JP2008156741A - Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density - Google Patents

Method for manufacturing non-oriented electromagnetic steel sheet with high magnetic flux density Download PDF

Info

Publication number
JP2008156741A
JP2008156741A JP2007041790A JP2007041790A JP2008156741A JP 2008156741 A JP2008156741 A JP 2008156741A JP 2007041790 A JP2007041790 A JP 2007041790A JP 2007041790 A JP2007041790 A JP 2007041790A JP 2008156741 A JP2008156741 A JP 2008156741A
Authority
JP
Japan
Prior art keywords
rolling
finish
hot rolling
magnetic flux
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007041790A
Other languages
Japanese (ja)
Other versions
JP5014830B2 (en
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Yosuke Kurosaki
洋介 黒崎
Masahiro Fujikura
昌浩 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007041790A priority Critical patent/JP5014830B2/en
Publication of JP2008156741A publication Critical patent/JP2008156741A/en
Application granted granted Critical
Publication of JP5014830B2 publication Critical patent/JP5014830B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a non-oriented electromagnetic steel sheet having high magnetic flux density at a low cost. <P>SOLUTION: A steel slab includes 0.1% to 2.0% Si, 1.0% or less Al, while satisfying the expression of 0.1%≤Si+2Al≤2.0%, less than 0.004% C, 0.003% or less S, 0.003% or less N, and the balance Fe with unavoidable impurities. The method for manufacturing the non-oriented electromagnetic steel sheet comprises the steps of: hot-rolling the steel slab into a hot-rolled plate through a rough rolling step and a subsequent finish hot rolling step; pickling the plate; cold-rolling the plate once with a rolling ratio of 85 to 97%; and then finish-annealing the sheet. In the above finish hot rolling step, a heating temperature ST for the slab, a starting temperature F0T of the finish rolling, and an ending temperature FT of the finish hot rolling are set as in the expression (1), the expression (2) and the expression (3) respectively: Expression (1) 850°C≤ST≤1,150°C; Expression (2) 850°C≤F0T≤1,150°C; and Expression (3) 3,750°C≤FT≤850°C, and a rolling reduction ratio of at least one or more passes in an area α is set at 15% or higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気機器の鉄心材料として用いられる、磁束密度が高い無方向性電磁鋼板の製造方法に関するものである。   The present invention relates to a method for producing a non-oriented electrical steel sheet having a high magnetic flux density, which is used as an iron core material for electrical equipment.

近年、電気機器、特に無方向性電磁鋼板がその鉄心材料として使用される回転機および中、小型変圧器等の分野においては、世界的な電力、エネルギー節減、さらにはフロンガス規制等の地球環境保全の動きの中で、高効率化の動きが急速に広まりつつある。このため、無方向性電磁鋼板に対しても、その特性向上、すなわち、高磁束密度かつ低鉄損化への要請がますます強まってきている。   In recent years, in the fields of electrical machinery, especially rotating machines where non-oriented electrical steel sheets are used as iron core materials, and in the fields of medium and small transformers, global power conservation, energy conservation, and global environmental conservation such as CFC regulations Among these trends, the trend toward higher efficiency is spreading rapidly. For this reason, there is an increasing demand for non-oriented electrical steel sheets to improve their characteristics, that is, to achieve high magnetic flux density and low iron loss.

無方向性電磁鋼板の低鉄損化は主としてSi、Al添加による電気抵抗率の増加により、使用時に鉄心を形成する各々の鋼板に流れる渦電流損によるジュール熱損失を低減することにより行われてきた。   The reduction of iron loss in non-oriented electrical steel sheets has been achieved mainly by reducing the Joule heat loss due to eddy current loss flowing in each steel sheet forming the iron core during use by increasing the electrical resistivity by adding Si and Al. It was.

一方、回転機、および鉄心を含む機器全体のエネルギー損失としては、鉄心に巻くコイルを電流が流れることにより生ずるジュール熱損失である銅損の寄与も無視できない。この銅損の低減のためには同じ磁界強度に励磁するのに必要な電流密度を減少してやることが有効であり、同一の励磁電流でより高い磁束密度を発現する素材の開発が欠かせない。すなわち、高磁束密度無方向性電磁鋼板の開発が必須である。励磁される磁束密度が高くなることにより、回転機や小型トランス等の無方向性電磁鋼板が用いられる電気機器の鉄心のサイズを小型軽量化できるという利点がある。   On the other hand, as energy loss of the entire device including the rotating machine and the iron core, the contribution of copper loss, which is Joule heat loss caused by current flowing through the coil wound around the iron core, cannot be ignored. In order to reduce the copper loss, it is effective to reduce the current density necessary for exciting the same magnetic field strength, and it is indispensable to develop a material that expresses a higher magnetic flux density with the same exciting current. That is, development of a high magnetic flux density non-oriented electrical steel sheet is essential. By increasing the magnetic flux density to be excited, there is an advantage that the size of the iron core of an electrical device using a non-oriented electrical steel sheet such as a rotating machine or a small transformer can be reduced in size and weight.

従来技術では、低鉄損を目的として開発されてきた無方向性電磁鋼板では、主としてSi、Al等の電気抵抗率の高い元素が添加されてきたが、これらの元素の含有量が増加すると、無方向性電磁鋼板の飽和磁束密度が低下するため、電気機器として実際に使用する際の動作磁束密度を増加させるためには、励磁電流を増加させねばならず、銅損が増加してしまうという難点があった。そのため、Si、Al等の電気抵抗率の高い元素を多く含有する無方向性電磁鋼板では動作磁束密度を下げざるをえず、その結果として、たとえば回転機にあっては高いトルクを発揮させることが困難になる問題点があった。   In the prior art, in the non-oriented electrical steel sheet that has been developed for the purpose of low iron loss, elements having high electrical resistivity such as Si and Al have been mainly added, but when the content of these elements increases, Because the saturation magnetic flux density of non-oriented electrical steel sheets decreases, in order to increase the operating magnetic flux density when actually used as an electrical device, the excitation current must be increased and the copper loss will increase. There were difficulties. Therefore, the non-oriented electrical steel sheet containing many elements with high electrical resistivity such as Si and Al has to reduce the operating magnetic flux density. As a result, for example, in a rotating machine, a high torque should be exhibited. There was a problem that became difficult.

これに対し、本発明でその製造方法を開示する高磁束密度無方向性電磁鋼板が実現することにより、回転機、鉄心ともに小型化が可能となり、これらを積載した自動車、電車のような移動体においては系全体の重量が軽減されることにより稼働時のエネルギー損失を低減できるという利点もある。   On the other hand, by realizing the high magnetic flux density non-oriented electrical steel sheet that discloses the manufacturing method in the present invention, it is possible to reduce the size of both the rotating machine and the iron core. Has the advantage that energy loss during operation can be reduced by reducing the weight of the entire system.

また、回転機においてはトルクが増大し、より小型で高出力の回転機が実現する。   Further, in the rotating machine, the torque increases, and a more compact and high-output rotating machine is realized.

このように、高磁束密度無方向性電磁鋼板が実現することにより、鉄心及び回転機の動作時のエネルギー損失を低減できるのみならず、それを含めた装置全体の系への波及効果も計り知れないものがある。   Thus, the realization of a high magnetic flux density non-oriented electrical steel sheet not only can reduce the energy loss during the operation of the iron core and the rotating machine, but also has a ripple effect on the entire system including it. There is nothing.

