては、上記粗圧延における最初の圧延パスが、上記粗圧延および仕上げ圧延において、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおける最初の圧延パスに該当する。
In the above rough rolling, the surface temperature Ts1 [° C.], the thickness center temperature Tc1 [° C.], and the thickness t1 [mm] of the steel sheet on the entry side of the slabs of steel numbers 1 to 36 are shown in Table 2-1 below. The first rolling pass was performed as shown in FIG. Further, in the rough rolling and the finish rolling, in a plurality of rolling passes continuously performed on the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the sheet thickness center temperature Tc1000 to 1100 ° C satisfy the relationship of Ts-Tc> 50 ° C. The steel sheet surface temperature Tss [° C.], the sheet thickness center temperature Tcs [° C.], Tss-Tcs [° C.], and the sheet thickness ts [mm] at the entry side of the first rolling pass, and the steel sheet satisfying the above relations Surface temperature Tsf [° C.], sheet thickness center temperature Tcf [° C.], Tsf-Tcf [° C.], and sheet thickness tf [ mm] as shown in Table 2-1 below, a plurality of rolling passes continuously performed on the steel sheet in a state satisfying the above relationship.
In hot rolling with steel numbers where Tss, Tcs, and ts are Ts1, Tc1, and t1, the first rolling pass in the rough rolling is the same as that in the rough rolling and finish rolling. This corresponds to the first rolling pass in a plurality of rolling passes continuously performed on the steel sheet in a state where is satisfied.
以上のように、上記粗圧延および仕上げ圧延を施すことによって、仕上げ板厚tffが2.3mmの熱延板を得た。また、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおいて施される圧延の真歪みep[−]、および上記粗圧延および仕上げ圧延からなる熱間圧延全体の真歪みet[−]は、下記表2−1に示されるようになった。また、真歪みetに対する真歪みepの比Ce(ep/et×100)[%]は、下記表2−1に示されるようになった。 As described above, a hot-rolled sheet having a finished sheet thickness tff of 2.3 mm was obtained by performing the rough rolling and the finish rolling. Further, the true strain ep [-] of the rolling performed in a plurality of rolling passes continuously performed on the steel sheet while satisfying the above relationship, and the true strain et [of the entire hot rolling including the rough rolling and the finish rolling described above. -] Are as shown in Table 2-1 below. In addition, the ratio Ce (ep / et × 100) [%] of the true strain ep to the true strain et was as shown in Table 2-1 below.
さらに、得られた熱延板の板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径Ds[μm]、MnSの平均粒径ds[nm]、およびMnSの分布密度ρs[μm−2]、ならびに得られた熱延板の板厚1/5層〜中心の中心領域における結晶粒の平均粒径Di[μm]、MnSの平均粒径di[nm]、およびMnSの分布密度ρi[μm−2]を調査した。また、中心領域における結晶粒の平均粒径Diに対する表面近傍領域における結晶粒の平均粒径Dsの比Ds/Di[−]、中心領域におけるMnSの平均粒径diに対する表面近傍領域におけるMnSの平均粒径dsの比ds/di[−]、および表面近傍領域におけるMnSの分布密度ρsに対する中心領域におけるMnSの分布密度ρiの比ρi/ρs[−]を算出した。結晶粒の平均粒径は観察された複数の結晶粒について、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの平均粒径は観察された複数のMnSについて、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの分布密度は鏡面研磨した断面を観察して数えたMnSの個数を観察視野の面積で除した値である。得られた結果を下記表2−2に示す。 Furthermore, the average grain size Ds [μm] of the crystal grains, the average grain size ds [nm] of MnS, and the distribution density of MnS in the region near the surface of the obtained hot-rolled sheet having a thickness of 1/10 to 1/5 layer ρs [μm −2 ], average grain size Di [μm] of crystal grains in the central region from the 1 / layer thickness to the center of the obtained hot-rolled sheet, MnS average grain size di [nm], and MnS Was investigated for the distribution density ρi [μm −2 ]. The ratio Ds / Di [-] of the average grain diameter Ds of the crystal grains in the vicinity of the surface to the average grain diameter Di of the crystal grains in the center area, and the average of MnS in the vicinity of the surface with respect to the average grain diameter di of MnS in the center area. The ratio ds / di [−] of the particle diameter ds and the ratio ρi / ρs [−] of the distribution density ρi of MnS in the central region to the distribution density ρs of MnS in the region near the surface were calculated. The average grain size of the crystal grains is a value obtained by calculating and averaging the diameters of circles having the same area with respect to the projected area for a plurality of observed crystal grains, and the average grain size of MnS is the same as the projected area for a plurality of observed MnS. The diameter of each area circle was determined and averaged, and the distribution density of MnS was a value obtained by dividing the number of MnS counted by observing a mirror-polished cross section by the area of the observation visual field. The results obtained are shown in Table 2-2 below.
鋼番号20の熱延板は、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。また、鋼番号21の熱延板は、Ts0が低いために、Ts1100〜1200℃およびTc1000〜1100℃がTs−Tc>50℃の関係を満たさない状態で熱間圧延全体が施されることになるので、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。さらに、鋼番号22の熱延板は、上記粗圧延の途中で、板厚中心温度Tcsが上昇したため、Ts1100〜1200℃およびTc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で連続して行われる複数の圧延パスにおいて施される真歪みepが小さくなり、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。 Since the true strain ratio Ce of the hot-rolled sheet of steel No. 20 was lower than the range of the present invention, the average grain size ratio Ds / Di of the crystal grains was lower than the range of the present invention. In addition, since the hot rolled sheet of steel No. 21 has a low Ts0, the entire hot rolling is performed in a state where Ts1100 to 1200 ° C and Tc1000 to 1100 ° C do not satisfy the relationship of Ts−Tc> 50 ° C. Therefore, the ratio Ds / Di of the average grain size of the crystal grains was below the range of the present invention. Further, in the hot-rolled sheet of steel No. 22, the thickness center temperature Tcs increased during the rough rolling, so that Ts1100 to 1200 ° C and Tc1000 to 1100 ° C continuously satisfies the relationship of Ts-Tc> 50 ° C. The true strain ep applied in a plurality of rolling passes performed at the same time was reduced, and the ratio Ds / Di of the average grain size of the crystal grains was below the range of the present invention.
