JP3379058B2 - Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss - Google Patents

Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Info

Publication number
JP3379058B2
JP3379058B2 JP28228895A JP28228895A JP3379058B2 JP 3379058 B2 JP3379058 B2 JP 3379058B2 JP 28228895 A JP28228895 A JP 28228895A JP 28228895 A JP28228895 A JP 28228895A JP 3379058 B2 JP3379058 B2 JP 3379058B2
Authority
JP
Japan
Prior art keywords
hot
electrical steel
oriented electrical
steel sheet
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28228895A
Other languages
Japanese (ja)
Other versions
JPH09125144A (en
Inventor
竜太郎 川又
猛 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP28228895A priority Critical patent/JP3379058B2/en
Publication of JPH09125144A publication Critical patent/JPH09125144A/en
Application granted granted Critical
Publication of JP3379058B2 publication Critical patent/JP3379058B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、電気機器の鉄心材
料として用いられる、磁束密度が高く、鉄損が低い優れ
た磁気特性を有する無方向性電磁鋼板の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a non-oriented electrical steel sheet having excellent magnetic characteristics, which has a high magnetic flux density and a low iron loss, which is used as an iron core material for electric equipment.

【0002】[0002]

【従来の技術】近年、電気機器、特に無方向性電磁鋼板
がその鉄心材料として使用される回転機および中、小型
変圧器等の分野においては、世界的な電力、エネルギー
節減、さらにはフロンガス規制等の地球環境保全の動き
の中で、高効率化の動きが急速に広まりつつある。この
ため、無方向性電磁鋼板に対しても、その特性向上、す
なわち、高磁束密度かつ低鉄損化への要請がますます強
まってきている。
2. Description of the Related Art In recent years, in the field of electric machines, especially rotating machines and non-oriented electrical steel sheets used as iron core materials thereof, and small and medium-sized transformers, world-wide power and energy saving, and CFC regulation. In the movement of global environment conservation such as the above, the movement for higher efficiency is spreading rapidly. Therefore, there is an increasing demand for non-oriented electrical steel sheets to improve their properties, that is, to have high magnetic flux density and low iron loss.

【0003】ところで、無方向性電磁鋼板においては、
従来、低鉄損化の手段として一般に、電気抵抗増大によ
る渦電流損低減の観点からSiあるいはAl等の含有量
を高める方法がとられてきた。しかし、この方法では反
面、磁束密度の低下は避け得ないという問題点があっ
た。このような問題点の克服のために、熱延板結晶粒径
を粗大化することで磁束密度と鉄損の両方を改善させる
方法が行われてきた。
By the way, in the non-oriented electrical steel sheet,
Conventionally, a method of increasing the content of Si, Al, or the like has been generally used as a means for reducing iron loss from the viewpoint of reducing eddy current loss due to increase in electrical resistance. However, this method, on the other hand, has a problem that the decrease in magnetic flux density cannot be avoided. In order to overcome such a problem, a method of improving both the magnetic flux density and the iron loss by coarsening the crystal grain size of the hot rolled sheet has been used.

【0004】従来、変態を有する無方向性電磁鋼板にお
いては、α域の上限付近において熱延を終了することに
より冷延前結晶粒径を確保し、結果として成品の磁束密
度、鉄損を向上させることが行われてきた。このような
観点から、特開昭56−38420号公報には熱延終了
温度をAr3 点とAr1 点の中間温度以下として680
℃以上の温度で巻き取ることにより熱延結晶組織の粗大
化を図る方法が開示されている。しかしながら、熱延終
了温度がγ域に上昇することは、熱延終了後にα相への
変態が進行することから熱延組織が細粒化し、結果とし
て磁気特性が悪化するため、避けるべき事とされてき
た。
Conventionally, in a non-oriented electrical steel sheet having a transformation, the hot rolling is terminated near the upper limit of the α range to secure the grain size before cold rolling, and as a result, the magnetic flux density and iron loss of the product are improved. Things have been done. From this point of view, Japanese Patent Laid-Open No. 56-38420 discloses that the hot rolling end temperature is 680 or lower between the Ar 3 point and the Ar 1 point.
A method for coarsening a hot rolled crystal structure by winding at a temperature of ℃ or more is disclosed. However, increasing the hot rolling finish temperature to the γ range should be avoided because the hot rolling structure becomes finer due to the progress of the transformation to the α phase after the hot rolling and the magnetic properties deteriorate as a result. It has been.

【0005】一方、実際の仕上熱延機においては、噛み
込み時の圧延速度と定常圧延状態の圧延速度が必然的に
異なることから、コイル長手方向の温度分布を解消する
ことが困難であり、α域の上限にて熱延を実施するため
には、圧延設定温度を低くせざるを得ないという不利益
があった。
On the other hand, in an actual finishing hot rolling machine, since the rolling speed at the time of biting and the rolling speed in the steady rolling state are necessarily different, it is difficult to eliminate the temperature distribution in the coil longitudinal direction, In order to carry out hot rolling at the upper limit of the α range, there was the disadvantage that the rolling set temperature had to be lowered.

【0006】また、一般的な無方向性電磁鋼板の低級品
ではそのAr1 変態点が860℃付近であることから、
熱延終了温度を上昇させて熱延結晶組織の成長を図るこ
とに限度があり、冷延前結晶組織の増大による磁気特性
の向上には限界があった。
Further, since the Ar 1 transformation point of a low-grade general non-oriented electrical steel sheet is around 860 ° C.,
There is a limit in increasing the hot rolling end temperature to grow the hot rolled crystal structure, and there is a limit in improving the magnetic properties by increasing the crystal structure before cold rolling.

