JP5423629B2 - Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density - Google Patents

Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density Download PDF

Info

Publication number
JP5423629B2
JP5423629B2 JP2010210707A JP2010210707A JP5423629B2 JP 5423629 B2 JP5423629 B2 JP 5423629B2 JP 2010210707 A JP2010210707 A JP 2010210707A JP 2010210707 A JP2010210707 A JP 2010210707A JP 5423629 B2 JP5423629 B2 JP 5423629B2
Authority
JP
Japan
Prior art keywords
hot
hot rolling
less
rolled steel
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010210707A
Other languages
Japanese (ja)
Other versions
JP2012067330A (en
Inventor
竜太郎 川又
猛 久保田
英明 山村
雅文 宮嵜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2010210707A priority Critical patent/JP5423629B2/en
Publication of JP2012067330A publication Critical patent/JP2012067330A/en
Application granted granted Critical
Publication of JP5423629B2 publication Critical patent/JP5423629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、電気機器の鉄心材料として用いられる、磁束密度が高い無方向性電磁熱延鋼帯の製造方法に関するものである。特に、冷間圧延、再結晶焼鈍工程を省略することができ、製造コストの低い無方向性電磁熱延鋼帯の製造方法に関するものである。   The present invention relates to a method for producing a non-directional electromagnetic hot-rolled steel strip having a high magnetic flux density, which is used as an iron core material for electrical equipment. In particular, the present invention relates to a method for producing a non-directional electromagnetic hot-rolled steel strip that can omit the cold rolling and recrystallization annealing steps and has a low production cost.

近年、地球温暖化などの世界的な環境問題への意識の高まりにより、無方向性電磁熱延鋼帯が使用される回転機、コンプレッサーおよび中、小型変圧器、リアクトル等およびこれらが組み込まれた機器において効率規制が実施されつつある。このため、従来はローグレードの無方向性電磁熱延鋼帯が使用されてきた用途においても、より低鉄損のミドルグレードおよびハイグレードの無方向性電磁鋼板を使用する動きが広がりつつある。このため、無方向性電磁鋼板に対し、高磁束密度かつ低鉄損化への要請が従来よりも強まっている。   In recent years, due to increasing awareness of global environmental issues such as global warming, rotating machines, compressors and medium, small transformers, reactors, etc. that use non-directional electromagnetic hot-rolled steel strips have been incorporated. Efficiency regulations are being implemented in equipment. For this reason, even in applications where low grade non-oriented electromagnetic hot-rolled steel strips have been used, there is a growing trend to use middle grade and high grade non-oriented electrical steel sheets with lower iron loss. For this reason, the request | requirement to high magnetic flux density and low iron loss is stronger than the past with respect to a non-oriented electrical steel sheet.

無方向性電磁鋼板の低鉄損化は主としてSi、Al添加による電気抵抗率の増加により、鉄心を励磁した際にそれぞれの鋼板に発生する渦電流により生じるジュール熱損失を低減することにより行われてきた。また、同じ目的により、板厚を薄手化して渦電流の流れる経路を短くすることにより渦電流損を低減することも行われてきた。   The reduction of iron loss in non-oriented electrical steel sheets is mainly achieved by reducing the Joule heat loss caused by the eddy current generated in each steel sheet when the iron core is excited by increasing the electrical resistivity by adding Si and Al. I came. Also, for the same purpose, eddy current loss has been reduced by reducing the plate thickness and shortening the path through which eddy current flows.

また、無方向性電磁鋼板が使用される各種機器の損失低減のためには、無方向性電磁鋼板を磁化するコイルに流れる励磁電流により生じるジュール熱損失である銅損の低減も重要である。この銅損の低減のためにはより低い励磁電流でより高い磁束密度を発現する素材が必要である。   Further, in order to reduce the loss of various devices in which the non-oriented electrical steel sheet is used, it is also important to reduce the copper loss, which is the Joule heat loss caused by the exciting current flowing in the coil that magnetizes the non-oriented electrical steel sheet. In order to reduce the copper loss, a material that expresses a higher magnetic flux density with a lower excitation current is required.

このためには無方向性電磁鋼板の集合組織を制御し、高磁束密度の無方向性電磁鋼板の開発が必須となる。磁束密度向上により鉄心の磁化はより強力になるため、鉄心の小型化が可能となり、回転機においてはトルクが高まり小型高出力化が可能となる。このように、高磁束密度無方向性電磁鋼板を用いることにより、回転機、変圧器などが小型軽量化できる利点がある。また、磁気シールドにおいてはシールド性が高まると同時に、シールドの薄手化が可能となる。   For this purpose, it is essential to develop a non-oriented electrical steel sheet having a high magnetic flux density by controlling the texture of the non-oriented electrical steel sheet. Since the magnetization of the iron core becomes stronger by improving the magnetic flux density, it is possible to reduce the size of the iron core, and in a rotating machine, the torque is increased and the size and output can be increased. Thus, by using a high magnetic flux density non-oriented electrical steel sheet, there is an advantage that a rotating machine, a transformer, and the like can be reduced in size and weight. Further, in the magnetic shield, the shielding property is enhanced, and at the same time, the shield can be thinned.

従来、低鉄損無方向性電磁鋼板に主として添加されてきたSi、Al等の電気抵抗率の高い元素は、その含有量が増加すると飽和磁束密度が低下するため、動作磁束密度を下げざるをえず、結果として鉄心サイズが大きくなり、回転機、変圧器などが大型化するという課題があった。   Conventionally, elements with high electrical resistivity, such as Si and Al, which have been mainly added to low iron loss non-oriented electrical steel sheets, decrease the saturation magnetic flux density as the content increases. First, as a result, the iron core size is increased, and there is a problem that the rotating machine, the transformer, and the like are enlarged.

これに対し、本発明でその製造方法を開示する高磁束密度無方向性電磁熱延鋼帯では、磁束密度向上により回転機、鉄心ともに小型化が可能になるとともに、これらを積載した自動車、電車のような移動体においては系全体の重量が軽減されることにより稼働時のエネルギー損失を低減できるという利点もある。   On the other hand, in the high magnetic flux density non-directional electromagnetic hot-rolled steel strip disclosing its manufacturing method in the present invention, it is possible to reduce the size of both the rotating machine and the iron core by improving the magnetic flux density. Such a moving body has an advantage that energy loss during operation can be reduced by reducing the weight of the entire system.

このように、高磁束密度無方向性電磁熱延鋼帯が実現することにより、鉄心及び回転機の動作時の銅損を低減でき小型化に寄与するのみならず、それを含めた装置全体の系へも多大な波及効果がある。   Thus, by realizing a high magnetic flux density non-directional electromagnetic hot-rolled steel strip, not only can the copper loss during operation of the iron core and rotating machine be reduced, but also contribute to downsizing, as well as the overall equipment including it. There is also a great ripple effect on the system.

一方で、新興国から供給される安価な無方向性電磁鋼板に対抗するために、製造コストの低減は喫緊の課題であり、従来の無方向性電磁鋼板製造法よりもはるかに安価な製造法の開発が求められていた。また、無方向性電磁鋼板を使用する需要家におけるコスト低減への要求は海外との大競争時代の中で高まっており、需要家からも従来よりも低コストかつ磁気特性の優れた無方向性電磁鋼板製造方法の開発が求められていた。   On the other hand, in order to compete with cheap non-oriented electrical steel sheets supplied from emerging countries, it is an urgent issue to reduce manufacturing costs, and a manufacturing method that is much cheaper than the conventional non-oriented electrical steel sheet manufacturing method The development of was demanded. In addition, the demand for cost reduction among customers who use non-oriented electrical steel sheets is increasing during the times of great competition with foreign countries, and customers also have non-directionality with low cost and superior magnetic properties. Development of a method for manufacturing electrical steel sheets has been demanded.

この課題を解決する方法として、設備投資額が少ない薄鋳片製造プロセスが注目されつつあった。   As a method for solving this problem, a thin slab manufacturing process with a small capital investment has been attracting attention.

以下、本発明で製造された無方向性電磁鋼板を、無方向性電磁熱延鋼帯もしくは電磁熱延鋼帯と称し、従来技術による熱延電磁鋼板もしくは冷延工程の後、仕上焼鈍工程で再結晶組織を得る無方向性電磁鋼板もしくは冷延電磁鋼板と区別する。   Hereinafter, the non-oriented electrical steel sheet manufactured by the present invention is referred to as a non-oriented electromagnetic hot-rolled steel strip or electromagnetic hot-rolled steel strip, and after the hot-rolled electrical steel sheet or cold-rolling process according to the prior art, in the finish annealing process Differentiate from non-oriented electrical steel sheets or cold-rolled electrical steel sheets that obtain recrystallized structure.

ここで無方向性電磁鋼板の磁気特性を向上させる原理について述べる。   Here, the principle of improving the magnetic properties of the non-oriented electrical steel sheet will be described.

無方向性電磁鋼板で用いられるbcc鉄では結晶の単位格子の<100>方向が磁化容易軸に一致する。よって、無方向性電磁鋼板の集合組織では磁束が流れる板面内にbcc鉄の磁化容易軸が存在するランダムキューブ方位が理想的であるとされる。これはミラー指数を用い、v、wを任意の指数として{100}<0vw>と表記される。一般的に板面内に2つの<100>軸を有する結晶方位をキューブ方位と称する。   In bcc iron used in non-oriented electrical steel sheets, the <100> direction of the crystal unit cell coincides with the easy axis of magnetization. Therefore, in the texture of the non-oriented electrical steel sheet, the random cube orientation in which the easy axis of bcc iron exists in the plate surface where the magnetic flux flows is considered ideal. This is expressed as {100} <0vw> using Miller indices, where v and w are arbitrary indices. In general, a crystal orientation having two <100> axes in a plate surface is called a cube orientation.

しかしながら通常の冷間圧延、再結晶焼鈍により得られる無方向性電磁鋼板の集合組織では板面法線方向に<111>軸が一致したγファイバー集合組織が発達し、理想とするキューブ方位の存在はわずかである。   However, in the texture of non-oriented electrical steel sheets obtained by ordinary cold rolling and recrystallization annealing, a gamma fiber texture with the <111> axis coincided with the normal direction of the plate surface has developed, and the ideal cube orientation exists. Is slight.

これに対し、近年、特許文献1において、αγ変態を有しないSi含有量4%以上の薄鋳片に5%以上40%以下の低い冷延を施すことによるランダムキューブ集合組織を有する無方向性電磁鋼板の製造法が開示された。   On the other hand, in recent years, in Patent Document 1, non-directionality having a random cube texture obtained by subjecting a thin cast slab having an αγ transformation of 4% or more to low cold rolling of 5% or more and 40% or less. A method for manufacturing electrical steel sheets has been disclosed.

この先願では、薄鋳片の鋳造時に形成される柱状晶を利用することを技術思想としている。すなわち、薄鋳片の凝固組織に発達する柱状晶はその成長方向である板面法線方向に結晶の<100>軸が一致するため、他の2方向の<100>軸は板面内に位置し、無方向性電磁鋼板の特性に好ましいキューブ方位を有している。   In this prior application, the technical idea is to use columnar crystals formed during the casting of a thin slab. That is, the columnar crystals developed in the solidified structure of the thin slab coincide with the <100> axis of the crystal in the normal direction of the plate surface that is the growth direction, so the <100> axes in the other two directions are within the plate surface. It has a cube orientation that is favorable for the properties of the non-oriented electrical steel sheet.

そして、この技術では薄鋳片に一定範囲の圧延率で冷間圧延を施すことにより、凝固の際に薄鋳片内に形成された柱状晶を核として仕上焼鈍時にキューブ方位の結晶粒を成長させ、仕上焼鈍後の成品のキューブ方位を富化させることにより無方向性電磁鋼板の磁気特性を改善することを技術思想とするものである。   In this technology, the thin slab is cold-rolled at a rolling rate within a certain range, and the crystal grains in the cube orientation are grown during finish annealing with the columnar crystals formed in the thin slab during solidification. The technical idea is to improve the magnetic properties of the non-oriented electrical steel sheet by enriching the cube orientation of the product after finish annealing.