特許文献1(特開昭58-204126号公報)にはC≦0.02%、SiもしくはSiとAlの合計量が1.5%以下、Mn:1.0%以下、P:0.20%以下を含有し残部は不可避不純物からなる鋼の仕上圧延終了温度を600〜700℃の低温で仕上げ、500℃以下の温度で巻き取り、この鋼帯をA3変態点以下の温度域において30秒以上15分以下焼鈍することを特徴とする無方向性電磁鋼板の製造法が開示されている。   Patent Document 1 (JP-A-58-204126) contains C ≦ 0.02%, the total amount of Si or Si and Al is 1.5% or less, Mn: 1.0% or less, and P: 0.20% or less. The balance is finished at a finish rolling temperature of steel consisting of inevitable impurities at a low temperature of 600 to 700 ° C., wound up at a temperature of 500 ° C. or less, and this steel strip is at a temperature of A 3 transformation point or less for 30 seconds to 15 minutes. A method for producing a non-oriented electrical steel sheet characterized by annealing is disclosed.

しかしながら、この先願における製造法においては、熱延終了後の熱延鋼帯に熱延板焼鈍を施す工程が必須となり、コスト上昇を招いてしまうという課題があり、コスト削減要請の強い無方向性電磁鋼板の需要家には現実には受け入れられないという課題があった。   However, in the manufacturing method in this prior application, there is a problem that the hot-rolled steel strip after hot-rolling is subjected to a hot-rolled sheet annealing step, and there is a problem that the cost is increased. There was a problem that consumers of electrical steel sheets could not be accepted in reality.

また、実施例ではC含有量は質量%で0.004%以上になっており、本発明で知見した熱延板焼鈍を省略する一回冷延法の無方向性電磁鋼板製造法において、C含有量を一定以下に制限することにより、熱延から始まる一貫プロセスの制御による集合組織制御を通じて、成品の磁束密度を向上させる効果を高めるとの技術的思想は見当たらない。   In the examples, the C content is 0.004% or more in mass%, and in the non-oriented electrical steel sheet manufacturing method of the single cold rolling method that omits the hot-rolled sheet annealing found in the present invention, By limiting the content to a certain value or less, there is no technical idea that the effect of improving the magnetic flux density of the product can be enhanced through texture control by controlling the integrated process starting from hot rolling.

特許文献2(特開昭59-104429号公報)には、SiとAlの合計量が1.5%以下の鋼の仕上熱延において、熱延終了温度を600℃以上700℃以下に仕上げ、これを圧下率75%以上85%以下で冷間圧延を施した後に仕上焼鈍を施す製造法が開示されている。   In Patent Document 2 (Japanese Patent Application Laid-Open No. 59-104429), in the finish hot rolling of steel in which the total amount of Si and Al is 1.5% or less, the hot rolling end temperature is finished to 600 ° C. or more and 700 ° C. or less A manufacturing method is disclosed in which finish rolling is performed after cold rolling at a rolling reduction of 75% to 85%.

しかしながら、仕上熱延の終了温度が700℃以下と低すぎるため、仕上熱延の圧延反力が高くなりすぎ、生産性を著しく損ない、仕上熱延が不可能になる可能性がある。また、仕上熱延終了温度を低く維持して安定に仕上熱延を行うために、仕上熱延速度を低下させる必要があり、その結果として生産性が劣るため、コストも増加してしまうという課題がある。また、上記範囲での仕上熱延終了温度では成品の磁束密度向上効果が十分に得られないということも判明した。   However, since the finish hot rolling end temperature is too low at 700 ° C. or lower, the rolling reaction force of the finish hot rolling becomes excessively high, which may significantly impair the productivity and make the finish hot rolling impossible. In addition, in order to stably perform finish hot rolling while keeping the finish hot rolling finish temperature low, it is necessary to reduce the finish hot rolling speed, and as a result, productivity is inferior, resulting in an increase in cost. There is. It was also found that the effect of improving the magnetic flux density of the product cannot be obtained sufficiently at the finish hot rolling finish temperature in the above range.

また、C含有量においても、実施例に示されたC含有量の0.006%、0.005%という高濃度では、仕上熱延条件だけではなく、本願で開示する仕上熱延条件においても、磁束密度向上の効果が十分でないということも明らかとなった。   Moreover, also in C content, in the high concentration of 0.006% and 0.005% of C content shown in the examples, not only finish hot rolling conditions but also finish hot rolling conditions disclosed in the present application. It was also revealed that the effect of improving the magnetic flux density is not sufficient.

またさらに、一次再結晶集合組織を改善することで無方向性電磁鋼板の磁気特性を改善する方法として、特許文献3(特開昭55-158252号公報)のごとくSn添加、特許文献4(特開昭62-180014号公報)のごときSn、Cu添加、もしくは特許文献5(特開昭59-100217号公報)のごときSb添加による集合組織の改善による磁気特性の優れた無方向性電磁鋼板の製造法が開示されている。しかしながら、これらの集合組織制御元素であるSn,CuもしくはSb等の添加をもってしても昨今の需要家の高磁束密度低鉄損無方向性電磁鋼板を安価に供給するとの要求には応えることが充分出来なかった。   Furthermore, as a method for improving the magnetic properties of the non-oriented electrical steel sheet by improving the primary recrystallization texture, Sn addition, as disclosed in Japanese Patent Application Laid-Open No. 55-158252, Non-oriented electrical steel sheets with excellent magnetic properties due to the improvement of the texture by adding Sn and Cu as in Kaikai 62-180014 or Sb as in Patent Document 5 (Japanese Patent Laid-Open No. 59-100217) A manufacturing method is disclosed. However, even with the addition of these texture control elements such as Sn, Cu, or Sb, it is possible to meet the demands of today's customers to supply high magnetic flux density low iron loss non-oriented electrical steel sheets at low cost. I couldn't do it enough.

他にも、特許文献6(特開昭57-35626号公報)に記載されているような仕上げ焼鈍サイクルの工夫等の製造プロセス上の処置もなされてきたが、いずれも低鉄損化は図られても、磁束密度については充分な効果はなかった。   In addition, the manufacturing process such as the finishing annealing cycle described in Patent Document 6 (Japanese Patent Application Laid-Open No. 57-35626) has been taken, but all of them have a low iron loss. However, the magnetic flux density was not sufficiently effective.

このように、従来技術では、昨今の需要家において開発要請の強い鉄心の小型化に有利な高磁束密度無方向性電磁鋼板を製造できるには至らず、無方向性電磁鋼板に対する前記の要請に応えることは出来なかった。   Thus, in the prior art, it has not been possible to manufacture a high magnetic flux density non-oriented electrical steel sheet that is advantageous for downsizing of iron cores, which is strongly demanded by recent customers. I couldn't respond.

本発明は、無方向性電磁鋼板の仕上熱延工程を特定の条件にすることで熱延板の集合組織をあらかじめ造りこんでおくことにより、冷間圧延、仕上焼鈍後の再結晶集合組織を制御することを技術思想とするものであり、さらにこの製造法を行う際に、鋼に含有される炭素の含有量が本発明で開示する仕上熱延方法の効果に顕著な影響を及ぼすことを新規に見いだしたものである。これにより従来技術よりも安価な方法で高磁束密度である無方向性電磁鋼板の製造技術を提供するものである。   In the present invention, the re-rolling texture after cold rolling and finish annealing is obtained by pre-building the texture of the hot-rolled sheet by setting the finish hot-rolling process of the non-oriented electrical steel sheet to a specific condition. It is a technical idea to control, and further, when performing this production method, the content of carbon contained in the steel significantly affects the effect of the finish hot rolling method disclosed in the present invention. Newly found. This provides a technique for producing a non-oriented electrical steel sheet having a high magnetic flux density by a method that is cheaper than the prior art.