【0007】このような制御熱延による冷延前結晶組織
粗大化の限界を打破する技術として、特開昭57−35
628号公報には熱延終了温度をAr3 点以上として熱
延結晶組織の細粒化を図った上でAr3 点以下の温度で
熱延板焼鈍を施し、冷延前結晶組織の粗大化を図る方法
が開示されている。また、熱延板焼鈍工程追加によるコ
ストアップ上昇を抑え、冷延前結晶組織の粗大化を図る
手法として、高温で熱延板を巻取り、これをコイルの保
有熱で焼鈍する自己焼鈍法が特開昭54−76422号
公報、特開昭58−136718号公報に開示されてい
る。
As a technique for overcoming the limit of coarsening of the crystal structure before cold rolling by such controlled hot rolling, Japanese Patent Application Laid-Open No. 57-35 is known.
In Japanese Patent No. 628, the hot rolling end temperature is set to Ar 3 point or higher to make the hot rolled crystal structure finer, and then the hot rolled sheet is annealed at a temperature of Ar 3 point or lower to coarsen the crystal structure before cold rolling. A method for achieving the above is disclosed. Also, as a method of suppressing the increase in cost due to the addition of the hot-rolled sheet annealing step and coarsening the crystal structure before cold rolling, there is a self-annealing method in which the hot-rolled sheet is wound at high temperature and annealed by the heat retained by the coil. It is disclosed in JP-A-54-76422 and JP-A-58-136718.

【0008】しかしながら熱延板焼鈍工程を追加するこ
とは製造コストの増加を招くため好ましくなく、変態を
有するローグレード無方向性電磁鋼板においては実際に
は殆ど実施されていない。また、自己焼鈍法においては
コイルを高温で巻き取ることによるコイル内温度不均一
によるコイル長手方向の磁気特性の変動が問題であっ
た。
However, the addition of the hot-rolled sheet annealing step is not preferable because it causes an increase in manufacturing cost, and it is practically not performed in the low grade non-oriented electrical steel sheet having a transformation. Further, in the self-annealing method, there has been a problem that the magnetic characteristics in the longitudinal direction of the coil fluctuate due to the non-uniform temperature inside the coil caused by winding the coil at high temperature.

【0009】一方で、鉄損低減の為に、単にSiあるい
はAl等の含有量を高めるのみではなく、特公平6−8
0169号公報に記載されているように、Mn及びSの
低減による高純度鋼化により析出物の無害化を図る方法
が開示されている。しかしながら鋼の高純化のみでは上
述のごとき制御熱延による冷延前結晶組織粗大化の限界
を打破することが出来ず、高磁束密度化には限界があっ
た。
On the other hand, in order to reduce iron loss, not only is the content of Si or Al, etc. increased, but also Japanese Patent Publication No. 6-8
As described in Japanese Patent No. 0169, there is disclosed a method of making a precipitate harmless by making high purity steel by reducing Mn and S. However, only the high-purification of steel cannot break the limit of coarsening of the crystal structure before cold rolling by the controlled hot rolling as described above, and there is a limit to the high magnetic flux density.

【0010】一次再結晶集合組織を改善することで無方
向性電磁鋼板の磁気特性を改善する方法として、特開昭
55−158252号公報のごとくSn添加、特開昭6
2−180014号公報のごときSn,Cu添加、もし
くは特開昭59−100217号公報のごときSb添加
による集合組織の改善による磁気特性の優れた無方向性
電磁鋼板の製造方法が開示されているが、集合組織制御
元素であるSn, CuもしくはSb等の添加コストは決
して低いものではなく、低コストな無方向性電鋼板の製
造方法の提供には限界があった。
As a method for improving the magnetic properties of a non-oriented electrical steel sheet by improving the primary recrystallization texture, Sn addition as disclosed in JP-A-55-158252 and JP-A-6-58252 is disclosed.
There is disclosed a method for producing a non-oriented electrical steel sheet having excellent magnetic properties by improving the texture by adding Sn, Cu as in JP-A 2-180014 or by adding Sb as in JP-A-59-100217. However, the addition cost of Sn, Cu, Sb, etc., which is a texture control element, is not low at all, and there has been a limit to the provision of a low-cost method for producing a non-oriented electrical steel sheet.

【0011】また、特開昭57−35626号公報に記
載されているような仕上げ焼鈍サイクルの工夫等の製造
プロセス上の処置もなされてきたが、いずれも低鉄損化
は図られても、磁束密度についてはそれほどの効果はな
かった。
In addition, although measures in the manufacturing process such as devising a finish annealing cycle as described in JP-A-57-35626 have been taken, even if the iron loss is reduced in any case, There was not much effect on the magnetic flux density.

【0012】このように、従来技術では、磁束密度が高
くかつ鉄損が低い無方向性電磁鋼板を製造できるには至
らず、無方向性電磁鋼板に対する前記の要請に応えるこ
とは出来なかった。
As described above, the prior art has not been able to manufacture a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss, and has not been able to meet the above-mentioned demand for a non-oriented electrical steel sheet.

【0013】[0013]

【発明が解決しようとする課題】本発明は、従来技術に
おけるこのような問題点を解決し、高磁束密度かつ低鉄
損の無方向性電磁鋼板を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems in the prior art and to provide a non-oriented electrical steel sheet having a high magnetic flux density and a low iron loss.

