JP6763179B2 - Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method - Google Patents

Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method Download PDF

Info

Publication number
JP6763179B2
JP6763179B2 JP2016074215A JP2016074215A JP6763179B2 JP 6763179 B2 JP6763179 B2 JP 6763179B2 JP 2016074215 A JP2016074215 A JP 2016074215A JP 2016074215 A JP2016074215 A JP 2016074215A JP 6763179 B2 JP6763179 B2 JP 6763179B2
Authority
JP
Japan
Prior art keywords
hot
steel sheet
rolled
rolling
mns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016074215A
Other languages
Japanese (ja)
Other versions
JP2017186587A (en
Inventor
龍太郎 山縣
龍太郎 山縣
田中 一郎
一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2016074215A priority Critical patent/JP6763179B2/en
Publication of JP2017186587A publication Critical patent/JP2017186587A/en
Application granted granted Critical
Publication of JP6763179B2 publication Critical patent/JP6763179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、変圧器の鉄心材料に使用される一方向性電磁鋼板を製造するために用いられる析出物が制御された一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法に関する。 The present invention relates to a hot-rolled sheet for grain-oriented electrical steel sheet with controlled deposits used for producing a unidirectional electrical steel sheet used for an iron core material of a transformer, a method for producing the same, and its unidirectionality. Regarding the manufacturing method of electrical steel sheets.

一方向性電磁鋼板は変圧器の鉄心材料として使用される。一方向性電磁鋼板は、磁化される方向に高い磁束密度を持つことが求められるので、二次再結晶を利用してGossと呼ばれる磁気特性に優れた結晶方位を選択的に成長させて製造する機能材料である。 One-way electrical steel sheets are used as iron core materials for transformers. Since unidirectional electrical steel sheets are required to have a high magnetic flux density in the direction of magnetization, they are manufactured by selectively growing a crystal orientation called Goss, which has excellent magnetic properties, by utilizing secondary recrystallization. It is a functional material.

近年変圧器のエネルギー効率の向上のため、一方向性電磁鋼板の鉄損をさらに低減させることが求められている。一方向性電磁鋼板は板厚を薄くすると鉄損が低減できるので、薄手の一方向性電磁鋼板が求められるようになっている。 In recent years, in order to improve the energy efficiency of transformers, it has been required to further reduce the iron loss of grain-oriented electrical steel sheets. Since iron loss can be reduced by reducing the thickness of a unidirectional electromagnetic steel sheet, a thin unidirectional electromagnetic steel sheet is required.

一方向性電磁鋼板の鉄損を下げるためには、二次再結晶の発現機構に関連するインヒビターとなる析出物を適切に制御して、Goss集積度の高い二次再結晶組織を得て、磁束密度を向上させなければならない。インヒビターとして用いられる析出物は、一般的には硫化物(MnS等)や窒化物(AlN等)が知られている。インヒビター制御に関する研究は従来から行われているが、MnSを完全溶体化させた後、インヒビターとしてMnSを微細析出させる熱間圧延工程は、二次再結晶組織を安定化させて高磁束密度の一方向性電磁鋼板を製造することを実現する上で重要なプロセスである。また、熱間圧延工程により得られる熱延板に析出するMnSは、続く熱延板焼鈍でのAlNの析出サイトとなり、AlNとともに、冷間圧延後の鋼板にさらに続く脱炭焼鈍を行うことにより得られる一次再結晶粒の粒径を決定する。このため、熱延板に析出するMnSは、直接的または間接的に二次再結晶の挙動を支配する。 In order to reduce the iron loss of grain-oriented electrical steel sheets, the precipitates that serve as inhibitors related to the expression mechanism of secondary recrystallization are appropriately controlled to obtain a secondary recrystallization structure with a high degree of magnetic flux integration. The magnetic flux density must be improved. As the precipitate used as an inhibitor, sulfide (MnS or the like) or nitride (AlN or the like) is generally known. Research on inhibitor control has been carried out conventionally, but the hot rolling process in which MnS is completely dissolved and then MnS is finely precipitated as an inhibitor stabilizes the secondary recrystallization structure and has a high magnetic flux density. This is an important process for realizing the production of directional electromagnetic steel sheets. Further, MnS precipitated on the hot-rolled sheet obtained by the hot-rolling step becomes a precipitation site of AlN in the subsequent hot-rolled sheet annealing, and by further performing decarburization annealing on the steel sheet after cold rolling together with AlN. The particle size of the obtained primary recrystallized grains is determined. Therefore, MnS precipitated on the hot-rolled plate directly or indirectly controls the behavior of secondary recrystallization.

また、二次再結晶は、仕上げ焼鈍中雰囲気の影響を受けやすい鋼板表面近傍で、AlNの酸化などによるインヒビター強度の低下を起点として開始するが、板厚が薄くなると仕上げ焼鈍中雰囲気の影響を受ける板厚方向の領域の割合が大きくなる。そのため、板厚が薄いほどAlNインヒビターの酸化によるインヒビター強度の低下は急速に起こるようになり、鋼板表面近傍におけるGoss方位粒の優先成長性が弱くなるので、正常粒成長や首振りGossの優先成長が発生しやすくなり、二次再結晶が不安定になる。さらに、鋼板表面近傍におけるGoss方位粒の優先成長性が弱くなる他の理由としては、Goss以外のランダム方位を持つ一次結晶粒がGoss方位粒よりも大きくなることも挙げられる。 In addition, secondary recrystallization starts from a decrease in inhibitor strength due to oxidation of AlN near the surface of the steel sheet, which is easily affected by the atmosphere during finish annealing, but when the plate thickness becomes thin, the effect of the atmosphere during finish annealing is affected. The proportion of the region in the thickness direction to be received increases. Therefore, the thinner the plate thickness, the more rapidly the inhibitor strength decreases due to the oxidation of the AlN inhibitor, and the preferential growth of Goss-oriented grains near the surface of the steel sheet becomes weaker. Therefore, normal grain growth and preferential growth of swinging Goss Is likely to occur, and secondary recrystallization becomes unstable. Further, another reason why the preferential growth property of the Goss-oriented grains in the vicinity of the surface of the steel sheet is weakened is that the primary crystal grains having random orientations other than Goss are larger than the Goss-oriented grains.

したがって、二次再結晶組織を安定化させて高磁束密度の一方向性電磁鋼板を製造することを実現する上では、二次再結晶時において鋼板表面近傍におけるGoss方位粒の優先成長性をさらに高めるために、インヒビター制御や結晶粒径の制御といった一次再結晶集合組織の制御を行う必要がある。そして、このような一次再結晶集合組織の制御を行うためには、熱間圧延工程の条件を制御すればよい。 Therefore, in order to stabilize the secondary recrystallization structure and manufacture a unidirectional electromagnetic steel plate having a high magnetic flux density, the preferential growth potential of the Goss directional grains in the vicinity of the steel plate surface during the secondary recrystallization is further increased. In order to increase the concentration, it is necessary to control the primary recrystallization texture such as inhibitor control and crystal particle size control. Then, in order to control such a primary recrystallization texture, the conditions of the hot rolling process may be controlled.

熱間圧延工程の条件を制御する技術としては、例えば、特許文献1〜4に開示された技術が知られている。特許文献1に開示された技術では、析出物の完全溶体化後の一方向性電磁鋼板用鋳片の熱延工程について温度および時間の条件を特定しており、徐冷却を特徴とする熱延工程によって、インヒビターとして用いられるMnSを高い分布密度で均一に微細粒として析出させて、磁気特性を向上させるものである。しかしながら、この技術では、特に薄手材で生ずる二次再結晶の不均一さを解消することはできない。 As a technique for controlling the conditions of the hot rolling process, for example, the techniques disclosed in Patent Documents 1 to 4 are known. In the technique disclosed in Patent Document 1, temperature and time conditions are specified for the hot spreading step of the unidirectional electromagnetic steel sheet slab after the precipitate is completely dissolved, and the hot spreading is characterized by slow cooling. By the step, MnS used as an inhibitor is uniformly precipitated as fine particles at a high distribution density to improve the magnetic properties. However, this technique cannot eliminate the non-uniformity of secondary recrystallization that occurs especially in thin materials.

また、特許文献2に開示された技術では、スラブをいったん冷却後再加熱し、再加熱後のスラブに熱間圧延を施している。しかしながら、この技術は、鋼板の表面性状の改善の効果が得られるものの、二次再結晶組織を安定化させるために、インヒビター制御や結晶粒径の制御といった一次再結晶集合組織の制御を行うものではない。 Further, in the technique disclosed in Patent Document 2, the slab is once cooled and then reheated, and the reheated slab is hot-rolled. However, although this technique has the effect of improving the surface texture of the steel sheet, it controls the primary recrystallization texture such as inhibitor control and crystal grain size control in order to stabilize the secondary recrystallization structure. is not.

また、特許文献3に開示された技術では、スラブを加熱して熱間圧延した後に再加熱し、再加熱後の鋼板を再度熱間圧延する熱間圧延工程において、圧延温度およびパス間時間を規定している。しかしながら、この技術は、超高珪素鋼を製造する場合に、熱間圧延工程において耳割れを生じさせないことを目的とするものであり、珪素濃度が3質量%前後の鋼において二次再結晶組織を安定化させるために、インヒビター制御や結晶粒径の制御といった一次再結晶集合組織の制御を行うものではない。 Further, in the technique disclosed in Patent Document 3, in the hot rolling process in which the slab is heated, hot-rolled and then reheated, and the reheated steel sheet is hot-rolled again, the rolling temperature and the inter-pass time are set. It stipulates. However, this technique aims to prevent ear cracks from occurring in the hot rolling process when producing ultra-high silicon steel, and the secondary recrystallization structure of steel having a silicon concentration of about 3% by mass. The primary recrystallization texture is not controlled, such as inhibitor control or crystal grain size control, in order to stabilize the composition.

また、特許文献4に開示された技術では、スラブを加熱して熱間圧延した後に再加熱し、再加熱後の鋼板を再度熱間圧延することによって、結晶粒径の制御を行っている。しかしながら、この技術では、最初の熱間圧延後の再加熱時に、析出物の容体化が行われているので、二次再結晶組織を安定化させるといった効果が得られない。 Further, in the technique disclosed in Patent Document 4, the crystal grain size is controlled by heating the slab, hot rolling it, and then reheating it, and then hot rolling the reheated steel sheet again. However, in this technique, since the precipitate is emulsified at the time of reheating after the first hot rolling, the effect of stabilizing the secondary recrystallization structure cannot be obtained.

特開昭48−69720号公報JP-A-48-69720 特開平5−179347号公報Japanese Unexamined Patent Publication No. 5-179347 特開平6−150162号公報Japanese Unexamined Patent Publication No. 6-150162 特開昭48−53919号公報Japanese Unexamined Patent Publication No. 48-53919

本発明は、上記問題点に鑑みてなされたものであり、変圧器の効率を向上させる鉄心材料に使用される薄手の一方向性電磁鋼板において二次再結晶組織を安定化させることができるように、熱間圧延工程においてインヒビター制御や結晶粒径の制御を行った一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems so that the secondary recrystallization structure can be stabilized in a thin unidirectional electrical steel sheet used as an iron core material for improving the efficiency of a transformer. It is an object of the present invention to provide a hot-rolled sheet for grain-oriented electrical steel sheet in which inhibitor control and crystal grain size control are performed in a hot rolling process, a method for producing the same, and a method for producing the grain-oriented electrical steel sheet. ..

本発明者らは、上記課題を解決すべく、薄手の一方向性電磁鋼板において不均一な二次再結晶が発現する原因を調査した。その結果、二次再結晶での優先成長性は、一次再結晶完了時に粒径が大きい方位粒で高まることから、薄手の一方向性電磁鋼板における二次再結晶組織を安定化させるためには、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径を、中心領域における結晶粒の平均粒径よりも粗大化させておき、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を維持させることが有効であることが分かった。 In order to solve the above problems, the present inventors have investigated the cause of non-uniform secondary recrystallization in a thin unidirectional electromagnetic steel sheet. As a result, the preferential growth potential in the secondary recrystallization is increased in the directional grains having a large particle size when the primary recrystallization is completed. Therefore, in order to stabilize the secondary recrystallization structure in the thin unidirectional electromagnetic steel plate, At the time of completion of the primary recrystallization, the average grain size of the Goss azimuth grains in the region near the surface is made coarser than the average grain size of the crystal grains in the central region, and the inhibitor strength in the vicinity of the steel plate surface during the secondary recrystallization is increased. It was found that it is effective to maintain the preferential growth property of the Goss oriented grains in the vicinity of the surface of the steel plate even if the decrease occurs rapidly.

そして、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径を、中心領域における結晶粒の平均粒径よりも粗大化させておくことができるような熱延板および熱間圧延の条件を検討した結果、表面近傍領域におけるGoss方位粒の平均粒径が中心領域における結晶粒の平均粒径よりも大きい熱延板、および鋼板に偏析元素を含有させた上で鋼板の表面近傍領域の温度が中心領域の温度よりも高い条件下で熱間圧延の全部または一部を施すことが、実用的に適用可能であるとの知見を得た。 Then, at the time of completion of the primary recrystallization, the hot-rolled plate and hot rolling so that the average grain size of the Goss directional grains in the region near the surface can be coarser than the average grain size of the crystal grains in the central region. As a result of examining the above conditions, the hot-rolled sheet in which the average grain size of the Goss directional grains in the region near the surface is larger than the average grain size of the crystal grains in the central region, and the steel sheet containing segregation elements and then near the surface of the steel sheet. It was found that it is practically applicable to perform all or part of hot rolling under the condition that the temperature of the region is higher than the temperature of the central region.

本発明はこれらの知見を基になされたものであり、その要旨は、質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.030%、ならびにBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.0002%以上0.02%以下を含有し、残部がFeおよび不可避的不純物からなる一方向性電磁鋼板用熱延板であって、板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径の比が1.10以上であることを特徴とする一方向性電磁鋼板用熱延板である。 The present invention is based on these findings, and the gist thereof is mass%, C: 0.1% or less, Si: 2.5 to 4.0%, Mn: 0.05 to 0. From the group consisting of 1%, S: 0.01-0.04%, Al: 0.01-0.05%, and N: 0.001-0.030%, and Bi, Pb, As, and Te. One type or two or more types to be selected: A hot-rolled plate for a unidirectional electromagnetic steel plate containing 0.0002% or more and 0.02% or less in total, and the balance is Fe and unavoidable impurities, and the plate thickness is 1. The ratio of the average grain size of the Goss directional grains in the region near the surface of the 1/10 to 1/5 layer to the average grain size of the crystal grains in the / 5 layer to the central region is 1.10 or more. It is a hot-rolled plate for unidirectional electromagnetic steel plate.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板であって、板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比が1.10以上であり、上記表面近傍領域におけるMnSの平均粒径が300nm以下であることを特徴とする一方向性電磁鋼板用熱延板である。 Another gist is the above-mentioned hot-rolled plate for unidirectional electromagnetic steel plate, which has a plate thickness of 1/5 layer to a plate thickness of 1/10 to 1/5 layer with respect to the average particle size of MnS in the central region of the center. The ratio of the average particle size of MnS in the region near the surface of the above surface is 1.10 or more, and the average particle size of MnS in the region near the surface is 300 nm or less. is there.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板であって、板厚1/10〜1/5層の表面近傍領域におけるMnSの分布密度に対する板厚1/5層〜中心の中心領域におけるMnSの分布密度の比が1.10以上であり、上記表面近傍領域における平均粒径が1μm以上のMnSの分布密度が20個/mm以下であることを特徴とする一方向性電磁鋼板用熱延板である。 Another gist is the above-mentioned hot-rolled plate for unidirectional electromagnetic steel plate, which has a plate thickness of 1/5 layer to the center with respect to the distribution density of MnS in the region near the surface of the plate thickness of 1/10 to 1/5 layer. One direction, characterized in that the ratio of the distribution density of MnS in the central region of is 1.10 or more, and the distribution density of MnS having an average particle size of 1 μm or more in the region near the surface is 20 pieces / mm 2 or less. It is a hot-rolled plate for sex electromagnetic steel plates.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板であって、上記Feの一部に代えて、質量%で、Sb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下を含有することを特徴とする一方向性電磁鋼板用熱延板である。 Another gist is the above-mentioned hot-rolled sheet for unidirectional electromagnetic steel sheet, which is selected from the group consisting of Sb, Sn, and P in mass% instead of a part of Fe. Two or more types: Hot-rolled plates for unidirectional electrical steel sheets, which are characterized by containing 0.0004% or more and 0.5% or less in total.