また、鋼番号24の熱延板は、鋳片加熱温度Ts0が本発明の好ましい範囲である1250〜1400℃を下回ったため、MnSの分散が不十分で、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。 Further, in the hot-rolled sheet of steel No. 24, since the slab heating temperature Ts0 was lower than 1250 to 1400 ° C. which is a preferable range of the present invention, the dispersion of MnS was insufficient, and the ratio of the average particle size of MnS ds / di. The ratio ρi / ρs of the distribution density was lower than the preferred range of the present invention, and the ratio Ds / Di of the average grain size of the crystal grains was lower than the range of the present invention.
また、鋼番号25の熱延板は、鋳片加熱温度Ts0が本発明の好ましい範囲である1250〜1400℃を上回ったため、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。 Further, in the hot-rolled sheet of steel No. 25, the slab heating temperature Ts0 exceeded the preferred range of the present invention, 1250 to 1400 ° C., so the ratio of the average particle diameter of MnS ds / di and the ratio of the distribution density ρi / ρs Was below the preferred range of the present invention, and the ratio Ds / Di of the average grain size of the crystal grains was below the range of the present invention.
また、鋼番号26の熱延板は、C含有量が本発明の範囲を上回っているばかりか、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。さらに、鋼番号27および28の熱延板は、Si含有量が本発明の範囲外であるばかりか、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。 Further, in the hot-rolled sheet of steel No. 26, not only the C content exceeded the range of the present invention but also the true strain ratio Ce was lower than the range of the present invention. Di was below the scope of the present invention. Further, in the hot-rolled sheets of steel Nos. 27 and 28, not only the Si content was out of the range of the present invention but also the true strain ratio Ce was lower than the range of the present invention. / Di was below the range of the present invention.
また、鋼番号29および30の熱延板は、Mn含有量が本発明の範囲外であるため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。また、鋼番号31および32の熱延板は、S含有量が本発明の範囲外であるため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。 Moreover, since the Mn content of the hot-rolled sheets of steel Nos. 29 and 30 was outside the range of the present invention, the ratio Ds / Di of the average grain size of the crystal grains was lower than the range of the present invention. Further, in the hot-rolled sheets of steel Nos. 31 and 32, since the S content was outside the range of the present invention, the ratio Ds / Di of the average grain size of the crystal grains was lower than the range of the present invention.
また、鋼番号33および34の熱延板は、Al含有量が本発明の範囲外であり、後述の実施例3において、1200℃で保持する仕上げ焼鈍により二次再結晶が発現せず、磁束密度が極めて劣位な一方向性電磁鋼板が得られた。さらに、鋼番号35および36の熱延板は、N含有量が本発明の範囲外であり、後述の実施例3において、1200℃で保持する仕上げ焼鈍により二次再結晶が発現せず、磁束密度が極めて劣位な一方向性電磁鋼板が得られた。 The hot rolled sheets of steel Nos. 33 and 34 had an Al content outside the range of the present invention. In Example 3 described below, secondary recrystallization did not occur due to finish annealing held at 1200 ° C. A grain-oriented electrical steel sheet having an extremely poor density was obtained. Further, in the hot-rolled sheets of steel Nos. 35 and 36, the N content was out of the range of the present invention, and in Example 3 described below, secondary recrystallization did not occur due to finish annealing held at 1200 ° C. A grain-oriented electrical steel sheet having an extremely poor density was obtained.
これに対して、本発明の一方向性電磁鋼板用熱延板の製造方法における要件を満足する条件で熱間圧延を施した鋼番号1〜19の熱延板は、結晶粒の平均粒径の比Ds/Diが本発明の範囲内となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲内となった。 On the other hand, the hot-rolled sheets of steel Nos. 1 to 19 which were hot-rolled under the conditions satisfying the requirements in the method for producing a hot-rolled sheet for unidirectional magnetic steel sheets of the present invention have an average grain size of crystal grains. Is within the range of the present invention, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density are within the preferable range of the present invention.
(実施例2)
下記表3に示す化学組成を有する鋼番号37〜57の鋳片を雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして下記表4−1に示す鋳片加熱温度Ts0に加熱した後に、加熱炉から抽出した鋳片に下記表4−1に示す条件で粗圧延および仕上げ圧延を施した。
(Example 2)
The slabs of steel Nos. 37 to 57 having the chemical compositions shown in Table 3 below were charged into a heating furnace having an atmosphere temperature of 1320 ° C. and held for 30 minutes to obtain a surface temperature, and the casting shown in Table 4-1 below was performed. After heating to the slab heating temperature Ts0, the cast slab extracted from the heating furnace was subjected to rough rolling and finish rolling under the conditions shown in Table 4-1 below.