【0014】[0014]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、以下の通りである。すなわち、 (1) 鋼中に重量%で、 0.10%≦Si≦2.50%、 C≦0.0025
%、 N≦0.0020%、 S≦0.0020
%、 Ti≦0.0030%、 Nb≦0.0030
%、 V≦0.0050%、 As≦0.0030
% を満足し、残部がFeおよび不可避的不純物からなるα
γ変態を有する成分のスラブを用い、熱間圧延し熱延板
とし、1回の冷間圧延工程を施し次いで仕上げ焼鈍を施
す無方向性電磁鋼板の製造方法において、熱延終了温度
をAr3 点以上の温度域とすることを特徴とする無方向
性電磁鋼板の製造方法であり、また、 (2) 鋼中に重量%で、 0.10%≦Si≦2.50%、 Mn,Alの少なくとも1種であって0.10%≦Al
≦1.00%、 0.10%≦Mn≦2.00%とし、 かつ、SiとAlの合計量がSi+2Al≦2.50%
であり、 C≦0.0025%、 N≦0.0020
%、 S≦0.0020%、 Ti≦0.0030
%、 Nb≦0.0030%、 V≦0.0050
%、 As≦0.0030% を満足し、残部がFeおよび不可避的不純物からなるα
γ変態を有する成分のスラブを用い、熱間圧延し熱延板
とし、1回の冷間圧延工程を施し次いで仕上げ焼鈍を施
す無方向性電磁鋼板の製造方法において、熱延終了温度
をAr3 点以上の温度域とすることを特徴とし、 (3) さらに上記の各々の発明において、巻取温度を68
0℃以上とすること、或いは仕上げ焼鈍後さらにスキン
パス圧延工程を施すことである。
The gist of the present invention is as follows. That is, (1) in steel, in weight%, 0.10% ≦ Si ≦ 2.50%, C ≦ 0.0025
%, N ≦ 0.0020%, S ≦ 0.0020
%, Ti ≦ 0.0030%, Nb ≦ 0.0030
%, V ≦ 0.0050%, As ≦ 0.0030
%, With the balance being Fe and inevitable impurities α
Using a slab with a γ-transformed component, hot rolling it into a hot-rolled sheet, subjecting it to one cold rolling step followed by finish annealing.
In the method for producing a non- oriented electrical steel sheet, the hot rolling finish temperature is set to a temperature range of Ar 3 points or higher, and the non-oriented electrical steel sheet is produced in the following manner. %, 0.10% ≦ Si ≦ 2.50%, at least one of Mn and Al and 0.10% ≦ Al
≦ 1.00%, 0.10% ≦ Mn ≦ 2.00%, and the total amount of Si and Al is Si + 2Al ≦ 2.50%
And C ≦ 0.0025%, N ≦ 0.0020
%, S ≦ 0.0020%, Ti ≦ 0.0030
%, Nb ≦ 0.0030%, V ≦ 0.0050
%, As ≦ 0.0030%, and the balance α consisting of Fe and unavoidable impurities
using slab component having a γ transformation, the hot rolling hot rolled sheet, in the manufacturing method of the non-oriented electrical steel sheet subjected to subjected then finish annealing the single cold rolling step, the hot rolling finishing temperature Ar 3 (3) Furthermore, in each of the above inventions, the winding temperature is 68
0 ℃ or more, or skin after finishing annealing
A pass rolling process is performed .

【0015】[0015]

【発明の実施の形態】以下に、本発明を詳細に説明す
る。発明者らは、低鉄損と高磁束密度を同時に達成すべ
く従来技術における問題点を鋭意検討を重ねた結果、変
態を有する無方向性電磁鋼板にあって、Siを0.1%
〜2.5%、Alを0.1%〜1.0%、Mnを0.1
%〜2.0%含有しαγ変態を有する鋼にあって、C,
SおよびN含有量を低減し、さらに、Ti,V,Nb,
As含有量をも同時に低減することにより高純度鋼化す
れば、仕上熱延の終了温度をAr3 点以上の温度域とし
ても、熱延結晶組織を粗大化し、磁束密度が高く鉄損の
低い無方向性電磁鋼板を製造することが可能であること
を見出し発明に至った。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is described in detail below. As a result of intensive studies of the problems in the prior art in order to simultaneously achieve low iron loss and high magnetic flux density, the inventors have found that in a non-oriented electrical steel sheet having a transformation, Si is 0.1%.
~ 2.5%, Al 0.1% to 1.0%, Mn 0.1
% To 2.0% of the steel with αγ transformation, C,
S and N contents are reduced, and Ti, V, Nb,
If a high-purity steel is obtained by simultaneously reducing the As content, the hot-rolled crystal structure is coarsened and the magnetic flux density is high and the iron loss is low even if the finish hot-rolling end temperature is set to a temperature range of Ar 3 or higher. The inventors have found that it is possible to manufacture a non-oriented electrical steel sheet and have completed the invention.

【0016】無方向性電磁鋼板の磁気特性は冷延前結晶
組織を粗大化することで改善することが可能である。こ
のため従来、仕上熱延において熱延終了温度を上昇させ
て熱延組織の粗大化を図り、製品の磁束密度を高め、鉄
損を低減させることが行われてきた。しかしながら熱延
終了温度を上昇させてα+γ2相域もしくはγ域に達す
ると、熱延終了後にγ相からα相への変態が進行するこ
とから熱延組織が細粒化し、結果として磁気特性が悪化
するため、避けるべき事とされてきた。このため、αγ
変態を有する無方向性電磁鋼板ではα域の上限にて熱延
を実施することが必須であるとされてきたが、Si含有
量の少ない無方向性電磁鋼板の低級品ではそのAr1
態点が900℃以下であることから、熱延終了温度の上
昇による熱延結晶組織の粗大化には限度があり、結果と
して磁気特性の向上には限界があった。
The magnetic properties of the non-oriented electrical steel sheet can be improved by coarsening the crystal structure before cold rolling. Therefore, conventionally, in finish hot rolling, the hot rolling end temperature is raised to coarsen the hot rolled structure, increase the magnetic flux density of the product, and reduce the iron loss. However, when the hot rolling finish temperature is raised to reach the α + γ2 phase region or γ region, the transformation from the γ phase to the α phase progresses after the hot rolling is completed, and the hot rolled structure becomes fine-grained, resulting in poor magnetic properties. Because of this, it has been said to be something that should be avoided. Therefore, αγ
It has been said that it is indispensable to carry out hot rolling in the upper limit of the α range in the non-oriented electrical steel sheet having a transformation, but in the low-grade non-oriented electrical steel sheet having a low Si content, the Ar 1 transformation point Is 900 ° C. or less, there is a limit to the coarsening of the hot rolled crystal structure due to an increase in the hot rolling end temperature, and as a result, there is a limit to the improvement of magnetic properties.