特開昭58-204126号公報JP 58-204126 A 特開昭59-104429号公報JP 59-104429 A 特開昭55-158252号公報JP-A-55-158252 特開昭62-180014号公報Japanese Patent Laid-Open No. 62-180014 特開昭59-100217号公報JP 59-100217 特開昭57-35265号公報JP-A-57-35265

本発明は、従来技術におけるこのような課題を解決し、高磁束密度の無方向性電磁鋼板を提供することを目的とするものである。   An object of the present invention is to solve such problems in the prior art and to provide a high magnetic flux density non-oriented electrical steel sheet.

本発明の要旨とするところは、以下の通りである。
(1)
鋼中に質量%で
0.1%≦Si≦2.0%
Al≦1.0%
かつ 0.1%≦Si+2Al≦2.0% を満たし、
C<0.004%
S≦0.003%
N≦0.003%
を含有し、残部がFeおよび不可避的不純物からなる鋼のスラブとして、熱間圧延において粗圧延および引き続く仕上熱延を施し熱延板とし、酸洗し一回の冷間圧延工程を施し次いで仕上げ焼鈍を施す無方向性電磁鋼板の製造方法において、仕上げ熱延のスラブ加熱温度ST、仕上圧延開始温度F0T、仕上熱延終了温度FTをそれぞれ以下のように定め、かつ、仕上げ熱延においてα域で少なくとも一パス以上の圧下率を15%以上とすることを特徴とする磁束密度の高い無方向性電磁鋼板の製造方法。
The gist of the present invention is as follows.
(1)
In mass% in steel
0.1% ≦ Si ≦ 2.0%
Al ≦ 1.0%
And 0.1% ≦ Si + 2Al ≦ 2.0% is satisfied,
C <0.004%
S ≦ 0.003%
N ≦ 0.003%
As a steel slab consisting of Fe and the inevitable impurities in the balance, hot rolling is used to perform rough rolling and subsequent hot rolling to obtain a hot rolled sheet, pickling and a single cold rolling step, followed by finishing. In the manufacturing method of the non-oriented electrical steel sheet to be annealed, the slab heating temperature ST, the finishing rolling start temperature F0T, and the finishing hot rolling end temperature FT of the finish hot rolling are respectively determined as follows, and in the finishing hot rolling, the α region A method for producing a non-oriented electrical steel sheet having a high magnetic flux density, wherein the rolling reduction of at least one pass is 15% or more.

850℃≦ST≦1150℃
850℃≦F0T≦1150℃
750℃≦FT≦850℃
(2)
(1)の無方向性電磁鋼板製造方法において、冷間圧延工程における圧延率を85%以上97%以下とすることを特徴とする無方向性電磁鋼板の製造方法
本発明者らは、従来にない高磁束密度を達成する無方向性電磁鋼板の安価な製造方法について鋭意検討を重ねた結果、無方向性電磁鋼板の仕上熱延工程を特定の条件にすることで熱延板の集合組織をあらかじめ造りこんでおくことにより、冷間圧延、仕上焼鈍後の再結晶集合組織を制御することが可能となり、従来技術では高磁束密度を得るために熱延板焼鈍などのコストのかかる工程を余分に必要としていたものを省略し、低コストかつ高磁束密度である無方向性電磁鋼板の製造方法を提供するものであり、特にこの製造法を行う際に、鋼に含有される炭素の含有量を適切に制御することが、本発明で開示する仕上熱延方法の効果を顕著に高めることを新規に見いだし、炭素の適切な含有量についても同時に開示するものである。
850 ° C ≤ ST ≤ 1150 ° C
850 ° C ≤ F0T ≤ 1150 ° C
750 ° C ≦ FT ≦ 850 ° C
(2)
In the method for producing a non-oriented electrical steel sheet according to (1), a method for producing a non-oriented electrical steel sheet characterized in that a rolling rate in the cold rolling step is 85% or more and 97% or less. As a result of intensive investigations on inexpensive manufacturing methods for non-oriented electrical steel sheets that achieve high magnetic flux density, the texture of hot-rolled sheets can be reduced by making the finish hot rolling process of non-oriented electrical steel sheets a specific condition. Pre-fabrication makes it possible to control the recrystallized texture after cold rolling and finish annealing, and the prior art has added costly processes such as hot-rolled sheet annealing to obtain high magnetic flux density. The present invention provides a method for producing a non-oriented electrical steel sheet having a low cost and a high magnetic flux density, particularly when performing this production method. To properly control However, it has been found that the effect of the finish hot rolling method disclosed in the present invention is remarkably enhanced, and an appropriate content of carbon is also disclosed at the same time.

本発明によれば、磁束密度の高い無方向性電磁鋼板を低コストで製造することが可能である。   According to the present invention, a non-oriented electrical steel sheet having a high magnetic flux density can be produced at a low cost.

まず、成分について説明する。   First, components will be described.

Siは本発明においては、過度の添加は製品の磁束密度を低減させ有害であるから、その含有量を2.0%以下と制限する。一方、磁束密度の向上を妨げない範囲で電気抵抗率を確保して渦電流損を低減させる目的で0.1%以上の添加量が必要である。   In the present invention, excessive addition of Si reduces the magnetic flux density of the product and is harmful, so its content is limited to 2.0% or less. On the other hand, an addition amount of 0.1% or more is required for the purpose of ensuring electric resistivity within a range not hindering improvement in magnetic flux density and reducing eddy current loss.

AlはSiと同様に電気抵抗率を確保する目的で添加してもよい。本発明ではAlの添加は必須ではないので下限は定めない。一方、Siと同様に、過度の添加は製品の磁束密度を低減させ有害であるから、その含有量を1.0%以下と制限する。   Al may be added for the purpose of securing electrical resistivity in the same manner as Si. In the present invention, since addition of Al is not essential, the lower limit is not determined. On the other hand, like Si, excessive addition reduces the magnetic flux density of the product and is harmful, so its content is limited to 1.0% or less.

SiとAlは電気抵抗率を確保するのに添加されるため、(Si+2Al)の合計量が0.1%以上である必要がある。一方、(Si+2Al)の合計量が2.0%超であると、製品の磁束密度を低減させ有害であるから、(Si+2Al)の合計量を2.0%以下と制限する。   Since Si and Al are added to ensure electrical resistivity, the total amount of (Si + 2Al) needs to be 0.1% or more. On the other hand, if the total amount of (Si + 2Al) exceeds 2.0%, the magnetic flux density of the product is reduced, which is harmful. Therefore, the total amount of (Si + 2Al) is limited to 2.0% or less.

C含有量を一定量以下に制御することは、本発明における仕上熱延から仕上焼鈍に至る一貫プロセスにおいて集合組織制御を行う効果を十分に発現させるために重要な、新規知見である。従来のように無方向性電磁鋼板として使用中の磁気時効による損失の増加を防止する観点だけであれば、その含有量は0.005%以下であれば十分である。   Controlling the C content to a certain level or less is a novel finding that is important for sufficiently expressing the effect of texture control in an integrated process from finish hot rolling to finish annealing in the present invention. If it is only a viewpoint which prevents the increase in the loss by the magnetic aging in use as a non-oriented electrical steel sheet like the past, it is enough if the content is 0.005% or less.

しかし、本発明では、Cの含有量が0.004%以上であると、仕上焼鈍後の成品の再結晶集合組織の制御に成功せず、高磁束密度が得られなくなる。従って、本発明ではC含有量は0.004%未満に定める。さらに、本発明において一連のプロセスでの集合組織制御により無方向性電磁鋼板の磁束密度を高めるためには、C含有量は0.003%以下であることが好ましい。   However, in the present invention, if the C content is 0.004% or more, the recrystallization texture of the product after finish annealing cannot be controlled successfully, and a high magnetic flux density cannot be obtained. Therefore, in the present invention, the C content is set to less than 0.004%. Furthermore, in order to increase the magnetic flux density of the non-oriented electrical steel sheet by texture control in a series of processes in the present invention, the C content is preferably 0.003% or less.