上記粗圧延では、入側での鋼板の板厚t1[mm]を下記表4−1に示すようにして最初の圧延パスを行った。また、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に連続して行われる複数の圧延パスを、上記複数の圧延パスにおける最初の圧延パスの入側での鋼板の表面温度Tss[℃]、板厚中心温度Tcs[℃]、Tss−Tcs[℃]、および板厚ts[mm]、ならびに上記複数の圧延パスにおける最終の圧延パスの出側での鋼板の表面温度Tsf[℃]、板厚中心温度Tcf[℃]、Tsf−Tcf[℃]、および板厚tf[mm]を下記表4−1に示すようにして行った。上記粗圧延において、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおいて施される圧延の真歪みepr[−]は、下記表4−1に示されるようになった。上記粗圧延を施すことによって、粗圧延後板厚tff1が6.0mmまたは8.0mmの粗圧延板を得た。 In the rough rolling, the first rolling pass was performed with the thickness t1 [mm] of the steel sheet on the entry side as shown in Table 4-1 below. Further, a plurality of rolling passes continuously performed on the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the sheet thickness center temperature Tc1000 to 1100 ° C satisfy the relationship of Ts−Tc> 50 ° C are first performed in the plurality of rolling passes. Surface temperature Tss [° C.], sheet thickness center temperature Tcs [° C.], Tss-Tcs [° C.], and sheet thickness ts [mm] of the steel sheet on the entry side of the rolling pass, and final values in the plurality of rolling passes. The surface temperature Tsf [° C.], the thickness center temperature Tcf [° C.], Tsf-Tcf [° C.], and the thickness tf [mm] of the steel sheet at the exit side of the rolling pass are set as shown in Table 4-1 below. went. In the rough rolling, the true strain epr [-] of the rolling performed in a plurality of rolling passes continuously performed on the steel sheet in a state satisfying the above relationship is as shown in Table 4-1 below. By performing the rough rolling, a rough-rolled sheet having a thickness tff1 of 6.0 mm or 8.0 mm after the rough rolling was obtained.
そして、下記表4−1に示す条件に示すように、上記粗圧延により得られた粗圧延板を、表面温度にして1100℃の冷却開始速度[℃]から550〜800℃の冷却到達速度[℃]まで1.5〜2.5℃/secの平均冷却速度[℃/sec]で冷却した後、180〜600secの保持時間[sec]で上記冷却到達速度に等温保持し、表面温度にして再昇温到達温度[℃]まで加熱した後、下記表4−1に示す条件で施す上記仕上げ圧延を施した。 Then, as shown in the conditions shown in Table 4-1 below, the rough-rolled sheet obtained by the above-mentioned rough rolling is cooled to a surface temperature from a cooling start speed of 1100 ° C. [° C.] to a cooling reaching speed of 550 to 800 ° C. [ ° C] at an average cooling rate of 1.5 to 2.5 ° C / sec [° C / sec], and then maintained isothermally at the above cooling attainment rate for a holding time of 180 to 600 sec [sec] to obtain a surface temperature. After heating to the temperature [° C.] at which the temperature was raised again, the above finish rolling was performed under the conditions shown in Table 4-1 below.
また、上記仕上げ圧延では、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に連続して行われる複数の圧延パスを、上記複数の圧延パスにおける最初の圧延パスの入側での鋼板の表面温度Tss[℃]、板厚中心温度Tcs[℃]、Tss−Tcs[℃]、および板厚ts[mm]、ならびに上記複数の圧延パスにおける最終の圧延パスの出側での鋼板の表面温度Tsf[℃]、板厚中心温度Tcf[℃]、Tsf−Tcf[℃]、および板厚tf[mm]を下記表4−1に示すようにして行った。上記仕上げ圧延において、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおいて施される圧延の真歪みepf[−]は、下記表4−1に示されるようになった。上記仕上げ圧延を施すことによって、仕上げ板厚tff2が2.3mmの熱延板を得た。 In the finish rolling, the plurality of rolling passes continuously performed on the steel sheet in a state where the surface temperature Ts1100 to 1200 ° C and the sheet thickness center temperature Tc1000 to 1100 ° C satisfy the relationship of Ts-Tc> 50 ° C, Surface temperature Tss [° C.], sheet thickness center temperature Tcs [° C.], Tss-Tcs [° C.], and sheet thickness ts [mm] of the steel sheet on the entry side of the first rolling pass in Table 4-1 shows the surface temperature Tsf [° C.], the thickness center temperature Tcf [° C.], Tsf-Tcf [° C.], and the thickness tf [mm] of the steel sheet at the exit side of the final rolling pass in the rolling pass. Was performed as shown in FIG. In the finish rolling, the true strain epf [-] of rolling performed in a plurality of rolling passes continuously performed on the steel sheet in a state satisfying the above relationship is as shown in Table 4-1 below. By performing the finish rolling, a hot-rolled plate having a finished plate thickness tff2 of 2.3 mm was obtained.
また、上記粗圧延および仕上げ圧延からなる熱間圧延全体の真歪みet[−]は、下記表4−1に示されるようになった。また、上記粗圧延において上記関係を満たす状態で鋼板に施される真歪みeprおよび上記仕上げ圧延において上記関係を満たす状態で鋼板に施される真歪みepfの合計の真歪みepは、下記表4−1に示されるようになった。また、真歪みetに対する真歪みepの比Ce(ep/et×100)[%]は、下記表4−1に示されるようになった。 In addition, the true strain et [-] of the entire hot rolling including the rough rolling and the finish rolling was as shown in Table 4-1 below. Further, the total true strain ep of the true strain epr applied to the steel sheet in a state where the above relationship is satisfied in the rough rolling and the true strain epf applied to the steel sheet in a state where the above relationship is satisfied in the finish rolling is shown in Table 4 below. -1. Further, the ratio Ce (ep / et × 100) [%] of the true strain ep to the true strain et was as shown in Table 4-1 below.