また、他の要旨は、質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.030%、ならびにBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.0002%以上0.02%以下を含有し、残部がFeおよび不可避的不純物からなる鋳片に熱間圧延を施す熱間圧延工程において、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とすることを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 In addition, other gist is by mass%, C: 0.1% or less, Si: 2.5 to 4.0%, Mn: 0.05 to 0.1%, S: 0.01 to 0.04. %, Al: 0.01-0.05%, and N: 0.001-0.030%, and one or more selected from the group consisting of Bi, Pb, As, and Te: 0 in total In the hot rolling step of hot rolling a slab containing 0002% or more and 0.02% or less and the balance being Fe and unavoidable impurities, the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc. : One direction, characterized in that the true strain of rolling applied to the steel sheet in a state where 1000 to 1100 ° C. satisfies the relationship of Ts−Tc ≧ 80 ° C. is 40% or more of the true strain of the entire hot rolling. This is a method for manufacturing a hot-rolled sheet for a sex electromagnetic steel sheet.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記熱間圧延工程において、表面温度にして900℃以下まで冷却した上記鋳片を、雰囲気温度が1200℃以上の加熱炉に装入して、装入後1時間以内に上記加熱炉から抽出した上記鋳片に上記熱間圧延を施すことを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another gist is the above-mentioned method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet, in which the ambient temperature of the slab cooled to 900 ° C. or lower as the surface temperature in the hot rolling step is increased. A hot-rolled sheet for a unidirectional electromagnetic steel sheet, which is charged into a heating furnace at 1200 ° C. or higher and hot-rolled on the slab extracted from the heating furnace within 1 hour after charging. It is a manufacturing method.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記熱間圧延工程において、圧延後の鋼板を表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、上記圧延後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに圧延を施すことを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another gist is the above-mentioned method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet. In the above-mentioned hot rolling step, the surface temperature of the rolled steel sheet is set to Ts from 1100 ° C. or higher to 600 to 750 ° C. After cooling at an average cooling rate of 2 ° C./s or higher to the following and holding for 0s to 300s in the temperature range of 600 to 750 ° C., the surface temperature of the rolled steel sheet is set to 1100 ° C. or higher and 1150 ° C. or lower. This is a method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet, which comprises heating and then further rolling.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記熱間圧延工程において、上記鋳片を表面温度にして1250〜1400℃に加熱した後に、上記加熱後の鋳片に上記熱間圧延を施すことを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another gist is the above-mentioned method for manufacturing a hot-rolled sheet for unidirectional electromagnetic steel sheet. In the above-mentioned hot rolling step, after heating the slab to a surface temperature of 1.25 to 1400 ° C. This is a method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet, which comprises subjecting a slab after heating to the hot rolling.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法であって、上記Feの一部に代えて、質量%で、Sb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下をさらに含有することを特徴とする一方向性電磁鋼板用熱延板の製造方法である。 Another gist is the above-mentioned method for manufacturing a hot-rolled sheet for grain-oriented electrical steel sheet, which is selected from the group consisting of Sb, Sn, and P in mass% instead of a part of Fe. One type or two or more types: A method for producing a hot-rolled sheet for a unidirectional electromagnetic steel sheet, which further contains 0.0004% or more and 0.5% or less in total.

また、他の要旨は、上述の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する熱延板製造工程と、上記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す熱延板焼鈍工程と、上記熱延板焼鈍後の鋼板に冷間圧延を施す冷間圧延工程と、上記冷間圧延後の鋼板に脱炭焼鈍を施す脱炭焼鈍工程と、上記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程とを有することを特徴とする一方向性電磁鋼板の製造方法である。 In addition, other gist is the hot-rolled plate manufacturing process for manufacturing the hot-rolled plate for unidirectional electromagnetic steel sheet by performing the above-mentioned method for manufacturing the hot-rolled plate for unidirectional electromagnetic steel sheet, and the above-mentioned hot-rolled plate for unidirectional electromagnetic steel sheet. A hot-rolled plate annealing step of hot-rolling a hot-rolled plate, a cold rolling step of cold-rolling the steel sheet after the hot-rolled plate annealing, and a decarburization annealing of the steel plate after the cold-rolling. It is a method for producing a unidirectional electromagnetic steel sheet, which comprises a decarburization and anneal step and a finish anneal step of applying a finish anneal to the steel sheet after the decarburization and anneal.

また、他の要旨は、上述の一方向性電磁鋼板の製造方法であって、上記熱延板焼鈍工程において、上記一方向性電磁鋼板用熱延板を900〜1050℃の温度域に60s以上保持する熱延板焼純を施すことを特徴とする一方向性電磁鋼板の製造方法である。 Another gist is the above-mentioned method for manufacturing a unidirectional electromagnetic steel sheet, in which the above-mentioned hot-rolled sheet for unidirectional electromagnetic steel sheet is placed in a temperature range of 900 to 50 ° C. for 60 s or more in the above-mentioned annealing step. It is a method for manufacturing a unidirectional electromagnetic steel sheet, which is characterized in that it is subjected to hot-rolled sheet annealing to be held.

さらに、他の要旨は、上述の一方向性電磁鋼板の製造方法であって、上記脱炭焼鈍工程において、上記冷間圧延後の鋼板を、350℃以下の温度から700℃以上850℃以下の温度まで昇温する昇温過程において100℃/s以上の昇温速度で加熱した後に、上記冷間圧延後の鋼板に上記脱炭焼鈍を施すことを特徴とする一方向性電磁鋼板の製造方法である。 Further, another gist is the above-mentioned method for producing a unidirectional electromagnetic steel sheet, in which in the decarburization annealing step, the steel sheet after cold rolling is brought from a temperature of 350 ° C. or lower to 700 ° C. or higher and 850 ° C. or lower. A method for producing a unidirectional electromagnetic steel sheet, which comprises heating at a temperature rising rate of 100 ° C./s or more in a temperature raising process of raising the temperature to a temperature, and then subjecting the steel sheet after cold rolling to decarburization annealing. Is.

本発明によれば、均一な二次再結晶を発現させることによって磁気特性を優れたものとした薄手の超低鉄損一方向性電磁鋼板を製造するために用いられる一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法を提供することができる。 According to the present invention, heat for grain-oriented electrical steel sheets used for producing thin ultra-low iron-loss unidirectional steel sheets having excellent magnetic properties by expressing uniform secondary recrystallization. It is possible to provide a rolled plate and a method for producing the same, and a method for producing the unidirectional electromagnetic steel sheet thereof.

以下、本発明の一方向性電磁鋼板用熱延板およびその製造方法、ならびにその一方向性電磁鋼板の製造方法について詳細に説明する。 Hereinafter, the hot-rolled sheet for unidirectional electromagnetic steel sheet of the present invention, a method for producing the same, and a method for producing the unidirectional electromagnetic steel sheet will be described in detail.

A.一方向性電磁鋼板用熱延板
本発明の一方向性電磁鋼板用熱延板は、下記化学成分を有する一方向性電磁鋼板用熱延板であって、板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径の比が1.10以上であることを特徴とするものである。以下、本発明の一方向性電磁鋼板用熱延板について詳細に説明する。
A. Hot-rolled plate for unidirectional electromagnetic steel sheet The hot-rolled plate for unidirectional electromagnetic steel sheet of the present invention is a hot-rolled plate for unidirectional electromagnetic steel sheet having the following chemical components, and has a thickness of 1/5 layer to the center. It is characterized in that the ratio of the average particle size of the Goss oriented grains in the region near the surface of the 1/10 to 1/5 layer of the plate thickness to the average particle size of the crystal grains in the central region is 1.10 or more. Hereinafter, the hot-rolled sheet for unidirectional electromagnetic steel sheet of the present invention will be described in detail.

1.化学成分
以下、本発明における化学成分の限定理由について詳細に説明する。以下において、各成分の含有量は質量%での値である。
1. 1. Chemical components The reasons for limiting the chemical components in the present invention will be described in detail below. In the following, the content of each component is a value in mass%.

(1)C
Cを添加すると、形成されるオーステナイト相によって熱延時のMnSの核生成、成長を制御できるため有用な元素であるが、0.1%を超えて添加されると脱炭または純化を困難にする。Cが製品板に残存した場合、磁気特性が劣化する時効現象を惹起するため、含有量の上限を0.1%とする。
(1) C
When C is added, it is a useful element because the nucleation and growth of MnS during hot spreading can be controlled by the formed austenite phase, but if it is added in excess of 0.1%, decarburization or purification becomes difficult. .. If C remains on the product plate, it causes an aging phenomenon in which the magnetic characteristics deteriorate, so the upper limit of the content is set to 0.1%.

(2)Si
Siは、固有抵抗を高めて、鉄損を低減するのに有用な元素のため、2.5〜4.0%添加する。過剰に添加した場合、熱間圧延または冷間圧延が困難になるため、含有量の上限を4.0%とする。
(2) Si
Since Si is an element useful for increasing the natural resistance and reducing the iron loss, 2.5 to 4.0% is added. If it is added in excess, hot rolling or cold rolling becomes difficult, so the upper limit of the content is set to 4.0%.

(3)Mn
Mnは、MnSを熱間圧延中に微細析出させるために必要な元素であるため、0.05〜0.1%添加する。含有量がこれより少ない場合、十分なMnSの体積率が得られず、組織制御ができなくなるため、含有量の下限を0.05%とする。また、過剰にMnを添加しても組織制御への改善効果が得られないため、含有量の上限を0.1%とする。
(3) Mn
Since Mn is an element necessary for finely precipitating MnS during hot rolling, 0.05 to 0.1% is added. If the content is less than this, a sufficient volume fraction of MnS cannot be obtained and the structure cannot be controlled. Therefore, the lower limit of the content is set to 0.05%. Further, even if Mn is added excessively, the effect of improving the structure control cannot be obtained, so the upper limit of the content is set to 0.1%.

(4)S
Sは、Mnと同様に、MnSを析出させるための必須元素であるため、0.01〜0.04%添加する。含有量がこれより少ない場合、十分なMnSの体積率が得られず、組織制御ができなくなるため、含有量の下限を0.01%とする。過剰に添加した場合、MnSが粗大化し易くなること、および赤熱脆化で熱延が困難になることから、含有量の上限を0.04%とする。
(4) S
Since S is an essential element for precipitating MnS like Mn, 0.01 to 0.04% is added. If the content is less than this, a sufficient volume fraction of MnS cannot be obtained and the structure cannot be controlled. Therefore, the lower limit of the content is set to 0.01%. If it is added in an excessive amount, MnS tends to be coarsened and red-hot embrittlement makes it difficult to spread the heat. Therefore, the upper limit of the content is set to 0.04%.

(5)Al
Alは、MnSを微細析出せしめる熱間圧延後の熱延板を焼鈍することで、微細MnSと地鉄との界面上に微細AlNを析出させるために必要な元素であり、一方向性電磁鋼板の磁束密度を向上させることを目的として、0.01〜0.05%添加する。含有量がこれより少ない場合、AlNの有効な析出量が得られず、仕上げ焼鈍時の組織制御に寄与できず、一方向性電磁鋼板の磁束密度が向上しないため、含有量の下限を0.01%とする。また、含有量がこれより大きい場合、AlNの成長が速くなり、また熱間圧延でAlNが単独で析出しやすくなることで、AlNが比較的粗大に析出し、二次再結晶において有効なピン止め力を発揮せず、Goss方位粒の優先成長に悪影響が及んで磁束密度が低下するため、含有量の上限を0.05%とする。
(5) Al
Al is an element necessary for precipitating fine AlN on the interface between fine MnS and ground iron by annealing the hot-rolled plate after hot rolling that finely precipitates MnS, and is a unidirectional electromagnetic steel sheet. 0.01 to 0.05% is added for the purpose of improving the magnetic flux density of. If the content is less than this, the effective precipitation amount of AlN cannot be obtained, it cannot contribute to the structure control during finish annealing, and the magnetic flux density of the unidirectional electromagnetic steel sheet does not improve. Therefore, the lower limit of the content is set to 0. It is set to 01%. Further, when the content is larger than this, the growth of AlN becomes faster, and AlN is easily precipitated by itself in hot rolling, so that AlN is relatively coarsely precipitated, which is an effective pin for secondary recrystallization. The upper limit of the content is set to 0.05% because it does not exert a stopping force and adversely affects the preferential growth of Goss oriented grains and lowers the magnetic flux density.

(6)N
Nは、Alと同様に、熱延板を焼鈍して微細AlNを析出させるのに必要な元素であり、0.001〜0.030%添加する。含有量がこれより少ない場合、微細AlNの有効な析出量が得られず、仕上げ焼鈍時の組織制御に必要な粒界ピン止め力を発揮することができないから、含有量の下限を0.001%とする。また、含有量がこれより大きい場合、熱間圧延でAlNが単独析出しやすくなることで、AlNが比較的粗大に析出し、二次再結晶において有効なピン止め力を発揮せず、Goss方位粒の優先成長に悪影響が及んで磁束密度が低下するため、含有量の上限を0.030%とする。
(6) N
Like Al, N is an element necessary for annealing a hot-rolled plate to precipitate fine AlN, and 0.001 to 0.030% is added. If the content is less than this, the effective precipitation amount of fine AlN cannot be obtained, and the grain boundary pinning force required for structure control during finish annealing cannot be exerted. Therefore, the lower limit of the content is 0.001. %. Further, when the content is larger than this, AlN is likely to be precipitated alone in hot rolling, so that AlN is relatively coarsely precipitated and does not exert an effective pinning force in secondary recrystallization, and the Goss orientation. Since the preferential growth of grains is adversely affected and the magnetic flux density is lowered, the upper limit of the content is set to 0.030%.

(7)Bi、Pb、As、およびTe
Bi、Pb、As、およびTeは、偏析により粒界の移動速度を遅くさせるのに必要な元素であり、Bi、Pb、As、およびTeからなる群から選ばれる1種または2種以上を、合計で0.0002%以上0.02%以下添加する。
(7) Bi, Pb, As, and Te
Bi, Pb, As, and Te are elements necessary to slow down the movement speed of grain boundaries by segregation, and one or more selected from the group consisting of Bi, Pb, As, and Te. Add 0.0002% or more and 0.02% or less in total.

後述の「B.一方向性電磁鋼板用熱延板の製造方法 1.熱間圧延工程」に記載の熱間圧延工程においては、鋳片の板厚中心温度が表面温度よりも低くなることにより、粒界易動度が上記鋳片の中心領域において表面近傍領域よりも小さくなる。これに加えて、上述の元素の偏析により粒界の移動速度が遅くなる。このため、上記鋳片の中心領域において表面近傍領域よりも結晶粒径は顕著に小さくなる。この結果、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径を、板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径よりも顕著に粗大化させておくことができる。また、上記表面近傍領域において、上記中心領域よりもMnSを顕著に粗大かつ低密度にすることができ、かつ上記表面近傍領域においてMnSが過度に粗大かつ低密度になることを抑制することもできる。これにより、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができる。 In the hot rolling process described in "B. Manufacturing method of hot rolled sheet for unidirectional electromagnetic steel sheet 1. Hot rolling process" described later, the center temperature of the plate thickness of the slab becomes lower than the surface temperature. , The grain boundary mobility is smaller in the central region of the slab than in the region near the surface. In addition to this, the segregation of the above-mentioned elements slows down the movement speed of the grain boundaries. Therefore, the crystal grain size in the central region of the slab is significantly smaller than that in the region near the surface. As a result, in the hot-rolled plate for unidirectional electromagnetic steel plate, the average grain size of the Goss azimuth grains in the region near the surface of the plate thickness 1/10 to 1/5 layer is set to the plate thickness 1/5 layer to the central region of the center. It can be made significantly coarser than the average particle size of the crystal grains in all directions. Further, in the surface vicinity region, MnS can be remarkably coarse and low density as compared with the central region, and it is also possible to prevent MnS from becoming excessively coarse and low density in the surface vicinity region. .. As a result, even if the inhibitor strength near the surface of the steel sheet rapidly decreases during secondary recrystallization, the preferential growth of Goss azimuth grains near the surface of the steel sheet is remarkably maintained, and the thin unidirectional electromagnetic steel sheet is used. The secondary recrystallization structure can be remarkably stabilized.

さらに、添加量が0.0002%より少ない場合、このような効果が得られないため添加量の下限を0.0002%とする。添加量が0.02%より多い場合、二次再結晶を安定にする効果は飽和し、さらに圧延時に耳割れなどの欠陥を生じやすくするため、添加量の上限を0.02%とする。
なお、Bi、Pb、As、およびTeは、Feの一部に代えて、添加されるものである。
Further, when the addition amount is less than 0.0002%, such an effect cannot be obtained, so the lower limit of the addition amount is set to 0.0002%. When the addition amount is more than 0.02%, the effect of stabilizing the secondary recrystallization is saturated and defects such as ear cracks are likely to occur during rolling, so the upper limit of the addition amount is set to 0.02%.
Bi, Pb, As, and Te are added in place of a part of Fe.

(8)その他
Sb、Sn、およびPからなる群から選ばれる1種または2種以上を、合計で0.0004%以上0.5%以下添加することが好ましい。これらの元素の偏析により粒界の移動速度がさらに遅くなるため、上記鋳片の中心領域において表面近傍領域よりも結晶粒径はさらに顕著に小さくなる。この結果、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径を、板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径よりもさらに顕著に粗大化させておくことができる。また、上記表面近傍領域において、より効果的に上記中心領域よりもMnSを粗大かつ低密度にすることができる。これにより、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性をさらに顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができるからである。
(8) Others It is preferable to add one or more selected from the group consisting of Sb, Sn, and P in a total of 0.0004% or more and 0.5% or less. Since the movement speed of the grain boundaries is further slowed down by segregation of these elements, the crystal grain size in the central region of the slab is significantly smaller than that in the region near the surface. As a result, in the hot-rolled plate for unidirectional electromagnetic steel plate, the average grain size of the Goss azimuth grains in the region near the surface of the plate thickness 1/10 to 1/5 layer is set to the plate thickness 1/5 layer to the central region of the center. It can be made coarser than the average particle size of the crystal grains in all directions. Further, in the region near the surface, MnS can be made coarser and lower in density than the central region more effectively. As a result, even if the inhibitor strength near the surface of the steel sheet rapidly decreases during secondary recrystallization, the preferential growth of Goss azimuth grains near the surface of the steel sheet is maintained more remarkably, and the thin unidirectional electromagnetic steel sheet is further maintained. This is because the secondary recrystallization structure in the above can be stabilized more remarkably.

さらに、添加量が0.0004%より少ない場合、このような効果が得られないため添加量の下限を0.0004%とすることが好ましい。添加量が0.5%より多い場合、二次再結晶を安定にする効果は飽和し、さらに圧延時に耳割れなどの欠陥を生じやすくするため、添加量の上限を0.5%とすることが好ましい。
なお、Sb、Sn、およびPは、Feの一部に代えて、添加されるものである。
Further, when the addition amount is less than 0.0004%, such an effect cannot be obtained, so that the lower limit of the addition amount is preferably 0.0004%. When the addition amount is more than 0.5%, the effect of stabilizing the secondary recrystallization is saturated and defects such as ear cracks are likely to occur during rolling. Therefore, the upper limit of the addition amount should be 0.5%. Is preferable.
In addition, Sb, Sn, and P are added in place of a part of Fe.

(9)残部
残部はFeおよび不可避的不純物である。不可避的不純物のうち粒成長性に悪影響を及ぼすTi、V、Nb、Zrは極力低減することが望ましく、それぞれ0.008%以下とすることが好ましい。
(9) Remaining Remaining is Fe and unavoidable impurities. Among the unavoidable impurities, Ti, V, Nb, and Zr, which adversely affect the grain growth property, are preferably reduced as much as possible, and each is preferably 0.008% or less.

2.結晶粒の平均粒径
本発明の一方向性電磁鋼板用熱延板において、板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径の比が1.10以上である。これにより、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径を中心領域における全方位の結晶粒の平均粒径よりも顕著に粗大化させておくことができる。この結果、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができる。
ここで、本発明において、「結晶粒の平均粒径」とは、観察された複数の結晶粒について、投影面積に対する同一面積の円の直径をそれぞれ求め、平均した値を意味する。
2. 2. Average particle size of crystal grains In the hot-rolled plate for unidirectional electromagnetic steel plate of the present invention, the plate thickness is 1/5 layer to 1/10 to 1/5 layer of the average particle size of crystal grains in the central region of the center. The ratio of the average grain size of the Goss directional grains in the region near the surface is 1.10 or more. As a result, at the time of completion of the primary recrystallization, the average grain size of the Goss azimuth grains in the region near the surface can be significantly coarsened from the average grain size of the omnidirectional crystal grains in the central region. As a result, even if the inhibitor strength in the vicinity of the steel sheet surface rapidly decreases during secondary recrystallization, the preferential growth of Goss azimuth grains in the vicinity of the steel sheet surface is remarkably maintained, and the thin unidirectional electromagnetic steel sheet is used. The secondary recrystallization structure can be remarkably stabilized.
Here, in the present invention, the "average particle size of crystal grains" means the average value obtained by obtaining the diameters of circles having the same area with respect to the projected area of a plurality of observed crystal grains.

板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径の比は、1.20以上であることが好ましい。鋼板表面近傍におけるGoss方位粒の優先成長性をさらに顕著に維持できるからである。 The ratio of the average grain size of the Goss azimuth grains in the region near the surface of the 1/5 to 1/5 layer thickness to the average grain size of the crystal grains in the central region of the 1/5 layer to the center is 1.20 or more. It is preferable to have. This is because the preferential growth property of the Goss oriented grains in the vicinity of the surface of the steel sheet can be maintained more remarkably.

3.析出物
以下、MnSの析出物について詳細に説明する。
3. 3. Precipitates The MnS precipitates will be described in detail below.

(1)平均粒径
本発明の一方向性電磁鋼板用熱延板において、板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比は1.10以上であり、上記表面近傍領域におけるMnSの平均粒径が300nm以下であることが好ましい。上記MnSの平均粒径の比を1.10以上とするのは、MnSが表面近傍領域よりも中心領域において微細かつ高密度になることによって、表面近傍領域において一次再結晶組織をGoss方位粒の優先成長にさらに顕著に有利な組織にし、仕上げ焼鈍時に中心領域の一次再結晶粒の成長をさらに顕著に抑制することができるので、鋼板表面近傍におけるGoss方位粒の優先成長性をさらに顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができるからである。一方、上記表面近傍領域におけるMnSの平均粒径を300nm以下とするのは、上記表面近傍領域において、MnSが過度に粗大かつ低密度になると、二次再結晶が不安定となるからである。
(1) Average Grain Size In the hot-rolled plate for unidirectional electromagnetic steel plate of the present invention, the surface of 1/5 layer to 1/5 to 1/5 layer thickness with respect to the average particle size of MnS in the central region of the center. The ratio of the average particle size of MnS in the vicinity region is 1.10 or more, and the average particle size of MnS in the vicinity of the surface region is preferably 300 nm or less. The reason why the ratio of the average particle size of MnS is 1.10 or more is that MnS becomes finer and denser in the central region than in the region near the surface, so that the primary recrystallization structure of the Goss orientation grain is set in the region near the surface. The structure is more remarkably advantageous for preferential growth, and the growth of primary recrystallized grains in the central region can be suppressed more remarkably during finish annealing, so that the preferential growth of Goss oriented grains in the vicinity of the steel plate surface is more remarkably maintained. This is because the secondary recrystallization structure of the thin unidirectional electromagnetic steel plate can be more significantly stabilized. On the other hand, the reason why the average particle size of MnS in the region near the surface is set to 300 nm or less is that if MnS becomes excessively coarse and low in density in the region near the surface, secondary recrystallization becomes unstable.

ここで、本発明において、「MnSの平均粒径」とは、観察された複数のMnSについて、投影面積に対する同一面積の円の直径をそれぞれ求め、平均した値を意味する。一方向性電磁鋼板用熱延板において、MnSの総析出量が同一である場合、MnSの平均粒子径が小さいほど、MnSは高い分布密度で析出する。 Here, in the present invention, the "average particle size of MnS" means the average value obtained by obtaining the diameters of circles having the same area with respect to the projected area for each of the observed multiple MnS. In the hot-rolled sheet for unidirectional electrical steel sheet, when the total amount of MnS deposited is the same, the smaller the average particle size of MnS, the higher the distribution density of MnS.

板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比は、中でも1.20以上であることが好ましく、特に1.30以上であることが好ましい。均質微細なMnSが中心領域で結晶粒成長を抑制するとともに、高温では中心領域の結晶粒成長を抑制しながら、表面近傍領域のMnSがオストワルド成長することで二次再結晶が開始し、結晶粒をさん食して進行する二次再結晶が顕著に起こりやすくなるからである。 The ratio of the average particle size of MnS in the region near the surface of the 1/5 to 1/5 layer thickness to the average particle size of MnS in the central region of the plate thickness 1/5 layer to the center is 1.20 or more. Is preferable, and 1.30 or more is particularly preferable. Homogeneous and fine MnS suppresses crystal grain growth in the central region, and while suppressing crystal grain growth in the central region at high temperatures, MnS in the region near the surface grows ostwald to initiate secondary recrystallization, resulting in crystal grains. This is because secondary recrystallization that progresses by eating the food is remarkably likely to occur.

板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径は、80nm〜300nmの範囲内であることが好ましく、中でも80nm〜200nmの範囲内、特に80nm〜160nmの範囲内であることが好ましい。MnSがこの平均粒径にある場合、尖鋭な二次再結晶組織が得られるからである。また、板厚1/5層〜中心の中心領域におけるMnSの平均粒径は、50nm〜200nmの範囲内であることが好ましく、中でも50nm〜180nmの範囲内、特に50nm〜120nmの範囲内であることが好ましい。中心領域に微細なMnSを分散させることで、仕上げ焼鈍中の中心領域の結晶粒成長が抑制され、二次再結晶が顕著に安定化されるからである。 The average particle size of MnS in the region near the surface of the 1/10 to 1/5 layer thickness is preferably in the range of 80 nm to 300 nm, particularly in the range of 80 nm to 200 nm, particularly in the range of 80 nm to 160 nm. It is preferable to have. This is because when MnS has this average particle size, a sharp secondary recrystallization structure can be obtained. The average particle size of MnS in the 1/5 layer to the central region of the plate thickness is preferably in the range of 50 nm to 200 nm, particularly in the range of 50 nm to 180 nm, particularly in the range of 50 nm to 120 nm. Is preferable. This is because by dispersing fine MnS in the central region, grain growth in the central region during finish annealing is suppressed, and secondary recrystallization is remarkably stabilized.

(2)分布密度
本発明の一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるMnSの分布密度に対する板厚1/5層〜中心の中心領域におけるMnSの分布密度の比は1.10以上であり、上記表面近傍領域における平均粒径が1μm以上のMnSの分布密度が20個/mm以下であることが好ましい。上記MnSの分布密度の比を1.10以上とするのは、MnSが表面近傍領域よりも中心領域において微細かつ高密度になることによって、表面近傍領域において一次再結晶組織をGoss方位粒の優先成長にさらに顕著に有利な組織にし、仕上げ焼鈍時に中心領域の一次再結晶粒の成長をさらに顕著に抑制することができるので、鋼板表面近傍におけるGoss方位粒の優先成長性をさらに顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができるからである。一方、上記表面近傍領域における平均粒径が1μm以上のMnSの分布密度を20個/mm以下とするのは、上記表面近傍領域において、MnSが過度に粗大かつ低密度になると、二次再結晶が不安定となるからである。
(2) Distribution Density In the hot-rolled plate for unidirectional electromagnetic steel plate of the present invention, the plate thickness 1/5 layer to the central region of the MnS distribution density in the region near the surface of the plate thickness 1/10 to 1/5 layer. The ratio of the distribution density of MnS in the above surface is 1.10 or more, and the distribution density of MnS having an average particle size of 1 μm or more in the surface vicinity region is preferably 20 pieces / mm 2 or less. The reason why the distribution density ratio of MnS is 1.10 or more is that MnS becomes finer and denser in the central region than in the region near the surface, so that the primary recrystallization structure is prioritized in the Goss orientation grain in the region near the surface. Since the structure is made more remarkably advantageous for growth and the growth of the primary recrystallized grains in the central region can be suppressed more remarkably during finish annealing, the preferential growth property of the Goss oriented grains in the vicinity of the steel plate surface is further remarkably maintained. This is because the secondary recrystallization structure of the thin unidirectional electromagnetic steel plate can be more significantly stabilized. On the other hand, the reason why the distribution density of MnS having an average particle size of 1 μm or more in the surface vicinity region is 20 pieces / mm 2 or less is that when MnS becomes excessively coarse and low density in the surface vicinity region, secondary recrystallization occurs. This is because the crystals become unstable.

ここで、本発明において、「MnSの分布密度」とは、鏡面研磨した断面を観察して数えたMnSの個数を観察視野の面積で除した値を意味する。 Here, in the present invention, the "MnS distribution density" means a value obtained by dividing the number of MnS counted by observing the mirror-polished cross section by the area of the observation field of view.

4.板厚
本発明の一方向性電磁鋼板用熱延板は、薄手の一方向性電磁鋼板を製造する時に均一な二次再結晶を発現させるようなインヒビター制御を行って得られることを前提としている。そのため熱延板の板厚は2.3mm以下の範囲内、好ましくは2.1mm以下の範囲内、より好ましくは2.0mm以下の範囲内とし、その後の冷間圧延工程では85%以上、92%以下の圧下率で冷間圧延を施し最終板厚とするのが好ましい。一方、冷間圧延後の板厚が極度に薄くなり、本発明による改善が見られないため、熱延板の板厚は1.5mm以上の範囲内とするのが好ましい。
4. Plate Thickness The hot-rolled sheet for grain-oriented electrical steel sheet of the present invention is premised on being obtained by performing inhibitor control so as to develop uniform secondary recrystallization when producing a thin grain-oriented electrical steel sheet. .. Therefore, the thickness of the hot-rolled sheet should be within the range of 2.3 mm or less, preferably 2.1 mm or less, more preferably 2.0 mm or less, and 85% or more, 92 in the subsequent cold rolling process. It is preferable to perform cold rolling at a rolling reduction of% or less to obtain the final plate thickness. On the other hand, since the plate thickness after cold rolling becomes extremely thin and no improvement by the present invention is observed, the plate thickness of the hot-rolled plate is preferably in the range of 1.5 mm or more.

5.製造方法
本発明の一方向性電磁鋼板用熱延板は、後述の「B.一方向性電磁鋼板用熱延板の製造方法」に記載の一方向性電磁鋼板用熱延板の製造方法により製造することが好適である。
5. Manufacturing Method The hot-rolled sheet for unidirectional electromagnetic steel sheet of the present invention is prepared by the method for manufacturing a hot-rolled sheet for unidirectional electromagnetic steel sheet described in "B. Manufacturing method for hot-rolled sheet for unidirectional electromagnetic steel sheet" described later. It is preferable to manufacture.

B.一方向性電磁鋼板用熱延板の製造方法
本発明の一方向性電磁鋼板用熱延板の製造方法は、上述の化学成分を有する鋳片に熱間圧延を施す熱間圧延工程を有する。以下、本発明の一方向性電磁鋼板用熱延板の製造方法について説明する。
B. Method for manufacturing hot-rolled sheet for unidirectional electromagnetic steel sheet The method for manufacturing a hot-rolled sheet for unidirectional electromagnetic steel sheet of the present invention includes a hot-rolling step of hot-rolling a slab having the above-mentioned chemical components. Hereinafter, a method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet of the present invention will be described.

1.熱間圧延工程
熱間圧延工程においては、上述の化学成分を有する鋳片に熱間圧延を施す。また、上記熱間圧延工程においては、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とする。これにより、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径を、板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径よりも粗大化させておくことができる。また、上記表面近傍領域において、上記中心領域よりもMnSを粗大かつ低密度にすることができる。
1. 1. Hot rolling step In the hot rolling step, slabs having the above-mentioned chemical components are hot-rolled. Further, in the hot rolling step, the true rolling performed on the steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. The strain is set to 40% or more of the true strain of the entire hot rolling. As a result, in the hot-rolled plate for unidirectional electromagnetic steel plate, the average grain size of the Goss azimuth grains in the region near the surface of the plate thickness 1/10 to 1/5 layer is set to the plate thickness 1/5 layer to the central region of the center. It can be made coarser than the average particle size of the crystal grains in all directions. Further, in the region near the surface, MnS can be coarser and have a lower density than the central region.

また、上記熱間圧延工程においては、上記鋳片の板厚中心温度が表面温度よりも低くなることにより、粒界易動度が上記鋳片の中心領域において表面近傍領域よりも小さくなる。これに加えて、上記鋳片が含有するBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上の元素の偏析により粒界の移動速度が遅くなる。このため、上記鋳片の中心領域において表面近傍領域よりも結晶粒径は顕著に小さくなる。この結果、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径を、板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径よりも顕著に粗大化させておくことができる。また、上記表面近傍領域において、上記中心領域よりもMnSを顕著に粗大かつ低密度にすることができ、かつ上記表面近傍領域においてMnSが過度に粗大かつ低密度になることを抑制することもできる。 Further, in the hot rolling step, the grain boundary mobility becomes smaller in the central region of the slab than in the region near the surface because the plate thickness center temperature of the slab is lower than the surface temperature. In addition to this, segregation of one or more elements selected from the group consisting of Bi, Pb, As, and Te contained in the slab slows down the movement speed of the grain boundaries. Therefore, the crystal grain size in the central region of the slab is significantly smaller than that in the region near the surface. As a result, in the hot-rolled plate for unidirectional electromagnetic steel plate, the average grain size of the Goss azimuth grains in the region near the surface of the plate thickness 1/10 to 1/5 layer is set to the plate thickness 1/5 layer to the central region of the center. It can be made significantly coarser than the average particle size of the crystal grains in all directions. Further, in the surface vicinity region, MnS can be remarkably coarse and low density as compared with the central region, and it is also possible to prevent MnS from becoming excessively coarse and low density in the surface vicinity region. ..

これにより、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径を中心領域における全方位の結晶粒の平均粒径よりも顕著に粗大化させておくことができる。この結果、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性を顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織を顕著に安定化させることができる。
ここで、上記熱間圧延全体の真歪みは50%以上であることが好ましい。これにより、MnSの析出が促進され、上記の効果がさらに顕著に高まるからである。
As a result, at the time of completion of the primary recrystallization, the average grain size of the Goss azimuth grains in the region near the surface can be significantly coarsened from the average grain size of the omnidirectional crystal grains in the central region. As a result, even if the inhibitor strength in the vicinity of the steel sheet surface rapidly decreases during secondary recrystallization, the preferential growth of Goss azimuth grains in the vicinity of the steel sheet surface is remarkably maintained, and the thin unidirectional electromagnetic steel sheet is used. The secondary recrystallization structure can be remarkably stabilized.
Here, the true strain of the whole hot rolling is preferably 50% or more. This promotes the precipitation of MnS, and the above effect is further remarkably enhanced.

ここで、本発明において、「鋼板の表面温度Ts」とは、接触式の温度計あるいは放射温度計によって測定した温度を意味する。また、本発明において、「鋼板の板厚中心温度Tc」とは、通常公知の差分法による熱伝導解析により求めた温度を意味する。 Here, in the present invention, the "surface temperature Ts of the steel sheet" means the temperature measured by a contact type thermometer or a radiation thermometer. Further, in the present invention, the "plate thickness center temperature Tc of the steel sheet" means the temperature obtained by the heat conduction analysis by the commonly known difference method.

上述の化学成分を有する鋳片は、例えば、転炉または電気炉等により鋼を溶製して、必要に応じて真空脱ガス処理し、次いで連続鋳造もしくは造塊後分塊圧延することによって得られる。 The slab having the above-mentioned chemical components can be obtained by, for example, melting steel in a converter or an electric furnace, vacuum degassing treatment if necessary, and then continuous casting or ingot rolling after ingot formation. Be done.

上記熱間圧延工程においては、上記鋳片に粗圧延および仕上げ圧延を施して所望の板厚の熱延板に仕上げる。このとき、後述の条件で上記鋳片を加熱した後に上記熱間圧延を施してもよい。また、上記粗圧延において1または2以上の圧延パスを施した鋼板に、後述の条件で冷却して保持した後に、さらに加熱して上記仕上げ圧延を施してもよい。 In the hot rolling step, the slab is roughly rolled and finish-rolled to finish a hot-rolled plate having a desired plate thickness. At this time, the hot rolling may be performed after heating the slab under the conditions described later. Further, the steel sheet which has been subjected to one or more rolling passes in the rough rolling may be cooled and held under the conditions described below, and then further heated to perform the finish rolling.

上記熱間圧延工程において、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とするとは、上記粗圧延および仕上げ圧延の全ての圧延パスから任意に選択した1または2以上の圧延パスを上記関係を満たす状態で鋼板に行い、上記関係を満たす状態で鋼板に行う上記1または2以上の圧延パスの真歪みを、上記粗圧延および仕上げ圧延の全ての圧延パスの真歪みの40%以上とすることを意味する。 In the hot rolling step, the true strain of rolling applied to a steel plate in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. To make it 40% or more of the true strain of the whole hot rolling, one or two or more rolling passes arbitrarily selected from all the rolling passes of the rough rolling and the finish rolling are performed on the steel plate in a state satisfying the above relationship. It means that the true strain of one or more rolling passes performed on the steel plate in a state satisfying the above relationship is 40% or more of the true strain of all the rolling passes of the rough rolling and the finish rolling.

また、上記熱間圧延工程において、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とする操業管理の条件としては、主に、以下の二つの好ましい条件がある。 Further, in the hot rolling step, true strain of rolling is applied to a steel sheet in a state where a surface temperature Ts: 1100 to 1200 ° C. and a plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. There are mainly the following two preferable conditions for the operation management in which the true strain of the whole hot rolling is set to 40% or more.

第1の条件では、表面温度にして900℃以下まで冷却した上記鋳片を、雰囲気温度が1200℃以上の加熱炉に装入して、装入後1時間以内に上記加熱炉から抽出した上記鋳片に上記熱間圧延を施す。これにより、上記鋳片の表面温度と板厚中心温度との差が確保され、続く上記熱間圧延工程において、1または2以上の圧延パスを、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に行う。そして、上記関係を満たす状態で鋼板に行う上記1または2以上の圧延パスの真歪みを、上記熱間圧延全体の真歪みの40%以上とする。この結果、一方向性電磁鋼板用熱延板において、上記表面近傍領域におけるGoss方位粒の平均粒径を、上記中心領域における全方位の結晶粒の平均粒径よりもさらに顕著に粗大化させておくことができる。また、上記表面近傍領域において、より効果的に上記中心領域よりもMnSを粗大かつ低密度にすることができる。 Under the first condition, the slab cooled to a surface temperature of 900 ° C. or lower was charged into a heating furnace having an ambient temperature of 1200 ° C. or higher, and extracted from the heating furnace within 1 hour after the charging. The slab is hot-rolled as described above. As a result, the difference between the surface temperature of the slab and the center temperature of the plate thickness is secured, and in the subsequent hot rolling step, one or two or more rolling passes are performed with a surface temperature Ts: 1100 to 1200 ° C. and a center plate thickness. The temperature Tc: 1000 to 1100 ° C. is applied to the steel sheet in a state where the relationship of Ts−Tc ≧ 80 ° C. is satisfied. Then, the true strain of the 1 or 2 or more rolling passes performed on the steel sheet while satisfying the above relationship is set to 40% or more of the true strain of the entire hot rolling. As a result, in the hot-rolled sheet for grain-oriented electrical steel sheets, the average grain size of the Goss azimuth grains in the surface vicinity region is made significantly coarser than the average grain size of the omnidirectional crystal grains in the central region. Can be left. Further, in the region near the surface, MnS can be made coarser and lower in density than the central region more effectively.

第2の条件では、圧延後の鋼板を表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、上記圧延後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに圧延を施す。具体的には、例えば、上記粗圧延または仕上げ圧延において行われる1または2以上の圧延パス後の鋼板を、表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、上記1または2以上の圧延パス後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに仕上げ圧延において1または2以上の圧延パスを行う。 Under the second condition, the rolled steel sheet is cooled to a surface temperature of Ts from 1100 ° C. or higher to 600 to 750 ° C. or lower at an average cooling rate of 2 ° C./s or higher, and is in a temperature range of 600 to 750 ° C. for 0s to 300s. After holding, the rolled steel sheet is heated to a surface temperature of 1100 ° C. or higher and 1150 ° C. or lower, and then further rolled. Specifically, for example, the surface temperature of the steel sheet after one or two or more rolling passes performed in the rough rolling or finish rolling is an average of 2 ° C./s or more from 1100 ° C. or higher to 600 to 750 ° C. or lower. After cooling at a cooling rate and holding the steel sheet in the temperature range of 600 to 750 ° C. for 0s to 300s, the steel sheet after the above 1 or 2 or more rolling passes is heated to a surface temperature Ts of 1100 ° C. or higher and 1150 ° C. or lower. Further, in finish rolling, one or two or more rolling passes are performed.

これにより、上記粗圧延または仕上げ圧延において行われる1または2以上の圧延パス後の鋼板の表面温度と板厚中心温度の差が確保され、続く上記仕上げ圧延において行われる1または2以上の圧延パスを、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に行う。そして、上記関係を満たす状態で鋼板に行う上記1または2以上の圧延パスの真歪みを、上記熱間圧延全体の真歪みの40%以上とする。この結果、一方向性電磁鋼板用熱延板において、上記表面近傍領域におけるGoss方位粒の平均粒径を、上記中心領域における全方位の結晶粒の平均粒径よりもさらに顕著に粗大化させておくことができる。また、上記表面近傍領域において、より効果的に上記中心領域よりもMnSを粗大かつ低密度にすることができる。 As a result, the difference between the surface temperature of the steel sheet and the center temperature of the sheet thickness after one or two or more rolling passes performed in the rough rolling or finish rolling is secured, and one or two or more rolling passes performed in the subsequent finish rolling. Is performed on the steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. Then, the true strain of the 1 or 2 or more rolling passes performed on the steel sheet while satisfying the above relationship is set to 40% or more of the true strain of the entire hot rolling. As a result, in the hot-rolled sheet for grain-oriented electrical steel sheets, the average grain size of the Goss azimuth grains in the surface vicinity region is made significantly coarser than the average grain size of the omnidirectional crystal grains in the central region. Can be left. Further, in the region near the surface, MnS can be made coarser and lower in density than the central region more effectively.

また、上記熱間圧延工程においては、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの50%以上とすることが好ましい。一方向性電磁鋼板用熱延板において、上記表面近傍領域におけるGoss方位粒の平均粒径を、上記中心領域における全方位の結晶粒の平均粒径よりもさらに顕著に粗大化させておくことができる。また、上記表面近傍領域において、より効果的に上記中心領域よりもMnSを粗大かつ低密度にすることができるからである。 Further, in the hot rolling step, the true rolling performed on the steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. The strain is preferably 50% or more of the true strain of the entire hot rolling. In the hot-rolled plate for grain-oriented electrical steel sheets, the average grain size of the Goss-oriented grains in the region near the surface may be made coarser than the average grain size of the crystal grains in all directions in the central region. it can. Further, in the region near the surface, MnS can be made coarser and lower in density than the central region more effectively.

また、上記熱間圧延工程においては、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される上述の圧延のうち表面温度Ts:1100〜1150℃で鋼板に施される圧延の真歪みを、上記熱間圧延全体の真歪みの40%以上とすることが好ましく、50%以上とすることがさらに好ましい。一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径を、板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径よりもさらに顕著に粗大化させておくことができる。また、上記表面近傍領域において、より効果的に上記中心領域よりもMnSを粗大かつ低密度にすることができる。この結果、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径を中心領域における全方位の結晶粒の平均粒径よりも顕著に粗大化させておくことができるので、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができる。 Further, in the hot rolling step, the above-mentioned rolling is performed on the steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. Of these, the true strain of rolling applied to the steel sheet at a surface temperature Ts: 1100 to 1150 ° C. is preferably 40% or more, and more preferably 50% or more of the true strain of the entire hot rolling. In the hot-rolled plate for unidirectional electromagnetic steel plate, the average grain size of the Goss azimuth grains in the region near the surface of the plate thickness 1/10 to 1/5 layer is set to the omnidirectional in the plate thickness 1/5 layer to the central region. It can be made coarser than the average particle size of the crystal grains. Further, in the region near the surface, MnS can be made coarser and lower in density than the central region more effectively. As a result, at the time of completion of the primary recrystallization, the average grain size of the Goss-oriented grains in the region near the surface can be significantly coarser than the average grain size of the crystal grains in all directions in the central region. The secondary recrystallization structure of the unidirectional electromagnetic steel plate can be more significantly stabilized.

また、上記熱間圧延工程においては、上記鋳片を表面温度にして1250〜1400℃に加熱した後に、上記加熱後の鋳片に上記熱間圧延を施すことが好ましい。上記熱間圧延を施す前に既に析出しているMnSを完全に溶体化させることができるため、上記熱間圧延を施すことによって、板厚1/5層〜中心の中心領域においてMnSを板厚1/10〜1/5層の表面近傍領域よりも、より微細かつ高密度に析出させることができる。これにより、中心領域において結晶粒の成長を顕著に抑制することで、一次再結晶組織をGoss方位粒の優先成長にさらに顕著に有利な組織にし、仕上げ焼鈍時に一次再結晶粒の成長をさらに顕著に抑制することができるので、鋼板表面近傍におけるGoss方位粒の優先成長性をさらに顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができるからである。 Further, in the hot rolling step, it is preferable that the slab is heated to 1250 to 1400 ° C. at a surface temperature, and then the slab after heating is subjected to the hot rolling. Since the MnS that has already been precipitated can be completely dissolved before the hot rolling, the MnS is thickened in the 1/5 layer to the central region of the center by performing the hot rolling. It is possible to deposit finer and more densely than the region near the surface of the 1/10 to 1/5 layer. As a result, the growth of the crystal grains is remarkably suppressed in the central region, so that the primary recrystallized structure becomes a structure that is more remarkably advantageous for the preferential growth of the Goss-oriented grains, and the growth of the primary recrystallized grains is further remarkably made during finish annealing. Therefore, the preferential growth of Goss oriented grains in the vicinity of the surface of the steel sheet can be maintained more remarkably, and the secondary recrystallization structure of the thin unidirectional electromagnetic steel sheet can be more remarkably stabilized. Because.

さらに、上記熱間圧延工程においては、上記鋳片が、上記Feの一部に代えて、質量%で、Sb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下をさらに含有することが好ましい。これらの元素の偏析により粒界の移動速度がさらに遅くなるため、上記鋳片の中心領域において表面近傍領域よりも結晶粒径はさらに顕著に小さくなる。この結果、一方向性電磁鋼板用熱延板において、板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径を、板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径よりもさらに顕著に粗大化させておくことができる。また、上記表面近傍領域において、より効果的に上記中心領域よりもMnSを粗大かつ低密度にすることができる。これにより、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性をさらに顕著に維持させて、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができるからである。 Further, in the hot rolling step, the slab is one or more selected from the group consisting of Sb, Sn, and P in mass% instead of a part of Fe: 0 in total. It is preferable to further contain 0004% or more and 0.5% or less. Since the movement speed of the grain boundaries is further slowed down by segregation of these elements, the crystal grain size in the central region of the slab is significantly smaller than that in the region near the surface. As a result, in the hot-rolled plate for unidirectional electromagnetic steel plate, the average grain size of the Goss azimuth grains in the region near the surface of the plate thickness 1/10 to 1/5 layer is set to the plate thickness 1/5 layer to the central region of the center. It can be made coarser than the average particle size of the crystal grains in all directions. Further, in the region near the surface, MnS can be made coarser and lower in density than the central region more effectively. As a result, even if the inhibitor strength near the surface of the steel sheet rapidly decreases during secondary recrystallization, the preferential growth of Goss azimuth grains near the surface of the steel sheet is maintained more remarkably, and the thin unidirectional electromagnetic steel sheet is further maintained. This is because the secondary recrystallization structure in the above can be stabilized more remarkably.

2.一方向性電磁鋼板用熱延板
本発明の一方向性電磁鋼板用熱延板の製造方法によって製造される一方向性電磁鋼板用熱延板としては、特に限定されるものではないが、上述の「A.一方向性電磁鋼板用熱延板」に記載の一方向性電磁鋼板用熱延板が好ましい。より均一な二次再結晶を発現させることによってより磁気特性を優れたものとした薄手の一方向性電磁鋼板を製造するために用いることができるからである。
2. 2. Hot-rolled sheet for unidirectional electromagnetic steel sheet The hot-rolled sheet for unidirectional electromagnetic steel sheet manufactured by the method for manufacturing the hot-rolled sheet for unidirectional electromagnetic steel sheet of the present invention is not particularly limited, but is described above. The hot-rolled sheet for unidirectional electromagnetic steel sheet described in "A. Hot-rolled sheet for unidirectional electromagnetic steel sheet" is preferable. This is because it can be used for producing a thin unidirectional electromagnetic steel sheet having more excellent magnetic properties by expressing more uniform secondary recrystallization.

C.一方向性電磁鋼板の製造方法
本発明の一方向性電磁鋼板の製造方法は、上述の「B.一方向性電磁鋼板用熱延板の製造方法」に記載の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する熱延板製造工程と、上記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す熱延板焼鈍工程と、上記熱延板焼鈍後の鋼板に冷間圧延を施す冷間圧延工程と、上記冷間圧延後の鋼板に脱炭焼鈍を施す脱炭焼鈍工程と、上記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程とを有することを特徴とするものである。
以下、本発明の一方向性電磁鋼板の製造方法における各工程について説明する。
C. Manufacturing method of unidirectional electromagnetic steel sheet The manufacturing method of the unidirectional electromagnetic steel sheet of the present invention is described in "B. Manufacturing method of hot-rolled sheet for unidirectional electromagnetic steel sheet" described above. A hot-rolled plate manufacturing process for manufacturing a hot-rolled plate for unidirectional electromagnetic steel sheets by performing a plate manufacturing method, and a hot-rolled plate annealing step for performing hot-rolled plate annealing on the above-mentioned hot-rolled plate for unidirectional electromagnetic steel sheets. A cold rolling step of cold rolling the steel sheet after hot rolling plate annealing, a decarburization annealing step of decarburizing the steel sheet after the cold rolling, and a finish annealing of the steel sheet after the decarburization annealing. It is characterized by having a finish annealing step of applying.
Hereinafter, each step in the method for manufacturing a unidirectional electromagnetic steel sheet of the present invention will be described.

1.熱延板製造工程
上記熱延板製造工程においては、上述の「B.一方向性電磁鋼板用熱延板の製造方法」に記載の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する。
1. 1. Hot-rolled plate manufacturing process In the above-mentioned hot-rolled plate manufacturing process, the method for manufacturing a hot-rolled plate for unidirectional electromagnetic steel sheets described in "B. Manufacturing method for hot-rolled plates for unidirectional electromagnetic steel sheets" is performed. Manufactures hot-rolled sheets for unidirectional electromagnetic steel sheets.

熱延板製造条件は、上記「B.一方向性電磁鋼板用熱延板の製造方法 1.熱間圧延工程」の項目に記載の通りである。また、一方向性電磁鋼板用熱延板の構成は、上記「A.一方向性電磁鋼板用熱延板」の項目に記載の通りである。 The hot-rolled sheet manufacturing conditions are as described in the above item "B. Manufacturing method of hot-rolled sheet for unidirectional electromagnetic steel sheet 1. Hot rolling process". The configuration of the hot-rolled sheet for unidirectional electromagnetic steel sheet is as described in the above item "A. Hot-rolled sheet for unidirectional electromagnetic steel sheet".

2.熱延板焼鈍工程
上記熱延板焼鈍工程においては、上記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す。
2. 2. Hot-rolled plate annealing step In the hot-rolled plate annealing step, the hot-rolled plate is annealed on the hot-rolled sheet for unidirectional electromagnetic steel sheet.

熱延板焼鈍条件は、特に限定されるものではないが、上記熱延板焼鈍工程においては、上記一方向性電磁鋼板用熱延板を900〜1050℃の温度域に60s以上保持することが好ましい。熱延板焼鈍をこのような条件で施すことにより、AlNが析出してインヒビターとして作用する結果、二次再結晶組織におけるGoss方位への集積度がさらに顕著に向上するからである。
上記熱延板焼鈍工程においては、上記仕上げ熱延後の鋼板をコイル状に巻き取り、自己保有熱にて上記の温度域に保持してもよいし、冷却後の熱延板に焼鈍を施して上記の温度域に保持してもよい。
The conditions for annealing the hot-rolled sheet are not particularly limited, but in the hot-rolled sheet annealing step, the hot-rolled sheet for unidirectional electromagnetic steel sheet may be held in a temperature range of 900 to 1050 ° C. for 60 seconds or more. preferable. This is because when the hot-rolled plate is annealed under such conditions, AlN precipitates and acts as an inhibitor, and as a result, the degree of integration in the Goss orientation in the secondary recrystallization structure is further significantly improved.
In the hot-rolled plate annealing step, the steel sheet after the finish hot-rolling may be wound into a coil and kept in the above temperature range by the self-owned heat, or the hot-rolled plate after cooling is annealed. It may be kept in the above temperature range.

3.冷間圧延工程
上記冷間圧延工程においては、上記熱延板焼鈍後の鋼板に冷間圧延を施す。
3. 3. Cold rolling step In the cold rolling step, cold rolling is performed on the steel sheet after annealing the hot-rolled sheet.

4.脱炭焼鈍工程
上記脱炭焼鈍工程においては、上記冷間圧延後の鋼板に脱炭焼鈍を施す。
4. Decarburization annealing step In the decarburization annealing step, the steel sheet after cold rolling is subjected to decarburization annealing.

脱炭焼鈍条件は特に限定されるものではないが、上記脱炭焼鈍工程においては、上記冷間圧延後の鋼板を、350℃以下の温度から700℃以上850℃以下の温度まで昇温する昇温過程において100℃/s以上の昇温速度で加熱した後に、上記冷間圧延後の鋼板に上記脱炭焼鈍を施すことが好ましい。一次再結晶時の昇温での急速加熱の作用によって、一次再結晶完了時に、板厚方向全体においてGoss方位粒を大きくすることができるからである。これにより、本発明における熱延板の組織による作用との相乗効果が生じることで、一次再結晶完了時点において、表面近傍領域におけるGoss方位粒の平均粒径がさらに顕著に大きくなり、二次再結晶時に鋼板表面近傍におけるインヒビター強度の低下が急速に起こったとしても、鋼板表面近傍におけるGoss方位粒の優先成長性がさらに顕著に維持されることが期待できる。この結果、薄手の一方向性電磁鋼板における二次再結晶組織をさらに顕著に安定化させることができるからである。 The decarburization annealing conditions are not particularly limited, but in the decarburization annealing step, the temperature of the steel sheet after cold rolling is raised from a temperature of 350 ° C. or lower to a temperature of 700 ° C. or higher and 850 ° C. or lower. It is preferable that the steel sheet after cold rolling is subjected to the decarburization annealing after heating at a temperature rise rate of 100 ° C./s or more in the warming process. This is because the Goss azimuth grain can be enlarged in the entire plate thickness direction when the primary recrystallization is completed by the action of rapid heating at the temperature rise during the primary recrystallization. As a result, a synergistic effect with the action of the structure of the hot-rolled sheet in the present invention is generated, and at the time of completion of the primary recrystallization, the average particle size of the Goss azimuth grains in the region near the surface becomes more remarkably large, and the secondary recrystallization Even if the inhibitor strength in the vicinity of the steel sheet surface rapidly decreases during crystallization, it can be expected that the preferential growth property of the Goss oriented grains in the vicinity of the steel sheet surface is maintained more remarkably. As a result, the secondary recrystallization structure of the thin unidirectional magnetic steel sheet can be more significantly stabilized.

5.仕上げ焼鈍工程
上記仕上げ焼鈍工程においては、上記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す。これにより、上記脱炭焼鈍後の鋼板において二次再結晶を起こして一方向性電磁鋼板を得る。
5. Finish Annealing Step In the finish annealing process, the steel sheet after decarburization annealing is subjected to finish annealing. As a result, the steel sheet after decarburization annealing undergoes secondary recrystallization to obtain a unidirectional electromagnetic steel sheet.

6.その他
本発明の一方向性電磁鋼板の製造方法は、一般的に一方向性電磁鋼板の製造方法において行われる工程をさらに有するものでもよい。上述以外の代表的な工程としては、溶解、鋳造、熱延巻取り、酸洗、窒化焼鈍、焼鈍分離剤塗布、純化焼鈍、絶縁皮膜塗布が挙げられる。これらの工程は、一つの製造装置における1回の通板で複数の工程を行ってもよい。また、これらの工程は、一定の工程を複数回繰り返すことや、順番を入れ替えて行ってもよい。
6. In addition, the method for producing a unidirectional electromagnetic steel sheet of the present invention may further include a step generally performed in the method for producing a unidirectional electromagnetic steel sheet. Typical steps other than the above include melting, casting, hot winding, pickling, nitriding and annealing, annealing separator coating, purification annealing, and insulating film coating. In these steps, a plurality of steps may be performed by one passing plate in one manufacturing apparatus. Further, these steps may be performed by repeating a certain step a plurality of times or changing the order.

本発明の一方向性電磁鋼板の製造方法において熱延と熱延板焼鈍で単独のAlNが析出してAlNの析出密度が不足する場合は上記脱炭焼鈍工程後上記仕上げ焼鈍工程前に、窒化焼鈍を行う窒化焼鈍工程を有してもよい。これにより、AlNの析出密度が不足するのを回避することができる。 In the method for producing a unidirectional electromagnetic steel plate of the present invention, when a single AlN is precipitated by hot-rolling and hot-rolling sheet annealing and the precipitation density of AlN is insufficient, nitriding is performed after the decarburization annealing step and before the finish annealing step. It may have a nitriding annealing step of annealing. This makes it possible to avoid insufficient precipitation density of AlN.

上記窒化焼鈍工程においては、上記脱炭焼鈍後の鋼板を、700℃以上800℃以下の温度域に30s以上300s以下保持する窒化焼鈍を行うことが好ましい。 In the nitriding annealing step, it is preferable to perform nitriding annealing in which the steel sheet after decarburization annealing is held in a temperature range of 700 ° C. or higher and 800 ° C. or lower for 30 s or more and 300 s or less.

本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same action and effect is the present invention. Is included in the technical scope of.

以下、実施例および比較例を例示して、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.

(実施例1)
下記表1に示す化学成分を有する鋼番号1〜15および鋼番号19〜40の鋳片を雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして下記表2−1に示す鋳片加熱温度Ts0に加熱した後に、加熱炉から抽出した鋳片に下記表2−1に示す条件で粗圧延および仕上げ圧延を施した。また、下記表1に示す化学成分を有する鋼番号16〜18の鋳片を表面温度にして850℃に冷却した後に、雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして下記表2−1に示す鋳片加熱温度Ts0に加熱した後に、加熱炉から抽出した鋳片に下記表2−1に示す条件で粗圧延および仕上げ圧延を施した。
(Example 1)
The slabs of steel numbers 1 to 15 and steel numbers 19 to 40 having the chemical components shown in Table 1 below are placed in a heating furnace having an ambient temperature of 1320 ° C. and held for 30 minutes to obtain the surface temperature in the table below. After heating to the slab heating temperature Ts0 shown in 2-1 the slabs extracted from the heating furnace were roughly rolled and finished rolled under the conditions shown in Table 2-1 below. Further, the slabs of steel numbers 16 to 18 having the chemical components shown in Table 1 below are cooled to 850 ° C. at a surface temperature, and then charged into a heating furnace having an ambient temperature of 1320 ° C. and held for 30 minutes. After heating to the slab heating temperature Ts0 shown in Table 2-1 below, the slabs extracted from the heating furnace were subjected to rough rolling and finish rolling under the conditions shown in Table 2-1 below.

上記粗圧延では、鋼番号1〜40の鋳片について、入側での鋼板の表面温度Ts1[℃]、板厚中心温度Tc1[℃]、および板厚t1[mm]を下記表2−1に示すようにして最初の圧延パスを行った。また、上記粗圧延および仕上げ圧延において、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおける最初の圧延パスの入側での鋼板の表面温度Tss[℃]、板厚中心温度Tcs[℃]、Tss−Tcs[℃]、および板厚ts[mm]、ならびに上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおける最終の圧延パスの出側での鋼板の表面温度Tsf[℃]、板厚中心温度Tcf[℃]、Tsf−Tcf[℃]、および板厚tf[mm]を下記表2−1に示すようにして、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスを行った。
なお、Tss、Tcs、およびtsが、Ts1、Tc1、およびt1となっている鋼番号での熱間圧延においては、上記粗圧延における最初の圧延パスが、上記粗圧延および仕上げ圧延において、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおける最初の圧延パスに該当する。
In the above rough rolling, for the slabs of steel numbers 1 to 40, the surface temperature Ts1 [° C.] of the steel sheet on the inlet side, the plate thickness center temperature Tc1 [° C.], and the plate thickness t1 [mm] are shown in Table 2-1 below. The first rolling pass was made as shown in. Further, in the rough rolling and finish rolling, a plurality of sheets are continuously performed on a steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. The surface temperature Tss [° C.], the center temperature Tcs [° C.], Tss-Tcs [° C.], and the plate thickness ts [mm] of the steel sheet at the entrance side of the first rolling path in the rolling path of Surface temperature Tsf [° C.], plate thickness center temperature Tcf [° C.], Tsf-Tcf [° C.], and Tsf-Tcf [° C.] on the exit side of the final rolling pass in a plurality of rolling passes continuously performed on the steel sheet in a filled state. As shown in Table 2-1 below, the plate thickness tf [mm] was subjected to a plurality of rolling passes continuously performed on the steel sheet while satisfying the above relationship.
In hot rolling with steel numbers in which Tss, Tcs, and ts are Ts1, Tc1, and t1, the first rolling pass in the rough rolling is the above relationship in the rough rolling and finish rolling. Corresponds to the first rolling pass in a plurality of rolling passes continuously performed on a steel sheet in a state of satisfying the condition.

以上のように、上記粗圧延および仕上げ圧延を施すことによって、仕上げ板厚tffが2.3mmの熱延板を得た。また、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおいて施される圧延の真歪みep[−]、および上記粗圧延および仕上げ圧延からなる熱間圧延全体の真歪みet[−]は、下記表2−1に示されるようになった。また、真歪みetに対する真歪みepの比Ce(ep/et×100)[%]は、下記表2−1に示されるようになった。 As described above, by performing the above-mentioned rough rolling and finish rolling, a hot-rolled plate having a finished plate thickness tff of 2.3 mm was obtained. Further, the true strain ep [−] of rolling performed in a plurality of rolling passes continuously performed on the steel sheet while satisfying the above relationship, and the true strain et [of the entire hot rolling consisting of the rough rolling and finish rolling. -] Are shown in Table 2-1 below. In addition, the ratio Ce (ep / et × 100) [%] of the true strain ep to the true strain et is shown in Table 2-1 below.

さらに、得られた熱延板の板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径Dsg[μm]、MnSの平均粒径ds[nm]、MnSの分布密度ρs[μm−2]、および平均粒径が1μm以上のMnSの分布密度ρ1μm[μm−2]、ならびに得られた熱延板の板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径Di[μm]、MnSの平均粒径di[nm]、およびMnSの分布密度ρi[μm−2]を調査した。また、中心領域における全方位の結晶粒の平均粒径Diに対する表面近傍領域におけるGoss方位粒の平均粒径Dsgの比Dsg/Di[−]、中心領域におけるMnSの平均粒径diに対する表面近傍領域におけるMnSの平均粒径dsの比ds/di[−]、および表面近傍領域におけるMnSの分布密度ρsに対する中心領域におけるMnSの分布密度ρiの比ρi/ρs[−]を算出した。結晶粒の平均粒径は観察された複数の結晶粒について、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの平均粒径は観察された複数のMnSについて、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの分布密度は鏡面研磨した断面を観察して数えたMnSの個数を観察視野の面積で除した値である。得られた結果を下記表2−2に示す。 Further, the average particle size Dsg [μm] of the Goss directional grains, the average particle size ds [nm] of MnS, and the distribution density of MnS in the region near the surface of the obtained hot-rolled plate having a thickness of 1/10 to 1/5. ρs [μm -2], and the distribution density ρ1μm an average particle size of more than 1μm MnS [μm -2], and the total orientation of the crystal in the central region of the sheet thickness 1/5 layer to the center of the obtained hot-rolled sheet The average particle size Di [μm] of the grains, the average particle size di [nm] of MnS, and the distribution density ρi [μm- 2 ] of MnS were investigated. Further, the ratio of the average particle size Dsg of the Goss directional grains Dsg in the region near the surface to the average particle size Di of the crystal grains in all directions in the central region Dsg / Di [−], and the region near the surface of MnS in the central region with respect to the average particle size di. The ratio ds / di [−] of the average particle size ds of MnS and the ratio ρi / ρs [−] of the distribution density ρi of MnS in the central region to the distribution density ρs of MnS in the region near the surface were calculated. The average particle size of the crystal grains is the value obtained by calculating and averaging the diameters of circles of the same area with respect to the projected area for each of the observed crystal grains, and the average particle size of MnS is the same for the observed multiple MnS with respect to the projected area. The average value of the diameters of the circles in the area, and the distribution density of MnS is the value obtained by dividing the number of MnS counted by observing the mirror-polished cross section by the area of the observation field. The obtained results are shown in Table 2-2 below.

鋼番号19の熱延板は、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った上、上記表面近傍領域における平均粒径が1μm以上のMnSの分布密度ρ1μmが本発明の好ましい範囲を上回り、かつMnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回った。また、鋼番号20の熱延板は、Ts1が低いために、Ts:1100〜1200℃およびTc:1000〜1100℃がTs−Tc≧80℃の関係を満たさない状態で熱間圧延全体が施されることになるので、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った上、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回った。さらに、鋼番号21の熱延板は、上記粗圧延の途中で、板厚中心温度Tcが上昇したため、Ts:1100〜1200℃およびTc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で連続して行われる複数の圧延パスにおいて施される真歪みepが小さくなり、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った上、真歪みの比Ceが本発明の範囲を下回ったため、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回った。
また、鋼番号22の熱延板は、本発明のBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上の合計添加量が、本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った上、表面近傍領域における平均粒径が1μm以上のMnSの分布密度ρ1μmが本発明の好ましい範囲を上回った。
また、鋼番号23、24、25、26および27の熱延板は、本発明のBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上の合計添加量が、本発明の範囲を上回ったため、熱延中に割れた。
Since the true strain ratio Ce of the hot-rolled plate of steel No. 19 was below the range of the present invention, the ratio Dsg / Di of the average particle size of the crystal grains was below the range of the present invention, and the average in the region near the surface was The distribution density ρ1 μm of MnS having a particle size of 1 μm or more exceeded the preferable range of the present invention, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density were below the preferable range of the present invention. Further, since the hot-rolled plate of steel number 20 has a low Ts1, the entire hot rolling is performed in a state where Ts: 1100 to 1200 ° C. and Tc: 1000 to 1100 ° C. do not satisfy the relationship of Ts−Tc ≧ 80 ° C. Therefore, the ratio Dsg / Di of the average particle size of the crystal grains is below the range of the present invention, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density of the present invention. It was below the preferred range. Further, in the hot-rolled plate of steel No. 21, since the plate thickness center temperature Tc increased during the rough rolling, the relationship between Ts: 1100 to 1200 ° C. and Tc: 1000 to 1100 ° C. was Ts-Tc ≥ 80 ° C. The true strain ep applied in a plurality of rolling passes continuously performed in the satisfying state becomes smaller, the ratio Dsg / Di of the average particle size of the crystal grains falls below the range of the present invention, and the true strain ratio Ce becomes Since it was below the range of the present invention, the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density were below the preferable range of the present invention.
Further, the hot-rolled plate of steel No. 22 has crystal grains because the total addition amount of one or more selected from the group consisting of Bi, Pb, As, and Te of the present invention was less than the range of the present invention. The ratio Dsg / Di of the average particle size was below the range of the present invention, and the distribution density ρ1 μm of MnS having an average particle size of 1 μm or more in the region near the surface was above the preferable range of the present invention.
Further, in the hot-rolled plates of steel numbers 23, 24, 25, 26 and 27, the total addition amount of one or more selected from the group consisting of Bi, Pb, As and Te of the present invention is the present invention. Because it exceeded the range of, it cracked during hot spreading.

また、鋼番号28の熱延板は、鋳片加熱温度Ts0が本発明の好ましい範囲である1250〜1400℃を下回ったため、MnSの分散が不十分で、表面近傍領域におけるMnSの平均粒径dsが本発明の好ましい範囲を上回り、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。 Further, in the hot-rolled plate of steel No. 28, since the slab heating temperature Ts0 was below the preferable range of the present invention of 1.25 to 1400 ° C., the dispersion of MnS was insufficient, and the average particle size ds of MnS in the region near the surface was ds. Is above the preferred range of the present invention, the average particle size ratio ds / di of MnS and the distribution density ratio ρi / ρs are below the preferred range of the present invention, and the average particle size ratio Dsg / Di of the crystal grains is the present invention. It was below the range of.

また、鋼番号29の熱延板は、鋳片加熱温度Ts0が本発明の好ましい範囲である1250〜1400℃を上回ったため、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。 Further, in the hot-rolled plate of steel No. 29, since the slab heating temperature Ts0 exceeded the preferable range of the present invention of 1.25 to 1400 ° C., the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density Was below the preferable range of the present invention, and the ratio Dsg / Di of the average particle size of the crystal grains was below the range of the present invention.

また、鋼番号30の熱延板は、C含有量が本発明の範囲を上回っているばかりか、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。さらに、鋼番号31および32の熱延板は、Si含有量が本発明の範囲外であるばかりか、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。 Further, in the hot-rolled plate of steel No. 30, not only the C content was above the range of the present invention, but also the true strain ratio Ce was below the range of the present invention, so that the ratio of the average particle size of the crystal grains was Dsg / Di fell below the scope of the invention. Further, in the hot-rolled plates of steel numbers 31 and 32, not only the Si content was outside the range of the present invention, but also the true strain ratio Ce was below the range of the present invention, so that the ratio Dsg of the average grain size of the crystal grains / Di fell below the scope of the present invention.

また、鋼番号33の熱延板は、Mn含有量が本発明の範囲外であるため、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。鋼番号34の熱延板は、Mn含有量が本発明の範囲外であるため、表面近傍領域における平均粒径が1μm以上のMnSの分布密度ρ1μmが本発明の好ましい範囲を上回り、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。また、鋼番号35の熱延板は、S含有量が本発明の範囲外であるため、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。さらに、鋼番号36の熱延板は、S含有量が本発明の範囲外であるため、表面近傍領域におけるMnSの平均粒径dsおよび平均粒径が1μm以上のMnSの分布密度ρ1μmが本発明の好ましい範囲を上回り、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回り、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った。 Further, since the Mn content of the hot-rolled plate of steel No. 33 is outside the range of the present invention, the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density are below the preferable range of the present invention. , The ratio of the average particle size of the crystal grains, Dsg / Di, was below the range of the present invention. Since the Mn content of the hot-rolled plate of steel No. 34 is outside the range of the present invention, the distribution density ρ1 μm of MnS having an average particle size of 1 μm or more in the region near the surface exceeds the preferable range of the present invention, and the average of MnS. The particle size ratio ds / di and the distribution density ratio ρi / ρs were below the preferable range of the present invention, and the average particle size ratio Dsg / Di of the crystal grains was below the range of the present invention. Further, since the S content of the hot-rolled plate of steel No. 35 is outside the range of the present invention, the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density are below the preferable range of the present invention. , The ratio of the average particle size of the crystal grains, Dsg / Di, was below the range of the present invention. Further, since the S content of the hot-rolled plate of steel No. 36 is outside the range of the present invention, the average particle size ds of MnS in the region near the surface and the distribution density ρ1 μm of MnS having an average particle size of 1 μm or more are the present invention. The ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density are below the preferable range of the present invention, and the ratio Dsg / Di of the average particle size of the crystal grains is the range of the present invention. It fell below.

また、鋼番号37および38の熱延板は、Al含有量が本発明の範囲外であり、後述の実施例3において、1200℃で保持する仕上げ焼鈍により二次再結晶が発現せず、磁束密度が極めて劣位な一方向性電磁鋼板が得られた。さらに、鋼番号39および40の熱延板は、N含有量が本発明の範囲外であり、後述の実施例3において、1200℃で保持する仕上げ焼鈍により二次再結晶が発現せず、磁束密度が極めて劣位な一方向性電磁鋼板が得られた。 Further, the hot-rolled plates of steel numbers 37 and 38 have an Al content outside the range of the present invention, and in Example 3 described later, secondary recrystallization does not occur due to finish annealing held at 1200 ° C., and the magnetic flux A unidirectional electrical steel sheet with extremely inferior density was obtained. Further, the hot-rolled plates of steel numbers 39 and 40 have an N content outside the range of the present invention, and in Example 3 described later, secondary recrystallization does not occur due to finish annealing held at 1200 ° C., and the magnetic flux A unidirectional electrical steel sheet with extremely inferior density was obtained.

これに対して、本発明の一方向性電磁鋼板用熱延板の製造方法における要件を満足する条件で熱間圧延を施した鋼番号1〜18の熱延板は、結晶粒の平均粒径の比Dsg/Diが本発明の範囲内となり、上記表面近傍領域におけるMnSの平均粒径ds、および上記表面近傍領域における平均粒径が1μm以上のMnSの分布密度ρ1μm、ならびにMnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲内となった。 On the other hand, the hot-rolled steel numbers 1 to 18 subjected to hot rolling under the conditions satisfying the requirements in the method for producing the hot-rolled plate for unidirectional electromagnetic steel plate of the present invention have an average grain size of crystal grains. The ratio of Dsg / Di is within the range of the present invention, the average particle size ds of MnS in the region near the surface, the distribution density ρ1 μm of MnS having an average particle size of 1 μm or more in the region near the surface, and the average particle size of MnS. The ratio ds / di and the distribution density ratio ρi / ρs were within the preferable range of the present invention.

Figure 0006763179
Figure 0006763179

Figure 0006763179
Figure 0006763179

Figure 0006763179
Figure 0006763179

(実施例2)
下記表3に示す化学組成を有する鋼番号41〜58の鋳片を雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして下記表4−1に示す鋳片加熱温度Ts0に加熱した後に、加熱炉から抽出した鋳片に下記表4−1に示す条件で粗圧延および仕上げ圧延を施した。
(Example 2)
The slabs of steel numbers 41 to 58 having the chemical compositions shown in Table 3 below are placed in a heating furnace having an ambient temperature of 1320 ° C. and held for 30 minutes to obtain a surface temperature of the castings shown in Table 4-1 below. After heating to the one-side heating temperature Ts0, the slabs extracted from the heating furnace were roughly rolled and finish-rolled under the conditions shown in Table 4-1 below.

上記粗圧延では、入側での鋼板の板厚t1[mm]を下記表4−1に示すようにして最初の圧延パスを行った。また、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に連続して行われる複数の圧延パスを、上記複数の圧延パスにおける最初の圧延パスの入側での鋼板の表面温度Tss[℃]、板厚中心温度Tcs[℃]、Tss−Tcs[℃]、および板厚ts[mm]、ならびに上記複数の圧延パスにおける最終の圧延パスの出側での鋼板の表面温度Tsf[℃]、板厚中心温度Tcf[℃]、Tsf−Tcf[℃]、および板厚tf[mm]を下記表4−1に示すようにして行った。上記粗圧延において、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおいて施される圧延の真歪みepr[−]は、下記表4−1に示されるようになった。上記粗圧延を施すことによって、粗圧延後板厚tff1が6.0mmまたは8.0mmの粗圧延板を得た。 In the above rough rolling, the first rolling pass was performed so that the plate thickness t1 [mm] of the steel plate on the entry side was shown in Table 4-1 below. Further, a plurality of rolling passes continuously performed on the steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. The surface temperature Tss [° C.] of the steel sheet at the entry side of the first rolling pass in the rolling pass, the plate thickness center temperature Tcs [° C.], Tss-Tcs [° C.], and the plate thickness ts [mm], and the above-mentioned plurality of rolling. Table 4-1 below shows the surface temperature Tsf [° C.], center temperature Tcf [° C.], Tsf-Tcf [° C.], and plate thickness tf [mm] of the steel sheet on the exit side of the final rolling pass in the pass. It was done as shown. In the above rough rolling, the true strain epr [−] of rolling performed in a plurality of rolling passes continuously performed on the steel sheet while satisfying the above relationship is shown in Table 4-1 below. By performing the above rough rolling, a rough rolled plate having a plate thickness tff1 of 6.0 mm or 8.0 mm after rough rolling was obtained.

そして、下記表4−1に示す条件に示すように、上記粗圧延により得られた粗圧延板を、表面温度にして1100℃の冷却開始速度[℃]から550〜800℃の冷却到達速度[℃]まで1.5〜2.5℃/secの平均冷却速度[℃/sec]で冷却した後、180〜600secの保持時間[sec]で上記冷却到達速度に等温保持し、表面温度にして再昇温到達温度[℃]まで加熱した後、下記表4−1に示す条件で施す上記仕上げ圧延を施した。 Then, as shown in the conditions shown in Table 4-1 below, the rough-rolled plate obtained by the rough rolling is subjected to a cooling start rate [° C.] of 1100 ° C. to a cooling arrival rate of 550 to 800 ° C. []. After cooling to [° C.] at an average cooling rate of 1.5 to 2.5 ° C./sec [° C./sec], the temperature is kept isothermal at the above cooling reaching rate for a holding time [sec] of 180 to 600 sec to set the surface temperature. After heating to the temperature at which the temperature was reached again [° C.], the above-mentioned finish rolling was performed under the conditions shown in Table 4-1 below.

また、上記仕上げ圧延では、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に連続して行われる複数の圧延パスを、上記複数の圧延パスにおける最初の圧延パスの入側での鋼板の表面温度Tss[℃]、板厚中心温度Tcs[℃]、Tss−Tcs[℃]、および板厚ts[mm]、ならびに上記複数の圧延パスにおける最終の圧延パスの出側での鋼板の表面温度Tsf[℃]、板厚中心温度Tcf[℃]、Tsf−Tcf[℃]、および板厚tf[mm]を下記表4−1に示すようにして行った。上記仕上げ圧延において、上記関係を満たす状態で鋼板に連続して行われる複数の圧延パスにおいて施される圧延の真歪みepf[−]は、下記表4−1に示されるようになった。上記仕上げ圧延を施すことによって、仕上げ板厚tff2が2.3mmの熱延板を得た。 Further, in the above-mentioned finish rolling, a plurality of rolling passes continuously performed on a steel sheet in a state where the surface temperature Ts: 1100 to 1200 ° C. and the plate thickness center temperature Tc: 1000 to 1100 ° C. satisfy the relationship of Ts−Tc ≧ 80 ° C. The surface temperature Tss [° C.] of the steel sheet at the entry side of the first rolling pass in the plurality of rolling passes, the plate thickness center temperature Tcs [° C.], Tss-Tcs [° C.], and the plate thickness ts [mm]. In addition, the surface temperature Tsf [° C.], the plate thickness center temperature Tcf [° C.], Tsf-Tcf [° C.], and the plate thickness tf [mm] of the steel sheet at the exit side of the final rolling pass in the above plurality of rolling passes are as follows. The procedure was as shown in Table 4-1. In the above finish rolling, the true strain epf [−] of rolling performed in a plurality of rolling passes continuously performed on the steel sheet while satisfying the above relationship is shown in Table 4-1 below. By performing the above-mentioned finish rolling, a hot-rolled plate having a finished plate thickness of 2.3 mm was obtained.

また、上記粗圧延および仕上げ圧延からなる熱間圧延全体の真歪みet[−]は、下記表4−1に示されるようになった。また、上記粗圧延において上記関係を満たす状態で鋼板に施される真歪みeprおよび上記仕上げ圧延において上記関係を満たす状態で鋼板に施される真歪みepfの合計の真歪みepは、下記表4−1に示されるようになった。また、真歪みetに対する真歪みepの比Ce(ep/et×100)[%]は、下記表4−1に示されるようになった。 Further, the true strain et [−] of the entire hot rolling composed of the rough rolling and the finish rolling is shown in Table 4-1 below. The total true strain ep of the true strain epr applied to the steel sheet in the rough rolling state satisfying the above relationship and the true strain epf applied to the steel sheet in the state satisfying the above relationship in the finish rolling is shown in Table 4 below. It came to be shown in -1. Further, the ratio Ce (ep / et × 100) [%] of the true strain ep to the true strain et is shown in Table 4-1 below.

さらに、得られた熱延板の板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径Dsg[μm]、MnSの平均粒径ds[nm]、MnSの分布密度ρs[μm−2]、および平均粒径が1μm以上のMnSの分布密度ρ1μm[μm−2]、ならびに得られた熱延板の板厚1/5層〜中心の中心領域における全方位の結晶粒の平均粒径Di[μm]、MnSの平均粒径di[nm]、およびMnSの分布密度ρi[μm−2]を調査した。また、中心領域における全方位の結晶粒の平均粒径Diに対する表面近傍領域におけるGoss方位粒の平均粒径Dsgの比Dsg/Di[−]、中心領域におけるMnSの平均粒径diに対する表面近傍領域におけるMnSの平均粒径dsの比ds/di[−]、および表面近傍領域におけるMnSの分布密度ρsに対する中心領域におけるMnSの分布密度ρiの比ρi/ρs[−]を算出した。結晶粒の平均粒径は観察された複数の結晶粒について、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの平均粒径は観察された複数のMnSについて、投影面積に対する同一面積の円の直径をそれぞれ求め平均した値、MnSの分布密度は鏡面研磨した断面を観察して数えたMnSの個数を観察視野の面積で除した値である。得られた結果を下記表4−2に示す。 Further, the average particle size Dsg [μm] of the Goss directional grains, the average particle size ds [nm] of MnS, and the distribution density of MnS in the region near the surface of the obtained hot-rolled plate having a thickness of 1/10 to 1/5. ρs [μm -2], and the distribution density ρ1μm an average particle size of more than 1μm MnS [μm -2], and the total orientation of the crystal in the central region of the sheet thickness 1/5 layer to the center of the obtained hot-rolled sheet The average particle size Di [μm] of the grains, the average particle size di [nm] of MnS, and the distribution density ρi [μm- 2 ] of MnS were investigated. Further, the ratio of the average particle size Dsg of the Goss directional grains Dsg in the region near the surface to the average particle size Di of the crystal grains in all directions in the central region Dsg / Di [−], and the region near the surface of MnS in the central region with respect to the average particle size di. The ratio ds / di [−] of the average particle size ds of MnS and the ratio ρi / ρs [−] of the distribution density ρi of MnS in the central region to the distribution density ρs of MnS in the region near the surface were calculated. The average particle size of the crystal grains is the value obtained by calculating and averaging the diameters of circles of the same area with respect to the projected area for each of the observed crystal grains, and the average particle size of MnS is the same for the observed multiple MnS with respect to the projected area. The average value of the diameters of the circles in the area, and the distribution density of MnS is the value obtained by dividing the number of MnS counted by observing the mirror-polished cross section by the area of the observation field. The obtained results are shown in Table 4-2 below.

鋼番号55の熱延板は、本発明のBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上の合計添加量が、本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った上、表面近傍領域におけるMnSの平均粒径dsが本発明の好ましい範囲を上回った。 In the hot-rolled plate of steel number 55, the total addition amount of one or more selected from the group consisting of Bi, Pb, As, and Te of the present invention was less than the range of the present invention, so that the average of the crystal grains was average. The particle size ratio Dsg / Di was below the range of the present invention, and the average particle size ds of MnS in the region near the surface was above the preferable range of the present invention.

鋼番号56および57の熱延板は、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った上、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲を下回った。 In the hot-rolled plates of steel numbers 56 and 57, the true strain ratio Ce was below the range of the present invention, so that the ratio Dsg / Di of the average particle size of the crystal grains was below the range of the present invention, and the average grain of MnS. The diameter ratio ds / di and the distribution density ratio ρi / ρs were below the preferred range of the present invention.

これに対して本発明の一方向性電磁鋼板用熱延板の製造方法における要件を満足する条件で熱間圧延を施した鋼番号41〜54の熱延板は、結晶粒の平均粒径の比Dsg/Diが本発明の範囲内となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明の好ましい範囲内となった。 On the other hand, the hot-rolled steel numbers 41 to 54 subjected to hot rolling under the conditions satisfying the requirements in the method for producing the hot-rolled sheet for unidirectional electromagnetic steel sheet of the present invention have the average grain size of the crystal grains. The ratio Dsg / Di was within the range of the present invention, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density were within the preferable range of the present invention.

中でも、本発明の好ましい粗圧延後の冷却速度、冷却到達温度、および保持時間を満足する鋼番号41〜50の熱延板については、結晶粒の平均粒径の比Dsg/Diがより好ましい範囲となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsがより好ましい範囲となった。その中でも特に真歪みの比Ceが40〜43%となった鋼番号41、44、46、47、および49の熱延板については、同じ化学成分を有し真歪みの比Ceが40〜43%となった鋼番号1よりも結晶粒の平均粒径の比Dsg/Diが好ましい範囲となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsがより好ましい範囲となった。また、真歪みの比Ceが50〜52%となった鋼番号48の熱延板についても同様に、同じ化学成分を有し真歪みの比Ceが50〜52%となった鋼番号3よりも結晶粒の平均粒径の比Dsg/Diが好ましい範囲となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsがより好ましい範囲となった。 Above all, the ratio of the average particle size of the crystal grains, Dsg / Di, is in a more preferable range for the hot-rolled plates of steel numbers 41 to 50 that satisfy the preferable cooling rate after rough rolling, the temperature reached for cooling, and the holding time of the present invention. Therefore, the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density became more preferable ranges. Among them, the hot-rolled plates of steel numbers 41, 44, 46, 47, and 49 having a true strain ratio Ce of 40 to 43% have the same chemical composition and a true strain ratio Ce of 40 to 43. The ratio Dsg / Di of the average particle size of the crystal grains was in the preferable range, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density were in the more preferable range than the steel number 1 which became%. .. Similarly, the hot-rolled plate of steel number 48 having a true strain ratio Ce of 50 to 52% has the same chemical composition and has a true strain ratio Ce of 50 to 52% from steel number 3. The ratio of the average particle size of the crystal grains, Dsg / Di, was in the preferable range, and the ratio of the average particle size of MnS, ds / di, and the ratio of the distribution density, ρi / ρs, were in the more preferable range.

Figure 0006763179
Figure 0006763179

Figure 0006763179
Figure 0006763179

Figure 0006763179
Figure 0006763179

(実施例3)
実施例1および2で製造された熱延板のうちの一部に対して、下記表5に示す捲取温度CT[℃]でコイルに巻き取った後、下記表5に示す条件で熱延板焼鈍を施した。具体的には、鋼番号1、3、16、18、41、42、44、19、22、30、32、37、38、39、40、50、および56の熱延板については、550℃の捲取温度CTで巻き取ったコイルを1150℃まで昇温後、900℃に80sec保持する熱延板焼鈍を施した。また、鋼番号47、48、および50の熱延板については、950℃の捲取温度CTで巻き取ったコイルを捲取温度CTに80sec保持する熱延板焼鈍を施した。これらの熱延板焼鈍後、下記表5に示すように、それぞれの熱延焼鈍板に対して冷間圧延を施すことによって、冷延板板厚tfffが0.23mmの冷延板を得た。上記冷間圧延後、上記冷延板に対して下記表5に示す条件で脱炭焼鈍を施した。具体的には、鋼番号44以外の熱延板については、835℃で120sec保持する脱炭焼鈍を施し、脱炭焼鈍のために835℃まで昇温する時に、300℃から750℃まで昇温する昇温過程において昇温速度を10℃/secとした。また、鋼番号44の熱延板については、835℃で120sec保持する脱炭焼鈍を施し、脱炭焼鈍のために835℃まで昇温する時に、300℃から750℃まで昇温する昇温過程において昇温速度を200℃/secとした。脱炭焼鈍を行った後、1200℃まで昇温して、1200℃で保持する仕上げ焼鈍を行った。これにより、一方向性電磁鋼板を製造した。
(Example 3)
A part of the hot-rolled plates manufactured in Examples 1 and 2 was wound around a coil at the winding temperature CT [° C.] shown in Table 5 below, and then hot-rolled under the conditions shown in Table 5 below. It was annealed. Specifically, for the hot-rolled plates of steel numbers 1, 3, 16, 18, 41, 42, 44, 19, 22, 30, 32, 37, 38, 39, 40, 50, and 56, the temperature is 550 ° C. The coil wound by the winding temperature CT was heated to 1150 ° C., and then annealed with a hot-rolled plate kept at 900 ° C. for 80 seconds. Further, the hot-rolled plates of steel numbers 47, 48, and 50 were annealed by hot-rolling plates in which the coil wound at the winding temperature CT of 950 ° C. was held at the winding temperature CT for 80 seconds. After annealing these hot-rolled plates, as shown in Table 5 below, each hot-rolled annealed plate was cold-rolled to obtain a cold-rolled plate having a cold-rolled plate thickness tfff of 0.23 mm. .. After the cold rolling, the cold rolled sheet was decarburized and annealed under the conditions shown in Table 5 below. Specifically, hot-rolled plates other than steel number 44 are subjected to decarburization annealing held at 835 ° C for 120 seconds, and when the temperature is raised to 835 ° C for decarburization annealing, the temperature is raised from 300 ° C to 750 ° C. In the annealing process, the heating rate was set to 10 ° C./sec. Further, the hot-rolled plate of steel number 44 is subjected to decarburization annealing held at 835 ° C. for 120 seconds, and when the temperature is raised to 835 ° C. for decarburization annealing, the temperature rise process from 300 ° C. to 750 ° C. The temperature rising rate was set to 200 ° C./sec. After decarburization annealing, the temperature was raised to 1200 ° C. and finish annealing was performed in which the temperature was maintained at 1200 ° C. As a result, a unidirectional electromagnetic steel sheet was manufactured.

このようにして製造された一方向性電磁鋼板から60mm×300mmの磁気測定試験片をせん断し、700℃で歪取り焼鈍を行った後に、磁束密度B8[T]を測定した。結果を下記表5に示す。下記表5においては、B8が1.91T以上の試料では二次再結晶が安定化しているものとして二次再結晶安定性を○印で示し、B8が1.95T以上の試料では二次再結晶がさらに安定化しているものとして二次再結晶安定性を◎印で示し、B8が1.91T未満の試料では二次再結晶が安定化していないものとして二次再結晶安定性を△印で示し、また、二次再結晶が得られなかったものについては二次再結晶安定性を×印で示した。 A magnetic measurement test piece having a size of 60 mm × 300 mm was sheared from the unidirectional electromagnetic steel sheet produced in this manner, strain-removed and annealed at 700 ° C., and then the magnetic flux density B8 [T] was measured. The results are shown in Table 5 below. In Table 5 below, the secondary recrystallization stability is indicated by a circle in the sample with B8 of 1.91 T or more, assuming that the secondary recrystallization is stabilized, and the secondary recrystallization is shown in the sample with B8 of 1.95 T or more. The secondary recrystallization stability is indicated by a ◎ mark as the crystal is further stabilized, and the secondary recrystallization stability is indicated by a △ mark as the secondary recrystallization is not stabilized in the sample with B8 less than 1.91T. In addition, the secondary recrystallization stability was indicated by x for those for which secondary recrystallization was not obtained.

Figure 0006763179
Figure 0006763179

鋼番号22および55の熱延板は、上記表1および表3に示されるように、Bi、Pb、As、およびTeからなる群から選ばれる元素を含有しないため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った結果、B8がいずれも1.91Tを下回り劣位となった。 As shown in Tables 1 and 3 above, the hot-rolled plates of steel numbers 22 and 55 do not contain an element selected from the group consisting of Bi, Pb, As, and Te, and therefore have an average grain size of crystal grains. As a result of the ratio Dsg / Di falling below the range of the present invention, both B8 fell below 1.91T and became inferior.

鋼番号19および30の熱延板は、上記表2−1に示されるように、真歪みの比Ceが本発明の範囲を下回ったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った結果、B8がいずれも1.91Tを下回り劣位となった。 As shown in Table 2-1 above, the true strain ratio Ce of the hot-rolled plates of steel numbers 19 and 30 was below the range of the present invention, so that the ratio Dsg / Di of the average grain size of the crystal grains was the present invention. As a result of falling below the range of, B8 fell below 1.91T and was inferior.

これに対して、鋼番号19と同じ化学成分を有する鋼番号1の熱延板は、真歪みの比Ceが本発明の範囲内となったため、結晶粒の平均粒径の比Dsg/Diが本発明の範囲内となった結果、B8が1.91Tを上回り高くなった。また、鋼番号3の熱延板は、鋼番号1と同じ化学成分を有するが、鋼番号1とは異なり、真歪みの比Ceが本発明の好ましい範囲の50%以上であり、結晶粒の平均粒径の比Dsg/Diが本発明の好ましい範囲の1.20以上となり、MnSの平均粒径の比ds/diおよび分布密度の比ρi/ρsが本発明のより好ましい範囲となった結果、B8が1.947Tとなり鋼番号1よりも高くなった。さらに、鋼番号16の熱延板は、鋼番号1と同じ化学成分を有し、真歪みの比Ceが鋼番号1と同程度であるが、鋼番号1とは異なり、鋳片を表面温度にして850℃に冷却した後に、雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして上記表2−1に示す鋳片加熱温度Ts0に加熱した後に、上記粗圧延および仕上げ圧延を施したものであり、結晶粒の平均粒径の比Dsg/Diが鋼番号1よりも大きくなった結果、B8が1.949Tとなり鋼番号1よりも高くなった。 On the other hand, in the hot-rolled plate of steel No. 1 having the same chemical composition as that of steel No. 19, since the true strain ratio Ce was within the range of the present invention, the ratio Dsg / Di of the average grain size of the crystal grains was high. As a result of being within the scope of the present invention, B8 was higher than 1.91T. Further, the hot-rolled plate of steel number 3 has the same chemical composition as steel number 1, but unlike steel number 1, the true strain ratio Ce is 50% or more of the preferable range of the present invention, and the crystal grains The result that the ratio Dsg / Di of the average particle size was 1.20 or more, which is the preferable range of the present invention, and the ratio ds / di of the average particle size of MnS and the ratio ρi / ρs of the distribution density were in the more preferable range of the present invention. , B8 was 1.947T, which was higher than steel number 1. Further, the hot-rolled plate of steel number 16 has the same chemical composition as steel number 1, and the true strain ratio Ce is about the same as that of steel number 1, but unlike steel number 1, the surface temperature of the slab is different. After cooling to 850 ° C., the steel was placed in a heating furnace having an ambient temperature of 1320 ° C. and held for 30 minutes to bring the surface temperature to the slab heating temperature Ts0 shown in Table 2-1 above. The rough rolling and finish rolling were performed, and as a result of the ratio Dsg / Di of the average particle size of the crystal grains being larger than that of steel number 1, B8 was 1.949 T, which was higher than that of steel number 1.

また、鋼番号18の熱延板は、鋼番号1とは異なりBiに加えSnを含有している上、鋼番号1とは異なり、鋳片を表面温度にして850℃に冷却した後に、雰囲気温度が1320℃の加熱炉に装入して30分間保持することにより、表面温度にして上記表2−1に示す鋳片加熱温度Ts0に加熱した後に、上記粗圧延および仕上げ圧延を施したものであり、真歪みの比Ceが本発明の好ましい範囲の50%以上である。この結果、鋼番号18の一方向性電磁鋼板では、結晶粒の平均粒径の比Dsg/Diが鋼番号1および16よりも大きくなり、B8が1.962Tとなり鋼番号1および16よりも著しく高くなった。 Further, unlike steel number 1, the hot-rolled plate of steel number 18 contains Sn in addition to Bi, and unlike steel number 1, the slab is cooled to a surface temperature of 850 ° C. and then has an atmosphere. By charging the steel into a heating furnace having a temperature of 1320 ° C. and holding it for 30 minutes, the surface temperature is set to the slab heating temperature Ts0 shown in Table 2-1 above, and then rough rolling and finish rolling are performed. The true strain ratio Ce is 50% or more of the preferable range of the present invention. As a result, in the unidirectional electromagnetic steel sheet of steel number 18, the ratio Dsg / Di of the average grain size of the crystal grains is larger than that of steel numbers 1 and 16, and B8 is 1.962T, which is significantly larger than that of steel numbers 1 and 16. It got higher.

また、鋼番号30の熱延板は、C含有量が本発明の範囲を上回っているばかりか、真歪みの比Ceが本発明の範囲を下回っており、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った結果、鋼番号30の一方向性電磁鋼板では、B8が1.844Tと極めて劣位となった。 Further, in the hot-rolled sheet of steel No. 30, not only the C content exceeds the range of the present invention, but also the true strain ratio Ce is below the range of the present invention, and the ratio Dsg of the average particle size of the crystal grains As a result of / Di falling below the scope of the present invention, in the unidirectional electromagnetic steel sheet of steel number 30, B8 was 1.844T, which was extremely inferior.

また、鋼番号32の熱延板は、Si含有量が本発明の範囲を上回っているばかりか、真歪みの比Ceが本発明の範囲を下回っており、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った結果、上記冷間圧延で著しい割れが生じ、一方向性電磁鋼板を製造することができなかった。 Further, in the hot-rolled sheet of steel number 32, not only the Si content is higher than the range of the present invention, but also the true strain ratio Ce is lower than the range of the present invention, and the ratio Dsg of the average particle size of the crystal grains is As a result of / Di falling below the range of the present invention, significant cracks occurred in the cold rolling, and a unidirectional electromagnetic steel sheet could not be manufactured.

また、鋼番号37および38の熱延板は、真歪みの比Ceが本発明の範囲内であり、結晶粒の平均粒径の比Dsg/Diが本発明の範囲内であるが、Al含有量が本発明の範囲外であり、充分なAlNの分布密度とならず二次再結晶が発現しなかった。同様に、鋼番号39および40の熱延板は、真歪みの比Ceが本発明の範囲内であり、結晶粒の平均粒径の比Dsg/Diが本発明の範囲内であるが、N含有量が本発明の範囲外であり、充分なAlNの分布密度とならず二次再結晶が発現しなかった。 Further, the hot-rolled plates of steel numbers 37 and 38 have a true strain ratio Ce within the range of the present invention and an average grain size ratio Dsg / Di of the crystal grains within the range of the present invention, but contain Al. The amount was out of the range of the present invention, the distribution density of AlN was not sufficient, and secondary recrystallization did not occur. Similarly, for the hot-rolled plates of steel numbers 39 and 40, the true strain ratio Ce is within the range of the present invention, and the average grain size ratio Dsg / Di of the crystal grains is within the range of the present invention. The content was outside the range of the present invention, the distribution density of AlN was not sufficient, and secondary recrystallization did not occur.

さらに、鋼番号56の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の範囲を下回っており、結晶粒の平均粒径の比Dsg/Diが本発明の範囲を下回った結果、B8が1.868Tと劣位となった。 Further, in the hot-rolled plate of steel No. 56, the ratio Ce of true strain in the rough rolling and the finish rolling is less than the range of the present invention, and the ratio Dsg / Di of the average grain size of the crystal grains is the range of the present invention. As a result, B8 was inferior to 1.868T.

これに対して、鋼番号41、42、44、47、48、49および50の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の範囲内であり、結晶粒の平均粒径の比Dsg/Diが本発明の範囲内となった結果、B8が1.950Tを上回り、良好な磁気特性が得られた。また、これらの熱延板のうちの鋼番号42の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の好ましい範囲の50%以上であり、結晶粒の平均粒径の比Dsg/Diが鋼番号41よりも大きくなった結果、B8が1.959Tとなり鋼番号41よりも高くなった。また、鋼番号44の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが鋼番号41と同程度であり、結晶粒の平均粒径の比Dsg/Diが鋼番号41と同程度となったが、鋼番号41とは異なり、脱炭焼鈍のために835℃まで昇温する時に、300℃から750℃まで昇温する昇温過程において昇温速度を200℃/secとした結果、B8が1.961Tとなり鋼番号41よりも高くなった。また、鋼番号47の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが鋼番号41と同程度であるが、鋼番号41とは異なり、950℃の捲取温度CTで巻き取ったコイルを捲取温度CTに80sec保持する熱延板焼鈍を施した結果、B8が1.958Tとなり鋼番号41よりも高くなった。 On the other hand, in the hot-rolled plates of steel numbers 41, 42, 44, 47, 48, 49 and 50, the ratio Ce of the true strain in the rough rolling and the finish rolling is within the range of the present invention, and the crystal grains As a result of the ratio Dsg / Di of the average particle size of the above being within the range of the present invention, B8 exceeded 1.950T, and good magnetic properties were obtained. Further, among these hot-rolled plates, the hot-rolled plate of steel number 42 has a ratio Ce of true strain between the rough rolling and the finish rolling of 50% or more of the preferable range of the present invention, and is an average grain of crystal grains. As a result of the diameter ratio Dsg / Di being larger than that of steel number 41, B8 was 1.959T, which was higher than that of steel number 41. Further, in the hot-rolled plate of steel number 44, the ratio Ce of true strain in the rough rolling and the finish rolling is about the same as that of steel number 41, and the ratio Dsg / Di of the average particle size of the crystal grains is steel number 41. It was about the same, but unlike steel number 41, when the temperature was raised to 835 ° C for decarburization annealing, the rate of temperature rise was set to 200 ° C / sec in the process of raising the temperature from 300 ° C to 750 ° C. As a result, B8 was 1.961T, which was higher than that of steel number 41. Further, the hot-rolled plate of steel number 47 has a true strain ratio Ce of the rough rolling and the finish rolling of the same as that of steel number 41, but unlike steel number 41, it has a winding temperature CT of 950 ° C. As a result of hot-rolled plate annealing in which the wound coil was held at the winding temperature CT for 80 seconds, B8 was 1.958T, which was higher than that of steel number 41.

さらに、鋼番号48および50の熱延板は、上記粗圧延と上記仕上げ圧延における真歪みの比Ceが本発明の好ましい範囲の50%以上であり、結晶粒の平均粒径の比Dsg/Diが鋼番号41よりも大きくなった上に、鋼番号41とは異なり、950℃の捲取温度CTで巻き取ったコイルを捲取温度CTに80sec保持する熱延板焼鈍を施した結果、B8が1.970以上となり、極めて良好な磁気特性が得られた。 Further, in the hot-rolled plates of steel numbers 48 and 50, the true strain ratio Ce in the rough rolling and the finish rolling is 50% or more of the preferable range of the present invention, and the ratio Dsg / Di of the average particle size of the crystal grains. Is larger than steel number 41, and unlike steel number 41, the coil wound at the winding temperature CT of 950 ° C. is subjected to hot-rolled plate annealing in which the coil is held at the winding temperature CT for 80 seconds. As a result, B8 Was 1.970 or more, and extremely good magnetic characteristics were obtained.

Claims (10)

質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.030%、ならびにBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.0002%以上0.0200%以下を含有し、残部がFeおよび不可避的不純物からなる一方向性電磁鋼板用熱延板であって、
板厚1/5層〜中心の中心領域における結晶粒の平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるGoss方位粒の平均粒径の比が1.10以上であり、
板厚1/5層〜中心の中心領域におけるMnSの平均粒径に対する板厚1/10〜1/5層の表面近傍領域におけるMnSの平均粒径の比が1.10以上であり、前記表面近傍領域におけるMnSの平均粒径が300nm以下であり、
板厚1/10〜1/5層の表面近傍領域におけるMnSの分布密度に対する板厚1/5層〜中心の中心領域におけるMnSの分布密度の比が1.10以上であり、前記表面近傍領域における平均粒径が1μm以上のMnSの分布密度が20個/mm 以下であることを特徴とする一方向性電磁鋼板用熱延板。
By mass%, C: 0.1% or less, Si: 2.5~4.0%, Mn: 0.05~0.1 0%, S: 0.01 0 ~0.04 0%, Al: One or more selected from the group consisting of 0.01 0 to 0.05 0 % and N: 0.001 0 to 0.030 0 %, and Bi, Pb, As, and Te: 0 in total containing .0002% 0.02 100% or less, the balance being a hot rolled sheet for grain-oriented electrical steel sheet consisting of Fe and unavoidable impurities,
The ratio of the average grain size of the Goss azimuth grains in the region near the surface of the 1/5 to 1/5 layer thickness to the average grain size of the crystal grains in the central region of the 1/5 layer to the center is 1.10 or more. ,
The ratio of the average particle size of MnS in the region near the surface of the 1/5 to 1/5 layer thickness to the average particle size of MnS in the central region of the plate thickness 1/5 layer to the center is 1.10 or more, and the surface The average particle size of MnS in the vicinity region is 300 nm or less.
The ratio of the distribution density of MnS in the region near the surface of the 1/5 to 1/5 layer thickness to the distribution density of MnS in the central region of the 1/5 layer to the center is 1.10 or more, and the region near the surface A hot-rolled plate for a unidirectional electromagnetic steel plate, characterized in that the distribution density of MnS having an average particle size of 1 μm or more is 20 pieces / mm 2 or less .
前記Feの一部に代えて、質量%で、Sb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下を含有することを特徴とする請求項1記載の一方向性電磁鋼板用熱延板。 One or more selected from the group consisting of Sb, Sn, and P in mass% instead of a part of the Fe: 0.0004% or more and 0.5% or less in total. oriented electrical steel sheet for hot-rolled sheet according to claim 1,. 請求項1または請求項2に記載の一方向性電磁鋼板用熱延板を製造する方法であって、
質量%で、C:0.1%以下、Si:2.5〜4.0%、Mn:0.05〜0.1%、S:0.01〜0.04%、Al:0.01〜0.05%、およびN:0.001〜0.03000%、ならびにBi、Pb、As、およびTeからなる群から選ばれる1種または2種以上:合計で0.0002%以上0.0200%以下を含有し、残部がFeおよび不可避的不純物からなる鋳片に熱間圧延を施す熱間圧延工程において、表面温度Ts:1100〜1200℃および板厚中心温度Tc:1000〜1100℃がTs−Tc≧80℃の関係を満たす状態で鋼板に施される圧延の真歪みを、前記熱間圧延全体の真歪みの40%以上とすることを特徴とする一方向性電磁鋼板用熱延板の製造方法。
The method for manufacturing a hot-rolled sheet for unidirectional electrical steel sheet according to claim 1 or 2.
By mass%, C: 0.1% or less, Si: 2.5~4.0%, Mn: 0.05~0.1 0%, S: 0.01 0 ~0.04 0%, Al: 0.01 0 to 0.05 0%, and N: 0.001 0 ~0.030 00%, and Bi, Pb, as, and one or more selected from the group consisting of Te: 0 total containing .0002% 0.02 100% or less, in the hot rolling step the remainder subjected to hot rolling the cast slab consisting of Fe and unavoidable impurities, the surface temperature Ts: 1100 to 1200 ° C. and the thickness center temperature The true strain of rolling applied to a steel sheet in a state where Tc: 1000 to 1100 ° C. satisfies the relationship of Ts−Tc ≧ 80 ° C. is 40% or more of the true strain of the entire hot rolling. A method for manufacturing a hot-rolled sheet for directional electromagnetic steel sheets.
前記熱間圧延工程において、表面温度にして900℃以下まで冷却した前記鋳片を、雰囲気温度が1200℃以上の加熱炉に装入して、装入後1時間以内に前記加熱炉から抽出した前記鋳片に前記熱間圧延を施すことを特徴とする請求項に記載の一方向性電磁鋼板用熱延板の製造方法。 In the hot rolling step, the slab cooled to a surface temperature of 900 ° C. or lower was charged into a heating furnace having an ambient temperature of 1200 ° C. or higher, and extracted from the heating furnace within 1 hour after charging. The method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet according to claim 3 , wherein the slab is hot-rolled. 前記熱間圧延工程において、圧延後の鋼板を表面温度Tsにして1100℃以上から600〜750℃以下まで2℃/s以上の平均冷却速度で冷却して600〜750℃の温度域に0s〜300s保持した後に、前記圧延後の鋼板を表面温度Tsにして1100℃以上1150℃以下の温度まで加熱した後さらに圧延を施すことを特徴とする請求項または請求項に記載の一方向性電磁鋼板用熱延板の製造方法。 In the hot rolling step, the rolled steel sheet is cooled to a surface temperature of Ts from 1100 ° C. or higher to 600 to 750 ° C. or lower at an average cooling rate of 2 ° C./s or higher, and 0s to 0 s to a temperature range of 600 to 750 ° C. The unidirectionality according to claim 3 or 4 , wherein after holding for 300 s, the rolled steel sheet is heated to a temperature of 1100 ° C. or higher and 1150 ° C. or lower with a surface temperature of Ts, and then further rolled. A method for manufacturing a hot-rolled sheet for electromagnetic steel sheets. 前記熱間圧延工程において、前記鋳片を表面温度にして1250〜1400℃に加熱した後に、前記加熱後の鋳片に前記熱間圧延を施すことを特徴とする請求項から請求項までのいずれかに記載の一方向性電磁鋼板用熱延板の製造方法。 Claims 3 to 5 are characterized in that, in the hot rolling step, the slab is heated to a surface temperature of 1.25 to 1400 ° C., and then the slab after heating is subjected to the hot rolling. A method for manufacturing a hot-rolled sheet for a unidirectional electromagnetic steel sheet according to any one of the above. 前記鋳片が、前記Feの一部に代えて、質量%で、Sb、Sn、およびPからなる群から選ばれる1種または2種以上:合計で0.0004%以上0.5%以下をさらに含有することを特徴とする請求項から請求項までのいずれかに記載の一方向性電磁鋼板用熱延板の製造方法。 The slab is one or more selected from the group consisting of Sb, Sn, and P in mass% instead of a part of the Fe: 0.0004% or more and 0.5% or less in total. The method for producing a hot-rolled sheet for a unidirectional electromagnetic steel sheet according to any one of claims 3 to 6 , further comprising. 請求項から請求項までのいずれかに記載の一方向性電磁鋼板用熱延板の製造方法を行って一方向性電磁鋼板用熱延板を製造する熱延板製造工程と、
前記一方向性電磁鋼板用熱延板に熱延板焼鈍を施す熱延板焼鈍工程と、
前記熱延板焼鈍後の鋼板に冷間圧延を施す冷間圧延工程と、
前記冷間圧延後の鋼板に脱炭焼鈍を施す脱炭焼鈍工程と、
前記脱炭焼鈍後の鋼板に仕上げ焼鈍を施す仕上げ焼鈍工程と
を有することを特徴とする一方向性電磁鋼板の製造方法。
A hot-rolled plate manufacturing process for manufacturing a hot-rolled plate for unidirectional electromagnetic steel sheets by performing the method for manufacturing a hot-rolled plate for unidirectional electrical steel sheets according to any one of claims 3 to 7 .
The hot-rolled sheet annealing step of annealing the hot-rolled sheet to the one-way electromagnetic steel sheet, and
A cold rolling step of cold rolling the steel sheet after hot rolling sheet annealing, and
The decarburization annealing step of performing decarburization annealing on the steel sheet after cold rolling, and
A method for producing a unidirectional electrical steel sheet, which comprises a finish annealing step of applying finish annealing to the steel sheet after decarburization annealing.
前記熱延板焼鈍工程において、前記一方向性電磁鋼板用熱延板を900〜1050℃の温度域に60s以上保持する熱延板焼純を施すことを特徴とする請求項に記載の一方向性電磁鋼板の製造方法。 The one according to claim 8 , wherein in the hot-rolled sheet annealing step, hot-rolled sheet annealing is performed in which the hot-rolled sheet for a unidirectional electromagnetic steel sheet is held in a temperature range of 900 to 1050 ° C. for 60 seconds or more. Manufacturing method of directional electromagnetic steel sheet. 前記脱炭焼鈍工程において、前記冷間圧延後の鋼板を、350℃以下の温度から700℃以上850℃以下の温度まで昇温する昇温過程において100℃/s以上の昇温速度で加熱した後に、前記冷間圧延後の鋼板に前記脱炭焼鈍を施すことを特徴とする請求項または請求項に記載の一方向性電磁鋼板の製造方法。 In the decarburization annealing step, the steel sheet after cold rolling was heated at a heating rate of 100 ° C./s or more in a heating process of raising the temperature from 350 ° C. or lower to 700 ° C. or higher and 850 ° C. or lower. The method for producing a unidirectional electromagnetic steel sheet according to claim 8 or 9 , wherein the steel sheet after cold rolling is later subjected to the decarburization annealing.
JP2016074215A 2016-04-01 2016-04-01 Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method Active JP6763179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016074215A JP6763179B2 (en) 2016-04-01 2016-04-01 Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016074215A JP6763179B2 (en) 2016-04-01 2016-04-01 Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JP2017186587A JP2017186587A (en) 2017-10-12
JP6763179B2 true JP6763179B2 (en) 2020-09-30

Family

ID=60044652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016074215A Active JP6763179B2 (en) 2016-04-01 2016-04-01 Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP6763179B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102325004B1 (en) * 2019-12-20 2021-11-10 주식회사 포스코 Grain oriented electrical steel sheet and manufacturing method of the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207114A (en) * 1981-06-16 1982-12-18 Nippon Steel Corp Manufacture of anisotropic electric steel plate
JPS62290824A (en) * 1986-06-09 1987-12-17 Kawasaki Steel Corp Production of grain oriented silicon steel sheet
JPH0678573B2 (en) * 1989-09-27 1994-10-05 川崎製鉄株式会社 Method for producing grain-oriented electrical steel sheet with excellent magnetic properties
JP2883224B2 (en) * 1991-06-10 1999-04-19 川崎製鉄株式会社 Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2648424B2 (en) * 1992-11-02 1997-08-27 川崎製鉄株式会社 Method for manufacturing oriented silicon thin steel sheet with excellent magnetic properties
JP5839204B2 (en) * 2013-02-28 2016-01-06 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet
JP6112050B2 (en) * 2014-03-17 2017-04-12 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2017186587A (en) 2017-10-12

Similar Documents

Publication Publication Date Title
JP6402865B2 (en) Method for producing non-oriented electrical steel sheet
JP5439866B2 (en) Method for producing grain-oriented electrical steel sheet with extremely high magnetic flux density
EP2880190B1 (en) Method of production of grain-oriented silicon steel sheet grain oriented electrical steel sheet and use thereof
JP5991484B2 (en) Manufacturing method of low iron loss grain oriented electrical steel sheet
JP5037728B2 (en) Manufacturing method of unidirectional electrical steel sheet
WO2014013615A1 (en) Process for producing grain-oriented electrical steel sheet
US10975451B2 (en) Method for producing non-oriented electrical steel sheet having excellent magnetic properties
US20150243419A1 (en) Method for producing grain-oriented electrical steel sheet
CN108699621B (en) Method for producing grain-oriented electromagnetic steel sheet
WO2011102455A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
WO2011102456A1 (en) Manufacturing method for grain-oriented electromagnetic steel sheet
JP5526609B2 (en) Method for producing grain-oriented electrical steel sheet with good magnetic flux density
JP6160649B2 (en) Method for producing grain-oriented electrical steel sheet
JP4932544B2 (en) Method for producing grain-oriented electrical steel sheet capable of stably obtaining magnetic properties in the plate width direction
JP4714637B2 (en) Method for producing grain-oriented electrical steel sheet with high magnetic flux density
JP6950723B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP3323052B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6947147B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6763179B2 (en) Hot-rolled sheet for unidirectional electromagnetic steel sheet and its manufacturing method, and its unidirectional electromagnetic steel sheet manufacturing method
JP7197069B1 (en) Manufacturing method of grain-oriented electrical steel sheet
EP3733902A1 (en) Oriented electromagnetic steel sheet
JP6676952B2 (en) Hot rolled sheet for unidirectional magnetic steel sheet, method for producing the same, and method for producing the same
JP2020164907A (en) Method of manufacturing grain-oriented electromagnetic steel sheet
JP7081725B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7338812B1 (en) Manufacturing method of grain-oriented electrical steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200824

R151 Written notification of patent or utility model registration

Ref document number: 6763179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151