【0017】発明者等は従来のこのような変態を有する
無方向性電磁鋼板の制御熱延の限界を打破すべく鋭意検
討を進めた結果、変態を有する無方向性電磁鋼板にあっ
て、Siを0.1%〜2.5%、Alを0.10%〜
1.0%、Mnを0.10%〜2.0%含有しαγ変態
を有する鋼にあって、C,SおよびN含有量を低減し、
さらに、Ti,V,Nb,As含有量をも同時に低減す
ることにより高純度鋼化すれば、熱延終了温度をγ域ま
で高めても変態後のα相の結晶組織が細粒化せず、熱延
終了温度の上昇に伴って熱延結晶組織が粗大化するとい
う全く新規な知見を見出した。このような方法により得
られた熱延板を出発材とすることにより、仕上げ焼鈍後
の製品における磁束密度が極めて高く、鉄損が良好な
(鉄損値が低い)無方向性電磁鋼板を安価に製造するこ
とに成功した。
The inventors of the present invention have conducted extensive studies to overcome the limit of the control hot rolling of conventional non-oriented electrical steel sheets having such transformation, and as a result, in the non-oriented electrical steel sheet having transformations, Si 0.1% to 2.5%, Al 0.10% to
In a steel containing 1.0% and 0.10% to 2.0% of Mn and having an αγ transformation, the contents of C, S and N are reduced,
Further, if the Ti, V, Nb, As contents are simultaneously reduced to obtain a high-purity steel, even if the hot rolling end temperature is increased to the γ range, the crystal structure of the α phase after transformation does not become fine grain. We have found a completely new finding that the hot-rolled crystal structure becomes coarser as the hot-rolling end temperature rises. By using the hot-rolled sheet obtained by such a method as the starting material, the magnetic flux density in the product after finish annealing is extremely high, and the non-oriented electrical steel sheet with good iron loss (low iron loss value) is inexpensive. Succeeded in manufacturing.

【0018】まず、成分について説明すると、Siは鋼
板の固有抵抗を増大させ渦流損を低減させ、鉄損値を改
善するために添加される。Si含有量が0.10%未満
であると固有抵抗が十分に得られないので0.10%以
上添加する必要がある。一方、Si含有量が2.50%
を超えるとαγ変態を生じなくなるので2.50%以下
とする必要がある。
First, the components will be described. Si is added to increase the specific resistance of the steel sheet, reduce the eddy current loss, and improve the iron loss value. If the Si content is less than 0.10%, a sufficient specific resistance cannot be obtained, so it is necessary to add 0.10% or more. On the other hand, the Si content is 2.50%
.Alpha..gamma.

【0019】Alも、Siと同様に、鋼板の固有抵抗を
増大させ渦電流損を低減させる効果を有する。このため
には、0.10%以上添加する必要がある。一方、Al
含有量が1.00%を超えると、磁束密度が低下し、コ
スト高ともなるので1.00%以下とする。さらに、
(Si+2Al)が2.50%を超えると、αγ変態を
生じなくなるので、(Si+2Al)≦2.50%でな
くてはならない。また、鋼中のAl含有量が0.10%
未満であっても本発明の効果はなんら損なわれるもので
はない。
Al, like Si, also has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. For this purpose, it is necessary to add 0.10% or more. On the other hand, Al
If the content exceeds 1.00%, the magnetic flux density decreases and the cost also increases, so the content is made 1.00% or less. further,
If (Si + 2Al) exceeds 2.50%, αγ transformation does not occur, so (Si + 2Al) ≦ 2.50% must be satisfied. Also, the Al content in the steel is 0.10%
Even if it is less than the above, the effect of the present invention is not impaired at all.

【0020】Mnは、Al,Siと同様に鋼板の固有抵
抗を増大させ渦電流損を低減させる効果を有する。この
ため、Mn含有量は0.10%以上とする必要がある。
一方、Mn含有量が2.0%を超えると熱延時の変形抵
抗が増加し熱延が困難となるとともに、熱延後の結晶組
織が微細化しやすくなり、製品の磁気特性が悪化するの
で、Mn含有量は2.0%以下とする必要がある。
Mn, like Al and Si, has the effect of increasing the specific resistance of the steel sheet and reducing eddy current loss. Therefore, the Mn content needs to be 0.10% or more.
On the other hand, if the Mn content exceeds 2.0%, the deformation resistance during hot rolling increases and hot rolling becomes difficult, and the crystal structure after hot rolling tends to become finer, which deteriorates the magnetic properties of the product. The Mn content needs to be 2.0% or less.

【0021】C含有量の制御は本発明の成分規定の肝要
な点であり、0.0025%以下に制御することが必要
である。C含有量が0.0025%を超えると、熱延後
のα+γ域もしくはγ域からα相への変態により結晶組
織が細粒化するため、0.0025%以下とする必要が
ある。
The control of the C content is an essential point of the component definition of the present invention, and it is necessary to control it to 0.0025% or less. If the C content exceeds 0.0025%, the crystal structure becomes finer due to the α + γ region after hot rolling or the transformation from the γ region to the α phase, so the content must be 0.0025% or less.

【0022】S,Nは熱間圧延工程におけるスラブ加熱
中に一部再固溶し、熱間圧延中にMnS等の硫化物、A
lN等の窒化物を形成する。これらが存在することによ
り熱延後のγ相からα相への変態時にα相の核を提供す
ると共に変態後のα相結晶組織の粒成長を妨げるためそ
の含有量は共に0.0020%以下とする必要がある。
S and N are partially re-dissolved during heating of the slab in the hot rolling process, and sulfides such as MnS and A during hot rolling.
Form a nitride such as 1N. The presence of these elements provides nuclei of the α phase during the transformation from the γ phase to the α phase after hot rolling, and prevents the grain growth of the α phase crystal structure after transformation, so that their content is both 0.0020% or less. And need to.

【0023】また、Ti含有量、V含有量、Nb含有量
がそれぞれ0.0030%、0.0030%、0.00
50%を超えるとTiN,VN,NbN等の窒化物の析
出が顕著となり、熱延結晶組織の粗大化が阻害されると
ともに仕上焼鈍工程での結晶粒成長が阻害され磁気特性
が悪化する。このため、Ti含有量、V含有量、Nb含
有量はそれぞれ0.0030%以下、0.0030%以
下、0.0050%以下とする必要がある。
Further, the Ti content, V content, and Nb content are 0.0030%, 0.0030%, and 0.00, respectively.
If it exceeds 50%, precipitation of nitrides such as TiN, VN, NbN becomes remarkable, coarsening of the hot rolled crystal structure is hindered, and crystal grain growth in the finish annealing step is hindered to deteriorate magnetic properties. Therefore, the Ti content, V content, and Nb content must be 0.0030% or less, 0.0030% or less, and 0.0050% or less, respectively.

【0024】さらに、結晶粒成長を阻害する析出物の形
成に影響を及ぼす要因として、As含有量を抑制する必
要がある。Asは、それ自体では、本発明の成分範囲内
の鋼では、上記の硫化物や窒化物等の析出物を形成する
ことは無い。しかし、鋼中に、一定量以上のAsが含有
されると、硫化物サイズが微細になるため、熱延結晶組
織の粗大化を著しく阻害する。このような観点から、A
s含有量は0.0030%以下にする必要がある。
Further, the As content must be suppressed as a factor that influences the formation of precipitates that inhibit crystal grain growth. As, by itself, does not form precipitates such as the above-mentioned sulfides and nitrides in the steel within the composition range of the present invention. However, when a certain amount of As or more is contained in the steel, the sulfide size becomes fine, so that the coarsening of the hot rolled crystal structure is significantly hindered. From this perspective, A
The s content must be 0.0030% or less.

【0025】また、製品の機械的特性の向上、磁気的特
性、耐錆性の向上あるいはその他の目的のために、P,
B,Ni,Cr,Sb,Sn,Cuの1種または2種以
上を鋼中に含有させても本発明の効果は損なわれない。
例えばPは、製品の打ち抜き性を良好ならしめるために
0.1%までの範囲内において添加される。P≦0.2
%であれば、製品の磁気特性の観点から問題がない。B
は熱間圧延時にBNを形成させてAlNの微細析出を妨
げ、Nを無害化させるために添加される。B含有量はN
との量のバランスが必要であり、その含有量は両者の比
B%/N%が0.5から1.5の範囲を満たすことが好
ましい。
In order to improve the mechanical characteristics of the product, the magnetic characteristics, the rust resistance, or other purposes, P,
Even if one or more of B, Ni, Cr, Sb, Sn, and Cu are contained in the steel, the effect of the present invention is not impaired.
For example, P is added within the range of up to 0.1% in order to improve the punchability of the product. P ≦ 0.2
%, There is no problem from the viewpoint of magnetic properties of the product. B
Is added in order to form BN during hot rolling to prevent fine precipitation of AlN and render N harmless. B content is N
It is necessary to balance the amount of B and N, and the content thereof preferably satisfies the ratio of both B% / N% of 0.5 to 1.5.

【0026】次に本発明のプロセス条件について説明す
る。従来の技術においては熱延板すなわち冷延前の結晶
粒径を極力粗大化することに主眼がおかれており、熱延
後のγ相からα相への変態は熱延板の結晶粒を微細化す
るために有害であるとみなされ、仕上熱延温度をAr1
点以上に上昇させると熱延結晶組織はかえって細粒化す
るため、本発明のごとき仕上熱延終了温度をγ域へと高
める方法の利用は省みられなかった。しかし発明者らは
鋭意検討を重ねた結果、C,N,SをはじめとしてT
i,V,Nb,As等の不純物含有量を制御することに
より熱間圧延工程において仕上圧延をAr3 以上で終了
した場合においても熱延結晶組織が粗大化され、結果と
して製品における磁気特性が著しく改善され得ることを
発見し本発明の完成に至った。
Next, the process conditions of the present invention will be described. In the prior art, the main focus is to coarsen the grain size of the hot-rolled sheet, that is, the grain size before cold rolling as much as possible. It is considered to be harmful because it is refined, and the finishing hot rolling temperature is set to Ar 1
If the temperature is raised above the point, the hot-rolled crystal structure becomes rather fine-grained, so the use of the method of increasing the finish hot-rolling end temperature to the γ region as in the present invention was not omitted. However, as a result of intensive investigations by the inventors, C, N, S and other T
By controlling the content of impurities such as i, V, Nb and As, the hot-rolled crystal structure is coarsened even when finishing rolling is completed with Ar 3 or more in the hot rolling process, and as a result, the magnetic properties of the product are improved. The inventors have found that they can be significantly improved, and completed the present invention.