さらに、得られた熱延板の板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径Ds[μm]、MnSの平均粒径ds[nm]、およびMnSの分布密度ρs[μm−2]、ならびに得られた熱延板の板厚1/5層〜中心の中心領域における結晶粒の平均粒径Di[μm]、MnSの平均粒径di[nm]、およびMnSの分布密度ρi[μm−2]を調査した。また、中心領域における結晶粒の平均粒径Diに対する表面近傍領域における結晶粒の平均粒径Dsの比Ds/Di[−]、中心領域におけるMnSの平均粒径diに対する表面近傍領域におけるMnSの平均粒径dsの比ds/di[−]、および表面近傍領域におけるMnSの分布密度ρsに対する中心領域におけるMnSの分布密度ρiの比ρi/ρs[−]を算出した。結晶粒の平均粒径は観察された複数の結晶粒について、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの平均粒径は観察された複数のMnSについて、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの分布密度は鏡面研磨した断面を観察して数えたMnSの個数を観察視野の面積で除した値である。得られた結果を下記表4−2に示す。 Furthermore, the average grain size Ds [μm] of the crystal grains, the average grain size ds [nm] of MnS, and the distribution density of MnS in the region near the surface of the obtained hot-rolled sheet having a thickness of 1/10 to 1/5 layer ρs [μm −2 ], average grain size Di [μm] of crystal grains in the central region from the 1 / layer thickness to the center of the obtained hot-rolled sheet, MnS average grain size di [nm], and MnS Was investigated for the distribution density ρi [μm −2 ]. The ratio Ds / Di [-] of the average grain diameter Ds of the crystal grains in the vicinity of the surface to the average grain diameter Di of the crystal grains in the center area, and the average of MnS in the vicinity of the surface with respect to the average grain diameter di of MnS in the center area. The ratio ds / di [−] of the particle diameter ds and the ratio ρi / ρs [−] of the distribution density ρi of MnS in the central region to the distribution density ρs of MnS in the region near the surface were calculated. The average grain size of the crystal grains is a value obtained by calculating and averaging the diameters of circles having the same area with respect to the projected area for a plurality of observed crystal grains, and the average grain size of MnS is the same as the projected area for a plurality of observed MnS. The diameter of each area circle was determined and averaged, and the distribution density of MnS was a value obtained by dividing the number of MnS counted by observing a mirror-polished cross section by the area of the observation visual field. The results obtained are shown in Table 4-2 below.
鋼番号56および57の熱延板は、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った。 Since the true strain ratio Ce was lower than the range of the present invention, the ratio Ds / Di of the average grain size of the hot rolled sheets of steel numbers 56 and 57 was lower than the range of the present invention.
これに対して本発明の一方向性電磁鋼板用熱延板の製造方法における要件を満足する条件で熱間圧延を施した鋼番号37〜50の熱延板は、結晶粒の平均粒径の比Ds/Diが本発明の範囲内となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲内となった。 On the other hand, the hot-rolled sheets of steel Nos. 37 to 50 which were hot-rolled under the conditions satisfying the requirements in the method for producing a hot-rolled sheet for unidirectional electromagnetic steel sheets of the present invention have an average grain size of crystal grains. The ratio Ds / Di was within the range of the present invention, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density were within the preferable ranges of the present invention.
中でも、本発明の好ましい粗圧延後の冷却速度、冷却到達温度、および保持時間を満足する鋼番号37〜46の熱延板については、結晶粒の平均粒径の比Ds/Diがより好ましい範囲となった。その中でも特に真歪みの比Ceが40〜42%となった鋼番号37、40、および42の熱延板については、同じ化学成分を有し真歪みの比Ceが40〜42%となった鋼番号1よりも結晶粒の平均粒径の比Ds/Diが好ましい範囲となった。また、真歪みの比Ceが50〜52%となった鋼番号38、41、および44の熱延板についても同様に、同じ化学成分を有し真歪みの比Ceが50〜52%となった鋼番号3よりも結晶粒の平均粒径の比Ds/Diが好ましい範囲となった。 Above all, for the hot rolled sheets of steel Nos. 37 to 46 satisfying the preferable cooling rate after rough rolling, the cooling reaching temperature, and the holding time of the present invention, the ratio Ds / Di of the average grain size of the crystal grains is more preferable. It became. Among them, the hot-rolled sheets of steel Nos. 37, 40, and 42 having the true strain ratio Ce of 40 to 42% have the same chemical components and the true strain ratio Ce of 40 to 42%. The ratio Ds / Di of the average grain size of the crystal grains was more preferable range than steel number 1. Similarly, the hot-rolled sheets of steel Nos. 38, 41 and 44 having the true strain ratio Ce of 50 to 52% have the same chemical composition and the true strain ratio Ce of 50 to 52%. The ratio Ds / Di of the average grain size of the crystal grains was in a more preferable range than that of steel No. 3.