この先願ではSi含有量が4%以上であり、凝固から室温までα単相でαγ変態が生じない。このため凝固時に形成された方位のα相とγ層の間の変態による方位のランダム化が生じず、凝固中に形成されたキューブ方位を有する柱状晶を有効に活用し、キューブ方位を有する無方向性電磁鋼板が製造可能である。   In this prior application, the Si content is 4% or more, and no αγ transformation occurs in the α single phase from solidification to room temperature. For this reason, orientation randomization due to transformation between the α phase and γ layer formed during solidification does not occur, and columnar crystals having a cube orientation formed during solidification are effectively utilized, and there is no cubic orientation. A grain-oriented electrical steel sheet can be manufactured.

一方、この先願においては、凝固鋳片から最終板厚に至るまでに施す冷間圧延率が5%以上40%未満の小さい範囲に限られるため、冷間圧延による鋼帯の形状矯正の余地が少ないという課題がある。なぜなら、無方向性電磁鋼板は積層し鉄心を形成して使用するため、自動車鋼板などと比較して高い板厚精度を必要とするからである。   On the other hand, in this prior application, since the cold rolling rate applied from the solidified slab to the final plate thickness is limited to a small range of 5% or more and less than 40%, there is no room for shape correction of the steel strip by cold rolling. There is a problem that there are few. This is because non-oriented electrical steel sheets are used by being laminated to form an iron core, and therefore require higher plate thickness accuracy than automobile steel sheets and the like.

特許文献2には、Si含有量が4%以下の溶鋼を直接連続鋳造して薄鋳片の板厚を30mm以上140mm以下とし、これを熱間圧延し0.7mm以上4.5mm以下の鋼帯とし、これを30%以上85%以下の最終冷延率で最終板厚とする無方向性電磁鋼板の製造方法が開示されている。   In Patent Document 2, molten steel having a Si content of 4% or less is directly and continuously cast, and the thickness of the thin cast slab is 30 mm or more and 140 mm or less. A method for manufacturing a non-oriented electrical steel sheet is disclosed in which a strip is used and the final sheet thickness is 30% to 85%.

この先願においては、通常200mm程度の連続鋳造スラブよりも板厚が薄い薄鋳片を出発材として熱間圧延で熱延鋼帯とするため、凝固鋳片から熱延鋼帯までの圧下率を低くすることが可能である。   In this prior application, in order to make a hot-rolled steel strip by hot rolling using a thin slab whose thickness is usually thinner than a continuous cast slab of about 200 mm, the rolling reduction from the solidified slab to the hot-rolled steel strip is It can be lowered.

このため、薄鋳片において発達したキューブ方位を有する柱状晶の熱延鋼帯における残存率を高めることにより、圧延・再結晶後の集合組織を制御し、磁気特性を改善することを技術思想としている。   Therefore, the technical idea is to improve the magnetic properties by controlling the texture after rolling and recrystallization by increasing the residual rate in the hot rolled steel strip of columnar crystals with cube orientation developed in thin cast slabs. Yes.

この先願では、薄鋳片において発達したキューブ方位を有する柱状晶が、その後の熱間圧延中に再結晶により他の方位に変化しやすいため、キューブ方位の残存率の制御が困難であり、最終製品の磁気特性が不安定になりやすいという課題があった。   In this prior application, columnar crystals having a cube orientation developed in a thin slab are likely to change to another orientation due to recrystallization during subsequent hot rolling, so it is difficult to control the remaining ratio of the cube orientation. There was a problem that the magnetic characteristics of the product were likely to be unstable.

また、この先願では、熱延鋼帯を冷延し、仕上焼鈍するため、コストが増加するという課題があった。   Moreover, in this prior application, since the hot-rolled steel strip was cold-rolled and subjected to finish annealing, there was a problem that the cost increased.

特許文献3には、双ロール鋳造法などにより板厚5mm以下のストリップを連続鋳造し、冷却速度を制御する鋳造方法が、特許文献4には、冷却鋳造ロールにより板厚5mmのストリップを連続鋳造し、当該ストリップを熱間圧延に供し少なくとも15%の圧延を施す技術が公開されている。   Patent Document 3 discloses a casting method in which a strip having a thickness of 5 mm or less is continuously cast by a twin roll casting method or the like, and the cooling speed is controlled. Patent Document 4 discloses that a strip having a thickness of 5 mm is continuously cast by a cooling casting roll. However, a technique for subjecting the strip to hot rolling and rolling at least 15% is disclosed.

また、―特許文献5には、たとえば2mm以下の板厚の薄ストリップを鋳造後に冷却を制御する方法が開示されている。   Further, -Patent Document 5 discloses a method for controlling cooling after casting a thin strip having a thickness of 2 mm or less, for example.

また、特許文献6には、鋼さいのMnO、SiO2、Al2O3からなる酸化物組成
を制御し、薄ストリップの鋳造を安定して行う方法が開示されている。
Patent Document 6 discloses a method for stably casting a thin strip by controlling the oxide composition of MnO, SiO2, and Al2O3 in steel.

しかしながら、凝固ストリップが5mm以下の薄手ストリップの場合、たとえ少なくとも15%の熱間圧延を施したとしても最終板厚に至るまでに制御熱延による熱延鋼帯の集合組織制御の余地は少なく、高磁束密度無方向性電磁熱延鋼帯を得ることが困難である。   However, when the solidified strip is a thin strip of 5 mm or less, even if at least 15% hot rolling is applied, there is little room for texture control of the hot-rolled steel strip by controlled hot rolling until the final thickness is reached. It is difficult to obtain a high magnetic flux density non-directional electromagnetic hot-rolled steel strip.

さらに、凝固ストリップの板厚が5mm以下では、仕上熱延による最終板厚までの板厚形状矯正の余地が少なく、板厚精度を向上が困難であり、無方向性電磁熱延鋼帯に必要とされる板厚精度が得難いという課題があった。   Furthermore, if the thickness of the solidified strip is 5mm or less, there is little room for straightening the thickness to the final thickness by finishing hot rolling, and it is difficult to improve the thickness accuracy, which is necessary for non-directional electromagnetic hot-rolled steel strips. There is a problem that it is difficult to obtain the plate thickness accuracy.

特許文献7には熱延電磁鋼板の製造法として粗圧延後のシートバーを巻き取って均熱化し、仕上圧延を施す技術が開示されている。しかしこの製造方法の技術思想は、仕上圧延中の熱延鋼板の再結晶を促進させるため、再結晶集合組織はbcc鉄におけるγファイバーとなり、磁束密度は低下する。   Patent Document 7 discloses a technique for rolling up a sheet bar after rough rolling, soaking it, and performing finish rolling as a method for producing a hot rolled electrical steel sheet. However, since the technical idea of this manufacturing method promotes recrystallization of the hot-rolled steel sheet during finish rolling, the recrystallized texture becomes γ fiber in bcc iron, and the magnetic flux density decreases.

加えて、この先願の実施例では得られた熱延電磁鋼板を焼鈍するので、主方位であるγファイバーは焼鈍中の結晶粒成長に伴いさらに発達し、磁束密度は一層低下するという課題がある。   In addition, since the obtained hot-rolled electrical steel sheet is annealed in the embodiment of this prior application, the gamma fiber that is the main orientation further develops with the growth of crystal grains during annealing, and the magnetic flux density further decreases. .

このように、従来の薄鋳片製造設備もしくは熱延電磁鋼板製造方法は無方向性電磁熱延鋼板の製造プロセスに最適化されておらず改善の余地が多々あり、昨今の需要家において開発要請の強い、低コストでかつ鉄心の小型化に有利な高磁束密度無方向性電磁熱延鋼板を製造できるには至らず、需要家の前記の要請に応えることは出来なかった。   As described above, conventional thin slab manufacturing equipment or hot rolled electrical steel sheet manufacturing methods are not optimized for the manufacturing process of non-oriented electromagnetic hot rolled steel sheets, and there is much room for improvement. The high magnetic flux density non-oriented electromagnetic hot-rolled steel sheet, which is strong, low-cost, and advantageous for downsizing the iron core, could not be manufactured, and the above-mentioned demands of the customers could not be met.

特開平5−279740号公報JP-A-5-279740 特開2002−206114号公報JP 2002-206114 A 特表2004−508942号公報JP-T-2004-508942 特表2004−508944号公報JP-T-2004-508944 特表2004−509770号公報JP-T-2004-509770 特表2006−515801号公報JP 2006-515801 A 特開平9−194939号公報JP-A-9-194939 特開昭55−24942号公報Japanese Patent Laid-Open No. 55-24942 特開2006−124800号公報JP 2006-124800 A

本発明は、設備投資額の少ない薄鋳片鋳造設備を活用し、適切な厚みの薄鋳片を出発材とし、かつ適切な温度域で仕上熱延を行い電磁熱延鋼帯を製造することにより、成品において従来の薄鋳片製造設備では得られなかった優れた集合組織を形成し、圧延方向から45°方向の磁束密度が高いという特徴を持つ無方向性電磁熱延鋼帯の製造技術を提供することを目的とするものである。   The present invention utilizes a thin slab casting facility with a small capital investment, and uses a thin slab of appropriate thickness as a starting material, and finish hot rolling in an appropriate temperature range to produce an electromagnetic hot rolled steel strip. By this, non-oriented electromagnetic hot-rolled steel strip manufacturing technology is formed that has an excellent texture that is not obtained with conventional thin slab manufacturing equipment and has a high magnetic flux density in the 45 ° direction from the rolling direction. Is intended to provide.

本発明の要旨とするところは、以下の通りである。
(1)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
The gist of the present invention is as follows.
(1) Mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(2)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(2) By mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(3)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(3) By mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(4)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(4) Mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(5)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(5) By mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(6)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(6) By mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(7)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(7) By mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(8)鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(8) By mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.

650℃≦F0T≦850℃
550℃≦FT≦800℃
(9)前記(1)〜(8)のいずれかにより得られた無方向性電磁熱延鋼帯。
(10)前記(1)〜(8)のいずれかに記載の方法により製造した無方向性電磁熱延鋼帯により製造した電磁部品であって、該電磁部品が、EIコア、回転機用分割コア、トランス用額縁鉄心、小型鉄心、リアクトル用鉄心、回転機用ステータ、回転機用ロータ、蛍光灯用安定器、螺旋コア、磁気シールドのいずれかであることを特徴とする電磁部品。
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
(9) A non-directional electromagnetic hot-rolled steel strip obtained by any one of (1) to (8).
(10) An electromagnetic component manufactured by a non-directional electromagnetic hot-rolled steel strip manufactured by the method according to any one of (1) to (8), wherein the electromagnetic component is divided into an EI core and a rotating machine An electromagnetic component comprising one of a core, a transformer frame iron core, a small iron core, a reactor iron core, a rotating machine stator, a rotating machine rotor, a fluorescent light ballast, a spiral core, and a magnetic shield.

本発明によれば、磁束密度の高い無方向性電磁熱延鋼帯を低コストで製造することが可能である。   According to the present invention, it is possible to manufacture a non-directional electromagnetic hot-rolled steel strip having a high magnetic flux density at a low cost.

発明者らは、設備投資額を低減可能な薄鋳片鋳造プロセスにおいて高磁束密度を達成する無方向性電磁熱延鋼帯の安価な製造方法について鋭意検討を重ねた結果、薄鋳片の鋳造厚みを一定条件に制御し、薄鋳片から電磁熱延鋼帯に至るまでの熱間圧延率を制御し、同時に薄鋳片を850℃以下の低温で熱間圧延を行うことで、電磁熱延鋼帯の集合組織を適切に制御し、圧延方向から45度方向の磁束密度が著しく向上することを新規に見出した。   As a result of intensive studies on an inexpensive method for producing a non-directional electromagnetic hot-rolled steel strip that achieves a high magnetic flux density in a thin slab casting process capable of reducing the capital investment, the inventors have conducted a thin slab casting. By controlling the thickness to a constant condition, controlling the hot rolling rate from the thin cast slab to the electromagnetic hot rolled steel strip, and simultaneously rolling the thin cast slab at a low temperature of 850 ° C. or less, the electromagnetic heat It was newly found that the texture of the steel strip is appropriately controlled and the magnetic flux density in the direction of 45 degrees from the rolling direction is remarkably improved.

これにより磁気特性が優れ、かつ、冷間圧延、再結晶焼鈍工程を省略し、製造コストの低い製造方法を提供することが可能となった。   As a result, it has become possible to provide a manufacturing method having excellent magnetic characteristics, omitting the cold rolling and recrystallization annealing steps and having a low manufacturing cost.

これは先に述べた特許文献1および特許文献2のように、薄鋳片に存在するキューブ方位の柱状晶を活用し無方向性電磁鋼板の集合組織を制御する技術とは、全く異なる技術思想に基づくものである。   This is a technical concept that is completely different from the technique of controlling the texture of the non-oriented electrical steel sheet by utilizing the columnar crystals of the cube orientation existing in the thin cast slab, as described above in Patent Document 1 and Patent Document 2. It is based on.

これにより、従来技術では高磁束密度無方向性電磁鋼板を得るために、高炉、製鋼、粗熱延および仕上げ熱延からなる長大な設備により得た熱延板に、熱延板焼鈍などのコストのかかる追加工程を施し、その後冷延し仕上焼鈍したプロセスを、簡略化することが可能となる。   As a result, in order to obtain a high magnetic flux density non-oriented electrical steel sheet in the prior art, the cost of hot-rolled sheet annealing, etc. to hot-rolled sheet obtained by a long facility consisting of blast furnace, steelmaking, rough hot rolling and finishing hot rolling It is possible to simplify the process in which such additional steps are performed, and then cold-rolled and finish-annealed.

すなわち、本発明では、設備投資額の少ない薄鋳片鋳造装置と熱間圧延により、低コストかつ高磁束密度の無方向性電磁熱延鋼帯の製造方法を提供するものである。特にこの製造法を行う際に、鋳造後の薄鋳片を適切な条件下で熱間圧延し電磁熱延鋼帯に仕上げることが、本発明が意図する高磁束密度無方向性電磁熱延鋼帯の製造に欠かせないことを開示するものである。   That is, the present invention provides a method for producing a low-cost, high magnetic flux density non-directional electromagnetic hot-rolled steel strip by means of a thin slab casting apparatus and hot rolling with a small capital investment. In particular, when performing this manufacturing method, the thin slab after casting is hot-rolled under appropriate conditions to finish it into an electromagnetic hot-rolled steel strip. It is disclosed that it is indispensable for the production of the belt.

まず、成分について説明すると、
Siは本発明においては、過度の添加は製品の磁束密度を低減させるため、その含有量を4.0%以下に制限する。一方、磁束密度の向上を妨げない範囲で電気抵抗率を確保して渦電流損を低減させる目的で0.1%以上の添加量が必要である。
First, the ingredients are explained.
In the present invention, excessive addition of Si reduces the magnetic flux density of the product, so its content is limited to 4.0% or less. On the other hand, an addition amount of 0.1% or more is required for the purpose of ensuring electric resistivity within a range not hindering improvement in magnetic flux density and reducing eddy current loss.

AlはSiと同様に電気抵抗率を確保するか、脱酸を目的として0.01%以上添加する。添加量が2.5%超であると磁束密度を低下させるため2.5%以下に添加量を定める。脱酸および電気抵抗率の確保はSi、Mn等で可能であるので本発明ではAlの添加は必須ではない。   Al is added in an amount of 0.01% or more for the purpose of securing the electric resistivity as in the case of Si or for deoxidation. If the addition amount exceeds 2.5%, the magnetic flux density is lowered, so the addition amount is set to 2.5% or less. Since it is possible to secure deoxidation and electrical resistivity with Si, Mn, etc., the addition of Al is not essential in the present invention.

よって、Alの添加量には下限を定めず、2.5%≦Alと定める。不可避不純物として混入したAlは、その酸化能が高いため濃度は分析測定限界以下の「tr.」となる。これは多くの場合、Al<0.001%である。   Therefore, there is no lower limit to the amount of Al added, and 2.5% ≦ Al. Since Al mixed as an inevitable impurity has high oxidation ability, the concentration becomes “tr.” Below the analytical measurement limit. This is often Al <0.001%.

Cは過剰に含有すると使用中に磁気時効を起こし鉄損が増加するので含有量を0.004%以下に定める。   If C is contained excessively, magnetic aging occurs during use and iron loss increases, so the content is set to 0.004% or less.

本発明は高磁束密度無方向性電磁熱延鋼帯の製造を目的とするが、さらに、析出物を低減して鉄損を改善するためには、C含有量は0.003%以下であることが好ましく、さらには0.002%以下であることがより好ましい。   The present invention is aimed at producing a high magnetic flux density non-directional electromagnetic hot-rolled steel strip. Further, in order to reduce precipitates and improve iron loss, the C content is 0.003% or less. Is more preferable, and 0.002% or less is more preferable.

S、Nは熱間圧延工程におけるスラブ加熱中に一部再固溶し、熱間圧延中にMnS、AlNの微細な析出物を再析出して仕上焼鈍時の結晶粒成長を抑制し、成品の磁束密度、鉄損が悪化する原因となる。このためその含有量は共に0.003%以下とする必要がある。   S and N are partly re-dissolved during slab heating in the hot rolling process, and fine precipitates of MnS and AlN are reprecipitated during hot rolling to suppress grain growth during finish annealing. This causes the magnetic flux density and iron loss to deteriorate. For this reason, both the contents must be 0.003% or less.

その他に、本発明では脱酸のみならず電気抵抗率の向上もしくは再結晶集合組織制御、析出物MnS無害化などの目的のためにMnを添加してもよい。Mn添加量が0.1%未満ではMn添加の効果が得られないので、Mn添加量は0.1%以上に定める。また、Mn添加量が2.0%を超えると磁束密度が低下するのでMn添加量は2.0%以下に定める。   In addition, in the present invention, Mn may be added not only for deoxidation but also for the purpose of improving electrical resistivity, controlling recrystallization texture, or detoxifying precipitate MnS. If the Mn addition amount is less than 0.1%, the effect of Mn addition cannot be obtained, so the Mn addition amount is set to 0.1% or more. Further, if the Mn addition amount exceeds 2.0%, the magnetic flux density decreases, so the Mn addition amount is set to 2.0% or less.

また、Mnは無方向性電磁熱延鋼帯の製鋼過程で不可避不純物として0.1%以下が混入する場合がある。   Further, Mn may be mixed in an amount of 0.1% or less as an inevitable impurity during the steelmaking process of the non-oriented electromagnetic hot rolled steel strip.

Pは本発明では硬度を上昇させ打ち抜き性を改善する目的で添加してもよい。P添加量が0.03%未満であるとその効果が十分でなく、0.1%超であると鉄損が増大するのでP添加量は0.03%以上0.1%以下に定める。P添加はSi含有量が少なく硬度の低い無方向性電磁熱延鋼帯において特に有効である。一方Si含有量が1%以上の場合は硬度が足りているのでP添加は必ずしも必要がない。   In the present invention, P may be added for the purpose of increasing hardness and improving punchability. If the P addition amount is less than 0.03%, the effect is not sufficient, and if it exceeds 0.1%, the iron loss increases. Therefore, the P addition amount is set to 0.03% or more and 0.1% or less. P addition is particularly effective in non-directional electromagnetic hot-rolled steel strips with low Si content and low hardness. On the other hand, when the Si content is 1% or more, the addition of P is not always necessary because the hardness is sufficient.

また、0.025%以下のPは不可避不純物として含有されるが、不可避不純物のレベルの含有量では無方向性電磁熱延鋼帯の磁気特性に影響を及ぼさない。また、下記に述べるように、Crを0.1%未満、Sn、Cu、Sbをそれぞれ0.01%未満、REMを0.001%未満含んでも、本発明の磁気特性に影響を与えるものではなく、許容される。   Moreover, although 0.025% or less of P is contained as an inevitable impurity, the content of the inevitable impurity level does not affect the magnetic properties of the non-oriented electromagnetic hot-rolled steel strip. Further, as described below, even if Cr is less than 0.1%, Sn, Cu and Sb are each less than 0.01% and REM is less than 0.001%, the magnetic properties of the present invention are not affected. Not acceptable.

また、本発明では電気抵抗率を上昇させる目的でCrを添加してもよい。この場合、Cr添加量が0.1%未満であると添加効果が得られず、Cr添加量が10%超であると、鉄損が増加するので、Cr添加量は0.1%以上10%以下に定める。ただし、0.1%未満の添加であっても本発明の磁気特性を阻害するものではなく、本発明の範囲に含まれる。   In the present invention, Cr may be added for the purpose of increasing the electrical resistivity. In this case, if the Cr addition amount is less than 0.1%, the addition effect cannot be obtained, and if the Cr addition amount exceeds 10%, the iron loss increases, so the Cr addition amount is 0.1% or more and 10%. % Or less. However, addition of less than 0.1% does not hinder the magnetic properties of the present invention and is included in the scope of the present invention.

その他に、無方向性電磁熱延鋼帯の成品の再結晶集合組織改善を目的に、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で添加してもよい。この目的のための添加量は、0.01%未満ではその添加効果が得られず、0.1%超ではその効果が飽和しコスト増となるのでその添加量は0.01%以上かつ0.1%以下と定める。ただし、0.01%未満の添加であっても本発明の磁気特性を阻害するものではなく、本発明の範囲に含まれる。   In addition, at least one of Sn, Cu, and Sb is added in the range of 0.01% or more and 0.1% or less for the purpose of improving the recrystallization texture of the product of the non-oriented electromagnetic hot-rolled steel strip. Also good. If the addition amount for this purpose is less than 0.01%, the effect of addition cannot be obtained, and if it exceeds 0.1%, the effect is saturated and the cost increases, so the addition amount is 0.01% or more and 0%. .1% or less. However, the addition of less than 0.01% does not inhibit the magnetic properties of the present invention and is included in the scope of the present invention.

また、有害な硫化物析出を低減するために特許文献8に示されたごときCa添加を行ってもよい。   Further, in order to reduce harmful sulfide precipitation, Ca addition as shown in Patent Document 8 may be performed.

Tiは微細なTiNとして析出し鉄損を増加させる。また、固溶Tiは、無方向性電磁熱延鋼帯に歪み取り焼鈍を施した際、該歪取り焼鈍中にTiCとして析出し、鉄損を増加させる。このようにTiは無方向性電磁熱延鋼帯の磁性にとって有害な元素である。   Ti precipitates as fine TiN and increases iron loss. Further, when solute Ti is subjected to strain relief annealing on the non-oriented electromagnetic hot-rolled steel strip, solute Ti precipitates as TiC during the strain relief annealing and increases iron loss. Thus, Ti is an element harmful to the magnetism of the non-directional electromagnetic hot-rolled steel strip.

Ti含有量が0.005%超であると鋼中に微細なTiNが多数析出し仕上焼鈍もしくは歪取り焼鈍中の無方向性電磁熱延鋼帯の結晶粒成長を妨げ、鉄損が増加し好ましくないのでTi含有量は0.005%以下と定める。   If the Ti content exceeds 0.005%, a large amount of fine TiN precipitates in the steel, hindering the grain growth of the non-directional electromagnetic hot-rolled steel strip during finish annealing or strain relief annealing and increasing iron loss. Since it is not preferable, the Ti content is set to 0.005% or less.

薄鋳片プロセスでは、厚さ200mm程度のスラブを鋳造する連続鋳造プロセスに比べ、凝固の際の冷却速度が速く析出物が微細化しやすいため、Ti含有量は0.002%以下に低減することが好ましい。磁気特性をさらに向上させ、高磁束密度を達成するためには、さらに、0.001%以下にTi含有量を低減することがより好ましい。   In the thin slab process, compared to the continuous casting process in which a slab with a thickness of about 200 mm is cast, the cooling rate at the time of solidification is fast and the precipitates are easily refined, so the Ti content should be reduced to 0.002% or less. Is preferred. In order to further improve the magnetic properties and achieve a high magnetic flux density, it is more preferable to reduce the Ti content to 0.001% or less.

鋼中のSを固定して有害な硫化物を低減するとともにTiNを粗大に複合析出させ、鉄損を改善する効果的な方法として、特許文献9に開示されたごとく溶鋼にREMを添加してもよい。   As an effective method of fixing iron in steel and reducing harmful sulfides while coarsely precipitating TiN and improving iron loss, REM is added to molten steel as disclosed in Patent Document 9. Also good.

REMはREMオキシサルファイドを形成するが、本発明ではこのREMオキシサルファイド形成が無方向性電磁熱延鋼帯の磁気特性改善に特に有効に作用する。   REM forms REM oxysulfide. In the present invention, this REM oxysulfide formation works particularly effectively for improving the magnetic properties of the non-directional electromagnetic hot-rolled steel strip.

REM添加量が0.001%未満であると添加効果が十分でないので0.001%以上の添加に定める。また、0.01%超であると鉄損が増加するのでREM添加量は0.01%以下に定める。ただし、0.001%未満の添加であっても本発明の磁気特性を阻害するものではなく、本発明の範囲に含まれる。   If the REM addition amount is less than 0.001%, the effect of addition is not sufficient, so the addition is determined to be 0.001% or more. Further, if it exceeds 0.01%, the iron loss increases, so the REM addition amount is set to 0.01% or less. However, addition of less than 0.001% does not hinder the magnetic properties of the present invention and is included in the scope of the present invention.

REMオキシサルファイドであるREMSはSをスカベンジングすると同時に、TiNをREMS上に複合析出させ、実質的に析出物を粗大化させることでTiの無害化も同時に可能となる。これにより鉄損の低減が一層促進される効果がある。 REM oxysulfide REM 2 O 2 S scavenges S and simultaneously precipitates TiN on REM 2 O 2 S, making the precipitate substantially coarse and simultaneously detoxifying Ti. Become. This has the effect of further promoting the reduction of iron loss.

このためにO含有量はREMSにおけるREM当量であることが好ましい。REM添加は特許文献9に開示されたごとく公知の方法で添加してもよい。 O content for this purpose is preferably REM equivalent in REM 2 O 2 S. REM may be added by a known method as disclosed in Patent Document 9.

ここで、REMとは希土類元素を意味し、元素周期律表においてランタノイドと称されるランタンからルテシウムまでの15元素にスカンジウムとイットリウムを加えた合計17元素の総称である。   Here, REM means a rare earth element, and is a generic name of a total of 17 elements obtained by adding scandium and yttrium to 15 elements from lanthanum to lutetium called lanthanoids in the periodic table of elements.

本発明ではそのうちの1種だけを用いても、2種類以上の元素を組み合わせて用いてもその効果は発揮され、本発明で規定した添加量の範囲内であれば無方向性電磁熱延鋼帯においてその効果は発揮される。   In the present invention, even if only one of them is used or two or more elements are used in combination, the effect is exhibited, and if it is within the range of the amount specified in the present invention, non-oriented electromagnetic hot rolled steel The effect is demonstrated in the belt.

薄鋳片では鋳造後、一般の連続鋳造スラブのようにスラブ加熱炉で長時間再加熱する工程を確保することが困難であり、鋳造後比較的短時間で熱間圧延に供し熱延鋼帯とすることから、S、Tiの無害化は高磁束密度かつ低鉄損の無方向性電磁熱延鋼帯を得るために重要な技術的ポイントである。   With thin slabs, it is difficult to secure a process of reheating for a long time in a slab heating furnace after casting, as in general continuous cast slabs. Therefore, detoxification of S and Ti is an important technical point for obtaining a non-directional electromagnetic hot-rolled steel strip having high magnetic flux density and low iron loss.

次にプロセス条件について説明する。   Next, process conditions will be described.

まず、本発明では、薄鋳片鋳造プロセスと熱間圧延により得られた成品を電磁熱延鋼帯と称し、従来の熱間圧延により得られる熱延電磁鋼板と区別する。   First, in this invention, the product obtained by the thin slab casting process and hot rolling is called an electromagnetic hot rolled steel strip, and it distinguishes from the hot rolled electrical steel plate obtained by the conventional hot rolling.

前記成分からなる溶鋼は、20mm以上100mm以下の薄鋳片に鋳造される。薄鋳片の鋳造法は、固定モールド法、双ロール法、単ロール法、双ベルト法など、いずれの公知の方法でもよい。固定モールドには公知の方法でオシレーションをかけてもよい。   Molten steel composed of the above components is cast into a thin cast slab of 20 mm to 100 mm. The casting method of the thin cast piece may be any known method such as a fixed mold method, a twin roll method, a single roll method, or a twin belt method. The fixing mold may be oscillated by a known method.

この薄鋳片に熱間圧延を施し所定の厚みの電磁熱延鋼帯とする。この際、本発明では集合組織を制御し、目的とする圧延方向から45°方向の磁束密度が高い無方向性電磁熱延鋼帯を得るために、薄鋳片の熱間圧延を開始する温度の制御が最も肝要な点となる。   The thin slab is hot-rolled to obtain an electromagnetic hot rolled steel strip having a predetermined thickness. At this time, in the present invention, the temperature at which hot rolling of a thin slab is started in order to obtain a non-directional electromagnetic hot rolled steel strip having a high magnetic flux density in the direction of 45 ° from the intended rolling direction by controlling the texture. Control is the most important point.

鋳造後、連続して薄鋳片を熱間圧延に供する際に、鋳造後の薄鋳片を冷却帯を通過させ水冷等の公知の方法により冷却し、熱間圧延開始温度付近まで冷却した後、トンネル炉により熱間圧延開始温度に薄鋳片の温度を制御し、同時に薄鋳片を均熱化し、熱間圧延に供してもよい。薄鋳片の十分な冷却ゾーンが確保できるのであれば、薄鋳片の冷却は空冷により行ってもよい。トンネル炉による薄鋳片の温度制御は誘導過熱、ガス加熱など、公知の方法により行う。   After casting, when the thin slab is continuously subjected to hot rolling, the thin slab after casting is passed through a cooling zone and cooled by a known method such as water cooling, and then cooled to near the hot rolling start temperature. The temperature of the thin cast slab may be controlled to the hot rolling start temperature by a tunnel furnace, and the thin cast slab may be soaked at the same time and subjected to hot rolling. As long as a sufficient cooling zone for the thin slab can be secured, the thin slab may be cooled by air cooling. The temperature control of the thin cast slab by the tunnel furnace is performed by a known method such as induction heating or gas heating.

また、鋳造後の薄鋳片を冷却帯で熱間圧延開始温度付近まで冷却した後、所定の長さにコイル状に巻き取り、コイルボックス内にて公知の方法により、保熱もしくは加熱と同時に均熱化を行い、熱間圧延開始温度に薄鋳片の温度を制御し、その後薄鋳片を巻き戻して熱間圧延に供してもよい。この際、前後に熱間圧延する薄鋳片を公知の方法で溶接するなどして接合し、連続して熱間圧延を行ってもよい。   In addition, after cooling the cast thin slab to the vicinity of the hot rolling start temperature in the cooling zone, it is wound in a coil shape to a predetermined length and simultaneously with heat retention or heating in a coil box by a known method. Soaking may be performed, the temperature of the thin cast slab may be controlled to the hot rolling start temperature, and then the thin cast slab may be rewound to be subjected to hot rolling. At this time, thin cast pieces that are hot-rolled back and forth may be joined by welding or the like by a known method, and hot rolling may be performed continuously.

また、薄鋳片の巻取り性を向上させるため、薄鋳片をコイル状に巻取る前に2%以上50%以下の予備圧延を施してもよい。予備圧延の圧延率が50%超であると圧下を行うスタンドの設備コストが上昇するので50%以下が好ましい。予備圧延の圧延率が2%未満であると薄鋳片の巻き取り性向上の効果が得られないので2%以上が好ましい。   Moreover, in order to improve the windability of a thin slab, you may perform 2% or more and 50% or less pre-rolling before winding a thin slab into a coil shape. When the rolling ratio of the preliminary rolling is more than 50%, the equipment cost of the stand for reduction is increased, so 50% or less is preferable. If the rolling ratio of the preliminary rolling is less than 2%, the effect of improving the winding property of the thin cast slab cannot be obtained, so 2% or more is preferable.

上記の薄鋳片の冷却は冷却帯における水冷のほか、冷却ロールを薄鋳片に接触させ薄鋳片からロールへの伝熱により行ってもよい。この際、冷却ロールにより10%以下の軽圧下を施し形状を調節してもよい。冷却ロールによる圧下量が10%超であると圧延反力が大きくなり冷却ロールの剛性を上げるための設備コストがかさむため圧下量は10%以下が好ましい。冷却ロールは複数設けてもよい。   In addition to water cooling in the cooling zone, the thin cast piece may be cooled by contacting the cooling roll with the thin cast piece and transferring heat from the thin cast piece to the roll. At this time, the shape may be adjusted by applying a light pressure of 10% or less with a cooling roll. If the amount of reduction by the cooling roll is more than 10%, the rolling reaction force increases, and the equipment cost for increasing the rigidity of the cooling roll is increased, so the reduction amount is preferably 10% or less. A plurality of cooling rolls may be provided.

以下に本発明の技術思想の新規な点について述べる。   The novel points of the technical idea of the present invention will be described below.

無方向性電磁鋼板は大きく分けて熱延電磁鋼板と冷延電磁鋼板に分けられる。前者は熱間圧延した熱延鋼帯をそのまま無方向性電磁鋼板として使用に供するものである。製造プロセスが簡略である一方、集合組織の制御などが困難であり、特性は一般的に冷延電磁鋼板に劣る。   Non-oriented electrical steel sheets are roughly classified into hot rolled electrical steel sheets and cold rolled electrical steel sheets. The former uses the hot-rolled hot-rolled steel strip as it is as a non-oriented electrical steel sheet. While the manufacturing process is simple, it is difficult to control the texture, and the characteristics are generally inferior to cold rolled electrical steel sheets.

冷延電磁鋼板は仕上熱延により得られた熱延板を酸洗し、冷間圧延した後、仕上焼鈍し表面皮膜を付与し使用に供する。特性を向上させるためには、冷間圧延率を適切に制御するか、もしくはさらに、熱延板を焼鈍し、冷間圧延前の結晶粒径を粗大化させた上で、冷間圧延、仕上焼鈍を施し表面皮膜を付与し使用に供する。   A cold-rolled electrical steel sheet is pickled and cold-rolled from a hot-rolled sheet obtained by finish hot-rolling, and then finish-annealed to give a surface film for use. In order to improve the properties, the cold rolling rate is appropriately controlled, or further, the hot rolled sheet is annealed to increase the crystal grain size before cold rolling, and then cold rolling and finishing. Annealed to give a surface coating and used.

特性は熱延電磁鋼板に比べ優れるものの、冷間圧延、仕上焼鈍工程、場合によってはさらに冷間圧延前に熱延板焼鈍工程を伴うため熱延電磁鋼板に比べ製造コストがかさむ課題がある。   Although the characteristics are superior to those of hot-rolled electrical steel sheets, there is a problem that the manufacturing cost is higher than that of hot-rolled electrical steel sheets because it involves a cold-rolling, finish annealing process, and in some cases, a hot-rolled sheet annealing process before cold rolling.

冷間圧延前に熱延板の焼鈍を行わない場合、冷間圧延、仕上焼鈍により得られた再結晶組織の主方位は板面法線方向に<111>軸が一致したγファイバー集合組織となり、無方向性電磁鋼板に最適な集合組織が得られない課題があった。   When the hot-rolled sheet is not annealed before cold rolling, the main orientation of the recrystallized structure obtained by cold rolling and finish annealing is a gamma fiber texture in which the <111> axis coincides with the normal direction of the plate surface. There is a problem that an optimum texture cannot be obtained for the non-oriented electrical steel sheet.

一方、冷間圧延前に熱延板の焼鈍を施して冷間圧延前の結晶粒径を粗大化した場合、冷間圧延中に粗大な結晶粒中に剪断帯が形成され、この剪断帯からGoss方位と呼ばれる結晶粒が仕上焼鈍中に再結晶し成長する。このためγファイバー中のGoss方位の存在率が高まり磁気特性が向上する。   On the other hand, when the hot rolled sheet is annealed before the cold rolling to increase the grain size before the cold rolling, a shear band is formed in the coarse crystal grain during the cold rolling. Crystal grains called Goss orientation recrystallize and grow during finish annealing. For this reason, the presence rate of the Goss orientation in the γ fiber is increased and the magnetic properties are improved.

Goss方位はbcc鉄の3つ磁化容易軸である<100>方向の一つが圧延方向と一致しており、残りの2つは板面上下に45°傾いた方向となっている。このため、圧延方向とその180°反対方向の2方向の磁束密度が優れているという特徴を有している。   In the Goss direction, one of the <100> directions, which are the three easy axes of bcc iron, coincides with the rolling direction, and the remaining two are inclined at 45 ° above and below the plate surface. For this reason, it has the characteristic that the magnetic flux density of two directions of the rolling direction and the 180 degree opposite direction is excellent.

熱延電磁鋼板は熱間圧延により得られた無方向性電磁鋼板であり、高温の熱間圧延の直後に再結晶が進行しているため、その集合組織は冷延電磁鋼板と同じγファイバーであり、本来の無方向性電磁鋼板にとって好ましい集合組織ではない。   A hot rolled electrical steel sheet is a non-oriented electrical steel sheet obtained by hot rolling, and since recrystallization proceeds immediately after hot rolling at high temperature, its texture is the same γ fiber as that of cold rolled electrical steel sheet. Yes, it is not a preferred texture for the original non-oriented electrical steel sheet.

発明者らは、この点に注目し、製造コストの低い薄鋳片鋳造プロセスを従来の熱延電磁鋼板に適用しつつ、新規な集合組織制御方法について鋭意検討を行った。   The inventors paid attention to this point and intensively studied a novel texture control method while applying a thin cast slab casting process having a low manufacturing cost to a conventional hot-rolled electrical steel sheet.

その結果、薄鋳片の圧延開始温度を下げることにより、薄鋳片の熱間圧延中に歪みを開放し電磁熱延鋼帯の集合組織の再結晶を抑制し、45°キューブ集合組織と称される圧延集合組織を維持することで、本発明の特徴である圧延方向から45°方向の磁束密度が高い電磁熱延鋼帯を製造しうることを見出した。   As a result, by lowering the rolling start temperature of the thin slab, strain is released during hot rolling of the thin slab, and recrystallization of the texture of the electromagnetic hot-rolled steel strip is suppressed, which is referred to as a 45 ° cube texture. It was found that an electromagnetic hot rolled steel strip having a high magnetic flux density in the 45 ° direction from the rolling direction, which is a feature of the present invention, can be produced by maintaining the rolled texture.

45°キューブ集合組織は板面内に圧延方向から45°傾いた2方向に磁化容易軸を有し、全周では4方向の磁束密度が高い特徴を持つ集合組織である。このため、板面内の磁化容易方向は、圧延方向とその180°反対方向の2方向に磁化容易方向を持つGoss方位の2倍になるという利点がある。   The 45 ° cube texture is a texture having an easy axis of magnetization in two directions inclined by 45 ° from the rolling direction in the plate surface and a high magnetic flux density in the four directions on the entire circumference. For this reason, there exists an advantage that the easy magnetization direction in a plate surface becomes twice the Goss direction which has a magnetization easy direction in two directions of the rolling direction and the 180 degree opposite direction.

また、その圧延集合組織を発達させるために、本発明では薄鋳片から電磁熱延鋼帯への圧下量を一定以上確保し、十分な圧延率が得られるように定めることが肝要であることも見出した。これらの新規な技術思想により製造方法を設計し、低コスト高磁束密度電磁熱延鋼帯の製造法の完成に至ったのである。   Also, in order to develop the rolling texture, it is important in the present invention to secure a certain amount or more of the reduction from the thin cast slab to the electromagnetic hot rolled steel strip so that a sufficient rolling rate can be obtained. I also found. The manufacturing method was designed based on these new technical ideas, and the manufacturing method of the low-cost, high magnetic flux density electromagnetic hot-rolled steel strip was completed.

先述のように本発明の電磁熱延鋼帯においては圧延集合組織が発達している。この集合組織は板面内に圧延方向から45°傾いた方向に4方向の磁化容易軸を有する。一方、従来技術のGoss系高磁束密度冷延電磁鋼板では板面内で圧延方向とその逆方向の2方向しか磁化容易方向が得られなかった。   As described above, a rolling texture is developed in the electromagnetic hot-rolled steel strip of the present invention. This texture has four easy axes in the direction inclined by 45 ° from the rolling direction in the plate surface. On the other hand, in the Goss type high magnetic flux density cold rolled electrical steel sheet of the prior art, the easy magnetization direction can be obtained only in two directions of the rolling direction and the opposite direction in the plate surface.

このように、本発明では板面内の磁化容易方向が従来の高磁束密度電磁鋼板の2方向からに4方向になり、2倍に増加した。しかも本発明では鋳造装置、熱延装置の規模が従来よりも小規模ですみ、冷延以降の工程が省略されるというコスト上のメリットもある。   Thus, in the present invention, the direction of easy magnetization in the plate surface changed from two directions to four directions of the conventional high magnetic flux density electrical steel sheet, and increased twice. In addition, in the present invention, the scale of the casting apparatus and the hot rolling apparatus is smaller than before, and there is a cost advantage that the steps after the cold rolling are omitted.

特許文献7には熱延電磁鋼板の製造法として粗圧延後のシートバーを巻き取って均熱化し、仕上圧延を施す技術が開示されている。しかしこの製造方法の目的は、仕上圧延後の熱延鋼板の温度を鋼板前端から後端に至るまで均一化するとともに、再結晶を促進することにある。しかしながら、この先願では再結晶集合組織はbcc鉄におけるγファイバーとなるため磁束密度は低下する。よって、この先願は本発明における再結晶の抑制による45°キューブ集合組織の発達促進とは技術思想が全く異なるものである。   Patent Document 7 discloses a technique for rolling up a sheet bar after rough rolling, soaking it, and performing finish rolling as a method for producing a hot rolled electrical steel sheet. However, the purpose of this production method is to make the temperature of the hot-rolled steel sheet after finish rolling uniform from the front end to the rear end of the steel sheet and promote recrystallization. However, in this prior application, the recrystallized texture is a γ fiber in bcc iron, so the magnetic flux density is lowered. Therefore, this prior application is completely different in technical idea from the promotion of the development of the 45 ° cube texture by suppressing recrystallization in the present invention.

本発明では、薄鋳片の厚みが20mm未満であると、本発明が意図する電磁熱延鋼帯の集合組織を発達させるために必要な圧下量が不足するので、薄鋳片の厚みは20mm以上と定める。   In the present invention, if the thickness of the thin slab is less than 20 mm, the amount of reduction required for developing the texture of the electromagnetic hot-rolled steel strip intended by the present invention is insufficient, so the thickness of the thin slab is 20 mm. It is determined as above.

また、薄鋳片の厚みが20mm未満であると熱間圧延による電磁熱延鋼帯の形状制御の余地が少なくなり最終製品の板厚および形状制御が困難となる。この観点からも薄鋳片の厚みは20mm以上に定める。   If the thickness of the thin cast slab is less than 20 mm, there is less room for shape control of the electromagnetic hot-rolled steel strip by hot rolling, making it difficult to control the thickness and shape of the final product. Also from this viewpoint, the thickness of the thin slab is set to 20 mm or more.

薄鋳片の厚みが100mm超であると、電磁熱延鋼帯の集合組織制御効果が飽和するとともに、薄鋳片の圧下量が増加するため、熱間圧延設備のコストが上昇し薄鋳片プロセスの経済性を損なう。よって、この観点からも本発明では薄鋳片の厚みは100mm以下に定める。   If the thickness of the thin cast slab exceeds 100 mm, the texture control effect of the electromagnetic hot-rolled steel strip is saturated and the reduction amount of the thin cast slab increases. Detract from the economics of the process. Therefore, also from this viewpoint, in the present invention, the thickness of the thin cast piece is set to 100 mm or less.

薄鋳片を熱間圧延して仕上げた電磁熱延鋼帯の厚みが2mm超であると、常温での巻き戻しなどのハンドリング性に課題が生じるので、本発明では電磁熱延鋼帯の厚みは2mm以下に定める。   If the thickness of the electromagnetic hot-rolled steel strip finished by hot rolling of a thin slab is more than 2 mm, a problem arises in handling properties such as rewinding at room temperature. Therefore, in the present invention, the thickness of the electromagnetic hot-rolled steel strip Is set to 2 mm or less.

また、電磁熱延鋼帯の厚みが0.4mm未満となると、熱延での板厚制御が困難となるので本発明では電磁熱延鋼帯の厚みは0.4mm以上に定める。   Moreover, if the thickness of the electromagnetic hot-rolled steel strip is less than 0.4 mm, it is difficult to control the thickness of the hot-rolled steel strip. Therefore, in the present invention, the thickness of the electromagnetic hot-rolled steel strip is set to 0.4 mm or more.

熱間圧延開始温度F0Tが850℃超となると、熱間圧延中に再結晶が進行するため、圧延時に発達した45°キューブ集合組織の集積度が低下し、本発明が意図する圧延方向から45°方向の磁束密度が高い電磁熱延鋼帯が得られなくなる。よって本発明では熱間圧延開始温度F0Tは850℃以下に定める。   When the hot rolling start temperature F0T exceeds 850 ° C., recrystallization proceeds during hot rolling, so the degree of accumulation of the 45 ° cube texture developed during rolling decreases, and the 45 ° direction from the rolling direction intended by the present invention. An electromagnetic hot rolled steel strip with a high magnetic flux density in the ° direction cannot be obtained. Therefore, in the present invention, the hot rolling start temperature F0T is set to 850 ° C. or less.

また、熱間圧延開始温度F0Tが650℃未満となると、熱間圧延時の圧延反力が増大して圧延が困難となるので、熱間圧延開始温度F0Tは650℃以上に定める。   Further, when the hot rolling start temperature F0T is less than 650 ° C., the rolling reaction force during hot rolling increases and rolling becomes difficult, so the hot rolling start temperature F0T is set to 650 ° C. or higher.

熱間圧延終了温度FTが550℃未満となると、圧延反力が増大し、板厚制御が困難になり、積層して使用する無方向性電磁熱延鋼帯に要求される板厚制度が得られなくなるので熱間圧延終了温度は550℃以上に定める。   When the hot rolling finish temperature FT is less than 550 ° C., the rolling reaction force increases and it becomes difficult to control the plate thickness, and the plate thickness system required for the non-oriented electromagnetic hot-rolled steel strip to be laminated is obtained. Therefore, the hot rolling end temperature is set to 550 ° C. or higher.

熱間圧延終了温度が800℃超となると、熱間圧延中の再結晶が進行し熱延鋼帯の45°キューブ集合組織の集積度が低下し、成品の磁束密度が著しく低下するので、熱間圧延終了温度は800℃以下に定める。   When the hot rolling finish temperature exceeds 800 ° C, recrystallization proceeds during hot rolling, the degree of integration of 45 ° cube texture in the hot rolled steel strip decreases, and the magnetic flux density of the product significantly decreases. The end rolling temperature is set to 800 ° C. or lower.

これにより、本発明により得られた薄鋳片を熱間圧延して得られた電磁熱延鋼帯の磁束密度は向上する。   Thereby, the magnetic flux density of the electromagnetic hot-rolled steel strip obtained by hot rolling the thin slab obtained by the present invention is improved.

また、熱間圧延開始温度および熱間圧延終了温度が本発明の範囲を超過する場合、熱間圧延により造りこんだ電磁熱延鋼帯の45°キューブ集合組織が再結晶と粒成長の進行により消失し成品の磁束密度が低下することを発明者らは突き止めた。このように、本発明の新規性は薄鋳片の熱間圧延での再結晶・粒成長を抑制しつつ電磁熱延鋼帯の圧延集合組織を熱間圧延中に圧延歪みを開放しつつ発達させることにあり、本発明の最も肝要な技術思想である。   Further, when the hot rolling start temperature and the hot rolling end temperature exceed the range of the present invention, the 45 ° cube texture of the electromagnetic hot rolled steel strip formed by hot rolling is caused by the progress of recrystallization and grain growth. The inventors have found that the magnetic flux density of the product disappears due to disappearance. Thus, the novelty of the present invention is developed while releasing the rolling distortion during hot rolling of the rolled texture of the electromagnetic hot rolled steel strip while suppressing recrystallization and grain growth in hot rolling of thin slabs. This is the most important technical idea of the present invention.

本発明により得られた電磁熱延鋼帯は表面に酸化物からなるスケール層を有するため通常は皮膜は不要であり、そのまま使用に供してよい。しかしながら用途によっては酸洗後、皮膜を塗布し焼き付けて使用してもよい。   Since the electromagnetic hot-rolled steel strip obtained by the present invention has a scale layer made of an oxide on the surface, a coating is usually unnecessary and may be used as it is. However, depending on the application, after pickling, a film may be applied and baked.

本発明の製造法で得られた無方向性電磁熱延鋼帯は、所定の形状に打ち抜いた後は歪取り焼鈍を施さずに使用するか、或いは歪取り焼鈍を施してから使用してもよい。または打ち抜き工程を経て所定の形状のコア等に整形した後に、歪取り焼鈍を施して使用してもよい。   The non-oriented electromagnetic hot-rolled steel strip obtained by the production method of the present invention may be used without being subjected to strain relief annealing after being punched into a predetermined shape, or may be used after being subjected to strain relief annealing. Good. Or after shaping into a core or the like having a predetermined shape through a punching step, the material may be used after being subjected to strain relief annealing.

本発明により得られた高磁束密度無方向性電磁鋼板は、小型軽量化を要求される電気機器、EIコア、回転機の鉄心、回転機用分割コア、回転機用ステータ、回転機用ロータ、トランス用額縁鉄心、小型鉄心、小型トランス、リアクトル用鉄心、蛍光灯用安定器、螺旋コア、磁気シールドに最適であるが、他にも各種コンプレッサー、発電機、高出力を要求される電気自動車用モーター等の鉄心用途等に適している。
次に、本発明の実施例について述べる。
[実施例1]
表1に示した成分を有する溶鋼を厚さ30mm、幅1300mmに鋳造し無方向性電磁熱延鋼帯用の薄鋳片とした。鋳造後の薄鋳片を冷却帯で水冷して温度を770℃とし、次いで熱間圧延開始温度を770℃として熱間圧延を行い板厚がそれぞれ0.8mm、1.2mmの電磁熱延鋼帯に仕上げた。その際、圧下スケジュール、圧延速度と熱間圧延スタンド間の冷却速度を制御し、熱間圧延終了温度を変化させた。
The high magnetic flux density non-oriented electrical steel sheet obtained by the present invention includes electrical equipment, an EI core, an iron core of a rotating machine, a split core for a rotating machine, a stator for a rotating machine, a rotor for a rotating machine, Ideal for transformer frame iron cores, small iron cores, small transformers, reactor iron cores, fluorescent ballasts, spiral cores, magnetic shields, but also for various compressors, generators, and electric vehicles that require high output Suitable for iron core applications such as motors.
Next, examples of the present invention will be described.
[Example 1]
Molten steel having the components shown in Table 1 was cast to a thickness of 30 mm and a width of 1300 mm to form a thin slab for a non-directional electromagnetic hot rolled steel strip. The thin slab after casting is water-cooled in a cooling zone to a temperature of 770 ° C., then hot-rolled at a hot rolling start temperature of 770 ° C., and electromagnetic hot rolled steel having a thickness of 0.8 mm and 1.2 mm, respectively. Finished in a strip. At that time, the rolling schedule, the rolling speed and the cooling speed between the hot rolling stands were controlled to change the hot rolling end temperature.

また、比較例2として、同一の薄鋳片の熱間圧延開始温度を1000℃とし、熱間圧延終了温度を860℃として板厚0.8mm、1.2mmの電磁熱延鋼帯を製造した。   Further, as Comparative Example 2, an electromagnetic hot rolled steel strip having a thickness of 0.8 mm and a thickness of 1.2 mm was manufactured by setting the hot rolling start temperature of the same thin cast slab to 1000 ° C. and the hot rolling end temperature to 860 ° C. .

また、比較例3として、同一の成分の鋼を連続鋳造により200mm厚みのスラブとし、これをスラブ加熱炉で1100℃に再加熱し、粗熱延により板厚を30mmとし、仕上熱延を熱間圧延開始温度を1000℃、熱間圧延終了温度を860℃として板厚0.8mm、1.2mmの熱延電磁鋼板を製造した。   Further, as Comparative Example 3, a slab having a thickness of 200 mm was obtained by continuous casting of steel having the same component, which was reheated to 1100 ° C. in a slab heating furnace, the plate thickness was set to 30 mm by rough hot rolling, and the finish hot rolling was heated. A hot rolled electrical steel sheet having a plate thickness of 0.8 mm and a thickness of 1.2 mm was manufactured at a hot rolling start temperature of 1000 ° C. and a hot rolling end temperature of 860 ° C.

なお、この鋼のAr1変態点は880℃である。   The Ar1 transformation point of this steel is 880 ° C.

その後、電磁熱延鋼帯は圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein specimen was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

比較例3の熱延電磁鋼板は圧延方向と板巾方向にエプスタイン試料を採取し磁束密度を測定した。   For the hot rolled electrical steel sheet of Comparative Example 3, Epstein samples were taken in the rolling direction and the sheet width direction, and the magnetic flux density was measured.

表1に成分を、表2に熱間圧延終了温度と磁気特性の関係を示す。   Table 1 shows the components, and Table 2 shows the relationship between the hot rolling end temperature and the magnetic properties.

表2より、熱間圧延終了温度を本発明で規定する550℃以上800℃以下の範囲に適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略し、高磁束密度の無方向性電磁熱延鋼帯を製造することが可能である。   From Table 2, by appropriately controlling the hot rolling end temperature within the range of 550 ° C. or higher and 800 ° C. or lower as defined in the present invention, costly processes such as hot-rolled sheet annealing can be omitted, and high magnetic flux density can be reduced. It is possible to produce a directional electromagnetic hot-rolled steel strip.

Figure 0005423629
Figure 0005423629

Figure 0005423629
Figure 0005423629

[実施例2]
表3に示した成分を有する溶鋼を厚さ30mm、幅1250mmに鋳造し無方向性電磁熱延鋼帯用の薄鋳片とした。 鋳造後の薄鋳片を冷却帯で水冷して温度を800℃とし、これをトンネル炉にて加熱して温度を調整し±5℃以内に均熱化し、熱間圧延開始温度を810℃として熱間圧延を行い板厚0.4mm、1.5mmの電磁熱延鋼帯に仕上げた。その際、圧下スケジュール、圧延速度と熱間圧延スタンド間の冷却速度を制御し、熱間圧延終了温度を変化させた。
[Example 2]
Molten steel having the components shown in Table 3 was cast to a thickness of 30 mm and a width of 1250 mm to form a thin slab for a non-directional electromagnetic hot rolled steel strip. The thin slab after casting is cooled with water in a cooling zone to a temperature of 800 ° C., and this is heated in a tunnel furnace to adjust the temperature so that it is soaked within ± 5 ° C., and the hot rolling start temperature is set to 810 ° C. Hot rolling was performed to finish an electromagnetic hot rolled steel strip having a thickness of 0.4 mm and 1.5 mm. At that time, the rolling schedule, the rolling speed and the cooling speed between the hot rolling stands were controlled to change the hot rolling end temperature.

また、比較例6として、同一の薄鋳片の熱間圧延開始温度を1000℃とし、熱間圧延終了温度を860℃として板厚0.4mm、1.5mmの電磁熱延鋼帯を製造した。   Further, as Comparative Example 6, an electromagnetic hot rolled steel strip having a thickness of 0.4 mm and 1.5 mm was manufactured by setting the hot rolling start temperature of the same thin cast slab to 1000 ° C. and the hot rolling end temperature to 860 ° C. .

また、比較例7として、同一の成分の鋼を連続鋳造により200mm厚みのスラブとし、これをスラブ加熱炉で1100℃に加熱し、粗熱延により板厚を30mmとし、仕上熱延を熱間圧延開始温度を1000℃、熱間圧延終了温度を860 ℃として板厚0.4mm、1.5mmの熱延電磁鋼板を製造した。   Moreover, as Comparative Example 7, a slab having a thickness of 200 mm was formed by continuous casting of steel having the same component, and this was heated to 1100 ° C. in a slab heating furnace, the plate thickness was set to 30 mm by rough hot rolling, and the finish hot rolling was hot. A hot rolled electrical steel sheet having a sheet thickness of 0.4 mm and a thickness of 1.5 mm was manufactured at a rolling start temperature of 1000 ° C. and a hot rolling end temperature of 860 ° C.

なお、この鋼は融点までαγ変態を有しないα単相鋼である。   This steel is an α single phase steel having no αγ transformation up to the melting point.

その後、電磁熱延鋼帯は圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein specimen was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

比較例7の熱延電磁鋼板はアプスタイン試料を圧延方向と板巾方向から採取して磁気測定を行った。   The hot rolled electrical steel sheet of Comparative Example 7 was subjected to magnetic measurement by taking an Upstein sample from the rolling direction and the sheet width direction.

表3に成分を、表4に熱間圧延終了温度と磁気特性の関係を示す。   Table 3 shows the components, and Table 4 shows the relationship between the hot rolling end temperature and the magnetic properties.

表4より、熱間圧延終了温度を本発明で規定する550℃以上800℃以下の範囲に適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略し、高磁束密度の無方向性電磁熱延鋼帯を製造することが可能である。   From Table 4, by appropriately controlling the hot rolling end temperature within the range of 550 ° C. or higher and 800 ° C. or lower as specified in the present invention, costly processes such as hot-rolled sheet annealing can be omitted, and high magnetic flux density can be reduced. It is possible to produce a directional electromagnetic hot-rolled steel strip.

Figure 0005423629
Figure 0005423629

Figure 0005423629
Figure 0005423629

[実施例3]
表5に示した鋼3の溶鋼を厚さ20mm、幅1200mmに鋳造し無方向性電磁熱延鋼帯の薄鋳片とした。
[Example 3]
The molten steel of Steel 3 shown in Table 5 was cast to a thickness of 20 mm and a width of 1200 mm to form a thin cast piece of a non-directional electromagnetic hot rolled steel strip.

鋳造後の薄鋳片を冷却帯で水冷して温度をいったん下げ、その後これをトンネル炉にて加熱して温度を調整し±5℃以内に均熱化し、熱間圧延開始温度を変化させて熱間圧延を行い板厚1.0mm、2.0mmの電磁熱延鋼帯に仕上げた。圧下スケジュール、圧延速度と熱間圧延スタンド間の冷却速度を制御し熱間圧延終了温度は600℃とした。   The thin slab after casting is water-cooled in a cooling zone to lower the temperature once, and then heated in a tunnel furnace to adjust the temperature so that it is soaked within ± 5 ° C, and the hot rolling start temperature is changed. Hot rolling was performed to finish an electromagnetic hot rolled steel strip having a thickness of 1.0 mm and 2.0 mm. The rolling schedule, the rolling speed and the cooling speed between the hot rolling stands were controlled, and the hot rolling end temperature was 600 ° C.

なお、この鋼のAr1変態点は875℃である。   The Ar1 transformation point of this steel is 875 ° C.

Alは製鋼段階でAl脱酸やAl添加を実施していないため検出限界以下であった。本実験で使用した分析機器ではAlの検出限界は0.001%であり、この限界量以下と判定されたAlについては表中において「tr.」と記載した。   Al was below the detection limit because Al deoxidation and Al addition were not performed in the steelmaking stage. In the analytical instrument used in this experiment, the detection limit of Al is 0.001%, and Al determined to be below this limit amount is described as “tr.” In the table.

その後、圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein sample was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

表5に成分を、表6に熱間圧延開始温度と磁気特性の関係を示す。   Table 5 shows the components, and Table 6 shows the relationship between the hot rolling start temperature and the magnetic properties.

表6より、仕上げ熱間圧延開始温度を本発明で定めた650℃以上850℃以下に適切に制御することにより、熱延板焼鈍などのコストのかかる工程を省略して、高磁束密度の無方向性電磁熱延鋼帯を製造することが可能である。   From Table 6, by appropriately controlling the finishing hot rolling start temperature to 650 ° C. or higher and 850 ° C. or lower as defined in the present invention, costly processes such as hot-rolled sheet annealing can be omitted, and high magnetic flux density can be reduced. It is possible to produce a directional electromagnetic hot-rolled steel strip.

Figure 0005423629
Figure 0005423629

Figure 0005423629
Figure 0005423629

[実施例4]
表7に示した鋼4の溶鋼を厚さ20mm、幅1100mmに鋳造し無方向性電磁熱延鋼帯用の薄鋳片とした。
[Example 4]
The molten steel of Steel 4 shown in Table 7 was cast to a thickness of 20 mm and a width of 1100 mm to obtain a thin cast piece for a non-directional electromagnetic hot rolled steel strip.

鋳造後の薄鋳片を冷却帯で水冷して温度を630℃とし、これをトンネル炉にて加熱して温度を調整し±5℃以内に均熱化し、熱間圧延開始温度を変化させて熱間圧延を行い板厚0.65mmの電磁熱延鋼帯に仕上げた。圧下スケジュール、圧延速度と熱間圧延スタンド間の冷却速度を制御し熱間圧延終了温度は605℃とした。   The thin slab after casting is cooled with water in a cooling zone to a temperature of 630 ° C., and this is heated in a tunnel furnace to adjust the temperature so that it is soaked within ± 5 ° C., and the hot rolling start temperature is changed. Hot rolling was performed to finish an electromagnetic hot rolled steel strip having a thickness of 0.65 mm. The rolling reduction temperature, the rolling speed and the cooling speed between the hot rolling stands were controlled, and the hot rolling end temperature was set to 605 ° C.

その後、圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein sample was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

なお、この鋼は融点までαγ変態を有しないα単相である。   This steel is an α single phase having no αγ transformation up to the melting point.

表7に成分を、表8に熱間圧延開始温度と磁気特性の関係を示す。   Table 7 shows the components, and Table 8 shows the relationship between the hot rolling start temperature and the magnetic properties.

表8より、仕上げ熱間圧延開始温度を本発明で定めた650℃以上850℃以下に適切に制御することにより、高磁束密度の無方向性電磁熱延鋼帯を製造することが可能である。   From Table 8, it is possible to produce a non-directional electromagnetic hot-rolled steel strip having a high magnetic flux density by appropriately controlling the finishing hot rolling start temperature to 650 ° C. or higher and 850 ° C. or lower as defined in the present invention. .

Figure 0005423629
Figure 0005423629

Figure 0005423629
Figure 0005423629

[実施例5]
表9に示した成分を有する溶鋼を厚さ30mm、幅1200mmに鋳造し無方向性電磁熱延鋼帯用の薄鋳片とした。 鋳造後の薄鋳片を冷却帯で水冷して温度を775℃とし、これをトンネル炉にて加熱して温度を調整し±5℃以内に均熱化し、熱間圧延開始温度を780℃とし、圧延スケジュール、圧延速度と熱間圧延スタンド間の冷却速度を制御し熱間圧延終了温度を670℃として板厚0.50mmの電磁熱延鋼帯に仕上げた。
[Example 5]
Molten steel having the components shown in Table 9 was cast to a thickness of 30 mm and a width of 1200 mm to form a thin slab for a non-directional electromagnetic hot rolled steel strip. The thin slab after casting is water-cooled in a cooling zone to a temperature of 775 ° C., and this is heated in a tunnel furnace to adjust the temperature so that it is within ± 5 ° C., and the hot rolling start temperature is 780 ° C. Then, the rolling schedule, the rolling speed, and the cooling speed between the hot rolling stands were controlled, and the hot rolling finish temperature was set to 670 ° C. to finish an electromagnetic hot rolled steel strip having a thickness of 0.50 mm.

その後、圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein sample was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

なお、本実験では検出限界である0.001%以下のsol-Alは表中において「tr.」と記載した。   In this experiment, sol-Al having a detection limit of 0.001% or less was described as “tr.” In the table.

表9に本発明と比較例の成分を、表10に仕上焼鈍温度と磁気特性の関係の測定結果を示す。   Table 9 shows the components of the present invention and comparative examples, and Table 10 shows the measurement results of the relationship between the finish annealing temperature and the magnetic properties.

表10より、本発明の成分範囲にSi、Al含有量を調節することにより高磁束密度の無方向性電磁熱延鋼帯を製造することが可能である。   From Table 10, it is possible to produce a non-directional electromagnetic hot-rolled steel strip having a high magnetic flux density by adjusting the Si and Al contents within the component ranges of the present invention.

鋼5を用いた比較例13はSi含有量が本発明の範囲を下回っており、合金含有量がほぼ同等である本発明例23と比較しても磁束密度の値が著しく低く、鉄損が高く不適である。   In Comparative Example 13 using steel 5, the Si content is lower than the range of the present invention, and the magnetic flux density value is remarkably low and the iron loss is lower than that of Inventive Example 23 in which the alloy content is almost equal. Highly unsuitable.

鋼18を用いた比較例14はSi含有量が本発明の範囲を超過しており、本発明例32等と比較して合金組成および含有量を加味して考慮したとしても磁束密度が著しく低く不適である。   In Comparative Example 14 using steel 18, the Si content exceeds the range of the present invention, and the magnetic flux density is extremely low even when considering the alloy composition and content in comparison with Example 32 of the present invention. Unsuitable.

鋼19を用いた比較例15はAl含有量が本発明の範囲を超過しており、本発明例32等と比較して合金組成および含有量を加味して考慮したとしても磁束密度が著しく低く不適である。   In Comparative Example 15 using steel 19, the Al content exceeds the range of the present invention, and the magnetic flux density is extremely low even when considering the alloy composition and content in comparison with Example 32 of the present invention. Unsuitable.

以上のように本発明で規定した範囲にSi、Al等の合金組成を制御し、適切なプロセス条件で製造することにより高磁束密度無方向性電磁熱延鋼帯の製造が可能である。   As described above, a high magnetic flux density non-directional electromagnetic hot-rolled steel strip can be manufactured by controlling the alloy composition of Si, Al, etc. within the range defined by the present invention and manufacturing the alloy under appropriate process conditions.

また、鋼11では0.1%以下のMn、0.025%以下のPおよびtr.のAlが不可避不純物として混入している。しかしながらこの範囲であれば無方向性電磁熱延鋼帯の磁気特性を劣化させるものではない。   In Steel 11, Mn of 0.1% or less, P and tr. Al is mixed as an inevitable impurity. However, within this range, the magnetic properties of the non-directional electromagnetic hot-rolled steel strip are not deteriorated.

Figure 0005423629
Figure 0005423629

Figure 0005423629
Figure 0005423629

[実施例6]
表11に示した成分を有する溶鋼を各厚みで幅1100mmの無方向性電磁鋼用の薄鋳片とした。
[Example 6]
The molten steel having the components shown in Table 11 was used as a thin cast piece for non-oriented electrical steel having a thickness of 1100 mm in each thickness.

鋳造後の薄鋳片を冷却帯で水冷して温度を770℃とし、これをトンネル炉にて加熱して温度を調整し±5℃以内に均熱化し、熱間圧延開始温度を775℃とし、圧延速度と熱間圧延スタンド間の冷却速度を制御し熱間圧延終了温度を665℃として板厚0.70mmの電磁熱延鋼帯に仕上げた。   The thin slab after casting is cooled with water in a cooling zone to a temperature of 770 ° C, and this is heated in a tunnel furnace to adjust the temperature so that it is soaked within ± 5 ° C, and the hot rolling start temperature is set to 775 ° C. The hot rolling end temperature was set to 665 ° C. by controlling the rolling speed and the cooling speed between the hot rolling stands, and the electromagnetic hot rolled steel strip having a thickness of 0.70 mm was finished.

また、本発明例38、本発明例40、本発明例42、本発明例49、本発明例51、本発明例53では、鋳造後の薄鋳片を冷却帯で水冷して温度を770℃とし、これをコイル状に巻き取った後、コイルボックス炉に装入して16分間加熱し±5℃以内に均熱化し、再び巻きほどいてシートバー状に戻した後、熱間圧延開始温度を775℃とし、熱間圧延終了温度を665℃として板厚0.70mmの電磁熱延鋼帯に仕上げた。   Further, in the present invention example 38, the present invention example 40, the present invention example 42, the present invention example 49, the present invention example 51, and the present invention example 53, the thin slab after casting was cooled with water in a cooling zone, and the temperature was 770 ° C. After winding this into a coil, it was placed in a coil box furnace, heated for 16 minutes, soaked within ± 5 ° C., unwound again and returned to the sheet bar shape, and then the hot rolling start temperature Was set to 775 ° C., the hot rolling finish temperature was set to 665 ° C., and an electromagnetic hot rolled steel strip having a thickness of 0.70 mm was finished.

その後、圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein sample was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

表11に本発明と比較例の成分を、表12に薄鋳片板厚と磁気特性の関係を示す。   Table 11 shows the components of the present invention and the comparative example, and Table 12 shows the relationship between the thickness of the thin cast slab and the magnetic properties.

表12より、薄鋳片の板厚を20mm以上100mm以下にすることにより、無方向性電磁熱延鋼帯の磁束密度が向上していることがわかる。   From Table 12, it can be seen that the magnetic flux density of the non-directional electromagnetic hot-rolled steel strip is improved by setting the plate thickness of the thin cast piece to 20 mm or more and 100 mm or less.

Figure 0005423629
Figure 0005423629

Figure 0005423629
Figure 0005423629

[実施例7]
表13に示した成分を有する溶鋼を厚み30mmで幅1100mmの無方向性電磁熱延鋼帯用の薄鋳片とした。
[Example 7]
The molten steel having the components shown in Table 13 was made into a thin cast piece for a non-directional electromagnetic hot rolled steel strip having a thickness of 30 mm and a width of 1100 mm.

鋳造後の薄鋳片を冷却帯で水冷し、熱間圧延を760℃で開始した。圧延スケジュール、圧延速度と熱間圧延スタンド間の冷却速度を制御し、熱間圧延の終了温度を650℃として板厚0.5mmの電磁熱延鋼帯に仕上げた。   The thin slab after casting was water-cooled in a cooling zone, and hot rolling was started at 760 ° C. The rolling schedule, the rolling speed and the cooling speed between the hot rolling stands were controlled, and the end temperature of hot rolling was set to 650 ° C. to finish an electromagnetic hot rolled steel strip having a thickness of 0.5 mm.

その後、圧延方向と左右に45°の角度をなす方向にエプスタイン試料を切断し、磁気特性を測定した。エプスタイン測定の際には、左右に剪断した試料をそれぞれ半分ずつ用意し、エプスタイン枠の平行な一組の枠に同じ方向に剪断した試料を挿入して測定を行った。   Thereafter, the Epstein sample was cut in a direction that forms an angle of 45 ° to the left and right with respect to the rolling direction, and the magnetic properties were measured. At the time of Epstein measurement, the samples sheared to the left and right were prepared in half, and the samples sheared in the same direction were inserted into a pair of frames parallel to the Epstein frame.

表11に本発明例と比較例の成分と磁気測定結果を示す。   Table 11 shows the components and magnetic measurement results of the inventive examples and comparative examples.

鋼22、鋼26を用いた本発明例はREM添加量が本発明で定めた範囲未満であり、REM添加効果による磁気特性の向上はみられないが、本発明の磁気特性レベルを満足する。   In the examples of the present invention using the steel 22 and the steel 26, the amount of REM added is less than the range defined in the present invention, and the magnetic characteristics are not improved by the REM addition effect, but the magnetic characteristics level of the present invention is satisfied.

鋼24、鋼29を用いた比較例はREM添加量が本発明で定めた範囲を超過しており、本発明例よりも鉄損が増加し、磁束密度が低く磁気特性が劣る。   In the comparative example using steel 24 and steel 29, the amount of REM added exceeds the range defined in the present invention, the iron loss is increased, the magnetic flux density is low, and the magnetic properties are inferior to those of the present invention example.

これに対し、鋼23、鋼25、鋼27、鋼28、鋼30ではREM添加量が本発明で定める範囲であり、磁束密度が高く鉄損が低く磁気特性が優れている。   In contrast, in Steel 23, Steel 25, Steel 27, Steel 28, and Steel 30, the amount of REM added is within the range defined by the present invention, and the magnetic flux density is high, the iron loss is low, and the magnetic properties are excellent.

鋼31、鋼44はTi含有量が本発明で定めた範囲を超過しているため、Ti含有量が本発明で定めた範囲内である鋼40、鋼41、鋼42、鋼43よりも磁束密度が低く、鉄損が過大である。   Steel 31 and steel 44 have a Ti content exceeding the range defined in the present invention, so that the magnetic flux is higher than steel 40, steel 41, steel 42 and steel 43 whose Ti content is within the range defined in the present invention. The density is low and the iron loss is excessive.

鋼32はSn添加量が本発明で定めた範囲未満であるため、Sn添加効果による磁気特性の向上はみられないが、本発明の磁気特性レベルを満足する。   Since the amount of Sn added to the steel 32 is less than the range defined in the present invention, the magnetic characteristics are not improved due to the effect of Sn addition, but the magnetic characteristics level of the present invention is satisfied.

鋼34はSn添加量が本発明で定めた範囲を超過しているため、Sn添加量が本発明で定めた範囲である鋼33よりも磁束密度が低い。   Since the amount of Sn added to the steel 34 exceeds the range defined in the present invention, the magnetic flux density is lower than that of the steel 33 in which the amount of Sn added is within the range defined in the present invention.

鋼35はCr添加量が本発明で定めた範囲未満であるため、Cr添加効果による鉄損の改善はみられないが、本発明の磁気特性レベルを満足する。   Since the steel 35 has a Cr addition amount less than the range defined in the present invention, iron loss is not improved by the Cr addition effect, but the magnetic property level of the present invention is satisfied.

鋼39はCr添加量が本発明で定めた範囲を超過しているため、Cr添加量が本発明で定めた範囲である鋼36、鋼37、鋼38よりも鉄損が増加している。   Since the amount of Cr added in the steel 39 exceeds the range defined in the present invention, the iron loss is increased compared to the steel 36, steel 37, and steel 38 in which the Cr added amount is in the range defined in the present invention.

また、鋼23、鋼27、鋼40、では0.2%以下のMn、0.025%以下のP、tr.のAlが不可避不純物として混入している。しかしながらこれらはこの範囲であれば、無方向性電磁熱延鋼帯の磁気特性に影響を与えない。   In Steel 23, Steel 27, and Steel 40, 0.2% or less of Mn, 0.025% or less of P, tr. Al is mixed as an inevitable impurity. However, within these ranges, these do not affect the magnetic properties of the non-oriented electromagnetic hot-rolled steel strip.

鋼28、鋼41では0.2%以下のMnおよび0.025%以下のPが不可避不純物として混入している。しかしながらこれらはこの範囲であれば、無方向性電磁熱延鋼帯の磁気特性に影響を与えない。   In Steel 28 and Steel 41, 0.2% or less of Mn and 0.025% or less of P are mixed as inevitable impurities. However, within these ranges, these do not affect the magnetic properties of the non-oriented electromagnetic hot-rolled steel strip.

鋼45はSb添加量が本発明で定めた範囲未満であるため、Sb添加効果による磁束密度の向上はみられないが、本発明の磁気特性レベルを満足する。   Since the amount of Sb added to steel 45 is less than the range defined in the present invention, the magnetic flux density is not improved by the effect of Sb addition, but the magnetic property level of the present invention is satisfied.

鋼47はSb添加量が本発明で定めた範囲を超過しているため、Sb添加量が本発明で定めた範囲である鋼46よりも磁束密度が低い。   Since the Sb addition amount of the steel 47 exceeds the range defined in the present invention, the magnetic flux density is lower than that of the steel 46 whose Sb addition amount is in the range defined by the present invention.

鋼48はCu添加量が本発明で定めた範囲未満であるため、Cu添加効果による磁束密度の向上はみられないが、本発明の磁気特性レベルを満足する。   Since the steel 48 has a Cu addition amount less than the range defined in the present invention, the magnetic flux density is not improved by the Cu addition effect, but the magnetic property level of the present invention is satisfied.

鋼50はCu添加量が本発明で定めた範囲を超過しているため、Cu添加量が本発明で定めた範囲である鋼49よりも磁束密度が低い。   Steel 50 has a lower magnetic flux density than steel 49 whose Cu addition amount is in the range defined in the present invention because the Cu addition amount exceeds the range defined in the present invention.

以上のように、本発明で定めた範囲に添加量を制御することにより、高磁束密度低鉄損を有する優れた磁気特性が得られることがわかる。   As described above, it can be seen that excellent magnetic properties having a high magnetic flux density and a low iron loss can be obtained by controlling the addition amount within the range defined in the present invention.

Figure 0005423629
Figure 0005423629

本発明によれば、磁束密度の高い無方向性電磁熱延鋼帯を低コストで製造することが可能であり、産業上の利用可能性が高い。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to manufacture the non-directional electromagnetic hot-rolled steel strip with a high magnetic flux density at low cost, and industrial applicability is high.

Claims (10)

鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
を含有し、残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
The remaining steel consisting of Fe and inevitable impurities is continuously cast into a thin cast piece having a plate thickness of 20 mm or more and 100 mm or less, followed by hot rolling, and a non-directional electromagnetic having a plate thickness of 0.4 mm or more and 2 mm or less. In the production method for obtaining a hot-rolled steel strip,
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
鋼中に質量%で
0.1%≦Si≦4.0%
0.1%≦Mn≦2.0%
0.03%≦P≦0.1%
Al≦2.5%
0.1%≦Cr≦10%
C≦0.004%
S≦0.003%
N≦0.003%
Ti≦0.005%
0.001%≦REM≦0.01%
さらに、Sn、Cu、Sbの少なくとも一種類をそれぞれ0.01%以上0.1%以下の範囲で含有し、
残部がFeおよび不可避的不純物からなる溶鋼を板厚20mm以上100mm以下の薄鋳片に連続鋳造し、引き続き熱間圧延を施し、板厚0.4mm以上2mm以下の無方向性電磁熱延鋼帯を得る製造方法において、
連続鋳造後の薄鋳片の熱間圧延開始温度F0T、熱間圧延終了温度FTをそれぞれ以下のように定めることを特徴とする無方向性電磁熱延鋼帯の製造方法。
650℃≦F0T≦850℃
550℃≦FT≦800℃
In mass% in steel
0.1% ≦ Si ≦ 4.0%
0.1% ≦ Mn ≦ 2.0%
0.03% ≦ P ≦ 0.1%
Al ≦ 2.5%
0.1% ≦ Cr ≦ 10%
C ≦ 0.004%
S ≦ 0.003%
N ≦ 0.003%
Ti ≦ 0.005%
0.001% ≦ REM ≦ 0.01%
Furthermore, it contains at least one kind of Sn, Cu, and Sb in a range of 0.01% or more and 0.1% or less,
Non-directional electromagnetic hot-rolled steel strip having a thickness of 0.4 mm or more and 2 mm or less, continuously cast on molten steel consisting of Fe and inevitable impurities to a thin cast piece having a thickness of 20 mm or more and 100 mm or less, followed by hot rolling In the manufacturing method to obtain
A method for producing a non-oriented electromagnetic hot-rolled steel strip, characterized in that a hot rolling start temperature F0T and a hot rolling end temperature FT of a thin cast slab after continuous casting are respectively determined as follows.
650 ℃ ≦ F0T ≦ 850 ℃
550 ℃ ≦ FT ≦ 800 ℃
請求項1から8のいずれかの方法により得られた無方向性電磁熱延鋼帯。   A non-directional electromagnetic hot-rolled steel strip obtained by the method according to any one of claims 1 to 8. 請求項1から8のいずれかに記載の方法により製造した無方向性電磁熱延鋼帯により製造した電磁部品であって、該電磁部品が、EIコア、回転機用分割コア、トランス用額縁鉄心、小型鉄心、リアクトル用鉄心、回転機用ステータ、回転機用ロータ、蛍光灯用安定器、螺旋コア、磁気シールドのいずれかであることを特徴とする電磁部品。   An electromagnetic component manufactured by a non-directional electromagnetic hot-rolled steel strip manufactured by the method according to any one of claims 1 to 8, wherein the electromagnetic component is an EI core, a split core for a rotating machine, or a frame iron core for a transformer. An electromagnetic component comprising any one of a small iron core, a core for a reactor, a stator for a rotating machine, a rotor for a rotating machine, a ballast for a fluorescent lamp, a spiral core, and a magnetic shield.
JP2010210707A 2010-09-21 2010-09-21 Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density Active JP5423629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010210707A JP5423629B2 (en) 2010-09-21 2010-09-21 Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010210707A JP5423629B2 (en) 2010-09-21 2010-09-21 Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density

Publications (2)

Publication Number Publication Date
JP2012067330A JP2012067330A (en) 2012-04-05
JP5423629B2 true JP5423629B2 (en) 2014-02-19

Family

ID=46164937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010210707A Active JP5423629B2 (en) 2010-09-21 2010-09-21 Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density

Country Status (1)

Country Link
JP (1) JP5423629B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6943544B2 (en) * 2016-02-15 2021-10-06 日本製鉄株式会社 Inverter power supply Reactor Electromagnetic steel sheet for iron core and its manufacturing method
CN108781003A (en) 2016-03-23 2018-11-09 新日铁住金株式会社 Non-oriented electromagnetic steel sheet and its manufacturing method and Lundell motor
JP6819136B2 (en) * 2016-08-24 2021-01-27 日本製鉄株式会社 Trance
CN110612358B (en) * 2017-06-02 2021-10-01 日本制铁株式会社 Non-oriented electromagnetic steel sheet
BR112019019392B1 (en) * 2017-06-02 2022-07-12 Nippon Steel Corporation NON-ORIENTED ELECTRIC STEEL SHEET
KR102407998B1 (en) * 2018-02-16 2022-06-14 닛폰세이테츠 가부시키가이샤 Non-oriented electrical steel sheet and manufacturing method of non-oriented electrical steel sheet
JP6969473B2 (en) * 2018-03-26 2021-11-24 日本製鉄株式会社 Non-oriented electrical steel sheet
KR102120276B1 (en) * 2018-09-27 2020-06-08 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US11952641B2 (en) * 2019-03-20 2024-04-09 Nippon Steel Corporation Non oriented electrical steel sheet
CN111245176A (en) * 2020-03-04 2020-06-05 马鞍山钢铁股份有限公司 Production process of cast aluminum iron core for reducing stray loss of compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10015691C1 (en) * 2000-03-16 2001-07-26 Thyssenkrupp Stahl Ag Production of a non-grain oriented hot-rolled magnetic steel sheet used in the production of engines comprises rolling a pre-material made of an iron alloy and deforming in the mixed austenite/ferrite region
JP5388506B2 (en) * 2008-08-19 2014-01-15 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with high magnetic flux density

Also Published As

Publication number Publication date
JP2012067330A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5423629B2 (en) Method for producing non-directional electromagnetic hot-rolled steel strip with high magnetic flux density
JP5388506B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
JP5256916B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density
WO2013069754A1 (en) Anisotropic electromagnetic steel sheet and method for producing same
JP7174053B2 (en) Bidirectional electrical steel sheet and manufacturing method thereof
JP2006501361A5 (en)
KR102048791B1 (en) Hot-rolled strip for manufacturing an electric sheet, and process therefor
JP5423616B2 (en) Method for producing non-oriented electrical steel sheet with excellent magnetic properties and method for producing cast steel strip for producing non-oriented electrical steel sheet
JP7372521B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JP2016003371A (en) Non-oriented magnetic steel sheet having good entire circumferential magnetic property
JP5724837B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5014830B2 (en) Method for producing high magnetic flux density non-oriented electrical steel sheet
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP2006241554A (en) Method for manufacturing non-oriented electromagnetic steel sheet having high magnetic flux density
KR950002895B1 (en) Ultrahigh-silicon directional electrical steel sheet and production thereof
JPH0949023A (en) Production of grain oriented silicon steel sheet excellent in iron loss
JP2008019462A (en) Method for producing magnetic steel sheet excellent in magnetic characteristic in direction perpendicular to rolling direction
JP2003213335A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property in longitudinal direction and cross direction
JP7288215B2 (en) Non-oriented electrical steel sheet
JP4261633B2 (en) Manufacturing method of unidirectional electrical steel sheet
JP4277529B2 (en) Method for producing grain-oriented electrical steel sheet having no undercoat
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP4320794B2 (en) Method for producing electrical steel sheet with excellent magnetic properties in the rolling direction
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131111

R151 Written notification of patent or utility model registration

Ref document number: 5423629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350