【0027】このような鋼の純度による熱延条件に対す
る熱延結晶組織形成の相違を調べるため、以下のような
実験を行った。表1に示す成分の鋼を溶製し仕上げ熱延
を実施した。仕上熱延終了温度は800℃から1000
℃の範囲とし、2.5mm厚に仕上げた。これを酸洗、冷
延し0.5mm厚とし、脱脂した後、720℃、30秒焼
鈍し、エプスタイン試料を切り出して磁気特性を測定し
た。熱延仕上げ温度に対する熱延板結晶粒径の変化、製
品鉄損、製品磁束密度をそれぞれ図1、図2、図3に示
した。
The following experiment was conducted to examine the difference in hot rolled crystallographic structure formation depending on the hot rolling conditions depending on the purity of the steel. Steel with the components shown in Table 1 was melted and finish hot rolling was performed. Finish hot rolling finish temperature is 800 ℃ to 1000
The temperature was set in the range of ℃ and finished to a thickness of 2.5 mm. This was pickled, cold rolled to a thickness of 0.5 mm, degreased, then annealed at 720 ° C. for 30 seconds, and an Epstein sample was cut out to measure the magnetic properties. Changes in the crystal grain size of the hot-rolled sheet with respect to the hot-rolling finishing temperature, product iron loss, and product magnetic flux density are shown in FIGS. 1, 2 and 3, respectively.

【0028】[0028]

【表1】 [Table 1]

【0029】成分1の高純度鋼では熱延仕上げ温度がA
3 点以上になっても熱延結晶組織が粗大化するが、成
分2の比較材では熱延仕上げ温度がAr1 点以上になる
と熱延結晶組織が細粒化する。この結果、成分1の高純
度鋼では熱延終了温度が上昇するに従い鉄損は低下し、
磁束密度は向上するが、成分2の比較例では鉄損の増
大、磁束密度の低下といった磁気特性の悪化がみられ
る。このようにC,N,SをはじめとしてTi,V,N
b,As等の不純物を低減した高純度鋼をAr3 点以上
の熱延終了温度で仕上げることにより、製品における鉄
損を低減し、磁束密度の高め、優れた磁気特性の無方向
性電磁鋼板を製造することが可能である。
In the high purity steel of component 1, the hot rolling finish temperature is A
Although the hot-rolled crystal structure becomes coarse at r 3 or higher, the hot-rolled crystal structure of the comparative material of component 2 becomes finer when the hot-rolling finishing temperature is 1 or higher at Ar. As a result, in the high-purity steel of component 1, the iron loss decreases as the hot rolling end temperature increases,
Although the magnetic flux density is improved, in the comparative example of component 2, the magnetic properties are deteriorated, such as an increase in iron loss and a decrease in magnetic flux density. Thus, starting with C, N, S, Ti, V, N
High-purity steel with reduced impurities such as b and As is finished at the hot rolling end temperature of Ar 3 or higher to reduce iron loss in products, increase magnetic flux density, and non-oriented electrical steel sheet with excellent magnetic properties. It is possible to manufacture

【0030】前記成分からなる鋼スラブは、転炉で溶製
され連続鋳造あるいは造塊−分塊圧延により製造され
る。鋼スラブは公知の方法にて加熱される。このスラブ
に熱間圧延を施し所定の厚みとする。この際、仕上げ熱
延の終了温度はAr3 点以上とする。巻取温度は680
℃以上であれば本発明における熱延結晶組織の粗大化を
一層促進することが可能である。
The steel slab consisting of the above components is melted in a converter and manufactured by continuous casting or ingot-slab rolling. The steel slab is heated by a known method. This slab is hot-rolled to a predetermined thickness. At this time, the finish hot-rolling temperature is set to an Ar 3 point or higher. Winding temperature is 680
If it is at least ℃, it is possible to further promote the coarsening of the hot rolled crystal structure in the present invention.

【0031】熱延終了温度がAr3 点を下まわると、熱
延結晶組織の成長が不十分となり、優れた磁気特性を有
する無方向性電磁鋼板を得ることができない。このため
熱延終了温度はAr3 点以上であることが好ましい。熱
延終了温度の上限は特に設けないが、熱間圧延時のスラ
ブ加熱温度の上限および熱間圧延スケジュールにより必
然的にその上限が決まる。また、巻取温度が680℃以
下であると熱延結晶組織の成長が不十分となり、優れた
磁気特性を有する無方向性電磁鋼板を得ることができな
い。このため巻取温度は680℃以上、好ましくは70
0℃以上であることが好ましい。
When the hot rolling end temperature is lower than the Ar 3 point, the growth of the hot rolled crystal structure becomes insufficient and a non-oriented electrical steel sheet having excellent magnetic properties cannot be obtained. For this reason, it is preferable that the hot rolling end temperature is at or above the Ar 3 point. The upper limit of the hot rolling end temperature is not particularly set, but the upper limit of the slab heating temperature during hot rolling and the hot rolling schedule inevitably determine the upper limit. Further, if the coiling temperature is 680 ° C. or lower, the growth of the hot-rolled crystal structure becomes insufficient, and a non-oriented electrical steel sheet having excellent magnetic properties cannot be obtained. Therefore, the winding temperature is 680 ° C or higher, preferably 70 ° C.
It is preferably 0 ° C. or higher.

【0032】このようにして得られた熱延板は一回の冷
間圧延と連続焼鈍により製品とする。またさらにスキン
パス圧延工程を付加して製品としてもよい。スキンパス
圧延率は2%未満ではその効果が得られず、20%以上
では磁気特性が悪化するため2%から20%とする。
The hot rolled sheet thus obtained is made into a product by one cold rolling and continuous annealing. Further, a skin pass rolling process may be added to obtain a product. If the skin pass rolling ratio is less than 2%, the effect cannot be obtained, and if it is 20% or more, the magnetic properties deteriorate, so the skin pass rolling ratio is set to 2% to 20%.

【0033】[0033]

【実施例】次に、本発明の実施例について述べる。 〔実施例1〕表2に示した成分および変態点を有する無
方向性電磁鋼用スラブを通常の方法にて加熱し、熱延に
より2.5mmに仕上げた。この時、熱延仕上げ温度は9
50℃とし、すべてAr3 変態点以上とした。熱延の巻
取温度は700℃とした。その後、酸洗を施し、冷間圧
延により0.50mmに仕上げた。これを連続焼鈍炉にて
730℃で30秒間焼鈍した。その後、エプスタイン試
料に切断し、磁気特性を測定した。表2中に本発明と比
較例の成分と磁気測定結果をあわせて示す。このように
鋼の純度を制御すれば、巻取り温度をAr3 点以上にす
ることにより、磁束密度の値が高く、鉄損値の低い磁気
特性の優れた無方向性電磁鋼板を得ることが可能であ
る。
EXAMPLES Next, examples of the present invention will be described. [Example 1] A slab for non-oriented electrical steel having the components and transformation points shown in Table 2 was heated by a usual method and hot rolled to a thickness of 2.5 mm. At this time, the hot rolling finish temperature is 9
The temperature was set to 50 ° C. and all were set to the Ar 3 transformation point or higher. The winding temperature for hot rolling was 700 ° C. After that, it was pickled and cold-rolled to 0.50 mm. This was annealed at 730 ° C. for 30 seconds in a continuous annealing furnace. Then, it cut | disconnected to the Epstein sample and measured the magnetic characteristic. In Table 2, the components of the present invention and the comparative example and the magnetic measurement results are shown together. If the purity of the steel is controlled in this way, it is possible to obtain a non-oriented electrical steel sheet having a high magnetic flux density value and a low iron loss value and excellent magnetic properties by controlling the winding temperature to be Ar 3 or higher. It is possible.

【0034】[0034]

【表2】 [Table 2]

【0035】〔実施例2〕表3に示した成分および変態
点を有する無方向性電磁鋼用スラブを通常の方法にて加
熱し、熱延により2.5mmに仕上げた。この時、熱延終
了温度をAr3 点以上の950℃と、Ar1 以下850
℃の2水準とし、冷却制御により巻取温度は700℃と
した。その後、酸洗を施し、冷間圧延により0.50mm
および0.55mmに仕上げた。板厚0.50mmのものは
連続焼鈍炉にて730℃で30秒間焼鈍した。その後、
750℃2時間の需要家相当の焼鈍を施した。また、板
厚0.55mmのものは、連続焼鈍炉にて700℃で20
秒焼鈍を施し、圧下率9%のスキンパス圧延により0.
50mm厚に仕上げ、750℃2時間の需要家相当の焼鈍
を施した。これらの試料からエプスタイン試験片を切り
出しの磁気特性を測定した。表4、表5に実施例中で述
べた本発明と比較例の熱延仕上げ温度、巻取り温度と磁
気測定結果をあわせて示す。
Example 2 A slab for non-oriented electrical steel having the components and transformation points shown in Table 3 was heated by a usual method and hot rolled to a thickness of 2.5 mm. At this time, the hot rolling end temperature is 950 ° C., which is Ar 3 or higher, and 850, which is Ar 1 or lower.
The temperature was set to 2 ° C. and the coiling temperature was set to 700 ° C. by cooling control. After that, pickling and cold rolling 0.50mm
And 0.55 mm. A sheet having a thickness of 0.50 mm was annealed at 730 ° C. for 30 seconds in a continuous annealing furnace. afterwards,
Annealing was performed at 750 ° C. for 2 hours, which is equivalent to that of a consumer. In addition, a sheet with a thickness of 0.55 mm is kept at 700 ° C for 20 minutes in a continuous annealing furnace.
It is annealed for 2 seconds, and is subjected to a skin pass rolling with a reduction rate of 9% to give a 0.2.
Finished to a thickness of 50 mm, and annealed at 750 ° C for 2 hours, which is equivalent to that of consumers. Epstein test pieces were cut out from these samples and the magnetic properties were measured. Tables 4 and 5 also show the hot rolling finish temperature, winding temperature and magnetic measurement results of the present invention and comparative examples described in the examples.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【表4】 [Table 4]

【0038】[0038]

【表5】 [Table 5]

【0039】このように熱延終了温度をAr3 点以上に
とることにより、1回法、スキンパス圧延法とも磁束密
度の値が高く、鉄損値の低い材料が得られることがわか
る。
As described above, by setting the hot rolling end temperature to the Ar 3 point or higher, it can be seen that a material having a high magnetic flux density and a low iron loss value can be obtained by both the single pass method and the skin pass rolling method.

【0040】[0040]

【発明の効果】このように本願発明によれば、磁束密度
が高く鉄損の低い、磁気特性の優れた無方向性電磁鋼板
を製造することが可能である。
As described above, according to the present invention, it is possible to manufacture a non-oriented electrical steel sheet having high magnetic flux density, low iron loss, and excellent magnetic properties.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱延終了温度と熱延板結晶粒径との関係を示す
図。
FIG. 1 is a diagram showing a relationship between a hot rolling finish temperature and a hot rolled sheet crystal grain size.

【図2】熱延終了温度と製品鉄損との関係を示す図。FIG. 2 is a diagram showing a relationship between hot rolling end temperature and product iron loss.

【図3】熱延終了温度と製品磁束密度との関係を示す
図。
FIG. 3 is a diagram showing a relationship between a hot rolling finish temperature and a product magnetic flux density.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−193822(JP,A) 特開 平6−336609(JP,A) 特開 平6−57332(JP,A) 特開 平6−108149(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 8/12 H01F 1/16 C22C 38/00 303 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-3-193822 (JP, A) JP-A-6-336609 (JP, A) JP-A-6-57332 (JP, A) JP-A-6- 108149 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) C21D 8/12 H01F 1/16 C22C 38/00 303

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 鋼中に重量%で、 0.10%≦Si≦2.50%、 C≦0.0025%、 N≦0.0020%、 S≦0.0020%、 Ti≦0.0030%、 Nb≦0.0030%、 V≦0.0050%、 As≦0.0030% を満足し、残部がFeおよび不可避的不純物からなるα
γ変態を有する成分のスラブを用い、熱間圧延し熱延板
とし、1回の冷間圧延工程を施し次いで仕上げ焼鈍を施
す無方向性電磁鋼板の製造方法において、熱延終了温度
をAr3 点以上の温度域とすることを特徴とする無方向
性電磁鋼板の製造方法。
1. By weight% in steel, 0.10% ≦ Si ≦ 2.50%, C ≦ 0.0025%, N ≦ 0.0020%, S ≦ 0.0020%, Ti ≦ 0.0030 %, Nb ≦ 0.0030%, V ≦ 0.0050%, As ≦ 0.0030%, and the balance α consisting of Fe and inevitable impurities.
Using a slab with a γ-transformed component, hot rolling it into a hot-rolled sheet, subjecting it to one cold rolling step followed by finish annealing.
In the method for producing a non- oriented electrical steel sheet, the hot rolling finish temperature is set to a temperature range of Ar 3 points or higher.
【請求項2】 鋼中に重量%で、 0.10%≦Si≦2.50%、 Mn,Alの少なくとも1種であって 0.10%≦Al≦1.00%、 0.10%≦Mn≦2.00%とし、 かつ、SiとAlの合計量が Si+2Al≦2.50%であり、 C≦0.0025%、 N≦0.0020%、 S≦0.0020%、 Ti≦0.0030%、 Nb≦0.0030%、 V≦0.0050%、 As≦0.0030% を満足し、残部がFeおよび不可避的不純物からなるα
γ変態を有する成分のスラブを用い、熱間圧延し熱延板
とし、1回の冷間圧延工程を施し次いで仕上げ焼鈍を施
す無方向性電磁鋼板の製造方法において、熱延終了温度
をAr3 点以上の温度域とすることを特徴とする無方向
性電磁鋼板の製造方法。
2. In steel, in weight%, 0.10% ≦ Si ≦ 2.50%, at least one of Mn and Al, and 0.10% ≦ Al ≦ 1.00%, 0.10% ≦ Mn ≦ 2.00%, and the total amount of Si and Al is Si + 2Al ≦ 2.50%, C ≦ 0.0025%, N ≦ 0.0020%, S ≦ 0.0020%, Ti ≦ 0.0030%, Nb ≦ 0.0030%, V ≦ 0.0050%, As ≦ 0.0030%, and the balance α consisting of Fe and unavoidable impurities
Using a slab with a γ-transformed component, hot rolling it into a hot-rolled sheet, subjecting it to one cold rolling step followed by finish annealing.
In the method for producing a non- oriented electrical steel sheet, the hot rolling finish temperature is set to a temperature range of Ar 3 points or higher.
【請求項3】 仕上げ焼鈍後さらにスキンパス圧延工程
を施すことを特徴とする請求項1または2に記載の無方
向性電磁鋼板の製造方法。
3. A skin pass rolling step after finish annealing.
The method according to claim 1 or 2, characterized in that
Method for manufacturing tropic electrical steel sheet.
【請求項4】 熱延板巻取温度を680℃以上とするこ
とを特徴とする請求項1ないし3のいずれかに記載の無
方向性電磁鋼板の製造方法。
4. The process for producing a non-oriented electrical steel sheet according to any one of claims 1 to 3 hot-rolled sheet winding temperature, characterized in that a 680 ° C. or higher.
JP28228895A 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss Expired - Lifetime JP3379058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28228895A JP3379058B2 (en) 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28228895A JP3379058B2 (en) 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Publications (2)

Publication Number Publication Date
JPH09125144A JPH09125144A (en) 1997-05-13
JP3379058B2 true JP3379058B2 (en) 2003-02-17

Family

ID=17650482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28228895A Expired - Lifetime JP3379058B2 (en) 1995-10-30 1995-10-30 Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss

Country Status (1)

Country Link
JP (1) JP3379058B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6043808B2 (en) 2011-12-28 2016-12-14 ポスコPosco Non-oriented electrical steel sheet and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09125144A (en) 1997-05-13

Similar Documents

Publication Publication Date Title
WO1996000306A1 (en) Method of manufacturing non-oriented electromagnetic steel plate having high magnetic flux density and low iron loss
JP2000219917A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP2000104144A (en) Silicon steel sheet excellent in magnetic property in l orientation and c orientation and its production
JP2000219916A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in core loss
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP3379058B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348811B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3348802B2 (en) Manufacturing method of non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3483265B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
KR100240993B1 (en) The manufacturing method for non-oriented electric steel sheet with excellent hysterisys loss
JPH032323A (en) Manufacture of nonoriented silicon steel sheet having high magnetic flux density
JP3348827B2 (en) Method for manufacturing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
JPS6333518A (en) Non-oriented electrical steel sheet having low iron loss and excellent magnetic flux density and its production
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
KR100240984B1 (en) The manufacturing method for 0.5mm oriented electric steelsheet
JP4191806B2 (en) Method for producing non-oriented electrical steel sheet
JPH0617548B2 (en) Non-oriented electrical steel sheet with excellent rust resistance
JPH11172382A (en) Silicon steel sheet excellent in magnetic property, and its production
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JPH10226854A (en) Silicon steel hot rolled sheet excellent in magnetic property and its production
JP2001172718A (en) Method for producing nonoriented silicon steel sheet uniform in magnetic property
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
JP2000104118A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081213

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091213

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101213

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111213

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121213

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131213

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term