(実施例3)
実施例1および2で製造された熱延板のうちの一部に対して、下記表5に示す捲取温度CT[℃]でコイルに巻き取った後、下記表5に示す条件で熱延板焼鈍を施した。具体的には、鋼番号1、3、6、17、19、37、38、40、45、20、26、28、33、34、35、36、および56の熱延板については、550℃の捲取温度CTで巻き取ったコイルを1150℃まで昇温後、900℃に80sec保持する熱延板焼鈍を施した。また、鋼番号43、44、および46の熱延板については、950℃の捲取温度CTで巻き取ったコイルを捲取温度CTに80sec保持する熱延板焼鈍を施した。これらの熱延板焼鈍後、下記表5に示すように、それぞれの熱延焼鈍板に対して冷間圧延を施すことによって、冷延板板厚tfffが0.23mmの冷延板を得た。上記冷間圧延後、上記冷延板に対して下記表5に示す条件で脱炭焼鈍を施した。具体的には、鋼番号40以外の熱延板については、835℃で120sec保持する脱炭焼鈍を施し、脱炭焼鈍のために835℃まで昇温する時に、300℃から750℃まで昇温する昇温過程において昇温速度を10℃/secとした。また、鋼番号40の熱延板については、835℃で120sec保持する脱炭焼鈍を施し、脱炭焼鈍のために835℃まで昇温する時に、300℃から750℃まで昇温する昇温過程において昇温速度を200℃/secとした。脱炭焼鈍を行った後、1200℃まで昇温して、1200℃で保持する仕上げ焼鈍を行った。これにより、一方向性電磁鋼板を製造した。
(Example 3)
A part of the hot-rolled sheets manufactured in Examples 1 and 2 was wound around a coil at a winding temperature CT [° C.] shown in Table 5 below, and then hot-rolled under the conditions shown in Table 5 below. Plate annealing was performed. Specifically, for hot rolled sheets of steel numbers 1, 3, 6, 17, 19, 37, 38, 40, 45, 20, 26, 28, 33, 34, 35, 36, and 56, 550 ° C. The coil wound at the winding temperature CT was heated to 1150 ° C., and then subjected to hot rolled sheet annealing at 900 ° C. for 80 seconds. In addition, as for the hot rolled sheets of steel numbers 43, 44, and 46, the coil wound at the winding temperature CT of 950 ° C. was subjected to hot rolled sheet annealing in which the coil was maintained at the winding temperature CT for 80 seconds. After annealing these hot-rolled sheets, as shown in Table 5 below, each hot-rolled annealed sheet was subjected to cold rolling to obtain a cold-rolled sheet having a thickness tffff of 0.23 mm. . After the cold rolling, the cold rolled sheet was subjected to decarburizing annealing under the conditions shown in Table 5 below. Specifically, for hot rolled sheets other than steel No. 40, decarburization annealing is performed at 835 ° C. for 120 seconds, and when the temperature is raised to 835 ° C. for decarburization annealing, the temperature is raised from 300 ° C. to 750 ° C. During the heating process, the heating rate was set to 10 ° C./sec. In addition, the hot rolled sheet of steel No. 40 is subjected to decarburizing annealing at 835 ° C. for 120 seconds, and when the temperature is raised to 835 ° C. for decarburizing annealing, the temperature is raised from 300 ° C. to 750 ° C. , The temperature was raised at a rate of 200 ° C./sec. After performing decarburization annealing, the temperature was raised to 1200 ° C., and finish annealing was performed at 1200 ° C. Thereby, a grain-oriented electrical steel sheet was manufactured.
このようにして製造された一方向性電磁鋼板から60mm×300mmの磁気測定試験片をせん断し、700℃で歪取り焼鈍を行った後に、磁束密度B8[T]を測定した。結果を下記表5に示す。下記表5においては、B8が1.90T以上の試料では二次再結晶が安定化しているものとして二次再結晶安定性を○印で示し、B8が1.95T以上の試料では二次再結晶がさらに安定化しているものとして二次再結晶安定性を◎印で示し、B8が1.90T未満の試料では二次再結晶が安定化していないものとして二次再結晶安定性を△印で示し、また、二次再結晶が得られなかったものについては二次再結晶安定性を×印で示した。 A magnetic measurement test piece of 60 mm x 300 mm was sheared from the grain-oriented electrical steel sheet manufactured in this manner, subjected to strain relief annealing at 700 ° C, and then the magnetic flux density B8 [T] was measured. The results are shown in Table 5 below. In Table 5 below, the secondary recrystallization stability is indicated by a circle assuming that the secondary recrystallization is stabilized in the samples with B8 of 1.90 T or more, and the secondary recrystallization stability is shown in the samples with B8 of 1.95 T or more. The secondary recrystallization stability is indicated by ◎ as the crystal is further stabilized, and the secondary recrystallization stability is indicated as で は in the sample in which B8 is less than 1.90 T as the secondary recrystallization is not stabilized. In addition, those for which secondary recrystallization was not obtained were indicated by x marks for secondary recrystallization stability.
鋼番号20および26の熱延板は、上記表2−1に示されるように、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った結果、鋼番号20および26の一方向性電磁鋼板は、B8がいずれも1.90Tを下回り劣位となった。 As shown in Table 2-1 above, the true strain ratio Ce was lower than the range of the present invention in the hot-rolled sheets of steel Nos. 20 and 26, and therefore, the ratio Ds / Di of the average grain size of the crystal grains was lower than that of the present invention. As a result, in the grain-oriented electrical steel sheets of steel Nos. 20 and 26, B8 was less than 1.90T and was inferior.
