JPH09125145A - Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss - Google Patents

Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss

Info

Publication number
JPH09125145A
JPH09125145A JP28228995A JP28228995A JPH09125145A JP H09125145 A JPH09125145 A JP H09125145A JP 28228995 A JP28228995 A JP 28228995A JP 28228995 A JP28228995 A JP 28228995A JP H09125145 A JPH09125145 A JP H09125145A
Authority
JP
Japan
Prior art keywords
hot
rolled sheet
annealing
steel sheet
flux density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28228995A
Other languages
Japanese (ja)
Other versions
JP3348811B2 (en
Inventor
Ryutaro Kawamata
竜太郎 川又
Takeshi Kubota
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28228995A priority Critical patent/JP3348811B2/en
Publication of JPH09125145A publication Critical patent/JPH09125145A/en
Application granted granted Critical
Publication of JP3348811B2 publication Critical patent/JP3348811B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a nonoriented silicon steel sheet high in magnetic flux density, low in iron loss and used as the material for the iron core of electric apparatus. SOLUTION: In the method for producing a nonoriented silicon steel sheet in which a slab having components contg., by weight, 0.10 to 2.50% Si, at least one kind of 0.10 to 1.00% Al and 0.10 to 2.00% Mn so as to satisfy Si+2Al<=2.50% as well, furthermore satisfying <=0.0025% C, <=0.0020% N, <=0.0020% S, <=0.0030% Ti, <=0.0030% Nb, <=0.0050% V and <=0.0030% As, and the balance Fe with inevitable impurities and having αγ transformation is used and is subjected to hot rolling to form into a hot rolled sheet, which is subjected to hot rolled sheet annealing and a cold rolling step for one time and is next subjected to finish annealing, the hot rolled sheet annealing is executed in the temp. range of the Ac3 point or above for 10sec to 5min.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高く、鉄損が低い優れ
た磁気特性を有する無方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic properties with high magnetic flux density and low iron loss, which is used as an iron core material of electric equipment.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。
2. Description of the Related Art In recent years, in the field of electric machines, especially rotating machines and non-oriented electrical steel sheets used as iron core materials thereof, and small and medium-sized transformers, world-wide power and energy saving, and CFC regulation. In the movement of global environment conservation such as the above, the movement for higher efficiency is spreading rapidly. Therefore, there is an increasing demand for non-oriented electrical steel sheets to improve their properties, that is, to have high magnetic flux density and low iron loss.

【0003】ところで、無方向性電磁鋼板においては、
従来、低鉄損化の手段として一般に、電気抵抗増大によ
る渦電流損低減の観点からSiあるいはAl等の含有量
を高める方法がとられてきた。しかし、この方法では反
面、磁束密度の低下は避け得ないという問題点があっ
た。このような問題点の克服のために、熱延板結晶粒径
を粗大化することで磁束密度と鉄損の両方を改善させる
方法が行われてきた。
By the way, in the non-oriented electrical steel sheet,
Conventionally, a method of increasing the content of Si, Al, or the like has been generally used as a means for reducing iron loss from the viewpoint of reducing eddy current loss due to increase in electrical resistance. However, this method, on the other hand, has a problem that the decrease in magnetic flux density cannot be avoided. In order to overcome such problems, a method of improving both the magnetic flux density and the iron loss by increasing the crystal grain size of the hot-rolled sheet has been performed.

【0004】従来、変態を有する無方向性電磁鋼板製造
においては、α域の上限付近において熱延を終了するこ
とにより冷延前結晶粒径を確保し、結果として成品の磁
束密度、鉄損を向上させることが行われてきた。このよ
うな観点から、特開昭56−38420号公報には熱延
終了温度をAr3 点とAr1 点の中間温度以下として6
80℃以上の温度で巻き取ることにより熱延結晶組織の
粗大化を図る方法が開示されている。
Conventionally, in the production of a non-oriented electrical steel sheet having a transformation, the grain size before cold rolling is secured by ending hot rolling in the vicinity of the upper limit of the α range, resulting in the magnetic flux density and iron loss of the product. Improvements have been made. From this point of view, JP-A-56-38420 discloses that the hot rolling end temperature is set to 6% or less of the intermediate temperature between Ar 3 point and Ar 1 point.
A method for coarsening a hot rolled crystal structure by winding at a temperature of 80 ° C. or higher is disclosed.

【0005】しかしながら実際の仕上熱延機においては
噛み込み時の圧延速度と定常圧延状態の圧延速度が必然
的に異なることから、コイル長手方向の温度分布を解消
することが困難であり、α域の上限にて熱延を実施する
ために、圧延設定温度を低くせざるを得ないという不利
益があった。
However, in an actual finishing hot rolling machine, since the rolling speed at the time of biting and the rolling speed in the steady rolling state are necessarily different, it is difficult to eliminate the temperature distribution in the coil longitudinal direction, and the α range In order to carry out hot rolling at the upper limit of 1, there was the disadvantage that the rolling set temperature had to be lowered.

【0006】また、一般的な無方向性電磁鋼板の低級品
ではそのA1 変態点が900℃付近であることから、熱
延終了温度を上昇させて熱延結晶組織の成長を図ること
に限度があり、冷延前結晶組織の増大による磁気特性の
向上には限界があった。さらに熱延終了温度がγ域に上
昇することは、熱延終了後にα相への変態が進行するこ
とから熱延組織が細粒化し、結果として磁気特性が悪化
するため、避けるべき事とされてきた。
Further, since the A 1 transformation point of general low-grade non-oriented electrical steel sheets is around 900 ° C., it is limited to increase the hot rolling end temperature to grow the hot rolled crystal structure. However, there is a limit to the improvement of the magnetic properties by increasing the crystal structure before cold rolling. Furthermore, it is considered that the hot rolling end temperature rises to the γ range because the hot rolling structure becomes finer due to the progress of the transformation to the α phase after the hot rolling and the magnetic properties deteriorate as a result. Came.

【0007】このような制御熱延による冷延前結晶組織
粗大化の限界を打破する技術として、特開昭57−35
628号公報には熱延終了温度をAr3 点以上として熱
延結晶組織の細粒化を図った上で、Ac3 点以下の温度
で熱延板焼鈍を施し、冷延前結晶組織の粗大化を図る方
法が開示されている。しかしながらγ域で熱延板焼鈍を
行うことは、冷却時にγ相からα相への変態に伴い結晶
組織が細粒化するため、実施温度に上限があり、前述の
制御熱延の熱延終了温度制御と同様におのずから限界が
あった。
As a technique for overcoming the limit of coarsening of the crystal structure before cold rolling by such controlled hot rolling, Japanese Patent Application Laid-Open No. 57-35 is known.
In Japanese Patent No. 628, after the hot rolling end temperature is set to Ar 3 point or more to make the hot rolled crystal structure finer, the hot rolled sheet is annealed at a temperature of Ac 3 point or lower to obtain a coarse crystal structure before cold rolling. A method for achieving this is disclosed. However, performing hot-rolled sheet annealing in the γ region has an upper limit in the operating temperature because the crystal structure becomes finer with the transformation from the γ phase to the α phase during cooling, and the hot rolling of the above-described controlled hot rolling ends. As with temperature control, there was a natural limit.

【0008】同様に、熱延板焼鈍工程追加によるコスト
アップ上昇を抑え、冷延前結晶組織の粗大化を図る手法
として、高温で熱延板を巻取り、これをコイルの保有熱
で焼鈍する自己焼鈍法が特開昭54−76422号公
報、特開昭58−136718号公報に開示されてい
る。しかしながらこれらの先行発明における実施例にお
いても同様の理由により自己焼鈍はすべてα相域で行っ
ており、冷延前結晶組織の粗大化には限度があった。
Similarly, as a method for suppressing the increase in cost due to the addition of the hot-rolled sheet annealing step and for coarsening the crystal structure before cold rolling, the hot-rolled sheet is wound at a high temperature and annealed by the heat possessed by the coil. The self-annealing method is disclosed in JP-A-54-76422 and JP-A-58-136718. However, in the examples of these prior inventions, self-annealing was all performed in the α phase region for the same reason, and there was a limit to the coarsening of the crystal structure before cold rolling.

【0009】このような従来の熱延板焼鈍、自己焼鈍に
よる無方向性電磁鋼板の磁気特性向上の限界を克服する
手法として、特開平3−204420号公報には、仕上
熱延の巻取温度をAr3 点以上としてAr3 点からAr
1 点までの平均冷却速度を50℃/秒以下に制御する技
術が開示されている。しかしながらAr3 点以上の高温
での巻取りにより、コイル内温度分布不均一に起因する
コイル長手方向の磁性が不均一になるという問題があっ
た。
As a method of overcoming the limitation of improving the magnetic properties of the non-oriented electrical steel sheet by the conventional hot-rolled sheet annealing and self-annealing, Japanese Unexamined Patent Publication No. 3-204420 discloses a coiling temperature for finish hot rolling. Ar from Ar 3 point as three or more Ar
A technique for controlling the average cooling rate up to one point to 50 ° C./second or less is disclosed. However, there is a problem in that the magnetism in the longitudinal direction of the coil becomes non-uniform due to the non-uniform temperature distribution in the coil due to the winding at a high temperature of Ar 3 points or higher.

【0010】また、特開平6−57332号公報には、
熱延板焼鈍をγ域で実施し、その後Ar3 点からAr1
点までの冷却速度を5℃/秒以下に制御する方法が、ま
た特開平6−240360号公報には、熱延板焼鈍をA
1 点以上の温度域で実施した後、Ar3 点からAr1
点までの冷却速度を50℃/秒以下に制御する技術が開
示されている。しかしながらこの技術においては冷却速
度を低くする必要があることから、その焼鈍時間が必然
的に長くなり、生産性の低下を招く問題点があった。ま
た、これら先行技術においてはAr3 点からAr1 点ま
での冷却速度の変化による磁気特性の変動が大きく、ス
トリップ長手方向の磁気特性が安定して優れた無方向性
電磁鋼板の製造は著しく困難であった。
Further, Japanese Patent Laid-Open No. 6-57332 discloses that
Hot-rolled sheet annealing is performed in the γ region, and then Ar 3 points to Ar 1
A method of controlling the cooling rate up to the point to 5 ° C./second or less, and JP-A-6-240360 discloses that hot-rolled sheet annealing is A
c After performing the test in a temperature range of 1 point or more, from Ar 3 point to Ar 1 point
A technique for controlling the cooling rate up to the point to 50 ° C./second or less is disclosed. However, in this technique, since it is necessary to reduce the cooling rate, there is a problem that the annealing time is inevitably lengthened and the productivity is lowered. Further, in these prior arts, the variation of the magnetic properties due to the change of the cooling rate from the Ar 3 point to the Ar 1 point is large, and it is extremely difficult to manufacture a non-oriented electrical steel sheet with stable magnetic properties in the longitudinal direction of the strip. Met.

【0011】一方で、成分制御による磁気特性向上の観
点からは、鉄損低減の為に、単にSiあるいはAl等の
含有量を高めるのみではなく、特公平6−80169号
公報に記載されているように、MnおよびSの低減によ
る高純度鋼化により析出物の無害化を図る方法が開示さ
れている。しかしながら鋼の高純化のみでは磁束密度の
改善は不十分であり、鉄損と磁束密度の両者の優れた無
方向性電磁鋼板の開発には限界があった。
On the other hand, from the viewpoint of improving the magnetic characteristics by controlling the components, not only is the content of Si or Al increased in order to reduce iron loss, but it is described in Japanese Patent Publication No. 6-80169. As described above, a method of making the precipitate harmless by making high-purity steel by reducing Mn and S is disclosed. However, improvement of magnetic flux density is not enough only by purifying steel, and there is a limit to the development of a non-oriented electrical steel sheet excellent in both iron loss and magnetic flux density.

【0012】またさらに、一次再結晶集合組織を改善す
ることで無方向性電磁鋼板の磁気特性を改善する方法と
して、特開昭55−158252号公報のごとくSn添
加、特開昭62−180014号公報のごときSn,C
u添加、もしくは特開昭59−100217号公報のご
ときSb添加による集合組織の改善による磁気特性の優
れた無方向性電磁鋼板の製造方法が開示されている。し
かしながら、集合組織制御元素であるSn,Cuもしく
はSb等の添加によりコストの上昇を招き、低コストな
無方向性電磁鋼板の製造法の提供には限界があった。
Further, as a method for improving the magnetic properties of the non-oriented electrical steel sheet by improving the primary recrystallization texture, Sn addition as disclosed in JP-A-55-158252 and JP-A-62-180014 is disclosed. Sn, C as in the publication
A method for producing a non-oriented electrical steel sheet having excellent magnetic properties by improving the texture by adding U or adding Sb as disclosed in JP-A-59-100217 is disclosed. However, the addition of Sn, Cu, Sb, or the like, which is a texture control element, causes an increase in cost, and there has been a limit in providing a low-cost method for producing a non-oriented electrical steel sheet.

【0013】他にも、特開昭57−35626号公報に
記載されているような仕上げ焼鈍サイクルの工夫等の製
造プロセス上の処置もなされてきたが、いずれも低鉄損
化は図られても、磁束密度についてはそれほどの効果は
なかった。このように、従来技術では、磁束密度が高く
かつ鉄損が低い無方向性電磁鋼板を製造できるには至ら
ず、無方向性電磁鋼板に対する前記の要請に応えること
は出来なかった。
In addition, although measures in the manufacturing process such as devising a finish annealing cycle as described in JP-A-57-35626 have been taken, the iron loss reduction is achieved in all cases. However, there was not much effect on the magnetic flux density. As described above, the conventional technology has not been able to manufacture a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, and has not been able to meet the above-mentioned demand for a non-oriented electrical steel sheet.

【0014】[0014]

【発明が解決しようとする課題】本発明は、従来技術に
おけるこのような問題点を解決し、高磁束密度かつ低鉄
損の無方向性電磁鋼板を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to solve such problems in the prior art and to provide a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss.

【0015】[0015]

【問題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。すなわち、(1) 鋼中に重量%
で、 0.10%≦Si≦2.50%、 C≦0.0025%、 N≦0.0020%、 S≦0.0020%、 Ti≦0.0030%、 Nb≦0.0030%、 V≦0.0050%、 As≦0.0030% を満足し、残部がFeおよび不可避的不純物からなるα
γ変態を有する成分のスラブを用い、熱間圧延して熱延
板とし、熱延板焼鈍および1回の冷間圧延工程を施し次
いで仕上げ焼鈍を施す無方向性電磁鋼板の製造方法にお
いて、熱延板焼鈍をAc3 点以上の温度域で10秒〜5
分の間実施することを特徴とする無方向性電磁鋼板の製
造方法であり、また、(2) 鋼中に重量%で、 0.10%≦Si≦2.50%、 Mn,Alの少なくとも1種であって0.10%≦Al
≦1.00%、0.10%≦Mn≦2.00%とし、か
つ、SiとAlの合計量がSi+2Al≦2.50%で
あり、 C≦0.0025%、 N≦0.0020%、 S≦0.0020%、 Ti≦0.0030%、 Nb≦0.0030%、 V≦0.0050%、 As≦0.0030% を満足し、残部がFeおよび不可避的不純物からなるα
γ変態を有する成分のスラブを用い、熱間圧延して熱延
板とし、熱延板焼鈍をおよび1回の冷間圧延工程を施し
次いで仕上げ焼鈍を施す無方向性電磁鋼板の製造方法に
おいて、熱延板焼鈍をAc3 点以上の温度域で10秒〜
5分の間実施することを特徴とする無方向性電磁鋼板の
製造方法。
The gist of the present invention is as follows. That is, (1) wt% in steel
0.10% ≦ Si ≦ 2.50%, C ≦ 0.0025%, N ≦ 0.0020%, S ≦ 0.0020%, Ti ≦ 0.0030%, Nb ≦ 0.0030%, V ≦ 0.0050%, As ≦ 0.0030%, and the balance α consisting of Fe and inevitable impurities
Using a slab of a component having a γ transformation, hot rolling into a hot rolled sheet, hot rolled sheet annealing and one cold rolling step, followed by finish annealing Annealing of rolled sheet in the temperature range of Ac 3 points or more for 10 seconds to 5
(2) 0.10% ≤ Si ≤ 2.50%, at least Mn and Al are included in the steel. One kind, 0.10% ≦ Al
≦ 1.00%, 0.10% ≦ Mn ≦ 2.00%, and the total amount of Si and Al is Si + 2Al ≦ 2.50%, C ≦ 0.0025%, N ≦ 0.0020% , S ≦ 0.0020%, Ti ≦ 0.0030%, Nb ≦ 0.0030%, V ≦ 0.0050%, As ≦ 0.0030%, and the balance α consisting of Fe and unavoidable impurities
Using a slab of a component having a γ transformation, hot rolling into a hot rolled sheet, hot rolled sheet annealing and a method of producing a non-oriented electrical steel sheet subjected to one cold rolling step and then finish annealing, Annealing of hot rolled sheet in the temperature range of Ac 3 points or more for 10 seconds ~
A method for manufacturing a non-oriented electrical steel sheet, which is carried out for 5 minutes.

【0016】[0016]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。発明者らは、低鉄損と高磁束密度を同時に達成すべ
く従来技術における問題点を鋭意検討を重ねた結果、変
態を有する無方向性電磁鋼板にあって、Siを0.10
%〜2.5%、Alを0.10%〜1.0%、Mnを
0.10%〜2.0%含有しαγ変態を有する鋼にあっ
て、C,SおよびN含有量を低減し、さらに、Ti,
V,Nb,As含有量をも同時に低減することにより高
純度鋼化し、熱延板焼鈍温度をAc3 点以上の温度域と
することにより、短時間の熱延板焼鈍で従来以上に熱延
結晶組織を粗大化し、磁束密度が高く鉄損の低い無方向
性電磁鋼板を製造することが可能であることを見出し
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail. As a result of intensive studies of the problems in the prior art in order to achieve low iron loss and high magnetic flux density at the same time, the inventors have found that in a non-oriented electrical steel sheet having a transformation, Si is 0.10%.
% To 2.5%, 0.10% to 1.0% Al, 0.10% to 2.0% Mn, and a αγ transformation steel, the C, S and N contents are reduced. In addition, Ti,
By reducing the V, Nb, and As contents at the same time, it becomes a high-purity steel, and the annealing temperature of the hot-rolled sheet is set to a temperature range of Ac 3 point or higher, so that the hot-rolled sheet is annealed in a short time and hot rolled more than before. It has been found that it is possible to manufacture a non-oriented electrical steel sheet with a coarse crystal structure and a high magnetic flux density and a low iron loss.

【0017】無方向性電磁鋼板の磁気特性は冷延前結晶
組織を粗大化することで改善することが可能である。こ
のため従来、仕上熱延において熱延終了温度を上昇させ
るか、さらに効果的な方法として熱延板焼鈍で結晶組織
の粗大化を図り、製品の磁束密度を高め、鉄損を低減さ
せることが行われてきた。しかしながら熱延板焼鈍温度
を上昇させてα+γ2相域もしくはγ域に達すると、焼
鈍終了後にγ相からα相への変態が進行することから熱
延組織が細粒化し、結果として磁気特性が悪化するた
め、避けるべきとされてきた。
The magnetic properties of the non-oriented electrical steel sheet can be improved by coarsening the crystal structure before cold rolling. Therefore, conventionally, it is possible to increase the hot rolling end temperature in finish hot rolling, or to roughen the crystal structure by hot rolling sheet annealing as a more effective method to increase the magnetic flux density of the product and reduce iron loss. Has been done. However, when the annealing temperature of the hot-rolled sheet is increased to reach the α + γ2 phase region or the γ region, the transformation from the γ phase to the α phase progresses after the annealing is completed, and the hot rolled structure becomes fine-grained, resulting in deterioration of magnetic properties. Therefore, it has been said that it should be avoided.

【0018】また、Si含有量の少ない無方向性電磁鋼
板の低級品ではそのA1 変態点が900℃付近あること
から、熱延板焼鈍温度の上昇には限度があり、冷延前結
晶組織の増大による磁気特性の向上には限界があった。
In addition, since the A 1 transformation point of a low grade non-oriented electrical steel sheet having a low Si content is around 900 ° C., there is a limit to the rise of the hot rolled sheet annealing temperature, and the crystal structure before cold rolling is limited. There was a limit to the improvement of magnetic characteristics by increasing the magnetic field.

【0019】このような従来の熱延板焼鈍における無方
向性電磁鋼板の磁気特性向上の限界を克服する手法とし
て、特開平6−57332号公報および特開平6−24
0360号公報には、熱延板焼鈍をAc1 点以上の温度
域で実施した後、Ar3 点からAr1 点までの冷却速度
を一定以下に制御する方法が開示されている。しかしな
がらこの技術においては冷却速度を低下のために、生産
性の低下を招くのみならず、Ar3 点からAr1 点まで
の冷却速度が変化すると製品の磁気特性が大きく変動
し、ストリップ長手方向の磁気特性が安定した無方向性
電磁鋼板の製造が著しく困難であった。
As a method for overcoming such a limitation of improving the magnetic properties of the non-oriented electrical steel sheet in the conventional hot-rolled sheet annealing, JP-A-6-57332 and JP-A-6-24 are cited.
Japanese Patent No. 0360 discloses a method of controlling the cooling rate from the Ar 3 point to the Ar 1 point to a certain value or less after performing hot-rolled sheet annealing in the temperature range of the Ac 1 point or higher. However, in this technique, the cooling rate is lowered, so that not only the productivity is lowered, but also when the cooling rate from the Ar 3 point to the Ar 1 point is changed, the magnetic properties of the product are largely changed, and It was extremely difficult to manufacture a non-oriented electrical steel sheet with stable magnetic properties.

【0020】発明者等は従来のこのような変態を有する
無方向性電磁鋼板の磁気特性向上に対する従来技術の限
界を打破すべく鋭意検討を進めた結果、変態を有する無
方向性電磁鋼板にあって、Siを0.10%〜2.5
%、Alを0.10%〜1.0%、Mnを0.10%〜
2.0%含有しαγ変態を有する鋼にあって、C,Sお
よびN含有量を低減し、さらに、Ti,V,Nb,As
含有量をも同時に低減することにより高純度鋼化すれ
ば、熱延板焼鈍温度をγ域まで高めても変態後のα相の
結晶組織が細粒化せず、仕上げ焼鈍後の製品における磁
束密度が極めて高く、鉄損が良好(鉄損値が低い)であ
るばかりでなく、さらに熱延板焼鈍後の冷却速度に対し
て磁気特性の依存性が小さく安定的に高磁束密度低鉄損
の無方向性電磁鋼板を製造しうることを知見した。
The inventors of the present invention have conducted extensive studies in order to overcome the limitations of the conventional technique for improving the magnetic properties of conventional non-oriented electrical steel sheets having such transformation, and as a result, the non-oriented electrical steel sheet having transformations has been found. , Si 0.10% to 2.5
%, Al 0.10% to 1.0%, Mn 0.10% to
In a steel containing 2.0% and having αγ transformation, the contents of C, S and N are reduced, and further, Ti, V, Nb, As
If a high-purity steel is obtained by simultaneously reducing the content, even if the hot-rolled sheet annealing temperature is increased to the γ range, the crystal structure of the α phase after transformation does not become fine, and the magnetic flux in the product after finish annealing is reduced. Not only the density is extremely high and the iron loss is good (the iron loss value is low), but further, the magnetic properties are less dependent on the cooling rate after hot-rolled sheet annealing, and the magnetic flux density is stable and the iron loss is low. It was found that the non-oriented electrical steel sheet of can be manufactured.

【0021】まず、成分について説明する。Siは鋼板
の固有抵抗を増大させ渦流損を低減させ、鉄損値を改善
するために添加される。Si含有量が0.10%未満で
あると固有抵抗が十分に得られないので0.10%以上
添加する必要がある。一方、Si含有量が2.50%を
超えるとαγ変態を生じなくなるので2.50%以下と
する必要がある。
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce eddy current loss, and improve the iron loss value. If the Si content is less than 0.10%, a sufficient specific resistance cannot be obtained, so it is necessary to add 0.10% or more. On the other hand, if the Si content exceeds 2.50%, αγ transformation does not occur, so it is necessary to set it to 2.50% or less.

【0022】Alも、Siと同様に、鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有する。このため
には、0.10%以上添加する必要がある。一方、Al
含有量が1.00%を超えると、磁束密度が低下し、コ
スト高ともなるので1.00%以下とする。さらに、
(Si+2Al)が2.50%を超えると、αγ変態を
生じなくなるので、(Si+2Al)≦2.50%でな
くてはならない。また、鋼中のAl含有量が0.10%
未満であっても本発明の効果はなんら損なわれるもので
はない。
Al, like Si, has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss. For this purpose, it is necessary to add 0.10% or more. On the other hand, Al
If the content exceeds 1.00%, the magnetic flux density decreases and the cost increases, so the content is set to 1.00% or less. further,
If (Si + 2Al) exceeds 2.50%, αγ transformation does not occur, so (Si + 2Al) ≦ 2.50% must be satisfied. Also, the Al content in the steel is 0.10%
Even if it is less than the above, the effect of the present invention is not impaired at all.

【0023】Mnは、Al,Siと同様に鋼板の固有抵
抗を増大させ渦電流損を低減させる効果を有する。この
ため、Mn含有量は0.10%以上とする必要がある。
一方、Mn含有量が2.0%を超えると熱延時の変形抵
抗が増加し熱延が困難となるとともに、熱延後の結晶組
織が微細化しやすくなり、製品の磁気特性が悪化するの
で、Mn含有量は2.0%以下とする必要がある。ま
た、Mn添加によりαγ変態点が低下するため、本発明
における熱延板焼鈍温度の下限であるAc3 点を引き下
げることが可能となり、焼鈍時の加熱に要するエネルギ
ーを節約しコスト低減となるとともに、鋼板表面の酸化
物形成を抑制することが可能になり酸洗歩留りが向上す
るなどの点でMn添加は有効である。このような変態点
制御の観点からはMn含有量は0.30%〜1.50%
であることが好ましい。
Similar to Al and Si, Mn has the effect of increasing the specific resistance of the steel sheet and reducing the eddy current loss. Therefore, the Mn content needs to be 0.10% or more.
On the other hand, if the Mn content exceeds 2.0%, the deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling tends to become finer, which deteriorates the magnetic properties of the product. The Mn content needs to be 2.0% or less. Further, since the αγ transformation point is lowered by the addition of Mn, it is possible to lower the lower limit Ac 3 point of the hot-rolled sheet annealing temperature in the present invention, which saves energy required for heating during annealing and reduces cost. The addition of Mn is effective in that the oxide formation on the surface of the steel sheet can be suppressed and the pickling yield is improved. From the viewpoint of such transformation point control, the Mn content is 0.30% to 1.50%.
It is preferred that

【0024】C含有量の制御は本発明の成分規定の肝要
な点であり、0.0025%以下に制御することが必要
である。C含有量が0.0025%を超えると、熱延板
焼鈍後のα+γ域もしくはγ相からα相への変態により
結晶組織が細粒化するため、0.0025%以下とする
必要がある。
The control of the C content is an essential point of the component definition of the present invention, and it is necessary to control the content to 0.0025% or less. If the C content exceeds 0.0025%, the crystal structure becomes finer due to the α + γ region after the hot-rolled sheet annealing or the transformation from the γ phase to the α phase, so the content must be 0.0025% or less.

【0025】S,Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS等の硫化物、A
lN等の窒化物を形成する。これらが存在することによ
り熱延板焼鈍後のγ相からα相への変態時にα相の核を
提供するとともに変態後のα相結晶組織の粒成長を妨げ
るためその含有量はともに0.0020%以下とする必
要がある。
S and N are partially re-dissolved during heating of the slab in the hot rolling process, and sulfides such as MnS and A during hot rolling.
Form a nitride such as 1N. The presence of these elements provides nuclei of the α phase at the time of transformation from the γ phase to the α phase after hot-rolled sheet annealing, and hinders the grain growth of the α phase crystal structure after transformation. It must be less than or equal to%.

【0026】また、Ti含有量、V含有量、Nb含有量
がそれぞれ0.0030%、0.0030%、0.00
50%を超えるとTiN,VN,NbN等の窒化物の析
出が顕著となり、熱延結晶組織の粗大化が阻害されると
ともに仕上焼鈍工程での結晶粒成長が阻害され磁気特性
が悪化する。
The Ti content, V content, and Nb content are 0.0030%, 0.0030%, and 0.00, respectively.
If it exceeds 50%, precipitation of nitrides such as TiN, VN, NbN becomes remarkable, coarsening of the hot rolled crystal structure is hindered, and crystal grain growth in the finish annealing step is hindered to deteriorate magnetic properties.

【0027】さらに、結晶粒成長を阻害する析出物の形
成に影響を及ぼす要因として、As含有量を抑制する必
要がある。Asは、それ自体では、本発明の成分範囲内
の鋼では、上記の硫化物や窒化物等の析出物を形成する
ことは無い。しかし、鋼中に、一定量以上のAsが含有
されると、硫化物サイズが微細になるため、熱延結晶組
織の粗大化を著しく阻害する。このような観点から、A
s含有量は0.0030%以下にする必要がある。
Further, it is necessary to suppress the As content as a factor that influences the formation of precipitates that inhibit the growth of crystal grains. As, by itself, does not form precipitates such as the above-mentioned sulfides and nitrides in the steel within the composition range of the present invention. However, when a certain amount of As or more is contained in the steel, the sulfide size becomes fine, so that the coarsening of the hot rolled crystal structure is significantly hindered. From this perspective, A
The s content must be 0.0030% or less.

【0028】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P,
B,Ni,Cr,Sb,Sn,Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
例えばPは、製品の打ち抜き性を良好ならしめるために
0.1%までの範囲内において添加される。P≦0.2
%であれば、製品の磁気特性の観点から問題がない。B
は熱間圧延時にBNを形成させてAlNの微細析出を妨
げ、Nを無害化させるために添加される。B含有量はN
との量のバランスが必要であり、その含有量は両者の比
B%/N%が0.5から1.5の範囲を満たすことが好
ましい。
In order to improve the mechanical properties of the product, the magnetic properties, the rust resistance, or other purposes, P,
Even if one or more of B, Ni, Cr, Sb, Sn, and Cu are contained in the steel, the effect of the present invention is not impaired.
For example, P is added within the range of up to 0.1% in order to improve the punchability of the product. P ≦ 0.2
%, There is no problem from the viewpoint of magnetic properties of the product. B
Is added in order to form BN during hot rolling to prevent fine precipitation of AlN and render N harmless. B content is N
It is necessary to balance the amount of B and N, and the content thereof preferably satisfies the ratio of both B% / N% of 0.5 to 1.5.

【0029】次に本発明のプロセス条件について説明す
る。発明者らは鋭意検討を重ねた結果、C,N,Sをは
じめとしてTi,V,Nb,As等の不純物含有量を制
御し、鋼の不純物成分を制御することにより熱延板焼鈍
をγ相において実施した場合に、熱延結晶組織が従来の
α相域での熱延板焼鈍以上に粗大化されるとともに、成
品磁気特性に対する焼鈍後の冷却速度の変化の影響が小
さく、安定して優れた磁気特性が達成され得ることを発
見し本発明の完成に至った。
Next, the process conditions of the present invention will be described. As a result of intensive studies, the inventors have controlled the content of impurities such as C, N, and S, Ti, V, Nb, As, and the like, and controlled the impurity components of the steel so that the hot-rolled sheet annealing can be performed by γ. When performed in the phase, the hot-rolled crystal structure is coarsened more than the conventional hot-rolled sheet annealing in the α phase region, and the influence of the change in the cooling rate after annealing on the magnetic properties of the product is small and stable. The present inventors have completed the present invention by discovering that excellent magnetic properties can be achieved.

【0030】このような鋼の純度の熱延板焼鈍条件およ
び冷却速度に対する熱延結晶組織形成の相違を調べるた
め、以下のような実験を行った。表1に示す成分の鋼を
溶製し仕上げ熱延を実施し、2.5mm厚に仕上げた。熱
延板焼鈍温度は800℃から1050℃の範囲とした。
これを酸洗、冷延して0.5mm厚とした。さらに脱脂
し、720℃×30秒焼鈍し、エプスタイン試料を切り
出して磁気特性を測定した。熱延板焼鈍後の冷却方法は
700℃までの平均冷却速度を気水冷却により60℃/
秒とした。熱延板焼鈍温度に対する熱延板結晶粒径の変
化、製品鉄損、製品磁束密度をそれぞれ図1、図2、図
3に示した。成分1の高純度鋼では熱延板焼鈍温度がA
3 点以上になっても熱延結晶組織が粗大化するが、成
分2の比較材では熱延板焼鈍温度がαγ変態点以上にな
ると熱延結晶組織が細粒化する。
The following experiments were conducted to examine the difference in the hot rolled crystal structure formation with respect to the annealing conditions and the cooling rate of the hot rolled sheet having such a steel purity. Steel having the components shown in Table 1 was melted and hot-rolled by finishing to finish it to a thickness of 2.5 mm. The hot rolled sheet annealing temperature was in the range of 800 ° C to 1050 ° C.
This was pickled and cold rolled to a thickness of 0.5 mm. Further, it was degreased, annealed at 720 ° C. for 30 seconds, and an Epstein sample was cut out to measure the magnetic properties. The cooling method after hot-rolled sheet annealing is 60 ° C /
Seconds. Changes in the crystal grain size of the hot rolled sheet with respect to the annealing temperature of the hot rolled sheet, iron loss of the product, and magnetic flux density of the product are shown in FIGS. 1, 2 and 3, respectively. In the high-purity steel of component 1, the hot rolled sheet annealing temperature is A
Although the hot-rolled crystal structure becomes coarser when the temperature is above the c 3 point, the hot-rolled crystal structure becomes finer when the annealing temperature of the hot-rolled sheet exceeds the αγ transformation point in the comparative material of component 2.

【0031】[0031]

【表1】 [Table 1]

【0032】同時に、熱延板焼鈍温度1000℃の場合
において焼鈍後の700℃までの平均冷却速度を5℃秒
から気水冷却量を制御して100℃/ 秒まで変化させ、
熱延板結晶粒径、成品鉄損、磁束密度に対する冷却速度
の影響を調べた。その結果を図4、図5、図6にそれぞ
れ示す。成分1の高純度鋼では熱延板焼鈍後の冷却速度
に対する熱延結晶組織、磁気特性の影響が小さいが、成
分2の比較材では熱延板焼鈍後の冷却速度を高めると熱
延結晶組織が細粒化し、磁気特性も悪化している。
At the same time, when the hot-rolled sheet annealing temperature is 1000 ° C., the average cooling rate up to 700 ° C. after annealing is changed from 5 ° C. seconds to 100 ° C./second by controlling the steam cooling amount.
The effects of cooling rate on the grain size of hot-rolled sheet, iron loss of the product, and magnetic flux density were investigated. The results are shown in FIGS. 4, 5 and 6, respectively. In the high-purity steel of component 1, the influence of the hot-rolled crystal structure and magnetic properties on the cooling rate after hot-rolled sheet annealing is small, but in the comparative material of component 2, when the cooling rate after hot-rolled sheet annealing is increased, the hot-rolled crystal structure is increased. Became finer and the magnetic characteristics were deteriorated.

【0033】このようにC,N,SをはじめとしてT
i,V,Nb,As等の不純物を低減した高純度鋼をA
3 点以上の熱延板焼鈍温度で仕上げることにより、製
品における鉄損を低減し、磁束密度の高め、優れた磁気
特性の無方向性電磁鋼板を製造することが可能である。
As described above, T including C, N and S
A high-purity steel with reduced impurities such as i, V, Nb, and As
c By finishing at a hot-rolled sheet annealing temperature of 3 points or more, it is possible to reduce iron loss in a product, increase magnetic flux density, and manufacture a non-oriented electrical steel sheet having excellent magnetic properties.

【0034】前記成分からなる鋼スラブは、転炉で溶製
され連続鋳造あるいは造塊−分塊圧延により製造され
る。鋼スラブは公知の方法にて加熱される。このスラブ
に熱間圧延を施し所定の厚みとする。
The steel slab composed of the above components is produced in a converter and is produced by continuous casting or ingot-bulking rolling. The steel slab is heated by a known method. This slab is subjected to hot rolling to a predetermined thickness.

【0035】熱延板焼鈍温度はAc3 点以上とする。熱
延板焼鈍温度がAc3 点を下まわると、熱延結晶組織の
成長が不十分となり、優れた磁気特性を有する無方向性
電磁鋼板を得ることができない。このため熱延板焼鈍温
度はAc3 点以上であることが好ましい。熱延板焼鈍温
度には上限を設けないが、焼鈍炉の能力、また酸洗性か
らその上限が自ずから決まる。熱延板焼鈍時間は10秒
以上5分以下であり、好ましくは30秒以上3分以下で
ある。10秒以下では焼鈍の効果は不十分であり、5分
以上ではその効果が飽和するとともに生産性の低下を招
いたり、酸洗不良の原因ともなるので、5分以下とす
る。
The hot-rolled sheet annealing temperature is set to Ac 3 point or higher. If the hot-rolled sheet annealing temperature is below the Ac 3 point, the growth of the hot-rolled crystal structure will be insufficient, and a non-oriented electrical steel sheet having excellent magnetic properties cannot be obtained. Therefore, the hot rolled sheet annealing temperature is preferably Ac 3 point or higher. Although the upper limit of the hot-rolled sheet annealing temperature is not set, the upper limit is naturally determined by the capacity of the annealing furnace and the pickling property. The hot-rolled sheet annealing time is 10 seconds or more and 5 minutes or less, preferably 30 seconds or more and 3 minutes or less. If the annealing time is 10 seconds or less, the effect of annealing is insufficient, and if the annealing time is 5 minutes or more, the effect is saturated and the productivity is lowered, or it causes poor pickling.

【0036】熱延板焼鈍時間の製品磁気特性への影響を
調査するために、表1に示した成分および変態点を有す
る無方向性電磁鋼用スラブを通常の方法にて加熱し、熱
延により2.5mmに仕上げた。この熱延板に連続焼鈍炉
を用いて1000℃で均熱時間を変化させて熱延板焼鈍
を施し、700℃までの平均冷却速度を60℃/秒に制
御した。その後、酸洗を施し、冷間圧延により0.50
mmに仕上げた。その後連続焼鈍炉にて730℃で30秒
間焼鈍した。これらの試料からエプスタイン試験片を切
り出し、磁気特性を測定した。図7、図8にそれぞれ熱
延板焼鈍時間と鉄損、磁束密度の関係を示した。
In order to investigate the influence of the annealing time of the hot rolled sheet on the magnetic properties of the product, a slab for non-oriented electrical steel having the components and transformation points shown in Table 1 was heated by a usual method and hot rolled. Finished with 2.5mm. The hot-rolled sheet was annealed at 1000 ° C. by changing the soaking time using a continuous annealing furnace, and the hot-rolled sheet was annealed, and the average cooling rate up to 700 ° C. was controlled at 60 ° C./sec. After that, it is pickled and cold rolled to 0.50.
mm. Then, it was annealed at 730 ° C. for 30 seconds in a continuous annealing furnace. Epstein test pieces were cut out from these samples and the magnetic properties were measured. FIG. 7 and FIG. 8 show the relationship between the annealing time of hot-rolled sheet, iron loss, and magnetic flux density, respectively.

【0037】図7、図8より明らかなように、本発明の
熱延板焼鈍時間の範囲において優れた磁気特性が達成さ
れる。また、熱延板焼鈍時間が5分を超えるものでは、
酸洗不良が発生した。エプスタイン試験片の測定結果で
はさほどの磁気特性の劣化は見られないが、酸洗不良は
鋼板の肌荒れにつながり、無方向性電磁鋼板を回転機等
で実際に使用する際に積層した鉄心の占積率の低下を招
き、性能が悪化するので好ましくない。
As is apparent from FIGS. 7 and 8, excellent magnetic properties are achieved within the range of the hot-rolled sheet annealing time of the present invention. Further, if the hot-rolled sheet annealing time exceeds 5 minutes,
Poor pickling occurred. The measurement results of the Epstein test pieces do not show much deterioration of the magnetic properties, but poor pickling leads to roughening of the steel sheet, and when the non-oriented electrical steel sheet is actually used in a rotating machine, etc. This is not preferable because it leads to a decrease in product ratio and deteriorates performance.

【0038】このようにして得られた熱延板は1回の冷
間圧延と連続焼鈍により製品とする。またさらにスキン
パス圧延工程を付加して製品としてもよい。スキンパス
圧延率は2%未満ではその効果が得られず、20%以上
では磁気特性が悪化するため2%から20%とする。
The hot rolled sheet thus obtained is made into a product by one cold rolling and continuous annealing. Further, a skin pass rolling step may be added to obtain a product. If the skin pass rolling ratio is less than 2%, the effect cannot be obtained, and if the skin pass rolling ratio is 20% or more, the magnetic properties are deteriorated.

【0039】[0039]

【実施例】次に、本発明の実施例について述べる。 〔実施例1〕表2に示した成分および変態点を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、熱延に
より2.5mmに仕上げた。続いてこの熱延板焼鈍を連続
焼鈍炉にて施した。熱延板焼鈍温度は1000℃とし、
いずれの成分系においてもAc3 点以上とした。焼鈍
後、700℃までの平均冷却速度は60℃/秒とした。
その後、酸洗を施し、冷間圧延により0.50mmに仕上
げた。これを連続焼鈍炉にて730℃で30秒間焼鈍し
た。その後、エプスタイン試料に切断し、磁気特性を測
定した。表2に本発明と比較例の成分と磁気測定結果を
あわせて示す。このように鋼の純度を制御すれば、熱延
板焼鈍温度をAc3 点以上にすることにより磁束密度の
値が高く、鉄損値の低い材料を得ることが可能である。
Next, an embodiment of the present invention will be described. [Example 1] A slab for non-oriented electrical steel having the components and transformation points shown in Table 2 was heated by a usual method and hot rolled to a thickness of 2.5 mm. Subsequently, this hot rolled sheet annealing was performed in a continuous annealing furnace. The hot rolled sheet annealing temperature is 1000 ° C,
In any of the component systems, the Ac 3 point or higher was set. After annealing, the average cooling rate up to 700 ° C was 60 ° C / sec.
Then, it was pickled and finished to 0.50 mm by cold rolling. This was annealed at 730 ° C. for 30 seconds in a continuous annealing furnace. Thereafter, the sample was cut into Epstein samples, and the magnetic properties were measured. Table 2 also shows the components of the present invention and comparative examples and the results of magnetic measurement. By controlling the purity of the steel in this way, it is possible to obtain a material having a high magnetic flux density and a low iron loss value by setting the hot-rolled sheet annealing temperature to Ac 3 or higher.

【0040】[0040]

【表2】 [Table 2]

【0041】〔実施例2〕表3に示した成分および変態
点を有する無方向性電磁鋼用スラブを通常の方法にて加
熱し、熱延により2.5mmに仕上げた。この熱延板に連
続焼鈍炉を用いて30秒の熱延板焼鈍を施した。焼鈍温
度はAc1 点以下の850℃とAc3 点以上の1000
℃とし、700℃までの平均冷却速度を60℃/ 秒に制
御した。その後、酸洗を施し、冷間圧延により0.50
mmおよび0.55mmに仕上げた。板厚0.50mmのもの
は連続焼鈍炉にて730℃で30秒間焼鈍した。さら
に、750℃で2時間の需要家相当の焼鈍を施した。ま
た、板厚0.55mmのものは、連続焼鈍炉にて700℃
で20秒焼鈍を施し、圧下率9%のスキンパス圧延によ
り0.50mm厚に仕上げ、750℃2時間の需要家相当
の焼鈍を施した。これらの試料からエプスタイン試験片
を切り出し、磁気特性を測定した。表4、表5に実施例
中で述べた本発明と比較例の熱延板焼鈍温度と磁気測定
結果をあわせて示す。
Example 2 A slab for non-oriented electrical steel having the components and transformation points shown in Table 3 was heated by a usual method and hot rolled to a thickness of 2.5 mm. The hot rolled sheet was annealed for 30 seconds using a continuous annealing furnace. The annealing temperature is 850 ° C below the Ac 1 point and 1000 above the Ac 3 point.
C., and the average cooling rate up to 700.degree. C. was controlled at 60.degree. C./sec. After that, it is pickled and cold rolled to 0.50.
mm and 0.55 mm. A sheet having a thickness of 0.50 mm was annealed at 730 ° C. for 30 seconds in a continuous annealing furnace. Furthermore, it was annealed at 750 ° C. for 2 hours corresponding to the consumer. In addition, a sheet with a thickness of 0.55 mm is 700 ° C in a continuous annealing furnace.
The sheet was annealed for 20 seconds at 20 ° C., finished by skin pass rolling with a reduction rate of 9% to a thickness of 0.50 mm, and annealed at 750 ° C. for 2 hours corresponding to a consumer. Epstein test pieces were cut out from these samples and the magnetic properties were measured. Tables 4 and 5 show the annealing temperature and magnetic measurement results of the hot rolled sheet of the present invention and comparative examples described in the examples.

【0042】[0042]

【表3】 [Table 3]

【0043】[0043]

【表4】 [Table 4]

【0044】[0044]

【表5】 [Table 5]

【0045】このように熱延板焼鈍温度をAc3 点以上
にとることにより、1回法、スキンパス圧延法とも磁束
密度の値が高く、鉄損値の低い材料が得られることがわ
かる。
As described above, by setting the annealing temperature of the hot-rolled sheet to the Ac 3 point or higher, it can be seen that a material having a high magnetic flux density and a low iron loss value can be obtained by both the single pass method and the skin pass rolling method.

【0046】〔実施例3〕表6に示した成分および変態
点を有する無方向性電磁鋼用スラブを通常の方法にて加
熱し、熱延により2.5mmに仕上げた。この熱延板に連
続焼鈍炉を用いて1000℃で均熱時間を変化させて熱
延板焼鈍を施し、700℃までの平均冷却速度を60℃
/ 秒に制御した。その後、酸洗を施し、冷間圧延により
0.50mmに仕上げた。その後連続焼鈍炉にて730℃
で30秒間焼鈍した。さらに、750℃で2時間の需要
家相当の焼鈍を施した。これらの試料からエプスタイン
試験片を切り出し、磁気特性を測定した。表7に実施例
中で述べた本発明と比較例の熱延板焼鈍温度と磁気測定
結果をあわせて示す。
Example 3 A slab for non-oriented electrical steel having the components and transformation points shown in Table 6 was heated by a usual method and hot rolled to a thickness of 2.5 mm. This hot-rolled sheet was annealed at a temperature of 1000 ° C. using a continuous annealing furnace to anneal the hot-rolled sheet, and the average cooling rate up to 700 ° C. was 60 ° C.
Controlled to / sec. Then, it was pickled and finished to 0.50 mm by cold rolling. Then in a continuous annealing furnace at 730 ℃
For 30 seconds. Furthermore, it was annealed at 750 ° C. for 2 hours corresponding to the consumer. Epstein test pieces were cut out from these samples and the magnetic properties were measured. Table 7 shows the hot-rolled sheet annealing temperature and magnetic measurement results of the present invention and comparative examples described in the examples.

【0047】[0047]

【表6】 [Table 6]

【0048】[0048]

【表7】 [Table 7]

【0049】表7に示されたとおり、熱延板焼鈍時間が
10秒以下では熱延板の結晶組織の成長が不十分であり
製品磁気特性の改善が不十分である。また、熱延板焼鈍
時間が5分を超えるものでは、酸洗不良が発生した。エ
プスタイン試験の結果ではさほどの磁気特性の劣化は見
られないが、酸洗不良は鋼板の肌荒れにつながり、無方
向性電磁鋼板を回転機等で実際に使用する際に積層した
鉄心の占積率の低下を招き、性能が悪化するので好まし
くない。以上のように熱延板焼鈍時間を10秒以上5分
以下にとることにより、磁束密度の値が高く、鉄損値の
低い材料が得られることがわかる。
As shown in Table 7, when the hot rolled sheet annealing time is 10 seconds or less, the growth of the crystal structure of the hot rolled sheet is insufficient and the improvement of the magnetic properties of the product is insufficient. If the hot-rolled sheet annealing time exceeds 5 minutes, poor pickling occurred. Although the Epstein test results do not show much deterioration in magnetic properties, poor pickling leads to roughening of the steel sheet, and the space factor of the iron core laminated when the non-oriented electrical steel sheet is actually used in a rotating machine, etc. Is deteriorated and the performance is deteriorated, which is not preferable. As described above, by setting the annealing time of the hot rolled sheet to 10 seconds or more and 5 minutes or less, it is found that a material having a high magnetic flux density and a low iron loss value can be obtained.

【0050】[0050]

【発明の効果】以上のように本発明によれば、磁束密度
が高く鉄損の低い、磁気特性の優れた無方向性電磁鋼板
を製造することが可能である。
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss and excellent magnetic properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】熱延板焼鈍温度と熱延板結晶粒径との関係を示
す図。
FIG. 1 is a diagram showing a relationship between a hot rolled sheet annealing temperature and a hot rolled sheet crystal grain size.

【図2】熱延板焼鈍温度と製品鉄損との関係を示す図。FIG. 2 is a diagram showing the relationship between hot-rolled sheet annealing temperature and product iron loss.

【図3】熱延板焼鈍温度と製品磁束密度との関係を示す
図。
FIG. 3 is a diagram showing a relationship between a hot rolled sheet annealing temperature and a product magnetic flux density.

【図4】熱延板焼鈍後の冷却速度と熱延板結晶粒径との
関係を示す図。
FIG. 4 is a diagram showing the relationship between the cooling rate after hot-rolled sheet annealing and the crystal grain size of the hot-rolled sheet.

【図5】熱延板焼鈍後の冷却速度と製品鉄損との関係を
示す図。
FIG. 5 is a diagram showing a relationship between a cooling rate after hot-rolled sheet annealing and product iron loss.

【図6】熱延板焼鈍後の冷却速度と製品磁束密度との関
係を示す図。
FIG. 6 is a diagram showing a relationship between a cooling rate after hot-rolled sheet annealing and a product magnetic flux density.

【図7】熱延板焼鈍時間と製品鉄損との関係を示す図。FIG. 7 is a diagram showing the relationship between hot-rolled sheet annealing time and product iron loss.

【図8】熱延板焼鈍時間と製品磁束密度との関係を示す
図。
FIG. 8 is a diagram showing a relationship between hot-rolled sheet annealing time and product magnetic flux density.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鋼中に重量%で、 0.10%≦Si≦2.50%、 C≦0.0025%、 N≦0.0020%、 S≦0.0020%、 Ti≦0.0030%、 Nb≦0.0030%、 V≦0.0050%、 As≦0.0030%を満足し、残部がFeおよび不可
避的不純物からなるαγ変態を有する成分のスラブを用
い、熱間圧延して熱延板とし、熱延板焼鈍および1回の
冷間圧延工程を施し、次いで仕上げ焼鈍を施す無方向性
電磁鋼板の製造方法において、熱延板焼鈍をAc3 点以
上の温度域で10秒〜5分の間実施することを特徴とす
る無方向性電磁鋼板の製造方法。
1. By weight% in steel, 0.10% ≦ Si ≦ 2.50%, C ≦ 0.0025%, N ≦ 0.0020%, S ≦ 0.0020%, Ti ≦ 0.0030 %, Nb ≤ 0.0030%, V ≤ 0.0050%, As ≤ 0.0030%, and the remaining part is Fe and unavoidable impurities. In a method for producing a non-oriented electrical steel sheet, which is a hot-rolled sheet, subjected to hot-rolled sheet annealing and one cold rolling step, and then subjected to finish annealing, hot-rolled sheet annealing is performed for 10 seconds in a temperature range of Ac 3 points or more. A method for manufacturing a non-oriented electrical steel sheet, which is performed for up to 5 minutes.
【請求項2】 鋼中に重量%で、 0.10%≦Si≦2.50%、 Mn,Alの少なくとも1種であって0.10%≦Al
≦1.00%、 0.10%≦Mn≦2.00%とし、 かつ、SiとAlの合計量がSi+2Al≦2.50%
であり、 C≦0.0025%、 N≦0.0020%、 S≦0.0020%、 Ti≦0.0030%、 Nb≦0.0030%、 V≦0.0050%、 As≦0.0030%を満足し、残部がFeおよび不可
避的不純物からなるαγ変態を有する成分のスラブを用
い、熱間圧延して熱延板とし、熱延板焼鈍および1回の
冷間圧延工程を施し、次いで仕上げ焼鈍を施す無方向性
電磁鋼板の製造方法において、熱延板焼鈍をAc3 点以
上の温度域で10秒〜5分の間実施することを特徴とす
る無方向性電磁鋼板の製造方法。
2. In the steel, 0.10% ≦ Al ≦ 0.10% ≦ Si ≦ 2.50%, and at least one of Mn and Al, and 0.10% ≦ Al.
≦ 1.00%, 0.10% ≦ Mn ≦ 2.00%, and the total amount of Si and Al is Si + 2Al ≦ 2.50%
C ≦ 0.0025%, N ≦ 0.0020%, S ≦ 0.0020%, Ti ≦ 0.0030%, Nb ≦ 0.0030%, V ≦ 0.0050%, As ≦ 0.0030 %, With the balance being Fe and an unavoidable impurity and having a component having an αγ transformation, hot-rolled into a hot-rolled sheet, subjected to hot-rolled sheet annealing and one cold rolling step, and then A method for producing a non-oriented electrical steel sheet, comprising performing hot-rolled sheet annealing in a temperature range of Ac 3 or higher for 10 seconds to 5 minutes in the method for producing a non-oriented electrical steel sheet subjected to finish annealing.
JP28228995A 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss Expired - Lifetime JP3348811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28228995A JP3348811B2 (en) 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28228995A JP3348811B2 (en) 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Publications (2)

Publication Number Publication Date
JPH09125145A true JPH09125145A (en) 1997-05-13
JP3348811B2 JP3348811B2 (en) 2002-11-20

Family

ID=17650493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28228995A Expired - Lifetime JP3348811B2 (en) 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JP3348811B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298935A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Method for producing non-oriented silicon steel sheet excellent in whole peripheral magnetic characteristic and punch-out workability
US8052811B2 (en) * 2006-10-23 2011-11-08 Nippon Steel Corporation Method of producing non-oriented electrical steel sheet excellent in magnetic properties
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298935A (en) * 2004-04-14 2005-10-27 Nippon Steel Corp Method for producing non-oriented silicon steel sheet excellent in whole peripheral magnetic characteristic and punch-out workability
JP4551110B2 (en) * 2004-04-14 2010-09-22 新日本製鐵株式会社 Method for producing non-oriented electrical steel sheet
US8052811B2 (en) * 2006-10-23 2011-11-08 Nippon Steel Corporation Method of producing non-oriented electrical steel sheet excellent in magnetic properties
EP2975152A4 (en) * 2013-03-13 2016-04-06 Jfe Steel Corp Non-directional electromagnetic steel plate with excellent magnetic characteristics
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties

Also Published As

Publication number Publication date
JP3348811B2 (en) 2002-11-20

Similar Documents

Publication Publication Date Title
US7846271B2 (en) Non-oriented electrical steel sheets with excellent magnetic properties and method for manufacturing the same
US5116435A (en) Method for producing non-oriented steel sheets
JP2000219917A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2000219916A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP4281119B2 (en) Manufacturing method of electrical steel sheet
KR100192841B1 (en) Non-oriented magnetic steel plate and its production method
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH06192731A (en) Production of non-oriented electrical steel sheet high in magnetic flux density and low in core loss
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
KR100256356B1 (en) The manufacturing method for non-oriented electrical steel sheet
JP3369371B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JP2023508294A (en) Non-oriented electrical steel sheet and manufacturing method thereof
JPH10273724A (en) Manufacture of nonoriented silicon steel sheet with high magnetic flux density and low iron loss
JPH07331331A (en) Production of nonoriented silicon steel sheet extremely excellent in magnetic property
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss
JPH01306524A (en) Production of non-oriented electrical sheet having high magnetic flux density
JP2000096145A (en) Manufacture of nonoriented silicon steel sheet with uniform magnetic property

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020730

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070913

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080913

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090913

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100913

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110913

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120913

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130913

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term