本発明ではS、Nの低減により高磁束密度が可能となる。   In the present invention, a high magnetic flux density can be achieved by reducing S and N.

S、Nは熱間圧延工程におけるスラブ加熱中に一部再固溶し、熱間圧延中にMnS、AlNの微細な析出物を再析出して仕上焼鈍時の結晶粒成長を抑制し、鉄損が悪化する原因となる。このためその含有量は共に0.003%以下とする必要がある。   S and N are partly re-dissolved during slab heating in the hot rolling process, and fine precipitates of MnS and AlN are reprecipitated during hot rolling to suppress grain growth during finish annealing. It causes the loss to worsen. For this reason, both the contents must be 0.003% or less.

次にプロセス条件について説明する。   Next, process conditions will be described.

前記成分からなる鋼スラブは、転炉で溶製され連続鋳造あるいは造塊−分塊圧延により製造される。鋼スラブは公知の方法にて加熱される。このスラブに熱間圧延を施し所定の厚みとする。   The steel slab composed of the above components is melted in a converter and manufactured by continuous casting or ingot-bundling rolling. The steel slab is heated by a known method. The slab is hot rolled to a predetermined thickness.

本発明での仕上熱延では、スラブ加熱温度STが850℃未満となると粗熱延および仕上熱延時の圧延反力が大きくなりすぎ、圧延が困難となるのでスラブ加熱温度は850℃以上に定める。一方、スラブ加熱温度が1150℃超となると、鋼中のS等の不純物が再固溶し、仕上熱延中に微細に再析出して仕上焼鈍中の結晶粒成長を妨げ、鉄損が著しく悪化するとともに仕上焼鈍中の再結晶制御を妨げ、磁束密度も低下してしまうので、スラブ加熱温度は1150℃以下に定める。   In the finish hot rolling in the present invention, when the slab heating temperature ST is less than 850 ° C., the rolling reaction force at the time of rough hot rolling and finish hot rolling becomes too large and rolling becomes difficult, so the slab heating temperature is set to 850 ° C. or more. . On the other hand, when the slab heating temperature exceeds 1150 ° C., impurities such as S in the steel re-dissolve and reprecipitates finely during finish hot rolling, preventing crystal grain growth during finish annealing, resulting in significant iron loss. As it deteriorates and recrystallization control during finish annealing is hindered and the magnetic flux density is lowered, the slab heating temperature is set to 1150 ° C. or lower.

仕上熱延開始温度F0Tは、850℃未満となると仕上熱延時の圧延反力が増大して圧延が困難となるので仕上熱延開始温度は850℃以上に定める。一方、仕上熱延開始温度が1150℃超になると、仕上熱延中の再結晶進行の速度が速くなりすぎ、仕上熱延を行いながら熱延鋼帯の集合組織を制御する本発明の効果が損なわれ、結果として成品の磁束密度が著しく低下してしまうので、仕上熱延開始温度は1150以下に定める。   When the finish hot rolling start temperature F0T is less than 850 ° C., the rolling reaction force during finish hot rolling increases and rolling becomes difficult, so the finish hot rolling start temperature is set to 850 ° C. or more. On the other hand, when the finish hot rolling start temperature exceeds 1150 ° C., the recrystallization progress rate during finish hot rolling becomes too high, and the effect of the present invention for controlling the texture of the hot rolled steel strip while performing finish hot rolling is effective. As a result, the magnetic flux density of the product is significantly lowered, so the finish hot rolling start temperature is set to 1150 or less.

仕上熱延終了温度FTが750℃未満となると、仕上熱延中の圧延反力が増大し、仕上熱延が困難となり、熱延板の形状が悪化し板厚制御が困難になるとともに、成品の磁束密度がかえって低下するので仕上熱延終了温度は750℃以上に定める。仕上熱延終了温度が850℃超となると、仕上熱延中の再結晶進行の速度が速くなりすぎ、仕上熱延を行いながら熱延鋼帯の集合組織を制御する本発明の効果が損なわれ、結果として成品の磁束密度が著しく低下してしまうので、仕上熱延終了温度は850℃以下に定める。   When the finishing hot rolling finish temperature FT is less than 750 ° C., the rolling reaction force during finishing hot rolling increases, finishing hot rolling becomes difficult, the shape of the hot rolled sheet deteriorates, and the thickness control becomes difficult, and the product Therefore, the finish hot rolling finish temperature is set to 750 ° C. or higher. When the finish hot rolling finish temperature exceeds 850 ° C., the recrystallization progress rate during finish hot rolling becomes too high, and the effect of the present invention for controlling the texture of the hot rolled steel strip while performing finish hot rolling is impaired. As a result, the magnetic flux density of the product is remarkably lowered, so the finish hot rolling finish temperature is set to 850 ° C. or lower.

本発明では、仕上熱延中に熱延鋼帯の集合組織を制御する必要があることから、仕上げ熱延においてα域で少なくとも一パス以上の圧下率を15%以上とすることが必要である。仕上熱延において少なくとも1パスはα域で15%以上の圧延を施さないと、本発明が意図する熱延鋼帯の集合組織制御による、冷間圧延およびその後の仕上焼鈍中の再結晶集合組織を制御して磁束密度を高める効果が得られなくなるので、仕上げ熱延においてα域で少なくとも一パス以上の圧下率を15%以上とすることに定める。成分の説明でも述べたように、C含有量を制御しつつ、仕上熱延においてα域で少なくとも1パスの圧下量を15%以上に確保することにより、熱延鋼帯の集合組織制御を行うことが可能となり、この熱延鋼帯に冷間圧延および仕上焼鈍を施した後の成品の再結晶集合組織を改善し、磁束密度を高めることが可能になる。   In the present invention, since it is necessary to control the texture of the hot-rolled steel strip during finish hot rolling, it is necessary to set the reduction ratio of at least one pass or more in the α region to 15% or more in the finish hot rolling. . In the finish hot rolling, if at least one pass is not rolled at 15% or more in the α region, the recrystallization texture during cold rolling and subsequent finish annealing is controlled by the texture control of the hot rolled steel strip intended by the present invention. Since the effect of increasing the magnetic flux density by controlling the above cannot be obtained, it is determined that the rolling reduction of at least one pass or more in the α region is 15% or more in the finish hot rolling. As described in the explanation of the components, the texture control of the hot-rolled steel strip is performed by securing the reduction amount of at least one pass in the α region at 15% or more in the finish hot rolling while controlling the C content. It is possible to improve the recrystallized texture of the product after cold rolling and finish annealing of the hot-rolled steel strip, and to increase the magnetic flux density.

この技術思想により従来よりも低鉄損が達成される理由は現在解明中であるが、α域で一定以上の圧延率の圧下を確保することにより、熱延鋼帯の集合組織を改善することができ、このため冷間圧延、再結晶後の成品の再結晶集合組織中の結晶粒のうち、{100}面を板面に並行に持つ結晶粒を富化できることが本発明の磁束密度向上の機構であると推察している。   The reason why low iron loss can be achieved by this technical idea is currently being elucidated, but by improving the rolling rate above a certain level in the α region, the texture of the hot-rolled steel strip should be improved. Therefore, among the crystal grains in the recrystallized texture of the product after cold rolling and recrystallization, it is possible to enrich the crystal grains having the {100} plane in parallel with the plate surface. I guess that is the mechanism of.

熱延終了温度が高くなりすぎると、α相域の仕上熱延により造りこんだ熱延鋼帯の集合組織が再結晶と粒成長の進行により消失してしまうことを発明者らは突き止めた。   The inventors have found that when the hot rolling end temperature becomes too high, the texture of the hot rolled steel strip formed by finishing hot rolling in the α phase region disappears due to the progress of recrystallization and grain growth.

この観点から、従来技術で、無方向性電磁鋼板の磁束密度を向上させるために用いられてきた熱延板焼鈍は、本発明で造りこんだ、成品の磁束密度向上に役立つ熱延鋼帯内の集合組織を、熱延板焼鈍中に熱延鋼帯内で進行する再結晶と粒成長のために相殺する為、成品の磁束密度を充分向上させることができなかったと思われる。   From this point of view, the hot-rolled sheet annealing, which has been used in the prior art to improve the magnetic flux density of non-oriented electrical steel sheets, is a hot-rolled steel strip that is built in the present invention and is useful for improving the magnetic flux density of products. It is thought that the magnetic flux density of the product could not be sufficiently improved because the texture of the steel sheet was offset by recrystallization and grain growth that proceeded in the hot-rolled steel strip during hot-rolled sheet annealing.

この従来の製造方法による技術思想は、冷間圧延前の結晶粒径を粗大化させることにより、磁束密度の向上を妨げる{111}面を板面に並行に有する結晶粒の発達を阻害し、微量の{110}<001>方位を有する結晶粒の存在量を増加させることにあった。このため、仕上熱延を終了しただけの熱延鋼帯の集合組織を改善することにより成品の磁束密度を向上させるという本発明の技術思想を有する方法は開示されていなかった。   The technical idea by this conventional manufacturing method is to increase the crystal grain size before cold rolling, thereby inhibiting the development of crystal grains having {111} planes parallel to the plate surface, which hinder the improvement of magnetic flux density, The object was to increase the abundance of crystal grains having a small amount of {110} <001> orientation. For this reason, the method which has the technical idea of this invention of improving the magnetic flux density of a product by improving the texture of the hot-rolled steel strip which just finished finishing hot rolling was not disclosed.

また、この目的を達成する熱延終了温度は、低すぎても熱延鋼帯において成品の磁束密度向上に好ましくない集合組織が発達し、結果として成品の磁束密度が低下してしまうことも発明者らは明らかにした。   Moreover, even if the hot rolling end temperature for achieving this purpose is too low, a texture unfavorable for improving the magnetic flux density of the product develops in the hot rolled steel strip, resulting in a decrease in the magnetic flux density of the product. They revealed.

すなわち、本発明が意図する熱延鋼帯の集合組織の制御のためには、最適な熱延終了温度の範囲があることを発明者らは明らかにしたのである。   That is, the inventors have clarified that there is an optimum hot rolling end temperature range in order to control the texture of the hot rolled steel strip intended by the present invention.

また、鋼中のC量が本発明で規定する範囲を超過すると、α相域の仕上熱延により成品の磁束密度向上に適した集合組織を熱延鋼帯に造りこむことが著しく阻害され、成品の磁束密度が顕著に低下することも発明者らは明らかにした。   In addition, if the amount of C in the steel exceeds the range specified in the present invention, the formation of a texture suitable for improving the magnetic flux density of the product by hot rolling in the α phase region is significantly hindered, The inventors have also revealed that the magnetic flux density of the product is significantly reduced.

仕上熱延終了後の熱延鋼帯は酸洗を施し、冷間圧延を施して最終板厚に仕上げる。冷間圧延後の冷延鋼帯は、仕上焼鈍により再結晶を行わせ、成品とする。この成品は歪取り焼鈍を施さずに使用してもよいし、しかるべき形に打ち抜くなどの工程を経て整形した後に、歪取り焼鈍を施して使用してもよい。   The hot-rolled steel strip after finishing hot rolling is pickled and cold-rolled to the final thickness. The cold-rolled steel strip after cold rolling is recrystallized by finish annealing to obtain a finished product. This product may be used without being subjected to strain relief annealing, or may be used after being subjected to strain relief annealing after being shaped through a process such as punching into an appropriate shape.

本発明による無方向性電磁鋼板の磁気特性向上効果をさらに促進する方法として、冷間圧延の際に、その冷延率を85%に制御することが好ましい。これにより、磁束密度がさらに向上する。冷間圧延率の上限は定めないが、冷延率を高めることにより製造コストが上昇するため、冷延率は97%以下であることが生産性の観点から好ましい。冷間圧延率を高めることにより磁束密度が向上する理由については現在鋭意調査中であるが、冷間圧延率を85%以上にすることにより、本発明で規定した製造方法により改善された集合組織を有する熱延鋼帯の冷間圧延、再結晶後の集合組織改善を促進することで磁気特性が向上するものと推察している。   As a method of further promoting the effect of improving the magnetic properties of the non-oriented electrical steel sheet according to the present invention, it is preferable to control the cold rolling rate to 85% during cold rolling. Thereby, magnetic flux density further improves. Although the upper limit of the cold rolling rate is not defined, the manufacturing cost increases by increasing the cold rolling rate, and therefore the cold rolling rate is preferably 97% or less from the viewpoint of productivity. The reason why the magnetic flux density is improved by increasing the cold rolling rate is currently under intensive investigation, but by improving the cold rolling rate to 85% or more, the texture improved by the manufacturing method defined in the present invention. It is presumed that the magnetic properties are improved by promoting the cold rolling of the hot-rolled steel strip having a texture and improving the texture after recrystallization.

仕上焼鈍の温度域は、熱延鋼帯から造りこんでおいた集合組織から仕上焼鈍中に磁束密度を高めるのに適切な再結晶集合組織を形成させる必要があるため、α相域で行う必要がある。すなわち、仕上焼鈍温度がα相域の上限であるAc1点を超えると、成品の磁束密度が低下してしまうので、仕上焼鈍温度はα相内であるAc1点以下で行う必要がある。   The temperature range of finish annealing must be performed in the α phase range because it is necessary to form an appropriate recrystallized texture to increase the magnetic flux density during finish annealing from the texture created from the hot-rolled steel strip. There is. That is, when the finish annealing temperature exceeds the Ac1 point, which is the upper limit of the α phase region, the magnetic flux density of the product is lowered. Therefore, the finish annealing temperature needs to be performed at the Ac1 point or less within the α phase.

仕上げ焼鈍時間が15秒未満では再結晶が不十分となり高磁束密度が得られないので、15秒以上であることが好ましい。一方、仕上げ焼鈍時間が3分を超えると、生産性が悪化し、コストが上昇するので、仕上げ焼鈍時間は3分以内とする。   If the final annealing time is less than 15 seconds, recrystallization is insufficient and a high magnetic flux density cannot be obtained. On the other hand, if the finish annealing time exceeds 3 minutes, productivity deteriorates and costs increase, so the finish annealing time should be within 3 minutes.

これにより、磁束密度の高い無方向性電磁鋼板を従来よりも低コストで製造することが可能となる。また、本発明により得られた高磁束密度無方向性電磁鋼板は、小型軽量化を要求される電気機器、回転機の鉄心、小型トランスに最適であるが、他にも各種コンプレッサー、高出力を要求される電気自動車用モーター等の鉄心用途等に適している。   Thereby, it becomes possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density at a lower cost than before. In addition, the high magnetic flux density non-oriented electrical steel sheet obtained by the present invention is most suitable for electrical equipment that is required to be small and light, iron cores of rotating machines, and small transformers. Suitable for iron core applications such as required motors for electric vehicles.

次に、本発明の実施例について述べる。   Next, examples of the present invention will be described.

表1に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて1100℃1時間加熱し、熱延により2.5mmに仕上げた。仕上熱延開始温度は1000℃とし、圧延速度と熱延スタンド間の冷却速度の制御により仕上熱延終了温度を700℃から865℃の範囲に変えた。   A slab for non-oriented electrical steel having the components shown in Table 1 was heated by a normal method at 1100 ° C. for 1 hour and finished to 2.5 mm by hot rolling. The finish hot rolling start temperature was 1000 ° C., and the finish hot rolling finish temperature was changed from 700 ° C. to 865 ° C. by controlling the rolling rate and the cooling rate between the hot rolling stands.

この鋼のAr1変態点は880℃であるので、7スタンドからなる仕上熱延機において、出側の少なくとも3パスの圧下を880℃以下のα域で実施し、その圧下率は5パス目は19.5%、6パス目は15.2%、7パス目は10.7%に制御し、少なくとも5パス目および6パス目の2パスにおいて、α相域での圧下量が15%以上確保できるように制御熱延を行った。 Since the Ar 1 transformation point of this steel is 880 ° C., at the finishing hot rolling machine consisting of 7 stands, at least 3 passes of reduction on the outlet side are carried out in the α region of 880 ° C. or less, and the reduction rate is 5th pass Is controlled to 19.5%, the sixth pass is 15.2%, the seventh pass is 10.7%, and the reduction amount in the α phase region is 15% in at least the second pass and the fifth pass. Control hot rolling was performed to ensure the above.

続いて酸洗を施し、冷間圧延により0.5mmに仕上げ、これを連続焼鈍炉にて750℃30秒の仕上焼鈍を施した。その後、エプスタイン試料に切断し、磁気特性を測定した。   Subsequently, pickling was performed, and the product was finished to 0.5 mm by cold rolling, and this was subjected to finish annealing at 750 ° C. for 30 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic.

表1に本発明と比較例の成分を、表2に仕上熱延終了温度と磁気特性の関係の測定結果を示す。   Table 1 shows the components of the present invention and the comparative example, and Table 2 shows the measurement results of the relationship between the finish hot rolling end temperature and the magnetic properties.

表2より、仕上げ熱延終了温度と圧下条件を適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略して、高磁束密度の無方向性電磁鋼板を製造することが可能である。   From Table 2, it is possible to manufacture high-flux-density non-oriented electrical steel sheets by appropriately controlling the finish hot-rolling finish temperature and reduction conditions, omitting costly processes such as hot-rolled sheet annealing. It is.

Figure 2008156741
Figure 2008156741

Figure 2008156741
Figure 2008156741

表3に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて1100℃1時間加熱し、熱延により2.5mmに仕上げた。仕上熱延開始温度は980℃とし、圧延速度と熱延スタンド間の冷却速度の制御により仕上熱延終了温度を805℃に制御した。   A slab for non-oriented electrical steel having the components shown in Table 3 was heated by a normal method at 1100 ° C. for 1 hour and finished to 2.5 mm by hot rolling. The finishing hot rolling start temperature was 980 ° C., and the finishing hot rolling end temperature was controlled to 805 ° C. by controlling the rolling speed and the cooling rate between the hot rolling stands.

この鋼のAr1変態点は865℃であるので、7スタンドからなる仕上熱延機において、出側の3パスの圧下を865℃以下のα域で実施し、その圧下率は5パス目は25.0%、6パス目は15.2%、7パス目は10.7%に制御し、5パスおよび6パス目においてα相域での圧下量が15%以上確保できるように制御熱延を行った。 Since the Ar 1 transformation point of this steel is 865 ° C., in the finishing hot rolling machine consisting of 7 stands, the reduction of the 3 passes on the outlet side is carried out in the α region of 865 ° C. or less, and the reduction rate is 5th pass 25.0%, 6th pass is 15.2%, 7th pass is controlled to 10.7%, and control heat is ensured to ensure 15% or more reduction in the α phase region at 5th pass and 6th pass I did.

続いて酸洗を施し、冷間圧延により0.5mmに仕上げ、これを連続焼鈍炉にて760℃30秒の仕上焼鈍を施した。その後、エプスタイン試料に切断し、磁気特性を測定した。   Subsequently, pickling was performed and the product was finished to 0.5 mm by cold rolling, and this was subjected to finish annealing at 760 ° C. for 30 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic.

表3に本発明と比較例の成分を、表4に各供試材の磁気特性の測定結果を示す。   Table 3 shows the components of the present invention and comparative examples, and Table 4 shows the measurement results of the magnetic properties of the respective test materials.

このようにC含有量を0.004%未満に制御し、仕上げ熱延条件を条件を適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略して、高磁束密度の無方向性電磁鋼板を製造することが可能である。さらに、表4より、特にC含有量が0.003%以下の場合において、より高い磁束密度が得られていることがわかる。さらに、C含有量が0.002%以下の場合において、1.815T以上のより高い磁束密度が得られていることがわかる。   In this way, by controlling the C content to less than 0.004% and appropriately controlling the conditions of the finishing hot rolling conditions, costly processes such as hot-rolled sheet annealing can be omitted, and high magnetic flux density can be reduced. It is possible to manufacture grain-oriented electrical steel sheets. Furthermore, it can be seen from Table 4 that a higher magnetic flux density is obtained particularly when the C content is 0.003% or less. Furthermore, it can be seen that when the C content is 0.002% or less, a higher magnetic flux density of 1.815 T or more is obtained.

Figure 2008156741
Figure 2008156741

Figure 2008156741
Figure 2008156741

表5に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて1050℃1時間加熱し、粗圧延により40mmの粗バーとし、次いで7パスの仕上げ熱延により2.5mmに仕上げた。仕上熱延開始温度は950℃とし、圧延速度と熱延スタンド間の冷却速度の制御により仕上熱延終了温度を800℃に制御した。   A slab for non-oriented electrical steel having the components shown in Table 5 is heated by a normal method at 1050 ° C. for 1 hour, rough rolled into a 40 mm rough bar, and then finished to 2.5 mm by 7-pass hot rolling. It was. The finishing hot rolling start temperature was 950 ° C., and the finishing hot rolling end temperature was controlled to 800 ° C. by controlling the rolling speed and the cooling rate between the hot rolling stands.

この鋼のAr1変態点は861℃であるので、7スタンドからなる仕上熱延機において、圧延スケジュールを様々に調整して制御熱延を行い、熱延仕上げ板厚と仕上熱延終了温度が上記の条件になるように制御した。 Since the Ar 1 transformation point of this steel is 861 ° C., in a finishing hot rolling machine consisting of 7 stands, the hot rolling finish plate thickness and finishing hot rolling finish temperature are adjusted by variously adjusting the rolling schedule. Control was performed so as to satisfy the above conditions.

続いて酸洗を施し、冷間圧延により0.5mmに仕上げ、これを連続焼鈍炉にて750℃30秒の仕上焼鈍を施した。その後、エプスタイン試料に切断し、磁気特性を測定した。   Subsequently, pickling was performed, and the product was finished to 0.5 mm by cold rolling, and this was subjected to finish annealing at 750 ° C. for 30 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic.

表5に本発明と比較例の成分を、表6に仕上熱延終了温度と磁気特性の関係の測定結果を示す。   Table 5 shows the components of the present invention and comparative examples, and Table 6 shows the measurement results of the relationship between the finish hot rolling finish temperature and the magnetic properties.

本発明1および本発明2では仕上熱延の5パス目と6パス目において、861℃以下のα相域の温度で圧延を行い、かつ圧下率も15%以上に達しており、本発明3では仕上熱延の5パス目から7パス目において、861℃以下のα相域で15%以上の圧下率を確保しており、この結果、成品の磁束密度B50の値が1.810T以上の優れた磁気特性が得られている。   In the present invention 1 and the present invention 2, in the fifth and sixth passes of finish hot rolling, rolling is performed at a temperature in the α-phase region of 861 ° C. or less, and the rolling reduction reaches 15% or more. In the fifth to seventh passes of finish hot rolling, a reduction ratio of 15% or more is secured in the α phase region of 861 ° C. or less, and as a result, the magnetic flux density B50 value of the product is excellent at 1.810T or more. Magnetic characteristics are obtained.

一方、比較例1と比較例2では、仕上熱延の5パス目から7パス目において861℃以下のα相域で圧延を行っているが、それらのパスでの圧下率はすべて15%未満であり、その結果、本発明に比べて成品の磁束密度が劣っていることがわかる。   On the other hand, in Comparative Example 1 and Comparative Example 2, rolling is performed in the α-phase region of 861 ° C. or lower in the fifth to seventh passes of finish hot rolling, and the reduction ratios in those passes are all less than 15%. As a result, it can be seen that the magnetic flux density of the product is inferior to that of the present invention.

表6より、仕上げ熱延条件を適切に制御し、この鋼のAr1変態点である861℃以下のα相域において、少なくとも1パスの圧下量を15%以上確保することにより、成品の磁束密度を著しく向上させることが可能であることがわかる。   From Table 6, by appropriately controlling the finish hot rolling conditions and securing at least 15% reduction in one pass in the α phase region of 861 ° C. or lower, which is the Ar1 transformation point of this steel, the product magnetic flux density It can be seen that it is possible to significantly improve.

以上のように、熱延条件と成分を適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略して、高磁束密度の無方向性電磁鋼板を製造することが可能である。   As described above, by appropriately controlling the hot-rolling conditions and components, it is possible to produce a non-oriented electrical steel sheet having a high magnetic flux density by omitting costly processes such as hot-rolled sheet annealing. .

Figure 2008156741
Figure 2008156741

Figure 2008156741
Figure 2008156741

表7に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて1100℃1時間加熱し、熱延により2.5mmに仕上げた。仕上熱延開始温度は1000℃とし、圧延速度と熱延スタンド間の冷却速度の制御により仕上熱延終了温度を700℃から880℃の範囲に変えた。   The slab for non-oriented electrical steel having the components shown in Table 7 was heated at 1100 ° C. for 1 hour by a normal method and finished to 2.5 mm by hot rolling. The finish hot rolling start temperature was 1000 ° C., and the finish hot rolling finish temperature was changed from 700 ° C. to 880 ° C. by controlling the rolling rate and the cooling rate between the hot rolling stands.

この鋼のAr1変態点は855℃であるので、7スタンドからなる仕上熱延機において、出側の少なくとも3パスの圧下を855℃以下のα域で実施し、その圧下率は5パス目は19.5%、6パス目は15.2%、7パス目は10.7%に制御し、少なくとも5パス目および6パス目の2パスにおいて、α相域での圧下量が15%以上確保できるように制御熱延を行った。 Since the Ar 1 transformation point of this steel is 855 ° C., at the finishing hot rolling machine consisting of 7 stands, at least 3 passes on the outlet side are reduced in the α region of 855 ° C. or less, and the reduction rate is 5th pass. Is controlled to 19.5%, the sixth pass is 15.2%, the seventh pass is 10.7%, and the reduction amount in the α phase region is 15% in at least the second pass and the fifth pass. Control hot rolling was performed to ensure the above.

続いて酸洗を施し、冷間圧延により0.35mmに仕上げ、これを連続焼鈍炉にて850℃60秒の仕上焼鈍を施した。その後、エプスタイン試料に切断し、磁気特性を測定した。   Subsequently, pickling was performed, and it was finished to 0.35 mm by cold rolling, and this was subjected to finish annealing at 850 ° C. for 60 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic.

表7に本発明と比較例の成分を、表8に仕上熱延終了温度と磁気特性の関係の測定結果を示す。   Table 7 shows the components of the present invention and comparative examples, and Table 8 shows the measurement results of the relationship between the finish hot rolling end temperature and the magnetic properties.

表8より、仕上げ熱延終了温度と圧下条件を適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略して、高磁束密度の無方向性電磁鋼板を製造することが可能である。   From Table 8, it is possible to manufacture high-flux-density non-oriented electrical steel sheets by appropriately controlling the finish hot-rolling finish temperature and reduction conditions, omitting costly processes such as hot-rolled sheet annealing. It is.

Figure 2008156741
Figure 2008156741

Figure 2008156741
Figure 2008156741

表9に示した成分を有する無方向性電磁鋼用スラブを通常の方法にて1100℃1時間加熱し、熱延により2.5mmおよび2.0mmに仕上げた。仕上熱延開始温度は1000℃とし、圧延速度と熱延スタンド間の冷却速度の制御により仕上熱延終了温度を760℃とした。   The slab for non-oriented electrical steel having the components shown in Table 9 was heated at 1100 ° C. for 1 hour by a normal method, and finished to 2.5 mm and 2.0 mm by hot rolling. The finish hot rolling start temperature was 1000 ° C., and the finish hot rolling finish temperature was 760 ° C. by controlling the rolling speed and the cooling rate between the hot rolling stands.

この鋼のAr1変態点は858℃であるので、7スタンドからなる仕上熱延機において、出側の少なくとも3パスの圧下を858℃以下のα域で実施した。出側3パスの圧下率は、熱延仕上板厚が2.5mmの場合は5パス目を25.0%、6パス目を15.2%、7パス目を10.7%に制御し、熱延仕上板厚が2.0mmの場合は5パス目を22.2%、6パス目を17.9%、7パス目を13.0%に制御し、少なくとも5パス目および6パス目の2パスにおいて、α相域での圧下量が15%以上確保できるように制御熱延を行った。 Since the Ar 1 transformation point of this steel is 858 ° C., in the finishing hot rolling machine consisting of 7 stands, at least 3 passes of reduction on the outlet side were performed in the α region of 858 ° C. or lower. When the thickness of the hot-rolled finished sheet is 2.5 mm, the reduction rate of the third pass is controlled to 25.0% for the fifth pass, 15.2% for the sixth pass, and 10.7% for the seventh pass. When the thickness of the hot-rolled finished sheet is 2.0 mm, the fifth pass is controlled to 22.2%, the sixth pass is 17.9%, the seventh pass is 13.0%, and at least the fifth and sixth passes. In the second pass, controlled hot rolling was performed so that the reduction amount in the α-phase region could be secured at 15% or more.

続いて酸洗を施し、冷間圧延を施し、これを連続焼鈍炉にて750℃20秒の仕上焼鈍を施した。その後、エプスタイン試料に切断し、磁気特性を測定した。冷間圧延においてはその仕上板厚を変化させ、冷間圧延率と磁気特性との関係を調べた。   Subsequently, pickling was performed, cold rolling was performed, and this was subjected to finish annealing at 750 ° C. for 20 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic. In cold rolling, the thickness of the finished sheet was changed, and the relationship between the cold rolling rate and magnetic properties was investigated.

表10に冷延条件と磁気特性の関係を示す。冷間圧延率が85%以上であると磁束密度B50が1.830T以上の優れた値に達していることがわかる。   Table 10 shows the relationship between cold rolling conditions and magnetic properties. It can be seen that the magnetic flux density B50 reaches an excellent value of 1.830 T or more when the cold rolling rate is 85% or more.

よって、表10より、冷間圧延率を85%に制御することにより、熱延板焼鈍などのコストのかかる工程を省略しつつ高磁束密度の無方向性電磁鋼板を製造することが可能である。   Therefore, from Table 10, it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density while omitting costly processes such as hot-rolled sheet annealing by controlling the cold rolling rate to 85%. .

Figure 2008156741
Figure 2008156741

Figure 2008156741
Figure 2008156741

Claims (2)

鋼中に質量%で
0.1%≦Si≦2.0%
Al≦1.0%
かつ 0.1%≦Si+2Al≦2.0% を満たし、
C<0.004%
S≦0.003%
N≦0.003%
を含有し、残部がFeおよび不可避的不純物からなる鋼のスラブとして、熱間圧延において粗圧延および引き続く仕上熱延を施し熱延板とし、酸洗し一回の冷間圧延工程を施し次いで仕上げ焼鈍を施す無方向性電磁鋼板の製造方法において、
仕上げ熱延のスラブ加熱温度ST、仕上圧延開始温度F0T、仕上熱延終了温度FTをそれぞれ以下のように定め、かつ、仕上げ熱延においてα域で少なくとも一パス以上の圧下率を15%以上とすることを特徴とする磁束密度の高い無方向性電磁鋼板の製造方法。
850℃≦ST≦1150℃
850℃≦F0T≦1150℃
750℃≦FT≦850℃
In mass% in steel
0.1% ≦ Si ≦ 2.0%
Al ≦ 1.0%
And 0.1% ≦ Si + 2Al ≦ 2.0% is satisfied,
C <0.004%
S ≦ 0.003%
N ≦ 0.003%
As a steel slab consisting of Fe and the inevitable impurities in the balance, hot rolling is used to perform rough rolling and subsequent hot rolling to obtain a hot rolled sheet, pickling and a single cold rolling step, followed by finishing. In the manufacturing method of the non-oriented electrical steel sheet to be annealed,
The slab heating temperature ST, finish rolling start temperature F0T, and finish hot rolling end temperature FT of finish hot rolling are determined as follows, and the reduction ratio of at least one pass or more in the α region in the finish hot rolling is 15% or more. A method for producing a non-oriented electrical steel sheet having a high magnetic flux density.
850 ° C ≤ ST ≤ 1150 ° C
850 ° C ≤ F0T ≤ 1150 ° C
750 ° C ≦ FT ≦ 850 ° C
請求項1の無方向性電磁鋼板製造方法において、冷間圧延工程における圧延率を85%以上97%以下とすることを特徴とする無方向性電磁鋼板の製造方法。   The method for producing a non-oriented electrical steel sheet according to claim 1, wherein a rolling rate in the cold rolling step is 85% or more and 97% or less.
JP2007041790A 2006-11-29 2007-02-22 Method for producing high magnetic flux density non-oriented electrical steel sheet Active JP5014830B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007041790A JP5014830B2 (en) 2006-11-29 2007-02-22 Method for producing high magnetic flux density non-oriented electrical steel sheet

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006321438 2006-11-29
JP2006321438 2006-11-29
JP2007041790A JP5014830B2 (en) 2006-11-29 2007-02-22 Method for producing high magnetic flux density non-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2008156741A true JP2008156741A (en) 2008-07-10
JP5014830B2 JP5014830B2 (en) 2012-08-29

Family

ID=39657976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007041790A Active JP5014830B2 (en) 2006-11-29 2007-02-22 Method for producing high magnetic flux density non-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP5014830B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921725A (en) * 2012-11-12 2013-02-13 武汉钢铁(集团)公司 Non-oriented silicon steel hot rolled plate rolling method controlled through silicon equivalent
JP2015212403A (en) * 2014-05-01 2015-11-26 Jfeスチール株式会社 Method for manufacturing nonoriented electromagnetic steel sheet
WO2017163327A1 (en) * 2016-03-23 2017-09-28 新日鐵住金株式会社 Non-oriented electrical steel sheet manufacturing method and claw pole motor
JP2018168412A (en) * 2017-03-29 2018-11-01 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860247A (en) * 1994-08-23 1996-03-05 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet excellent in magnetic property
JP2001181743A (en) * 1999-10-14 2001-07-03 Nippon Steel Corp Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2002161313A (en) * 2000-11-21 2002-06-04 Sumitomo Metal Ind Ltd Production method for non-directional, flat rolled magnetic steel sheet and strip superior in magnetic properties after electromagnetic annealing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0860247A (en) * 1994-08-23 1996-03-05 Sumitomo Metal Ind Ltd Production of nonoriented silicon steel sheet excellent in magnetic property
JP2001181743A (en) * 1999-10-14 2001-07-03 Nippon Steel Corp Method for producing hot rolled silicon steel sheet excellent in magnetism
JP2002161313A (en) * 2000-11-21 2002-06-04 Sumitomo Metal Ind Ltd Production method for non-directional, flat rolled magnetic steel sheet and strip superior in magnetic properties after electromagnetic annealing

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921725A (en) * 2012-11-12 2013-02-13 武汉钢铁(集团)公司 Non-oriented silicon steel hot rolled plate rolling method controlled through silicon equivalent
JP2015212403A (en) * 2014-05-01 2015-11-26 Jfeスチール株式会社 Method for manufacturing nonoriented electromagnetic steel sheet
WO2017163327A1 (en) * 2016-03-23 2017-09-28 新日鐵住金株式会社 Non-oriented electrical steel sheet manufacturing method and claw pole motor
CN108781003A (en) * 2016-03-23 2018-11-09 新日铁住金株式会社 Non-oriented electromagnetic steel sheet and its manufacturing method and Lundell motor
JPWO2017163327A1 (en) * 2016-03-23 2018-12-06 新日鐵住金株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and claw pole motor
EP3435520A4 (en) * 2016-03-23 2019-11-20 Nippon Steel Corporation Non-oriented electrical steel sheet manufacturing method and claw pole motor
JP2018168412A (en) * 2017-03-29 2018-11-01 新日鐵住金株式会社 Nonoriented electromagnetic steel sheet and method for producing the same, and motor core and method for producing the same
JP2019183228A (en) * 2018-04-11 2019-10-24 日本製鉄株式会社 Nonoriented electromagnetic steel sheet and manufacturing method therefor
JP7176221B2 (en) 2018-04-11 2022-11-22 日本製鉄株式会社 Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JP5014830B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5423629B2 (en) Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density
JP2009185386A (en) Method for producing non-grain-oriented electrical steel sheet
JP2012046806A (en) Method for manufacturing non-oriented electromagnetic steel sheet
KR20130047735A (en) Process for producing non-oriented electromagnetic steel sheet
JP5388506B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP5014830B2 (en) Method for producing high magnetic flux density non-oriented electrical steel sheet
JP4358550B2 (en) Method for producing non-oriented electrical steel sheet with excellent rolling direction and perpendicular magnetic properties in the plate surface
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
JP6146582B2 (en) Method for producing non-oriented electrical steel sheet
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR19990071916A (en) A method for producing a non-oriented electromagnetic steel sheet having a high magnetic flux density and a low iron loss
JP2008019462A (en) Method for producing magnetic steel sheet excellent in magnetic characteristic in direction perpendicular to rolling direction
JP2002348613A (en) Method for manufacturing grain-oriented electromagnetic steel sheet superior in blanking property without needing decarburization annealing
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JPH0860247A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH10273726A (en) Manufacture of grain oriented silicon steel sheet with stable magnetic property in longitudinal direction of coil
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JP3546114B2 (en) Manufacturing method of grain-oriented electrical steel sheet with high magnetic flux density
JP2023508294A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2000297325A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120409

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120606

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5014830

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150615

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350