これに対して、鋼番号20と同じ化学成分を有する鋼番号1の熱延板は、真歪みの比Ceが本発明の範囲内となったため、結晶粒の平均粒径の比Ds/Diが本発明の範囲内となった結果、鋼番号1の一方向性電磁鋼板では、B8が1.90Tを上回り高くなった。また、鋼番号3の熱延板は、鋼番号1と同じ化学成分を有するが、鋼番号1とは異なり、真歪みの比Ceが本発明の好ましい範囲の50%以上であり、結晶粒の平均粒径の比Ds/Diが本発明の好ましい範囲の1.20以上となった結果、B8が1.946Tとなり鋼番号1よりも高くなった。また、鋼番号6の熱延板は、真歪みの比Ceが鋼番号1と同程度であるが、鋼番号1とは異なり、偏析元素であるBiを含有し、結晶粒の平均粒径の比Ds/Diが鋼番号1よりも大きくなった結果、B8が1.951Tとなり鋼番号1よりも高くなった。さらに、鋼番号17の熱延板は、鋼番号1と同じ化学成分を有し、真歪みの比Ceが鋼番号1と同程度であるが、鋼番号1とは異なり、鋳片を表面温度にして850℃に冷却した後に、雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして上記表2−1に示す鋳片加熱温度Ts0に加熱した後に、上記粗圧延および仕上げ圧延を施したものであり、結晶粒の平均粒径の比Ds/Diが鋼番号1よりも大きくなった結果、B8が1.944Tとなり鋼番号1よりも高くなった。 On the other hand, in the hot-rolled sheet of Steel No. 1 having the same chemical composition as Steel No. 20, since the true strain ratio Ce was within the range of the present invention, the ratio Ds / Di of the average grain size of the crystal grains was low. As a result of being within the scope of the present invention, in the grain-oriented electrical steel sheet of steel No. 1, B8 was higher than 1.90T. Further, the hot-rolled sheet of Steel No. 3 has the same chemical composition as Steel No. 1, but unlike Steel No. 1, the true strain ratio Ce is 50% or more of the preferred range of the present invention, and As a result of the average particle diameter ratio Ds / Di being 1.20 or more, which is the preferred range of the present invention, B8 was 1.946T, which was higher than steel number 1. The hot-rolled sheet of steel No. 6 has a true strain ratio Ce similar to that of steel No. 1, but differs from steel No. 1 in that it contains Bi, a segregating element, and has an average grain size of crystal grains. As a result of the ratio Ds / Di being larger than steel number 1, B8 was 1.951T, which was higher than steel number 1. Further, the hot-rolled sheet of steel No. 17 has the same chemical composition as steel No. 1, and the true strain ratio Ce is almost the same as steel No. 1, but unlike steel No. 1, the slab is heated to the surface temperature. After cooling to 850 ° C., the sample was placed in a heating furnace having an ambient temperature of 1320 ° C., and maintained for 30 minutes, so that the surface temperature was increased to the slab heating temperature Ts0 shown in Table 2-1 above. It was subjected to the above rough rolling and finish rolling, and as a result of the ratio Ds / Di of the average grain size of the crystal grains being larger than steel number 1, B8 was 1.944T, which was higher than steel number 1.
また、鋼番号19の熱延板は、鋼番号1とは異なり、偏析元素であるBiおよびSnを含有し、鋳片を表面温度にして850℃に冷却した後に、雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして上記表2−1に示す鋳片加熱温度Ts0に加熱した後に、上記粗圧延および仕上げ圧延を施したものであり、真歪みの比Ceが本発明の好ましい範囲の50%以上である。鋼番号19の一方向性電磁鋼板では、B8が1.960Tとなり鋼番号1よりも著しく高くなった。 The hot rolled sheet of steel No. 19 is different from steel No. 1 in that it contains the segregating elements Bi and Sn, and the slab is cooled to 850 ° C. at the surface temperature, followed by heating at an ambient temperature of 1320 ° C. After being charged into a furnace and held for 30 minutes, the surface temperature was increased to the slab heating temperature Ts0 shown in Table 2-1 above, and then the above rough rolling and finish rolling were performed. The ratio Ce is at least 50% of the preferred range of the present invention. In the unidirectional electrical steel sheet of steel No. 19, B8 was 1.960T, which was significantly higher than steel No. 1.
また、鋼番号26の熱延板は、C含有量が本発明の範囲を上回っているばかりか、真歪みの比Ceが本発明の範囲を下回っており、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った結果、鋼番号26の一方向性電磁鋼板では、B8が1.844Tと極めて劣位となった。 Further, in the hot-rolled sheet of steel No. 26, not only the C content exceeded the range of the present invention, but also the true strain ratio Ce was lower than the range of the present invention, and the ratio Ds of the average grain size of the crystal grains was Ds. As a result of / Di falling below the range of the present invention, in the case of the grain-oriented electrical steel sheet No. 26, B8 was extremely inferior to 1.844T.
また、鋼番号27の熱延板は、Si含有量が本発明の範囲を上回っているばかりか、真歪みの比Ceが本発明の範囲を下回っており、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った結果、上記冷間圧延で著しい割れが生じ、一方向性電磁鋼板を製造することができなかった。 Further, in the hot-rolled sheet of steel No. 27, not only the Si content exceeded the range of the present invention, but the true strain ratio Ce was lower than the range of the present invention, and the ratio Ds of the average grain size of crystal grains was Ds. As a result of the fact that / Di was less than the range of the present invention, remarkable cracking occurred in the above cold rolling, and it was not possible to produce a grain-oriented electrical steel sheet.
また、鋼番号33および34の熱延板は、真歪みの比Ceが本発明の範囲内であり、結晶粒の平均粒径の比Ds/Diが本発明の範囲内であるが、Al含有量が本発明の範囲外であり、充分なAlNの分布密度とならず二次再結晶が発現しなかった。同様に、鋼番号35および36の熱延板は、真歪みの比Ceが本発明の範囲内であり、結晶粒の平均粒径の比Ds/Diが本発明の範囲内であるが、N含有量が本発明の範囲外であり、充分なAlNの分布密度とならず二次再結晶が発現しなかった。 In the hot-rolled sheets of steel Nos. 33 and 34, the true strain ratio Ce falls within the range of the present invention, and the ratio Ds / Di of the average grain size of the crystal grains falls within the range of the present invention. Since the amount was out of the range of the present invention, the distribution density of AlN was not sufficient and secondary recrystallization did not occur. Similarly, in the hot-rolled sheets of steel Nos. 35 and 36, the true strain ratio Ce is within the range of the present invention, and the ratio Ds / Di of the average grain size of the crystal grains is within the range of the present invention. The content was out of the range of the present invention, and the distribution density of AlN was not sufficient, and secondary recrystallization did not occur.
さらに、鋼番号56の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の範囲を下回っており、結晶粒の平均粒径の比Ds/Diが本発明の範囲を下回った結果、B8が1.868Tと劣位となった。 Further, in the hot-rolled sheet of steel No. 56, the ratio Ce of the true strain in the rough rolling and the finish rolling is lower than the range of the present invention, and the ratio Ds / Di of the average grain size of the crystal grains is in the range of the present invention. As a result, B8 was inferior to 1.868T.
これに対して、鋼番号37、38、40、43、44、45、および46の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の範囲内であり、結晶粒の平均粒径の比Ds/Diが本発明の範囲内となった結果、B8が1.950Tを上回り、良好な磁気特性が得られた。また、これらの熱延板のうちの鋼番号38の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の好ましい範囲の50%以上であり、結晶粒の平均粒径の比Ds/Diが鋼番号37よりも大きくなった結果、B8が1.958Tとなり鋼番号37よりも高くなった。また、鋼番号40の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが鋼番号37と同程度であり、結晶粒の平均粒径の比Ds/Diが鋼番号37と同程度となったが、鋼番号37とは異なり、脱炭焼鈍のために835℃まで昇温する時に、300℃から750℃まで昇温する昇温過程において昇温速度を200℃/secとした結果、B8が1.960Tとなり鋼番号37よりも高くなった。また、鋼番号43の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが鋼番号37と同程度であるが、鋼番号37とは異なり、950℃の捲取温度CTで巻き取ったコイルを捲取温度CTに80sec保持する熱延板焼鈍を施した結果、B8が1.956Tとなり鋼番号37よりも高くなった。また、鋼番号45の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが鋼番号37と同程度であり、結晶粒の平均粒径の比Ds/Diが鋼番号37と同程度となったが、鋼番号37とは異なり、偏析元素であるBiを含有する結果、B8が1.963Tとなり鋼番号37よりも高くなった。 On the other hand, the hot-rolled sheets of steel numbers 37, 38, 40, 43, 44, 45, and 46 have a true strain ratio Ce in the rough rolling and the finish rolling within the range of the present invention, and As a result of the ratio Ds / Di of the average particle diameter of the particles being within the range of the present invention, B8 exceeded 1.950T, and good magnetic properties were obtained. Among these hot-rolled sheets, the hot-rolled sheet of steel No. 38 has a true strain ratio Ce in the rough rolling and the finish rolling of 50% or more within a preferable range of the present invention, and has an average grain size of crystal grains. As a result of the diameter ratio Ds / Di being larger than steel No. 37, B8 was 1.958T, which was higher than steel No. 37. Further, the hot-rolled sheet of steel No. 40 has a true strain ratio Ce in the rough rolling and the finish rolling similar to that of steel No. 37, and a ratio Ds / Di of the average grain size of the crystal grains is equal to that of steel No. 37. However, unlike steel No. 37, when the temperature was raised to 835 ° C. for decarburizing annealing, the temperature was raised from 300 ° C. to 750 ° C., and the heating rate was 200 ° C./sec. As a result, B8 was 1.960T, which was higher than steel number 37. Further, the hot-rolled sheet of steel No. 43 has a true strain ratio Ce in the rough rolling and the finish rolling that is substantially the same as steel No. 37, but differs from steel No. 37 at a winding temperature CT of 950 ° C. The rolled coil was subjected to hot-rolled sheet annealing at a winding temperature CT of 80 seconds, and as a result, B8 became 1.956T, which was higher than steel number 37. Further, the hot-rolled sheet of steel No. 45 has a true strain ratio Ce in the rough rolling and the finish rolling similar to that of steel No. 37, and a ratio Ds / Di of the average grain size of crystal grains is equal to that of steel No. 37. Although it was about the same, unlike steel No. 37, as a result of containing the segregating element Bi, B8 was 1.963T, which was higher than steel No. 37.
さらに、鋼番号44および46の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の好ましい範囲の50%以上であり、結晶粒の平均粒径の比Ds/Diが鋼番号37よりも大きくなった上に、鋼番号37とは異なり、950℃の捲取温度CTで巻き取ったコイルを捲取温度CTに80sec保持する熱延板焼鈍を施した結果、B8が1.970以上となり、極めて良好な磁気特性が得られた。 Further, the hot-rolled sheets of steel Nos. 44 and 46 have a true strain ratio Ce in the rough rolling and the finish rolling of 50% or more within a preferable range of the present invention, and a ratio Ds / Di of the average grain size of the crystal grains. Became larger than steel No. 37, and, unlike steel No. 37, the coil wound at a winding temperature CT of 950 ° C. was subjected to hot-rolled sheet annealing at a winding temperature CT of 80 sec. Was 1.970 or more, and extremely good magnetic properties were obtained.
Claims (10)
板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域における結晶粒の平均粒径の比が1.10以上であり、
板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比が1.10以上であり、
板厚1/10〜1/5層の表面近傍領域におけるMnSの分布密度に対する板厚1/5層〜中心の中心領域におけるMnSの分布密度の比が1.10以上であることを特徴とする一方向性電磁鋼板用熱延板。 In mass%, C: 0.1% or less, Si: 2.5 to 4.0%, Mn: 0.05 to 0.1%, S: 0.01 to 0.04%, Al: 0.01 -0.05%, and N: 0.001 to 0.030%, the balance being a hot-rolled sheet for a grain-oriented electrical steel sheet comprising Fe and unavoidable impurities,
Ri der ratio 1.10 of the average grain size of the crystal grains near the surface regions of the plate thickness 1 / 10-1 / 5-layer to the average particle diameter of the crystal grains in the central region of thickness 1/5 layer to the center ,
A ratio of the average particle size of MnS in the region near the surface of the 1/10 to 1/5 layer with respect to the average particle size of MnS in the central region of the thickness of 1/5 layer to the center is 1.10 or more;
The ratio of the distribution density of MnS in the central region from the 1 / 5th layer thickness to the center with respect to the distribution density of MnS in the region near the surface of the 1/10 to 1/5 layer thickness is 1.10 or more. Hot rolled sheet for unidirectional magnetic steel sheets.
質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.030%を含有し、残部がFeおよび不可避的不純物からなる鋳片に熱間圧延を施す熱間圧延工程において、表面温度Ts1100〜1200℃および板厚中心温度Tc1000〜1100℃がTs−Tc>50℃の関係を満たす状態で鋼板に施される圧延の真歪みを、前記熱間圧延全体の真歪みの40%以上とすることを特徴とする一方向性電磁鋼板用熱延板の製造方法。 A method for producing a hot-rolled sheet for a grain-oriented electrical steel sheet according to claim 1,
In mass%, C: 0.1% or less, Si: 2.5 to 4.0%, Mn: 0.05 to 0.1%, S: 0.01 to 0.04%, Al: 0.01 Surface temperature Ts1100 to 1200 ° C. in a hot rolling step of performing hot rolling on a slab containing 0.05% and N: 0.001 to 0.030%, with the balance being Fe and unavoidable impurities. In addition, the true strain of the rolling applied to the steel sheet in a state where the thickness center temperature Tc1000 to 1100 ° C satisfies the relationship of Ts−Tc> 50 ° C is set to be 40% or more of the true strain of the entire hot rolling. A method for producing a hot-rolled sheet for a grain-oriented electrical steel sheet.
前記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す熱延板焼鈍工程と、
前記熱延板焼鈍後の鋼板に冷間圧延を施す冷間圧延工程と、
前記冷間圧延後の鋼板に脱炭焼鈍を施す脱炭焼鈍工程と、
前記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程と
を有することを特徴とする一方向性電磁鋼板の製造方法。 A hot rolled sheet manufacturing process for manufacturing a hot rolled sheet for a unidirectional magnetic steel sheet by performing the method for manufacturing a hot rolled sheet for a unidirectional magnetic steel sheet according to any one of claims 3 to 7 ,
Hot-rolled sheet annealing step of performing hot-rolled sheet annealing on the hot-rolled sheet for unidirectional magnetic steel sheet,
A cold rolling step of performing cold rolling on the steel sheet after the hot-rolled sheet annealing,
A decarburizing annealing step of performing decarburizing annealing on the steel sheet after the cold rolling,
A finishing annealing step of subjecting the steel sheet after the decarburizing annealing to finish annealing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015245612A JP6676952B2 (en) | 2015-12-16 | 2015-12-16 | Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015245612A JP6676952B2 (en) | 2015-12-16 | 2015-12-16 | Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017110263A JP2017110263A (en) | 2017-06-22 |
JP6676952B2 true JP6676952B2 (en) | 2020-04-08 |
Family
ID=59079274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015245612A Active JP6676952B2 (en) | 2015-12-16 | 2015-12-16 | Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6676952B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022186300A1 (en) * | 2021-03-04 | 2022-09-09 | Jfeスチール株式会社 | Method for producing grain-oriented electrical steel sheet |
-
2015
- 2015-12-16 JP JP2015245612A patent/JP6676952B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2017110263A (en) | 2017-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6402865B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP6236470B2 (en) | Non-oriented electrical steel sheet with excellent magnetic properties | |
JP5991484B2 (en) | Manufacturing method of low iron loss grain oriented electrical steel sheet | |
WO2013058239A1 (en) | Oriented electromagnetic steel sheet and method for manufacturing same | |
US20150243419A1 (en) | Method for producing grain-oriented electrical steel sheet | |
JP6390876B2 (en) | Method for producing non-oriented electrical steel sheet with excellent magnetic properties | |
WO2017086036A1 (en) | Process for producing non-oriented electromagnetic steel sheet | |
CN108699621B (en) | Method for producing grain-oriented electromagnetic steel sheet | |
JP5526609B2 (en) | Method for producing grain-oriented electrical steel sheet with good magnetic flux density | |
JP6950723B2 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7197069B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP6146582B2 (en) | Method for producing non-oriented electrical steel sheet | |
JP6676952B2 (en) | Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same | |
CN114286871B (en) | Method for producing non-oriented electromagnetic steel sheet | |
JP6763179B2 (en) | Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method | |
JP5712652B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP5846390B2 (en) | Method for producing grain-oriented electrical steel sheet | |
JP7338812B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
JP7081725B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2023149287A1 (en) | Method for manufacturing hot-rolled steel sheet for non-oriented electrical steel sheet, method for manufacturing non-oriented electrical steel sheet, and hot-rolled steel sheet for non-oriented electrical steel sheet | |
JP7338808B1 (en) | Method for manufacturing hot-rolled steel sheet for non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet | |
JP7239077B1 (en) | Manufacturing method of grain-oriented electrical steel sheet | |
WO2023063426A1 (en) | Aging treatment method and oriented electromagnetic steel sheet manufacturing method | |
CN118696136A (en) | Method for producing oriented electrical steel sheet | |
CN114651079A (en) | Non-oriented electromagnetic steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180803 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190709 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190905 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200225 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6676952 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |