TWI276693B - Nonoriented magnetic steel sheet, member for rotary machine and rotary machine - Google Patents

Nonoriented magnetic steel sheet, member for rotary machine and rotary machine Download PDF

Info

Publication number
TWI276693B
TWI276693B TW92121498A TW92121498A TWI276693B TW I276693 B TWI276693 B TW I276693B TW 92121498 A TW92121498 A TW 92121498A TW 92121498 A TW92121498 A TW 92121498A TW I276693 B TWI276693 B TW I276693B
Authority
TW
Taiwan
Prior art keywords
steel sheet
annealing
less
electrical steel
oriented electrical
Prior art date
Application number
TW92121498A
Other languages
Chinese (zh)
Other versions
TW200403346A (en
Inventor
Tadashi Nakanishii
Toshito Takamiya
Kawano Masaki
Original Assignee
Jfe Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corp filed Critical Jfe Steel Corp
Publication of TW200403346A publication Critical patent/TW200403346A/en
Application granted granted Critical
Publication of TWI276693B publication Critical patent/TWI276693B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

This invention provides a nonoriented magnetic steel sheet which has a chemical composition in mass% in which contents of Si and Mn are 0.1 to 1.2% and 0.005 to 0.30%, respectively, and the contents of C, Sol.Al and N are limited to 0.0050% or less, 0.0004% or less, and 0.0030% or less, respectively, all including 0%, and has a number density of grain growth inhibiting ductile non-metallic inclusions dispersed in the steel sheet of 1000 pieces/cm<2> or less including 0, in which a grain growth inhibiting ductile non-metallic inclusion means an inclusion contained in a steel sheet having been subjected to finishing annealing which has a length of 3xD to 9xD, D representing an average particle diameter of re-crystallized grains in the steel sheet. The nonoriented magnetic steel sheet allows the production, from one steel sheet, of a rotor material exhibiting a high magnetic flux density and a high strength and a stator material exhibiting a high magnetic flux density and a low iron loss after it is subjected to strain removing annealing.

Description

1276693 ⑴ 玖、發明說明 【發明所屬技術領域】 本發明係關於組裝旋轉機所用之無方向性電磁鋼板。 本發明亦關於利用上述無方向性電磁鋼板所組裝之旋 轉機用構件以及旋轉機。 【先前技術】 欲減少旋轉機之能源浪費時,將旋轉機之鐵芯,即轉 子(Rotos)及定子(Stator)之磁通密度予以提高,同時 謀圖該等鐵芯之低鐵損化相當有效。以減低鐵損之手段, 一般乃利用提高Si、A1、Μη等之含量而增加鐵芯材料之 電阻的手段。又,該等手段之外,已知悉如日本之特開昭 5 8 — 1 5 1 4 5 3號公報所揭露的添加Β之方法、及特開平 3 - 2 8 1 7 5 8號公報所揭露的添加Ni之方法等。又,尙有 藉將電磁鋼板之組合結構、例如促進具{100}〈 UVW〉方 位之晶粒優先生長以提升磁性之方法,在特開昭 58 - 181822號公報等已有提案。即藉使用由該等手段所 製造之無方向性電磁鋼板,乃能製造高磁通密度且低鐵損 之鐵芯。 惟,旋轉機之鐵芯所使用之無方向性電磁鋼板是由鋼 板製造業者施加最終精製退火(最終退火)以製品板出貨 後’再由需要者組裝爲旋轉機之轉子及定子。在該組裝工 程,自鋼板衝切轉子用鐵芯板或定子用鐵芯板後,依需再 被施加應變退火。 -5- 1276693 .(?) 亦有藉改善該應變退火時之再結晶粒生長性, 更優異低鐵損之技術的提案。例如,在特公昭5 8 -號公報及特開平8 — 269532號公報等,揭露有將鋼 Sol.Al量分別減低爲0.0010%以下、0.003%以下 制微細A1N之析出,以改善應變退火時之晶粒生 而得到低鐵損之技術。又特開平3 - 2 4 2 2 9號公報 將Sol ·Α1量減低爲0.001%以下,藉將N、v之含 制於所定値以下,而同樣改善應變退火時之晶粒生 以獲得低鐵損之技術。特開平7 - 707 1 9號公報則 將Sol.Al量減低爲8ppm以下,更將Ti+Al之量 2 Oppm以下等,以改善應變退火時之晶粒生長性的 復在特開昭6 3 - 1 9 5 2 1 7號公報或特開平7 -號公報,又揭露有藉低A1化,再加控制S i、A1、 複合氧化物所成的夾雜物組成以防止該夾雜物之延 乃能改善應變退火時之晶粒生長性,而獲得低鐵損 然,雖以該等技術,應變退火之鐵損改善量 定,例如將最終精製退火後(出貨時)6W / kg左 板經過應變退火或許能改善爲低於5 W / kg左右, 終精製退火後(出貨時)預先減低爲約5W / kg左 板經過應變退火欲改善呈低於4.4W / kg左右卻 難。 只是’在製造旋轉機用鐵芯時,爲維持材料之 率’一般,則藉衝壓機自同一鋼板衝切轉子用鐵芯 子用鐵芯板。且,將該等轉子用鐵芯板與定子用鐵 以獲得 -55210 板中之 ,藉抑 長性, 亦揭露 量積抑 長性, 揭露有 控制於 方法。 150248 Μη之 性化, 〇 亦非充 右之鋼 惟將最 右之鋼 十分艱 高成品 板與定 芯板分 -6 - (3) 1276693 別予以層疊,而進行組裝轉子及定子。 其中’轉子是旋轉構件,由於隨著高速旋轉易遭受高 應力’故被要求需具高強度。尤其近年,爲提高旋轉機 (馬達)之效率,稀土類磁鐵埋設方式之轉子相當發展, 轉子之旋轉速度顯著地變高。因此,對於構成轉子之電磁 鋼板’其磁通密度及強度、例如上降伏點(γρ )被要求 比習知更高。另,定子爲了旋轉機之小型化及節能化,具 有高磁通密度且低鐵損至爲重要。 如此’雖是同一馬達所使用之電磁鋼板,組裝轉子使 用之鋼板(以下稱爲「轉子材料」)與組裝定子使用之鋼 板(以下稱爲「定子材料」)被要求的特性卻相異,而欲 使兩種特性並存頗爲困難。因爲習知提案之技術,雖個別 能符合作爲轉子材料或作爲定子材料之特性,惟並非被形 成皆能符合雙方特性者。 【發明內容】 本發明之目的乃在提供一種自同一鋼板同時採取轉子 材料及定子材料,以獲得轉子材料能達成高磁通密度及高 強度、定子材料能達成高磁通密度及低鐵損之高磁通密度 無方向性電磁鋼板,更提供一種利用上述無方向性電磁鋼 板之旋轉機用構件以及旋轉機。 本發明是; 1·以質量比含有Si: 0.1%〜1.2%及Μη: 0.005〜 0.30%,並被限制 C: 0.0050% 以下(包含 〇) ,Sol.Al: ,(4) 1276693 0.0004%以下(包含〇) ,N: 0.0030% (包含〇),且以 殘部(其餘)含有Fe及不可避免的不純物,而鋼板中分 散之阻礙晶粒生長延性非金屬夾雜物(deforMable non -Metallic inclusion with grain growth inhibition)的個數 密度(nuMber of inclusion per unit area)爲 1000 個 / cm2以下(包含0 )之旋轉機用高磁通密度無方向性電磁 鋼板。 在此,阻礙晶粒生長延性非金屬夾雜物則是指:假設 延性非金屬夾雜物之鋼板平均再結晶粒徑(再結晶粒之平 均粒徑)爲D時,長度爲3xD〜9xD的夾雜物。又,在 此,鋼板係指經過最終精製退火之製品板的狀態、即未被 應變退火之狀態的鋼板,當然,平均再結晶粒徑及延性非 金屬夾雜物之長度,還處在製品板狀態之値。又,延性非 金屬夾雜物雖是指藉軋製較易延伸(或在製品板等時延 伸)之較粗大非金屬夾雜物,惟在鋼板延伸者殆爲非金屬 夾雜物,故以後僅稱作延性夾雜物。 又,上述無方向性電磁鋼板之組成’實質上由si、 Μη、Sol.Al、N、殘部Fe及不可避免的不純物所構成較 佳。 2.更含有以質量%換算時,Sb : 〇·〇〇5%〜0·10% 及Sn: 0.005%〜0.2%中所選擇之1種或兩種的與上述1 之發明有關的旋轉機用高磁通密度無方向性電磁鋼板。 3·更含有以質量%換算時,P:〇.001%〜〇·2%及 Ni: 0.001%〜0.2%中所選擇之1種或兩種的與上述1或 (5) 1276693 2之發明有關的旋轉機用高磁通密度無方向性電磁鋼板。 4. 更含有以質量%換算時,REM : 0·000 1 %〜0.10% 及Ca: 0.0001%〜0.01%中所選擇之1種或雨種的與上述 1〜3之任一發明有關的旋轉機用高磁通密度無方向性電 磁鋼板。 5. 上述不可避免的不純物中 Ti、Nb及V以質量% 換算時,分別被限制於Ti : 0.0020 %以下(包含〇 ), Nb : 0.0050 %以下(包含 0),及 V : 0.0060 %以下(包 含〇)之與上述1〜4之任一發明有關的旋轉機用高磁通 密度無方向性電磁鋼板。 6·上述不可避免的不純物中S及Ο以質量%換算 時,分別被限制於S : 0.0050 %以下(包含0),及〇 : 0.0100%以下(包含0)之與上述1〜5之任一發明有關的 旋轉機用高磁通密度無方向性電磁鋼板。 7·上述再結晶粒之平均粒徑D爲6/iM〜25//M的 與上述1〜6之任一發明有關的旋轉機用高磁通密度無方 向性電磁鋼板。 8 ·至少由冷軋及其後之最終精製退火所製造的鋼 板,而上述最終精製退火之溫度爲 700 °C〜800 °C的與上 述1〜7之任一發明有關的旋轉機用高磁通密度無方向性 電磁鋼板。即’將無方向性電磁鋼板用扁鋼胚經過常規處 理形成具有最終板厚之冷軋鋼板後,在7 〇 〇艺〜8 〇 〇艺施 加最終精製退火者。 9·與上述1〜8之任一發明有關的無方向性電磁鋼 -9- .(6) 1276693 板’係在750 °C藉兩小時之應變退火,而平均再結 生長兩倍以上(即應變退火結晶粒徑生長比爲2以 特徵的旋轉機用高磁通密度無方向性電磁鋼板。 1 〇 ·對與上述1〜9之任一發明有關的旋轉機 通密度無方向性電磁鋼板(製品板)施加應變退火 旋轉機用高磁通密度無方向性電磁鋼板(應變退火 11. 上述應變退火之溫度爲 700 °C〜800 t的 1 〇之發明有關的旋轉機用高磁通密度無方向性 板。 即,與上述1〜9之各發明有關的無方向性 板’亦能被設成··將無方向性電磁鋼板用扁鋼胚經 處理形成具有最終板厚之冷軋鋼板後,在70(rc 〃 施加最終精製退火,復在7 0 0 t〜8 0 0 °C予以施加 火,使其平均再結晶粒徑生長爲最終精製退火後粒 倍以上者較佳。 12. 將上述1〜9之任一發明有關的旋轉機用 密度無方向性電磁鋼板最好是經過衝切後,再予以 成之旋轉機用轉子構件。 13·將上述1〜9之任一發明有關的旋轉機用 密度無方向性電磁鋼板最好是經過衝切予以層疊後 以施加應變退火所成之旋轉機用定子構件。 1 4.具有以同一旋轉機用高磁通密度無方向性 板爲原料的上述1 2之發明有關的轉子構件與上述 明有關的定子構件之旋轉機。 晶粒徑 上)爲 用高磁 所成之 板)。 與上述 電磁鋼 電磁鋼 過常規 -8 00 °C 應變退 徑之兩 高磁通 層疊所 高磁通 ,再予 電磁鋼 13之發 -10- .(7) 1276693 即,上述1〜9之各發明有關的無方向性電磁鋼板, 係可經過衝切後再予以層疊而形成高強度旋轉機轉子構 件。又,亦可經過衝切以及經層疊再施加應變退火而形成 低鐵損旋轉機定子構件。且,亦可使用自同一旋轉機用高 磁通密度無方向性電磁鋼板所得轉子構件與定子構件,以 獲得高性能之旋轉機。1276693 (1) Description of the Invention [Technical Field] The present invention relates to a non-oriented electrical steel sheet for assembling a rotary machine. The present invention also relates to a member for a rotary machine and a rotary machine which are assembled by the above-described non-oriented electrical steel sheet. [Prior Art] When reducing the energy waste of the rotating machine, the magnetic flux density of the iron core of the rotating machine, that is, the rotor (Rotos) and the stator (Stator) is increased, and at the same time, the iron loss of the iron core is equivalent. effective. In order to reduce the iron loss, it is generally a means of increasing the electrical resistance of the core material by increasing the contents of Si, A1, Μη, and the like. Further, in addition to such means, a method of adding ruthenium as disclosed in Japanese Laid-Open Patent Publication No. SHO-58-151541, and Japanese Laid-Open Patent Publication No. Hei. The method of adding Ni, etc. In addition, there is a proposal to increase the magnetic properties by a combination of the structure of the electromagnetic steel sheet, for example, to promote the growth of the crystal grains having the {100} <UVW> orientation, and has been proposed in Japanese Laid-Open Patent Publication No. SHO-58-181822. That is, by using the non-oriented electrical steel sheet manufactured by these means, it is possible to manufacture a core having a high magnetic flux density and a low iron loss. However, the non-oriented electrical steel sheet used for the iron core of the rotating machine is a rotor and a stator which are assembled into a rotating machine by a steel sheet manufacturer after final finishing annealing (final annealing) is applied to the product sheet. In the assembly process, after the core plate for the rotor or the core plate for the stator is punched from the steel sheet, strain annealing is applied as needed. -5- 1276693 . (?) There is also a proposal to improve the recrystallized grain growth property during strain annealing and to further improve the low iron loss. For example, in the Japanese Patent Publication No. Hei. No. 8-269532, and the like, it is disclosed that the amount of steel Sol.Al is reduced to 0.0010% or less and 0.003% or less, respectively, to precipitate fine A1N to improve strain annealing. The technique of producing low iron loss by grain formation. In addition, the amount of Sol·Α1 is reduced to 0.001% or less, and the content of N and v is made below the predetermined enthalpy, and the grain growth during strain annealing is also improved to obtain low iron. Loss technology. Japanese Patent Publication No. 7-7071-9 reduces the amount of Sol.Al to 8 ppm or less, and the amount of Ti+Al to 2 Oppm or less to improve the grain growth property during strain annealing. - 1 9 5 2 1 Bulletin No. 7 or JP-A-7-A, which discloses that the inclusion composition of S i, A1, and composite oxides is controlled by low A1 to prevent the inclusion of the inclusions. It can improve the grain growth during strain annealing, and obtain low iron damage. Although the iron loss of strain annealing is determined by these techniques, for example, 6W / kg left plate after final finishing annealing (when shipped) Strain annealing may be improved to less than 5 W / kg, and the final refining after annealing (when shipped) is reduced to about 5 W / kg. The left plate is strained and annealed to be less than 4.4 W / kg. In the case of "manufacturing a core for a rotating machine, in order to maintain the material rate", a core plate for a core for a rotor is punched from a steel plate by a press machine. Moreover, the iron core plate and the stator are used for the rotor to obtain the -55210 plate, and the length and the length are also revealed, and the exposure is controlled by the method. 150248 Μη的性化, 亦 is not filled with right steel, but the rightmost steel is very difficult to finish the board and the core board -6 - (3) 1276693 Do not stack, and assemble the rotor and stator. Among them, the "rotor is a rotating member, and it is required to have high strength because it is subject to high stress with high-speed rotation". In particular, in recent years, in order to improve the efficiency of the rotating machine (motor), the rotor of the rare earth magnet embedding method has been developed considerably, and the rotational speed of the rotor has remarkably increased. Therefore, the magnetic flux density and strength, for example, the upper drop point (γρ) of the electromagnetic steel sheet constituting the rotor are required to be higher than conventional ones. Further, in order to reduce the size and energy saving of the rotating machine, the stator has high magnetic flux density and low iron loss. In the case of the electromagnetic steel sheets used in the same motor, the steel sheets used for assembling the rotors (hereinafter referred to as "rotor materials") and the steel sheets used for assembling the stators (hereinafter referred to as "stator materials") are different in characteristics. It is quite difficult to coexist two characteristics. Because the technology of the conventional proposal can be individually adapted to the characteristics of the rotor material or the stator material, it is not formed to conform to both characteristics. SUMMARY OF THE INVENTION The object of the present invention is to provide a rotor material and a stator material from the same steel plate to obtain a high magnetic flux density and high strength of the rotor material, and a high magnetic flux density and low iron loss of the stator material. A high magnetic flux density non-oriented electrical steel sheet, and a rotating machine member and a rotating machine using the above non-oriented electrical steel sheet. The present invention is: 1. Containing Si in a mass ratio: 0.1% to 1.2% and Μη: 0.005 to 0.30%, and is limited to C: 0.0050% or less (including 〇), Sol. Al:, (4) 1276693 0.0004% or less (including 〇), N: 0.0030% (including 〇), and containing Fe and the unavoidable impurities in the residue (the rest), and the deforMable non-Metallic inclusion with grain dispersed in the steel sheet The growth inhibition nuMber of inclusion per unit area is a high magnetic flux density non-oriented electrical steel sheet for a rotating machine of 1000 pieces/cm 2 or less (including 0). Here, the obstruction of grain growth ductile non-metallic inclusions means: inclusions having a length of 3xD to 9xD when the average recrystallized grain size of the steel sheet of the ductile non-metallic inclusions (the average particle diameter of the recrystallized grains) is D . Here, the steel plate refers to a steel sheet which is subjected to a final finish annealing of the product sheet, that is, a steel sheet which is not subjected to strain annealing. Of course, the average recrystallized grain size and the length of the ductile non-metallic inclusion are also in the state of the product sheet. After that. Moreover, ductile non-metallic inclusions refer to relatively coarse non-metallic inclusions which are relatively easy to extend by rolling (or extend over a product sheet, etc.), but the steel sheet extension is a non-metallic inclusion, so it will only be referred to hereinafter. Ductile inclusions. Further, the composition of the non-oriented electrical steel sheet is substantially composed of si, Μη, Sol. Al, N, residual Fe, and unavoidable impurities. 2. The rotary machine related to the invention of the above 1 which is one or two selected from the group consisting of Sb: 〇·〇〇5% to 0.10% and Sn: 0.005% to 0.2% in terms of mass % A high magnetic flux density non-directional electrical steel sheet is used. 3. The invention of 1 or 2 selected from the above 1 or (5) 1276693 2 when P: 001.001% 〇 2% and Ni: 0.001% 〜 0.2% in terms of mass % The related magnetic machine has a high magnetic flux density non-directional electrical steel sheet. 4. In addition, in the case of mass % conversion, the rotation of REM: 0·000 1% to 0.10% and Ca: 0.0001% to 0.01%, or the rotation of any one of the above 1 to 3 inventions Machine with high magnetic flux density non-directional electromagnetic steel plate. 5. When the above-mentioned unavoidable impurities Ti, Nb, and V are converted by mass%, they are limited to Ti: 0.0020% or less (including 〇), Nb: 0.0050% or less (including 0), and V: 0.0060% or less ( A high magnetic flux density non-oriented electrical steel sheet for a rotary machine according to any one of the above 1 to 4, which comprises 〇). 6. When the above-mentioned unavoidable impurities S and Ο are converted by mass%, they are limited to S: 0.0050% or less (including 0), and 〇: 0.0100% or less (including 0) and any of the above 1 to 5 The invention relates to a high magnetic flux density non-oriented electrical steel sheet for a rotating machine. 7. The high-flux-density non-oriented electrical steel sheet for a rotating machine according to any one of the above 1 to 6 of the invention, wherein the average particle diameter D of the recrystallized grains is 6/iM to 25//M. 8) a high magnetic material for a rotating machine related to at least one of the above-mentioned inventions 1 to 7 in a steel sheet manufactured by cold rolling and subsequent final annealing annealing, and the temperature of the final finishing annealing is 700 ° C to 800 ° C Passivity non-directional electrical steel sheet. That is, the flat steel blank for the non-oriented electrical steel sheet is subjected to conventional treatment to form a cold-rolled steel sheet having a final thickness, and then finally refined and annealed at 7 〇 〇 〜 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9. Non-directional electromagnetic steel -9-.(6) 1276693 plate-related to any of the above-mentioned inventions 1 to 8 is subjected to strain annealing at 750 ° C for two hours, and the average re-growth growth is more than twice (ie, A high-flux density non-oriented electrical steel sheet for a rotating machine having a strain-annealing crystal grain size growth ratio of 2 is characterized by a rotating machine passivation non-oriented electrical steel sheet relating to any of the above 1 to 9 inventions ( Product plate) High-flux density non-oriented electrical steel sheet for strain annealing annealing machine (strain annealing 11. The above-mentioned strain annealing temperature is 700 ° C to 800 t 1 〇. The high magnetic flux density of the rotating machine is not related. The directional plate, that is, the non-oriented plate of each of the above-mentioned 1 to 9 can also be designed to be formed by processing a flat steel blank for a non-oriented electrical steel sheet to form a cold-rolled steel sheet having a final thickness. It is preferable to apply a final refining annealing at 70 (rc 〃 and apply a fire at 70 to 80 ° C to increase the average recrystallized grain size to be more than the grain size after final refining annealing. The rotary machine according to any one of the above 1 to 9 has no density Preferably, the magnetic steel sheet is subjected to a punching and then a rotor member for a rotating machine. 13. The density non-oriented electrical steel sheet for a rotating machine according to any one of the above 1 to 9 is preferably subjected to die cutting. After laminating, the stator member for a rotating machine is subjected to strain annealing. 1 4. A rotor member according to the above-described 12 invention having a high magnetic flux density non-directional plate for the same rotating machine as a raw material, and a stator related to the above The rotating machine of the component. The crystal grain size is a plate made of high magnetic material.) The high magnetic flux of the two high magnetic flux laminated with the above-mentioned electromagnetic steel electromagnetic steel over the conventional -8 00 °C strain retreat, and then electromagnetic The hair of the steel 13 - (7) 1276693 That is, the non-oriented electrical steel sheets according to the inventions of the above 1 to 9 can be laminated by punching to form a high-strength rotating machine rotor member. The low iron loss rotating machine stator member may be formed by die cutting and laminating and then applying strain annealing. Further, the rotor member and the stator member obtained from the same rotating machine with high magnetic flux density non-oriented electrical steel sheets may be used to obtain High performance rotary machine.

【實施方式】 本發明人首先著眼於以下各點。 (1 )無方向性電磁鋼板之飽和磁通密度係由原料之 鐵含量(質量% )而定,鐵以外之元素、例如Si或Μη等 含量高時,就無法避免飽和磁通密度之下降。 (2 )磁通密度及強度由鋼板之結晶粒徑所支配。 (3)如上述需要者依需進行應變退火,致由於該退 火可能發生結晶粒徑之增大及鐵損之減低。[Embodiment] The present inventors first focused on the following points. (1) The saturation magnetic flux density of the non-oriented electrical steel sheet is determined by the iron content (% by mass) of the raw material. When the content of elements other than iron, such as Si or Μ, is high, the decrease in the saturation magnetic flux density cannot be avoided. (2) The magnetic flux density and strength are governed by the crystal grain size of the steel sheet. (3) If the above-mentioned needer performs strain annealing as needed, the increase in crystal grain size and the decrease in iron loss may occur due to the annealing.

經考慮上述結果,本發明人等乃發覺組合下述各方 法。 (1 )藉採用Si含量及Μη含量低之無方向性電磁鋼 板,以確保高磁通密度; (2 )最終精製退火後之製品板較細粒而高強度, 且’能確保應變退火時之結晶粒的高生長性; (3 )在轉子材料不予進行應變退火以確保強度,在 定子材料施加應變退火藉晶粒生長以達成低鐵損; 藉上述之組合,能將結晶粒徑在上述轉子及定子之製 -11 - 1276693 .(8) 造過程加以適當化,對轉子及定子分別賦予所需之特性。 本發明人等更加探求在定子組裝過程所進行之應變退 火工程中支配結晶粒徑生長的主要原因,而發覺組合下述 各方法。 (1 )將A1之上限値以相當嚴厲的工業水準加以限 制,以抑制A1N等之微細析出物; (2)將鋼板中分散之延性夾雜物的個數密度與被最 終精製退火之鋼板的平均結晶粒徑予以發生關係限制於所 定値以下,即發覺特定之尺寸範圍的延性夾雜物支配性地 影響應變退火時之晶粒生長性,可達成更緻密且有效的延 性夾雜物控制; 而獲得藉上述組合,在需要者之定子組裝過程所進行 應變退火工程(例如在700 °C兩個小時左右)能使結晶粒 徑顯著地生長的卓見,以達成本發明。 以下,就本發明電磁鋼板之較適宜化學組成(質量 % )加以詳述。The inventors of the present invention have found that the following methods are combined in consideration of the above results. (1) By using a non-oriented electrical steel sheet with a low Si content and a low Μη content to ensure a high magnetic flux density; (2) a final fine-annealed product sheet having a finer grain and a higher strength, and 'can ensure strain annealing High growth of crystal grains; (3) no strain annealing is performed on the rotor material to ensure strength, strain annealing is applied to the stator material by grain growth to achieve low iron loss; by the combination of the above, the crystal grain size can be Manufacture of rotors and stators -11 - 1276693 . (8) The manufacturing process is adapted to give the rotor and stator the required characteristics. The inventors of the present invention have further explored the main reason for controlling the growth of crystal grain size in the strain annealing process performed in the stator assembly process, and have found that the following methods are combined. (1) Limiting the upper limit of A1 to a rather severe industrial level to suppress fine precipitates such as A1N; (2) averaging the number density of ductile inclusions dispersed in the steel sheet and the steel sheet being finally refined and annealed The relationship between the crystal grain size and the determined particle size is limited to the predetermined enthalpy, that is, the ductile inclusions in the specific size range are dominantly affected to affect the grain growth during strain annealing, and a more compact and effective ductile inclusion control can be achieved; In the above combination, the strain annealing process (for example, about two hours at 700 ° C) in the stator assembly process of the person in need can make the crystal grain size grow remarkably to achieve the present invention. Hereinafter, the preferred chemical composition (% by mass) of the electromagnetic steel sheet of the present invention will be described in detail.

Si : 0· 1 〜1.2% 欲將鋼板之電阻增大並減低鐵損,至少需要含有〇 · 1 % Si。惟,si含量如超過1.2%時,磁通密度即降低, 硬度亦上升,更劣化加工性。因此,將Si含量定於0· 1〜 1.2%之範圍。 Μη : 0.005 〜0.30% Μη是爲獲得良好之熱軋時的加工性所需之成份,因 此需要含有0.005 %以上。然,如超過0.30%時,磁通密 -12- 1276693 (?) 度即會下降。於是將Μη含量設定於0.005〜0.30% C: 0.0050%以下(包含〇) C爲抑制磁性時效劣化需要盡量壓低。又,在 採用之極低A 1化的條件下欲使組合結構之改善效 發揮就需要減低爲0 · 〇 〇 5 〇 %以下。惟,此種C之 並非一定需要在起始材料之鋼液或扁鋼胚的階段 可。即,只要在鋼板製造過程之最終精製退火結束 則可。代表性之脫碳手段爲脫碳退火。又,在製造 丫了脫fe時’起始材料之C含量在0.0050%〜0.1% 較宜。Si : 0· 1 ~1.2% To increase the resistance of the steel sheet and reduce the iron loss, at least 〇 · 1 % Si is required. However, when the content of Si exceeds 1.2%, the magnetic flux density decreases, and the hardness also rises, which deteriorates workability. Therefore, the Si content is set in the range of from 0.1 to 1.2%. Μη : 0.005 to 0.30% Μη is a component required for obtaining good workability in hot rolling, and therefore needs to be contained in an amount of 0.005% or more. However, if it exceeds 0.30%, the magnetic flux density -12 - 1276693 (?) degree will decrease. Then, the Μη content is set to 0.005 to 0.30% C: 0.0050% or less (including 〇) C is required to suppress magnetic aging deterioration as much as possible. Further, in order to improve the efficiency of the combined structure under the condition of extremely low A 1 , it is necessary to reduce it to 0 · 〇 〇 5 〇 % or less. However, such a C does not necessarily need to be in the stage of the molten steel or flat steel of the starting material. That is, it is sufficient as long as the final refining annealing is completed in the steel sheet manufacturing process. A representative decarburization means is decarburization annealing. Further, it is preferable that the C content of the starting material is 0.0050% to 0.1% at the time of manufacture.

Sol.A1: 0.0004% 以下(包含 〇) 爲獲得優異的晶粒生長性與磁性,鋼板之A1 要減至0.0004%以下。Ai含量如超過0.0004%時 中乃析出A1N,經過最終精製退火之製品板的磁通 降低。又,應變退火時之再結晶粒生長性亦降低, 到本發明之能顯著減低鐵損量的優越效果。 N: 0.0030%以下(包含〇) N除了與A1結合構成氮化物(A1N )析出原因 與Ti等結合形成各種氮化物,成爲促成經過最終 火之製品磁通密度減低的原因。又,阻礙應變退火 結晶粒生長,而成爲阻礙鐵損値充分下降之原因。 含量需求減低爲0.003 0%以下。較佳爲0.0025 %以 本發明之無方向性電磁鋼板,除了以上之基 外,對應目的的鋼板特性亦可添加Sb、Sn、P、Ni、 本發明 果充分 減低, 達成不 前達成 過程進 範圍內 含量需 ,鋼板 密度即 無法得 外,亦 精製退 時之再 因此N 下。 本組成 REM、 •13- (10) 1276693Sol.A1: 0.0004% or less (including 〇) In order to obtain excellent grain growth and magnetic properties, A1 of the steel sheet should be reduced to 0.0004% or less. When the Ai content exceeds 0.0004%, A1N is precipitated, and the magnetic flux of the final refined annealing sheet is lowered. Further, the recrystallized grain growth property at the time of strain annealing is also lowered, and the superior effect of the present invention can remarkably reduce the amount of iron loss. N: 0.0030% or less (including yttrium) N is combined with A1 to form a nitride (A1N). The reason for the formation of various nitrides in combination with Ti or the like causes a decrease in the magnetic flux density of the product which is subjected to the final fire. Further, the strain annealing is inhibited from crystal grain growth, which is a cause of hindering the iron loss to be sufficiently lowered. The content requirement is reduced to 0.003 0% or less. Preferably, the non-oriented electrical steel sheet of the present invention is 0.0025%, and in addition to the above-mentioned base, Sb, Sn, P, and Ni may be added to the characteristics of the steel sheet corresponding to the purpose, and the present invention is sufficiently reduced to achieve a range of progress. The internal content is required, the density of the steel plate is not available, and it is also refined after the retreat. Composition REM, •13- (10) 1276693

Ca之至少任一種。該等之較佳含量容後再述。上述以 外,如含有Cr : 5%以下,Cu : 5%以下之至少任一種, 关寸獲取本發明之效果亦不成爲障礙。 又’以其他不可避免的不純物較代表性者有Ti、Nb、 v、s、〇’就該等之較適當範圍容後述之。且,亦被容許 Cu : 0.2 % 以下,Cr : 0.08 % 以下,Zr : 0.005 % 以下, As: 0.01% 以下,Mo: 0.005% 以下,W : 0.005% 以下等 之不可避免的不純物。 本發明之無方向性電磁鋼板,雖具有以上之基本組 成’惟僅是組成之控制並無法達成本發明之目的。經過最 終精製退火之鋼板內所分散非金屬夾雜物中,將鋼板(被 最終精製退火之製品板)之平均再結晶粒徑假設爲D 時,長度爲3 X D〜9 X D之延性夾雜物(延性非金屬夾 雜物)的個數密度需要爲1000個/ cm2以下(包含〇)。 以後即將該長度爲3 X D〜9 X D之延性非金屬夾雜物定 義爲阻礙晶粒生長延性非金屬夾雜物。 在此,平均再結晶粒徑係測定鋼板0.5 cm2面積中所 存在的結晶粒個數,且依據其算出每一結晶粒之平均面 積,再算出相同該平均面積之圓的直徑,而採用該直徑。 此種平均再結晶粒徑藉觀察鋼板之垂直於板幅方向所裁切 的剖面(所謂L剖面)可加以測定。 延性夾雜物則是沿軋製方向延長之棒狀夾雜物、及沿 軋製方向連續排列的夾雜物之謂。又,處在1 0 // Μ以內 距離之2以上夾雜物沿軋製方向以± 5 °以內之方向排列 -14 - .(11) 1276693 時,將該等夾雜物當作連繫著’以一個延性夾雜物視之。 又,夾雜物除了上述延性夾雜物外尙有孤立之圓形夾 雜物。此並非延性夾雜物,不算是延性夾雜物。且’將夾 雜物長徑爲短徑兩倍以下者當作圓形、超過兩倍者當作延 性夾雜物予以分類。 代表性延性夾雜物,有si〇2、A12〇3、MnO、CaO或該 等若干所成之複合氧化物(但有時由於組成變爲非延 性)。 延性夾雜物之長度是指底鐵(母相結構)與夾雜物界 面之任意兩點間所劃線段的最大値、即延性夾雜物之兩端 間的距離(將此作爲長徑)。所定長度之延性夾雜物的存 在個數測定,係以其次步驟加以進行。 硏磨鋼板之垂直於板幅方向的剖面,以光學顯微鏡觀 察硏磨原樣(不進行腐蝕處理)之面,將與底鐵部分色彩 不同之小領域認定爲延性夾雜物。針對一個試樣將觀察視 野設定爲5mm2,就上述認定之夾雜物中可認爲所定長度 延性夾雜物形態者測算其個數,自其個數換算每1 cm2之 之個數而作爲個數密度。 以下,顯示爲調查對於延性夾雜物之晶粒生長性的影 響所進行之實驗及其結果。 (實驗1 ) 以 C ·· 0.002 %,Si : 0.7 %,Μη : 〇·2 %,Sol.A1 ·· 0.0004%以下,S: 0.002%,殘部(其餘)之不可避免的 -15- (12) 1276693 不純物爲基本成分,而製造針對該基本成分N在〇.〇〇10 〜0.0060%之範圍變動的扁鋼胚。 將所得扁鋼胚加熱至ll〇〇°C經熱軋爲2.3mm厚後, 予以酸洗,再經冷軋精加工呈〇.35mm之最終板厚,復又 施加8 0 0 °C、1 5秒鐘之最終精製退火(再結晶退火)而製 成最終精製退火板(製品板)。又,延性夾雜物之存在量 (個數密度)、及形態(長度)之調整,乃藉例如: 變更含氧量與含A1量以控制氧化物之量及組成; 變更扁鋼胚之厚度等,而變更熱軋時之輥壓程序以控 制夾雜物之延伸量; 等進行之。 且,就所得製品進行測定平均結晶粒徑同時,進行觀 察夾雜物,測定延性夾雜物之長度及個數密度。並對上述 製品,在M (Ar)氣氛施加750 °C、兩小時之退火(以下 簡稱爲「應變退火」),與最終精製退火板同樣進行測定 平均結晶粒徑。又,上述退火條件是相當於需要者之應變 退火的條件。 圖1爲對於如此所得最終精製退火後之鋼板平均結晶 粒徑的應變退火後之鋼板平均結晶粒徑的比(以下簡稱爲 「應變退火結晶粒生長比」或「晶粒生長比」)與N含 量之關係顯示圖表。在此,對應將最終精製退火後之平均 結晶粒徑設爲D時,長度爲3 X D〜9 X D之夾雜物(稱 謂阻礙晶粒生長延性非金屬夾雜物)的個數密度,而使用 不同之標記。 -16- (13) 1276693 自圖1可知,N含量爲30ppm (質量ppm)以下,且 阻礙晶粒生長延性非金屬夾雜物之個數密度如1 0〇〇 _ / cm2以下時,應變退火結晶粒生長比即爲2以上。惟,阻 礙晶粒生長延性非金屬夾雜物雖是1 000個/ cm2以下,N 含量如超過0.0030 %時,或阻礙晶粒生長延性非金屬夾雜 物之個數密度超過1 000個/ cm2時,應變退火結晶粒生 長比就變爲未滿2。 (實驗2 ) 同樣結果亦能由其次實驗2得到確認。即,製造具有 表一所示組成、殘部鐵及不可避免的夾雜物所成厚度 2 5 0mm之3條扁鋼胚,藉機械加工自該等扁鋼胚分別衝 切厚度25mm、50mm、l〇〇mm及200mm之試樣。之後, 將該等試樣加熱爲1 070 °C,在熱軋設成2.5mm厚後,經 酸洗復由冷軋精加工呈最終板厚0.5mm。接著,將連續退 火型之最終精製退火(再結晶退火)的條件調整於7 0 0〜 8 0 0 C軔圍’製成平均再結晶粒徑(在實驗例、實施例僅 稱爲平均結晶粒徑)爲1 2 // m或1 4 μ m之製品板。 對所得製品板在Ar氣氛中施加7 5 (TC、兩小時之應 變退火。將該等製品板(最終精製退火板)及應變退火板 之垂直於板幅方向的剖面以光學顯微鏡加以觀察,而測定 其平均結晶粒徑。又,對製品板進行測定阻礙晶粒生長延 性非金屬夾雜物之個數密度。在表二顯示其結果,如同表 所示,製品板之阻礙晶粒生長延性非金屬夾雜物的個數密 -17- (14) 1276693 度爲1 0 00個/ cm2以下之試樣,其應變退火結晶粒生長 比較大。 表1 鋼編號 化學組成(mass%) C Si Μη Sol.Al N 0 Ti Nb V 1 0.0027 0.50 0.27 0.0003 0.0015 0.0090 0.0003 0.002 0.0010 2 0.0021 0.50 0.23 0.0003 0.0019 0.0085 0.0004 0.002 0.0010 3 0.0026 0.60 0.22 0.0001 0.0018 0.0070 0.0003 0.001 0.0010 -18- (15) 1276693 表2 鋼編號 鋼胚扁厚 度(mm) 平均結晶粒徑 應變退火 結晶粒生 長比 阻礙晶粒生長延性 非金屬夾雜物個數 密度(個/cm2) 備考 應變退火前 (//m) 應變退火後 (卿) 1 25 12 50 4.2 0.3 發明例 50 34 2.8 61 發明例 100 22 1.8 1012 比較例 200 17 1.4 3581 比較例 2 25 46 3.8 0.7 發明例 50 36 3.0 65 發明例 100 26 2.2 811 發明例 200 19 1.6 2778 比較例 3 25 47 3.9 0.3 發明例 50 43 3.6 19 發明例 100 26 2.2 286 發明例 200 22 1.8 1024 比較例 1 25 14 50 3.7 0.3 發明例 50 32 2.4 42 發明例 100 26 2.0 828 發明例 200 16 1.2 3731 比較例 2 25 44 3.1 0.5 發明例 50 34 2.4 35 發明例 100 28 2.0 657 發明例 200 22 1.6 2824 比較例 3 25 50 3.6 0.1 發明例 50 43 3.1 11 發明例 100 31 2.2 220 發明例 200 23 1.6 1038 比較例 -19- (16) 1276693 藉上述予以限制組成,並適當地限制阻礙晶粒生長延 性非金屬夾雜物的個數密度,則能將應變退火後之鋼板 (被組裝爲定子之鐵芯材料)的平均結晶粒徑促成上述最 終精製退火後之粒徑的兩倍以上。藉此,定子之鐵損可大 大地減低。 另’轉子藉以被最終精製退火之狀態予以使用,其結 晶粒徑相對地變呈較小狀態,可維持高強度、特別是高上 降伏點(以下略稱爲YP )。 且’藉使用上述轉子及定子,乃能有效率地組裝高速 旋轉用之高性能旋轉機。 對轉子要求之強度水準,由於隨著旋轉機之特性相 異,因此鋼板強度之支配因素的平均結晶粒徑之大小,對 應被要求轉子之強度水準加以設計即可。惟,如是一般性 旋轉機,鋼板之最終精製退火的平均結晶粒徑以6〜2 5 //m爲佳。此時,鋼板之強度爲YP 200〜400Mpa左右、 維氏硬度Hv爲100〜170左右。 又,雖非欲賦予本發明之權利範圍的解釋有所影響, 然,由於阻礙晶粒生長延性非金屬夾雜物之個數密度而應 變退火結晶粒生長比被支配之理由可如下予以推想。 首先,推想與結晶粒徑相同程度之長度的夾雜物,最 會阻礙晶粒生長性。因爲延性夾雜物係橫越一個或兩個以 上之結晶粒界存在,阻礙其結晶粒之生長性的機率較高所 致。 惟,電磁鋼板中所存在非金屬夾雜物之總量如一定 -20- (17) 1276693 時,由於其鋼中所佔體積分率可視爲略一定,根據齊納 (Zener )之式所示,比起結晶粒徑極端長之夾雜物阻礙 晶粒生長性的可能性較低。 換言之,延性夾雜物阻礙晶粒生長性的程度,隨著夾 雜物之長度而異,依據本發明人等之認知,延性夾雜物之 長度爲最終精製退火板之平均結晶粒徑的3〜9倍時,即 阻礙晶粒生長延性非金屬夾雜物時,呈最大。因此,由於 該範圍長之延性夾雜物、即「阻礙晶粒生長延性非金屬夾 雜物」之個數密度,致「應變退火結晶粒生長比」遭受影 又,所謂齊納之式則是表示抑制劑之晶粒生長抑制力 I的下式。 1= (3/4) x(Vxaxp /r〇) 其中,V爲母相之摩爾體積,cj爲晶界能,p爲析出 物之體積分率,r〇爲析出物之平均粒半徑。At least one of Ca. The preferred contents of these are described later. In addition to the above, if at least one of Cr: 5% or less and Cu: 5% or less is contained, it is not an obstacle to obtain the effect of the present invention. Moreover, Ti, Nb, v, s, and 〇, which are more representative of other unavoidable impurities, are described later in the appropriate range. Further, Cu: 0.2% or less, Cr: 0.08 % or less, Zr: 0.005 % or less, As: 0.01% or less, Mo: 0.005% or less, and W: 0.005% or less are unavoidable impurities. The non-oriented electrical steel sheet of the present invention has the above basic composition, but it is only the control of the composition and the object of the present invention cannot be achieved. When the average recrystallized grain size of the steel sheet (the final refined finish of the product sheet) is assumed to be D, the ductile inclusions having a length of 3 XD to 9 XD (the ductility) in the non-metallic inclusions dispersed in the final refined annealing steel sheet The number density of non-metallic inclusions needs to be 1000 / cm 2 or less (including 〇). The ductile non-metallic inclusions having a length of 3 X D to 9 X D will be defined as hindering grain growth ductile non-metallic inclusions. Here, the average recrystallized particle size is a number of crystal grains present in an area of 0.5 cm 2 of the steel sheet, and the average area of each crystal grain is calculated therefrom, and the diameter of a circle having the same average area is calculated, and the diameter is used. . Such an average recrystallized grain size can be measured by observing a section of the steel sheet which is cut perpendicular to the sheet direction (so-called L section). The ductile inclusions are rod-like inclusions elongated in the rolling direction and inclusions continuously arranged in the rolling direction. In addition, when the inclusions at a distance of more than 2 / 10 / Μ are arranged in the direction of ± 5 ° in the rolling direction - 14 ( . . . 1276693 ) , the inclusions are connected as ' A ductile inclusion is considered. Further, the inclusions have isolated round inclusions in addition to the above-mentioned ductile inclusions. This is not a ductile inclusion, not a ductile inclusion. And the case where the long diameter of the inclusions is less than twice the short diameter is regarded as a circle, and more than two times are classified as ductile inclusions. Representative ductile inclusions, si〇2, A12〇3, MnO, CaO or some of these composite oxides (but sometimes due to composition becoming non-ductile). The length of the ductile inclusion refers to the maximum enthalpy of the scribe line between the bottom iron (parent phase structure) and any two points of the inclusion interface, that is, the distance between the ends of the ductile inclusion (this is taken as the long diameter). The determination of the number of ductile inclusions of a predetermined length is carried out in the next step. A section perpendicular to the width direction of the steel plate is honed, and the surface of the honing (without etching treatment) is observed by an optical microscope, and a small area different from the color of the bottom iron portion is identified as a ductile inclusion. The observation field of view is set to 5 mm 2 for one sample, and the number of the ductile inclusions in the above-mentioned identified inclusions is considered to be the number of the objects, and the number per 1 cm 2 is converted from the number of the samples as the number density. . Hereinafter, the experiment and the results of investigating the influence on the grain growth of the ductile inclusions are shown. (Experiment 1) C ·· 0.002 %, Si : 0.7 %, Μη : 〇·2 %, Sol.A1 ·· 0.0004% or less, S: 0.002%, inevitable -15- of the residue (the rest) (12 1276693 Impurity is an essential component, and a flat steel embryo is produced in which the basic component N varies from 〇.〇〇10 to 0.0060%. The obtained flat steel embryo is heated to ll 〇〇 ° C and hot rolled to a thickness of 2.3 mm, then pickled, and then cold-rolled and finished to a final thickness of 〇 35 mm, and then applied again at 80 ° C, 1 Final finishing annealing (recrystallization annealing) was carried out for 5 seconds to prepare a final refined annealing sheet (product sheet). Further, the amount of the ductile inclusions (number density) and the shape (length) are adjusted by, for example, changing the oxygen content and the A1 content to control the amount and composition of the oxide; changing the thickness of the flat steel embryo, etc. And changing the rolling process during hot rolling to control the amount of inclusions; etc.; Further, the obtained product was measured for the average crystal grain size, and the inclusions were observed to measure the length and the number density of the ductile inclusions. The product was subjected to annealing at 750 ° C for two hours in an M (Ar) atmosphere (hereinafter referred to as "strain annealing"), and the average crystal grain size was measured in the same manner as in the final fine-annealed sheet. Further, the above annealing conditions are conditions equivalent to strain annealing of a person in need. Fig. 1 is a ratio of the average crystal grain size of the steel sheet after strain annealing of the average crystal grain size of the steel sheet after the final finish annealing thus obtained (hereinafter referred to as "strain annealing crystal grain growth ratio" or "grain growth ratio") and N The relationship between the contents shows the chart. Here, the number density of inclusions having a length of 3 XD to 9 XD (referred to as a grain growth ductility non-metallic inclusion) is used in the case where the average crystal grain size after the final finish annealing is D, and the use is different. mark. -16- (13) 1276693 It can be seen from Fig. 1 that the N content is 30 ppm (mass ppm) or less, and the grain growth retardation non-metallic inclusions have a number density such as 10 〇〇 _ / cm 2 or less, strain annealing crystallization The grain growth ratio is 2 or more. However, when the grain growth ductility non-metallic inclusions are less than 1 000 /cm2, the N content is more than 0.0030%, or the grain growth is delayed, the number density of the non-metallic inclusions exceeds 1 000 /cm2. The strain-annealed crystal grain growth ratio becomes less than 2. (Experiment 2) The same result can also be confirmed by the second experiment 2. That is, three flat steel blanks having a thickness of 250 mm formed by the composition shown in Table 1, the residual iron, and the unavoidable inclusions were produced, and the thickness of each flat steel blank was punched by the machining to a thickness of 25 mm, 50 mm, and l. 〇mm and 200mm samples. Thereafter, the samples were heated to 1,070 °C, and after hot rolling to a thickness of 2.5 mm, they were subjected to pickling and cold rolling to a final thickness of 0.5 mm. Next, the conditions of the final annealing annealing (recrystallization annealing) of the continuous annealing type are adjusted to 7 0 0 to 80 ° C to prepare an average recrystallized grain size (in the experimental examples, the examples are simply referred to as average crystal grains). The diameter is 1 2 // m or 14 μm of the product board. The obtained product sheets were subjected to 75 (TC, two-hour strain annealing in an Ar atmosphere. The cross-section of the product sheets (finish-finished annealed sheets) and the strain-sintered sheets perpendicular to the sheet direction was observed by an optical microscope, and The average crystal grain size was measured. Further, the number of densities of the non-metallic inclusions which hindered the grain growth was measured on the product sheet. The results are shown in Table 2, as shown in the table, the grain growth of the product sheet hindered the ductile non-metal. The number of inclusions is -17- (14) 1276693 degrees is less than 100 00 / cm2, and the strain-annealed crystal grains grow relatively large. Table 1 Steel number chemical composition (mass%) C Si Μη Sol. Al N 0 Ti Nb V 1 0.0027 0.50 0.27 0.0003 0.0015 0.0090 0.0003 0.002 0.0010 2 0.0021 0.50 0.23 0.0003 0.0019 0.0085 0.0004 0.002 0.0010 3 0.0026 0.60 0.22 0.0001 0.0018 0.0070 0.0003 0.001 0.0010 -18- (15) 1276693 Table 2 Steel numbered steel slab Thickness (mm) Average crystal grain size strain annealing crystal grain growth ratio hindering grain growth ductility non-metallic inclusion number density (pieces/cm2) Before the strain annealing (//m) After annealing (Qing) 1 25 12 50 4.2 0.3 Inventive Example 50 34 2.8 61 Inventive Example 100 22 1.8 1012 Comparative Example 200 17 1.4 3581 Comparative Example 2 25 46 3.8 0.7 Inventive Example 50 36 3.0 65 Inventive Example 100 26 2.2 811 Inventive Example 200 19 1.6 2778 Comparative Example 3 25 47 3.9 0.3 Inventive Example 50 43 3.6 19 Inventive Example 100 26 2.2 286 Inventive Example 200 22 1.8 1024 Comparative Example 1 25 14 50 3.7 0.3 Inventive Example 50 32 2.4 42 Inventive Example 100 26 2.0 828 Invention Example 200 16 1.2 3731 Comparative Example 2 25 44 3.1 0.5 Inventive Example 50 34 2.4 35 Inventive Example 100 28 2.0 657 Inventive Example 200 22 1.6 2824 Comparative Example 3 25 50 3.6 0.1 Inventive Example 50 43 3.1 11 Inventive Example 100 31 2.2 220 Invention Example 200 23 1.6 1038 Comparative Example -19- (16) 1276693 By limiting the composition as described above and appropriately limiting the number density of ductile non-metallic inclusions that hinder grain growth, the strain-annealed steel sheet can be assembled The average crystal grain size of the core material of the stator contributes to more than twice the particle diameter after the final finish annealing. Thereby, the iron loss of the stator can be greatly reduced. Further, the rotor is used in a state of being finally refined and annealed, and the crystal grain size thereof is relatively small, and high strength, particularly a high upper and lower drop point (hereinafter abbreviated as YP) can be maintained. Further, by using the rotor and the stator described above, it is possible to efficiently assemble a high-performance rotating machine for high-speed rotation. The strength level required for the rotor is different depending on the characteristics of the rotating machine. Therefore, the average crystal grain size of the controlling factor of the strength of the steel sheet is designed to be required for the strength level of the rotor. However, in the case of a general rotary machine, the average crystal grain size of the final finish annealing of the steel sheet is preferably 6 to 2 5 //m. At this time, the strength of the steel sheet is about YP 200 to 400 MPa, and the Vickers hardness Hv is about 100 to 170. Further, although it is not intended to give an explanation to the scope of the present invention, the reason why the growth ratio of the annealed crystal grains is dominant due to the number density of the non-metallic inclusions which hinder the grain growth is considered as follows. First, it is assumed that the inclusions having the same length as the crystal grain size most hinder the grain growth property. Since the ductile inclusions are present across one or more of the crystal grain boundaries, the probability of hindering the growth of the crystal grains is high. However, when the total amount of non-metallic inclusions present in the electromagnetic steel sheet is -20-(17) 1276693, the volume fraction of the steel may be slightly determined, according to the Zener formula. The possibility that the inclusions which are extremely long in crystal grain size hinder the grain growth property is low. In other words, the extent to which the ductile inclusions impede the grain growth property varies depending on the length of the inclusions. According to the knowledge of the present inventors, the length of the ductile inclusions is 3 to 9 times the average crystal grain size of the final refined annealing sheet. At the time, it is the largest when it blocks the growth of ductile non-metallic inclusions. Therefore, the "strain-annealed crystal grain growth ratio" suffers from the number density of the long-term ductile inclusions, that is, the "straining grain growth ductile non-metallic inclusions", and the so-called Zener formula means suppression. The following formula of the grain growth inhibiting force I of the agent. 1 = (3/4) x(Vxaxp /r〇) where V is the molar volume of the parent phase, cj is the grain boundary energy, p is the volume fraction of the precipitate, and r〇 is the average particle radius of the precipitate.

如上述,藉將無方向性電磁鋼板之 Si、Mn、C、 Sol ·Α1及Ν的含量分別予以控制,且將阻礙晶粒生長延性 非金屬夾雜物之個數密度抑制於1 000個/ cm2以下,係 能增大應變退火結晶粒生長比,而製成適合旋轉機用之高 磁通密度無方向性電磁鋼板。復又,藉對於鋼板組成限制 Ti、Nb及V之含量,或添加Sb、Sn,乃能更加提升其效 果。此情,由以下之實驗可確認之。 (實驗3 ) -21 - (18) 1276693As described above, the contents of Si, Mn, C, Sol, Α1 and yttrium of the non-oriented electrical steel sheet are respectively controlled, and the number density of the non-metallic inclusions which hinder the grain growth ductility is suppressed to 1 000 / cm 2 . Hereinafter, the strain-annealed crystal grain growth ratio can be increased to form a high magnetic flux density non-oriented electrical steel sheet suitable for a rotary machine. In addition, by limiting the composition of the steel sheet to the content of Ti, Nb and V, or adding Sb, Sn, the effect can be further enhanced. This situation can be confirmed by the following experiment. (Experiment 3) -21 - (18) 1276693

製造表三所示組成、殘部鐵及不可避免的不純物所成 之鋼塊,將該等鋼塊加熱至1070 °C後’經熱軋爲2.5mm 厚,予以酸洗,再經冷軋呈0 · 5 m m之最終板厚。復又施 加8 00 °C、10秒鐘之最終精製退火(再結晶退火)而製成 製品板後,再施加7 5 0 °C、兩小時之應變退火予以製成應 變退火板。且自所得製品板及應變退火板沿平行於軋製方 向及垂直於軋製方向各衝切同數之試樣,依據JIS C 2550 進行測定磁通密度及鐵損。將測定結果拼示於表三。 又’各製品板之平均結晶粒徑爲10〜20// m。又,各 製品板之阻礙晶粒生長延性非金屬夾雜物之個數密度爲 1000個/ cm2以下。Produce the steel blocks of the composition shown in Table 3, the residual iron and the unavoidable impurities. After heating the steel blocks to 1070 °C, they are hot rolled to 2.5 mm thick, pickled, and then cold rolled to 0. · Final thickness of 5 mm. After further finishing annealing (recrystallization annealing) at 80 ° C for 10 seconds to form a product sheet, strain annealing was performed at 750 ° C for two hours to prepare a strain-annealed sheet. Further, the obtained product sheet and the strain-sintered sheet were punched into the same number of samples parallel to the rolling direction and perpendicular to the rolling direction, and the magnetic flux density and the iron loss were measured in accordance with JIS C 2550. The results of the measurements are shown in Table 3. Further, the average crystal grain size of each of the product sheets was 10 to 20 // m. Further, the number density of the ductile non-metallic inclusions which hinder the grain growth of each of the product sheets is 1000 / cm 2 or less.

-22- (19)1276693 鐵損(W/kg) 應變退 火後 5 00 LO l〇 CO CM 七 CM 00 CO 卜 CO CD CO 卜 CO 卜 CO 應變退 火前 卜 CD CNJ CD CO CO in CsJ in T— to CM IT) CO iri CNJ ud CN lO CNJ in % 05 E s 1 I I I I I 0.01 I 0.03 ! 0.08 I 1 I I I I I I 0.01 0.02 I 0.19 &gt; 0.0010 0.0020 0.0065 0.0020 0.0020 0.0050 0.0010 0.0010 0.0020 0.0020 0.0010 0.002 0.006 0.001 0.004 0.002 0.003 0.001 0.002 0.001 0.002 | 0.001 ! 0.0024 | 0.0006 o χ- Ο ό [ ! 0.0009 0.0015 0.0004 0.0006 0.0005 0.0004 0.0004 0.0003 〇 0.0065 0.0060 0.0065 0.0070 0.0060 0.0055 0.0055 0.0055 0.0060 0.0065 0.0065 2 0.0017 0.0022 0.0021 0.0015 0.0020 0.0017 0.0015 0.0022 0.0013 ! 0.0015 0.0024 Sol.AI 0.0001 i 0.0002 I 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 I 0.0002 0.0001 C 0.15 i 0.17 0.16 0.17 0.18 0.17 0.15 0.17 0.17 0.19 0.15 CO I 0.90 0.90 [ 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Ο 0.0018 0,0017 i 0.0025 0.0019 0.0023 0.0021 0.0018 0.0018 0.0022 0.0024 0.0017 疆 匿 τ— CM CO 寸 in (D 00 〇&gt; -23- 1276693 表4 鋼編號 化學組成(mass% ) 扁鋼胚 厚度 (mm) C Si Μη Sol.Al N Sb.Sn 21 0.0032 0.75 0.25 0.0003 0.0025 —— 200 22 0.0031 0.80 0.25 0.0004 0.0024 一 200 23 0.0031 0.55 0.26 0.0002 0.0021 一 200 24 0.0032 0.75 0.25 0.0002 0.0017 — 280 25 0.0037 0.80 0.27 0.0003 0.0021 — 280 26 0.0028 0.55 0.25 0.0004 0.0022 一 280 27 0.0031 0.55 0.26 0.004 0.0021 Sb:0.007 200 28 0.0030 0.55 0.24 0.0004 0.0022 Sb:0.007 280 29 0.0029 0.55 0.25 0.0004 0.0020 Sn:0.008 200 30 0.0029 0.55 0.24 0.0004 0.0019 Sn:0.008 280-22- (19)1276693 Iron loss (W/kg) After strain annealing 5 00 LO l〇CO CM Seven CM 00 CO Bu CO CD CO Bu CO Bu CO strain annealing before CD CD CNJ CD CO CO in CsJ in T— To CM IT) CO iri CNJ ud CN lO CNJ in % 05 E s 1 IIIII 0.01 I 0.03 ! 0.08 I 1 IIIIII 0.01 0.02 I 0.19 &gt; 0.0010 0.0020 0.0065 0.0020 0.0020 0.0050 0.0010 0.0010 0.0020 0.0020 0.0010 0.002 0.006 0.001 0.004 0.002 0.003 0.001 0.002 0.001 0.002 | 0.001 ! 0.0024 | 0.0006 o χ- Ο ό [ ! 0.0009 0.0015 0.0004 0.0006 0.0005 0.0004 0.0004 0.0003 〇0.0065 0.0060 0.0065 0.0070 0.0060 0.0055 0.0055 0.0055 0.0060 0.0065 0.0065 2 0.0017 0.0022 0.0021 0.0015 0.0020 0.0017 0.0015 0.0022 0.0013 ! 0.0015 0.0024 Sol .AI 0.0001 i 0.0002 I 0.0001 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 I 0.0002 0.0001 C 0.15 i 0.17 0.16 0.17 0.18 0.17 0.15 0.17 0.17 0.19 0.15 CO I 0.90 0.90 [ 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 Ο 0.0018 0,0017 i 0.0025 0.0019 0.0023 0.0021 0.0018 0.0018 0.0022 0.0024 0.0017 疆调τ— CM CO Inch in (D 00 〇&gt; -23- 1276693 Table 4 Steel number chemical composition (mass%) Flat steel blank thickness (mm) C Si Μη Sol.Al N Sb.Sn 21 0.0032 0.75 0.25 0.0003 0.0025 —— 200 22 0.0031 0.80 0.25 0.0004 0.0024 a 200 23 0.0031 0.55 0.26 0.0002 0.0021 a 200 24 0.0032 0.75 0.25 0.0002 0.0017 — 280 25 0.0037 0.80 0.27 0.0003 0.0021 — 280 26 0.0028 0.55 0.25 0.0004 0.0022 a 280 27 0.0031 0.55 0.26 0.004 0.0021 Sb:0.007 200 28 0.0030 0.55 0.24 0.0004 0.0022 Sb:0.007 280 29 0.0029 0.55 0.25 0.0004 0.0020 Sn:0.008 200 30 0.0029 0.55 0.24 0.0004 0.0019 Sn:0.008 280

將所得結果顯示於表五。如表四及表五所示,具有依 照本發明之成分組成及阻礙晶粒生長延性非金屬夾雜物個 數密度者,其應變退火結晶粒生長比較大,於是應變退火 後之鐵損値特別低。且與製品(最終精製退火之狀態)之 上降伏點(YP )及維氏硬度(Hv )較高相輔,亦呈適合 同時衝切而製造旋轉機之轉子及定子。當然,磁通密度亦 充分地高。又,在特別添加 Sb或 Sn之發明例(27、 29 ),應變退火所帶來之磁性改善格外地顯著。 -31 - (28)1276693 備考 1 1_ 發明例 發明例 發明例 比較例 比較例 比較例 發明例 比較例 發明例 比較例 應變退火 結晶粒生 長比 00 CO CO 々 in c\i 00 r— σ&gt; τ— CD t— 00 七 CD T- o iri T— 應變退火後特性 Β5〇(Τ) i平均結晶粒徑(//m) CD CD ID S CO CN σ&gt; 00 m 00 § s W15/50 (W/kg) q 寸 CO 寸 CO LO in IT) CD CO LO CO CNJ iri 齒 _ 一 11¾ 嫛 S 好]擊1 踅瑟奧 ni 讫 -蘧 m 750 583 955 1525 1072 1998 923 2004 830 1818 製品特性(應變退火前) 維氏硬度 一 (Hv) 113 「 110 115 118 115 114 118 118 G&gt; v x— 120 安1 298 294 300 295 298 309 309 310 315 311 |平均結晶粒徑 1 (β m) CM CO 〇g t— CNI CM OJ t— CVJ CNJ B5〇(T) 1 1.75 1.76 1.76 1.73 1.72 1.72 1.75 1.75 1.76 1.74 W15/50 (W/kg) CNI LO iri 卜 iri 00 l〇 o CD CM CD 寸 iri t— CD 寸 LO o CD 鋼編 號 CN CM CO C\J to CM CD CN c\i 00 C\J σ&gt; οι -32- (29) 1276693 (實施例2) 製造具有表六之成分組成,其餘由殘部鐵及不可避免 的不純物所成厚度210mm之連續鑄造扁鋼胚。此時,藉 製鋼程序之爐渣組成適當化與熱軋條件之適當化而將阻礙 晶粒生長延性非金屬夾雜物量控制於1 000個/ cm2以 下。 將所得扁鋼胚與實施例1之情形同樣處理以形成製 品,並與實施例1之情形同樣進行試驗。惟,鋼編號5 8 之最終精製退火在680°C、鋼編號之最終精製退火在850 °C分別進行。 將所得結果顯示於表七。如表七所示,具有依照本發 明之成分組成、平均結晶粒徑者均具有優異的應變退火結 晶粒生長比及強度·磁性,藉此成爲適合可同時衝切製造 旋轉機之轉子及定子。 又’可知特別將最終精製退火溫度控制於 700 °C〜 8〇〇°C,或將製品板之平均再結晶粒徑控制於6〜25 // Μ, 對於應變退火前之高強度與應變退火後之低鐵損的兩者兼 顧的效果頗爲有利。 -33- (30) 1276693 表6 鋼編 號 化學組成(mass% ) C Si Mil Sol.Al N S 0 Ti Nb V 其他元素 31 0.0039 0.75 0.38 0.0003 0.0027 0.0045 0.0085 0.0004 0.002 0.0020 32 0.0034 0.80 0.25 0.0002 0.0023 0.0030 0.0070 0.0003 0.001 0.0020 33 0.0030 0.55 0.20 0.0001 0.0017 0.0025 0.0080 0.0003 0.004 0.0025 34 0.0022 0.30 0.25 0.0001 0.0022 0.0035 0.0080 0.0004 0.003 0.0035 35 0.0045 1.05 0.27 0.0003 0.0015 0.0030 0.0060 0.0005 0.002 0.0025 36 0.0028 0.90 0.25 0.0004 0.0021 0.0040 0.0090 0.0008 0.003 0.0030 37 0.0025 0.35 0.19 0.0003 0.0014 0.0020 0.0060 0.0005 0.004 0.0035 38 0.0023 0.95 0.25 0.0002 0.0018 0.0015 0.0050 0.0004 0.002 0.0030 39 0.0040 1.10 0.27 0.0002 0.0023 0.0013 0.0040 0.0003 0.002 0.0040 40 0.0027 1.10 0.28 0.0001 0.0024 0.0022 0.0070 0.0005 0.004 0.0020 Sb:0.008 41 0.0020 1.15 0.25 0.0002 0.0021 0.0035 0.0050 0.0004 0.002 0.0040 Sb:0.061 42 0.0025 0.95 0.26 0.0001 0.0016 0.0040 0.0045 0.0004 0.002 0.0010 Sn:0.010 43 0.0036 0.95 0.20 0.0002 0.0025 0.0035 0.0070 0.0004 0.003 0.0040 Sn:0.150 44 0.0025 0.60 0.19 0.0001 0.0022 0.0025 0.0075 0.0003 0.003 0.0050 Sb:0.052, Sn:0.048, P:0.080? Ni:0.050 45 0.0026 0.30 0.11 0.0002 0.0017 0.0022 0.0060 0.0003 0.003 0.0015 P:0.018 46 0.0038 0.28 0.09 0.0001 0.0029 0.0023 0.0040 0.0004 0.005 0.0015 Ni:0.22 47 0.0043 0.55 0.25 0.0002 0.0029 0.0020 0.0035 0.0003 0.002 0.0010 P:0.040, Ni:0.151 48 0.0038 0.75 0.40 0.0003 0.0028 0.0045 0.0080 0.0004 0.002 0.0020 49 0.0033 0.80 0.24 0.0005 0.0023 0.0030 0.0065 0.0004 0.001 0.0020 50 0.0031 0.55 0.18 0.0001 0.0035 0.0025 0.0080 0.0003 0.004 0.0020 51 0.0045 1.05 0.28 0.0003 0.0016 0.0060 0.0065 0.0004 0.002 0.0020 52 0.0029 0.90 0.24 0.0004 0.0022 0.0045 0.0110 0.0009 0.003 0.0030 53 0.0025 0.35 0.21 0.0003 0.0013 0.0019 0.0065 0.0024 0.004 0.0040 54 0.0022 0.95 0.26 0.0002 0.0019 0.0015 0.0050 0.0004 0.006 0.0030 55 0.0040 1.10 0.27 0.0002 0.0022 0.0015 0.0045 0.0004 0.002 0.0060 56 0.0045 1.00 0.24 0.0003 0.0018 0.0060 0.0050 0.0004 0.002 0.0020 REM:0.01 57 0.0040 1.05 0.26 0.0003 0.0017 0.0060 0.0040 0.0004 0.002 0.0020 Ca:0.001 58 0.0040 1.10 0.28 0.0010 0.0080 0.0065 0.0110 0.0004 0.003 0.0060 59 0.0040 1.00 0.23 0.0001 0.0017 0.0015 0.0040 0.0003 0.002 0.0020 60 0.0014 0.60 0.22 0.0001 0.0014 0.0015 0.0038 0.0002 0.001 0.0020 Sn:0.015 P:0.07 61 0.0026 0.55 0.23 0.0002 0.0015 0.0017 0.0038 0.0002 0.001 0.0020 Sb:0.01? Ni:0.10 62 0.0038 0.55 0.20 0.0001 0.0020 0.0015 0.0045 0.0003 0.001 0.0030 Sb:0.007, Sn:0.006, Ca:0.001? REM:0.005 63 0.0037 0.65 0.25 0.0001 0.0011 0.0018 0.0050 0.0002 0.001 0.0020 Sn:0.030, Ca:0.002 64 0.0022 0.60 0.21 0.0001 0.0018 0.0018 0.0043 0.0003 0.000 0.0010 Sb:0.035, REM:0.02 65 0.0025 0.12 0.24 0.0002 0.013 0.0016 0.0051 0.0002 0.001 0.0020 Sb:0.0075 Sn:0.010 66 0.0010 0.60 0.22 0.0001 0.0021 0.0013 0.0041 0.0002 0.001 0.0020 Sn:0.015 67 0.0012 0.60 0.19 0.0001 0.0010 0.0019 0.0036 0.0002 0.000 0.0010 Sn:0.020 -34- (31) 1276693 表7 鋼編 號 製品特性(應變退火前) 應變退火後特性 應變退 火結晶 粒生長 比 備考 W15/5O (W/kg) B5〇(T) 平均結晶 粒徑 (β m) 降伏點 (MPa) 維氏硬度 (Hv) W15/50 (W/kg) 平均結 晶粒徑 {β m) 31 53. 1.75 14 292 107 4.1 61 4.5 發明例 32 5.4 1.76 15 294 104 4.3 56 3.8 發明例 33 5.6 1.76 14 300 106 4.1 61 4.3 發明例 34 5.9 1.76 14 295 107 4.7 53 3.8 發明例 35 5.2 1.74 14 298 103 4.1 48 3.5 發明例 36 5.3 1.75 14 302 104 3.8 55 3.8 發明例 37 5.7 1.76 15 292 103 4.8 48 3.2 發明例 38 5.6 1.74 14 301 107 3.9 48 3.5 發明例 39 5.2 1.75 13 294 102 3.8 55 4.1 發明例 40 5.1 1.74 14 298 107 3.6 58 4.1 發明例 41 5.1 1.74 13 293 105 3.9 54 4.0 發明例 42 5.2 1.75 14 297 108 3.7 59 4.2 發明例 43 5.3 1.75 15 295 104 3.9 59 3.9 發明例 44 5.5 1.76 15 328 127 3.9 59 3.9 發明例 45 5.8 1.76 16 311 123 4.6 50 3.2 發明例 46 5.8 1.76 14 305 116 4.5 52 3.6 發明例 47 5.9 1.75 13 331 133 4.5 56 4.4 發明例 48 6.5 1.72 10 303 108 5.9 20 1.9 比較例 49 6.8 1.71 10 313 110 6.1 19 1.9 比較例 50 6.9 1.71 10 307 110 6.1 15 1.4 比較例 51 5.8 1.73 11 311 113 4.8 28 2.5 發明例 52 5.8 1.73 12 307 114 4.8 30 2.5 發明例 53 6.2 1.74 13 305 111 5.1 33 2.5 發明例 54 6.0 1·74 13 308 115 4.9 30 2.3 發明例 55 5.9 1.73 12 311 109 4.8 25 2.1 發明例 56 5.3 1.73 14 297 103 4.2 45 3.2 發明例 57 5.4 1.73 13 295 100 4.5 46 3.5 發明例 58 8.7 1.76 5 341 132 6.2 14 2.8 發明例 59 4.9 1.73 30 272 95 4.4 50 1.7 發明例 60 5.4 1.75 14 330 131 3.7 63 4.5 發明例 61 5.5 1.74 14 315 120 3.9 59 4.2 發明例 62 5.2 1.74 15 295 106 3.7 65 4.3 發明例 63 5.2 1.76 14 304 109 3.8 60 4.3 發明例 64 5.3 1.75 14 305 107 3.9 58 4.1 發明例 65 5.6 1.75 15 301 105 4.0 61 4.1 發明例 66 5.2 1.74 14 297 108 3.7 60 4.3 發明例 67 5.2 1.74 14 298 108 3.6 61 4.4 發明例 -35- (32) 1276693 如上述’藉本發明係能提供一種極適合製造旋轉機用 轉子及定子之無方向性電磁鋼板。 且’本發明有關之無方向性電磁鋼板,不僅如此,尙 具有優異之所謂再利用性的特徵。即,再利用習知含A1 量高之鐵芯材料鑄造馬達的旋轉軸時,鐵水表面乃進行氧 化致黏性增高。於是鐵水之鑄模內充塡性降低,有時無法 獲得健全之鑄件。是故,一般認爲含A1之廢鐵渣缺乏再 利用性’然本發明有關之無方向性電磁鋼板則爲低A1材 料,鑄造所需之再利用性極高。 產業上之可利用性 根據本發明之高磁通密度無方向性電磁鋼板,係能自 同一鋼板同時採取轉子材料及定子材料,且對轉子材料賦 予高磁通密度及高強度,對於定子材料賦予高磁通密度及 低鐵損。藉此,可大幅度地提升旋轉機用構件、進而旋轉 機之製造效率、輸出特性。況且,本發明有關之無方向性 電磁鋼板,亦優於鑄造時之再利用性,能改善再利用衝切 材料之廢鐵渣時的鑄造性。 【圖式簡單說明】 圖1爲將無方向性電磁鋼板之晶粒生長比、即應變退 火後之鋼板平均結晶粒徑對於最終精製退火後之鋼板平均 結晶粒徑的比與鋼板之N含量的關係,以阻礙晶粒生長 延性非金屬夾雜物之存在個數爲參數加以表示之圖表。 -36 -The results obtained are shown in Table 5. As shown in Tables 4 and 5, the composition of the composition according to the present invention and the number density of the non-metallic inclusions which hinder the grain growth ductility are relatively large, and the growth of the strain-annealed crystal grains is relatively large, so that the iron loss after strain annealing is particularly low. . In addition to the higher drop point (YP) and Vickers hardness (Hv) of the product (state of final finish annealing), it is also suitable for simultaneous punching to manufacture the rotor and stator of the rotating machine. Of course, the magnetic flux density is also sufficiently high. Further, in the invention examples (27, 29) in which Sb or Sn was particularly added, the magnetic improvement by strain annealing was particularly remarkable. -31 - (28)1276693 Preparation 1 1 Inventive Example Inventive Example Comparative Example Comparative Example Comparative Example Inventive Example Comparative Example Inventive Example Comparative Example Strain Annealing Crystal Grain Growth Ratio 00 CO CO 々in c\i 00 r - σ> τ — CD t— 00 七 CD T- o iri T—Characteristics after strain annealing Β5〇(Τ) i Average crystal grain size (//m) CD CD ID S CO CN σ> 00 m 00 § s W15/50 (W /kg) q inch CO inch CO LO in IT) CD CO LO CO CNJ iri tooth _ a 113⁄4 嫛S good] hit 1 踅 theo ni 讫-蘧m 750 583 955 1525 1072 1998 923 2004 830 1818 product characteristics (strain Before annealing) Vickers hardness one (Hv) 113 "110 115 118 115 114 118 118 G> vx-120 amp 1 298 294 300 295 298 309 309 310 315 311 | average crystal grain size 1 (β m) CM CO 〇gt — CNI CM OJ t— CVJ CNJ B5〇(T) 1 1.75 1.76 1.76 1.73 1.72 1.72 1.75 1.75 1.76 1.74 W15/50 (W/kg) CNI LO iri iri 00 l〇o CD CM CD inch iri t- CD inch LO o CD Steel No. CN CM CO C\J to CM CD CN c\i 00 C\J σ&gt; οι -32- (29) 1276693 (Example 2) Manufactured with the composition of Table VI, the rest A continuous casting flat steel preform with a thickness of 210 mm is formed by the residual iron and the unavoidable impurities. At this time, the slag composition optimization and the hot rolling conditions are appropriately controlled by the steel program to control the amount of non-metallic inclusions which hinder the grain growth ductility. 1 000 pieces/cm2 or less. The obtained flat steel blank was treated in the same manner as in Example 1 to form a product, and was tested in the same manner as in Example 1. However, the final finishing annealing of steel No. 58 was at 680 ° C, The final finish annealing of the steel number was carried out separately at 850 ° C. The results obtained are shown in Table 7. As shown in Table 7, the composition of the composition and the average crystal grain size according to the present invention all have excellent strain annealing crystal grain growth ratio. With strength and magnetic properties, it is suitable for rotors and stators that can be punched and manufactured at the same time. In addition, it is known that the final finishing annealing temperature is controlled at 700 ° C to 8 ° ° C, or the average recrystallization grain size of the product sheet is controlled to 6 to 25 // Μ, for high strength and strain annealing before strain annealing. The effect of both low iron loss is quite favorable. -33- (30) 1276693 Table 6 Steel number chemical composition (mass%) C Si Mil Sol. Al NS 0 Ti Nb V Other elements 31 0.0039 0.75 0.38 0.0003 0.0027 0.0045 0.0085 0.0004 0.002 0.0020 32 0.0034 0.80 0.25 0.0002 0.0023 0.0030 0.0070 0.0003 0.001 0.0020 33 0.0030 0.55 0.20 0.0001 0.0017 0.0025 0.0080 0.0003 0.004 0.0025 34 0.0022 0.30 0.25 0.0001 0.0022 0.0035 0.0080 0.0004 0.003 0.0035 35 0.0045 1.05 0.27 0.0003 0.0015 0.0030 0.0060 0.0005 0.002 0.0025 36 0.0028 0.90 0.25 0.0004 0.0021 0.0040 0.0090 0.0008 0.003 0.0030 37 0.0025 0.35 0.19 0.0003 0.0014 0.0020 0.0060 0.0005 0.004 0.0035 38 0.0023 0.95 0.25 0.0002 0.0018 0.0015 0.0050 0.0004 0.002 0.0030 39 0.0040 1.10 0.27 0.0002 0.0023 0.0013 0.0040 0.0003 0.002 0.0040 40 0.0027 1.10 0.28 0.0001 0.0024 0.0022 0.0070 0.0005 0.004 0.0020 Sb:0.008 41 0.0020 1.15 0.25 0.0002 0.0021 0.0035 0.0050 0.0004 0.002 0.0040 Sb:0.061 42 0.0025 0.95 0.26 0.0001 0.0016 0.0040 0.0045 0.0004 0.002 0.0010 Sn:0.010 43 0.0036 0.95 0.20 0.0002 0.0025 0. 0035 0.0070 0.0004 0.003 0.0040 Sn:0.150 44 0.0025 0.60 0.19 0.0001 0.0022 0.0025 0.0075 0.0003 0.003 0.0050 Sb:0.052, Sn:0.048, P:0.080? Ni:0.050 45 0.0026 0.30 0.11 0.0002 0.0017 0.0022 0.0060 0.0003 0.003 0.0015 P:0.018 46 0.0038 0.28 0.09 0.0001 0.0029 0.0023 0.0040 0.0004 0.005 0.0015 Ni:0.22 47 0.0043 0.55 0.25 0.0002 0.0029 0.0020 0.0035 0.0003 0.002 0.0010 P:0.040, Ni:0.151 48 0.0038 0.75 0.40 0.0003 0.0028 0.0045 0.0080 0.0004 0.002 0.0020 49 0.0033 0.80 0.24 0.0005 0.0023 0.0030 0.0065 0.0004 0.001 0.0020 50 0.0031 0.55 0.18 0.0001 0.0035 0.0025 0.0080 0.0003 0.004 0.0020 51 0.0045 1.05 0.28 0.0003 0.0016 0.0060 0.0065 0.0004 0.002 0.0020 52 0.0029 0.90 0.24 0.0004 0.0022 0.0045 0.0110 0.0009 0.003 0.0030 53 0.0025 0.35 0.21 0.0003 0.0013 0.0019 0.0065 0.0024 0.004 0.0040 54 0.0022 0.95 0.26 0.0002 0.0019 0.0015 0.0050 0.0004 0.006 0.0030 55 0.0040 1.10 0.27 0.0002 0.0022 0.0015 0.0045 0.0004 0.002 0.0060 56 0.0045 1.00 0.24 0.0003 0.0018 0.0060 0.0050 0. 0004 0.002 0.0020 REM: 0.01 57 0.0040 1.05 0.26 0.0003 0.0017 0.0060 0.0040 0.0004 0.002 0.0020 Ca: 0.001 58 0.0040 1.10 0.28 0.0010 0.0080 0.0065 0.0110 0.0004 0.003 0.0060 59 0.0040 1.00 0.23 0.0001 0.0017 0.0015 0.0040 0.0003 0.002 0.0020 60 0.0014 0.60 0.22 0.0001 0.0014 0.0015 0.0038 0.0002 0.001 0.0020 Sn:0.015 P:0.07 61 0.0026 0.55 0.23 0.0002 0.0015 0.0017 0.0038 0.0002 0.001 0.0020 Sb:0.01? Ni:0.10 62 0.0038 0.55 0.20 0.0001 0.0020 0.0015 0.0045 0.0003 0.001 0.0030 Sb:0.007, Sn:0.006, Ca:0.001? REM: 0.005 63 0.0037 0.65 0.25 0.0001 0.0011 0.0018 0.0050 0.0002 0.001 0.0020 Sn: 0.030, Ca: 0.002 64 0.0022 0.60 0.21 0.0001 0.0018 0.0018 0.0043 0.0003 0.000 0.0010 Sb: 0.035, REM: 0.02 65 0.0025 0.12 0.24 0.0002 0.013 0.0016 0.0051 0.0002 0.001 0.0020 Sb: 0.0075 Sn: 0.010 66 0.0010 0.60 0.22 0.0001 0.0021 0.0013 0.0041 0.0002 0.001 0.0020 Sn: 0.015 67 0.0012 0.60 0.19 0.0001 0.0010 0.0019 0.0036 0.0002 0.0001 0.0010 Sn: 0.020 -34- (31) 1276693 Table 7 Characteristics of steel numbered products (should be Before annealing) After strain annealing, the characteristic strain annealing crystal grain growth ratio is prepared W15/5O (W/kg) B5〇(T) Average crystal grain size (β m) Falling point (MPa) Vickers hardness (Hv) W15/50 ( W/kg) average crystal grain size {β m) 31 53. 1.75 14 292 107 4.1 61 4.5 invention example 32 5.4 1.76 15 294 104 4.3 56 3.8 invention example 33 5.6 1.76 14 300 106 4.1 61 4.3 invention example 34 5.9 1.76 14 295 107 4.7 53 3.8 Inventive Example 35 5.2 1.74 14 298 103 4.1 48 3.5 Inventive Example 36 5.3 1.75 14 302 104 3.8 55 3.8 Inventive Example 37 5.7 1.76 15 292 103 4.8 48 3.2 Inventive Example 38 5.6 1.74 14 301 107 3.9 48 3.5 Invention Example 39 5.2 1.75 13 294 102 3.8 55 4.1 Inventive Example 40 5.1 1.74 14 298 107 3.6 58 4.1 Inventive Example 41 5.1 1.74 13 293 105 3.9 54 4.0 Inventive Example 42 5.2 1.75 14 297 108 3.7 59 4.2 Inventive Example 43 5.3 1.75 15 295 104 3.9 59 3.9 Inventive Example 44 5.5 1.76 15 328 127 3.9 59 3.9 Inventive Example 45 5.8 1.76 16 311 123 4.6 50 3.2 Inventive Example 46 5.8 1.76 14 305 116 4.5 52 3.6 Inventive Example 47 5.9 1.75 13 331 133 4.5 56 4.4 Inventive Example 48 6.5 1.72 10 303 108 5.9 20 1 .9 Comparative Example 49 6.8 1.71 10 313 110 6.1 19 1.9 Comparative Example 50 6.9 1.71 10 307 110 6.1 15 1.4 Comparative Example 51 5.8 1.73 11 311 113 4.8 28 2.5 Invention Example 52 5.8 1.73 12 307 114 4.8 30 2.5 Invention Example 53 6.2 1.74 13 305 111 5.1 33 2.5 Inventive Example 54 6.0 1·74 13 308 115 4.9 30 2.3 Inventive Example 55 5.9 1.73 12 311 109 4.8 25 2.1 Inventive Example 56 5.3 1.73 14 297 103 4.2 45 3.2 Inventive Example 57 5.4 1.73 13 295 100 4.5 46 3.5 Inventive Example 58 8.7 1.76 5 341 132 6.2 14 2.8 Inventive Example 59 4.9 1.73 30 272 95 4.4 50 1.7 Inventive Example 60 5.4 1.75 14 330 131 3.7 63 4.5 Inventive Example 61 5.5 1.74 14 315 120 3.9 59 4.2 Inventive Example 62 5.2 1.74 15 295 106 3.7 65 4.3 Inventive Example 63 5.2 1.76 14 304 109 3.8 60 4.3 Inventive Example 64 5.3 1.75 14 305 107 3.9 58 4.1 Inventive Example 65 5.6 1.75 15 301 105 4.0 61 4.1 Inventive Example 66 5.2 1.74 14 297 108 3.7 60 4.3 Inventive Example 67 5.2 1.74 14 298 108 3.6 61 4.4 Inventive Example -35- (32) 1276693 As described above, the invention provides a non-oriented electrical steel sheet which is extremely suitable for the manufacture of a rotor and a stator for a rotating machine. Further, the non-oriented electrical steel sheet according to the present invention is not only such that it has excellent characteristics of so-called recyclability. That is, when the rotating shaft of the motor is cast by a conventional iron core material having a high A1 amount, the surface of the molten iron is oxidized and viscosity-increasing. As a result, the mold filling property of the molten iron is lowered, and sometimes a stable casting cannot be obtained. Therefore, it is generally considered that the scrap iron slag containing A1 lacks recyclability. However, the non-oriented electrical steel sheet according to the present invention is a low A1 material, and the recyclability required for casting is extremely high. INDUSTRIAL APPLICABILITY The high magnetic flux density non-oriented electrical steel sheet according to the present invention is capable of simultaneously taking a rotor material and a stator material from the same steel sheet, and imparting high magnetic flux density and high strength to the rotor material, and imparting rigidity to the stator material. High magnetic flux density and low iron loss. As a result, the manufacturing efficiency and output characteristics of the components for the rotating machine and the rotating machine can be greatly improved. Moreover, the non-oriented electrical steel sheet according to the present invention is superior to the recyclability at the time of casting, and can improve the castability in recycling the scrap iron slag of the punching material. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a graph showing the grain growth ratio of a non-oriented electrical steel sheet, that is, the ratio of the average crystal grain size of the steel sheet after strain annealing to the average crystal grain size of the steel sheet after final annealing and the N content of the steel sheet. The relationship is a graph showing the number of non-metallic inclusions that hinder grain growth and ductility as a parameter. -36 -

Claims (1)

墳請委員明示,本案修正後是否變芟原實賢内象 第92 1 2 1 498號專利申請案 中文申請專利範圍修正本 民國93年9月7日修正 I · 一種無方向性電磁鋼板,其特徵爲: 以質量百分率換算時,是包含: Si: 0.1% 〜1·2% ; Μη: 0.005% 〜〇·3% ; 並分別將C、Al、Ν限制爲: C· 0.0050% 以下(包含 〇); Sol· Α1: 0.0004% 以下(包含 〇); N: 0.0030% 以下(包含 〇); 其餘爲F e以及不可避免的雜質, 相對於再結晶粒的平均粒徑D之長度爲3 D〜9 D的夾 雜物的個數密度是1〇〇〇個/ cm2以下。 2.如申請專利範圍第1項之無方向性電磁鋼板,其 中更進一步含有從質量百分率爲〇 〇〇5%〜〇1〇%的Sb與 質量百分率爲0.005 %〜0.2%的Sn所形成之組合中所選 出的至少1種。 3 ·如申I靑專利範圍第1項之無方向性電磁鋼板,其 中更進一步含有從質量百分率爲〇 〇〇丨%〜〇 2%的p與質 量百分率爲0.001%〜〇·2%的Ni所形成之組合中所選出 的至少1種。 4 ·如申請專利範圍第!項之無方向性電磁鋼板,其The members of the grave requested that the case was changed after the amendment was amended. The original application of the patent application No. 92 1 2 1 498 was amended. The amendment of the Chinese patent application dated September 7, 1993 I. A non-directional electrical steel sheet, The characteristics are as follows: When converted by mass percentage, it includes: Si: 0.1% 〜1·2% ; Μη: 0.005% 〇·3%; and C, Al, Ν are respectively limited to: C· 0.0050% or less (including ·); Sol· Α1: 0.0004% or less (including 〇); N: 0.0030% or less (including 〇); the rest is F e and unavoidable impurities, and the average particle diameter D relative to the recrystallized grains is 3 D The number density of inclusions of ~9 D is 1〇〇〇/cm2 or less. 2. The non-oriented electrical steel sheet according to claim 1, further comprising Sb having a mass percentage of 〇〇〇5% to 〇1〇% and Sn having a mass percentage of 0.005% to 0.2%. At least one selected from the combination. 3. The non-oriented electrical steel sheet according to item 1 of the patent application of claim 1 further contains Ni from a mass percentage of 〇〇〇丨% to 〇2% and a mass percentage of 0.001% to 〇·2% of Ni. At least one selected from the combination formed. 4 · If you apply for a patent scope! Non-directional electrical steel sheet 1276693 中更進一步含有從質量百分率爲〇·〇〇〇ι%〜0.10%的 與質量百分率爲0.00 01%〜0.01%的Ca所形成之組 所選出的至少1種。 5. 如申請專利範圍第1項之無方向性電磁鋼板 中上述不可避免的雜質中,Ti、Nb以及V的含量分 制在Ti是0.0020%以下(包含0) ; Nb是0.0050% (包含〇) ;V是0.0060%以下(包含0)。 6. 如申請專利範圍第1項之無方向性電磁鋼板 中上述不可避免的雜質中,S以及0的質量百分率分 制在 S是 0.0050%以下(包含0) ; Ο是0.0100% (包含〇 )。 7. 如申請專利範圍第1項之無方向性電磁鋼板 中上述再結晶粒的平均粒徑D是6 // m〜2 5 // m。 8. 如申請專利範圍第1項之無方向性電磁鋼板 中該鋼板是至少經過冷軋以及其後的最終精製退火過 製造的鋼板,上述最終精製退火的溫度是 700 °C -t。 9 ·如申請專利範圍第1項之無方向性電磁鋼板 中該鋼板是以7 5 0 °C經過兩個小時的應變退火,以使 結晶粒的平均粒徑成長到兩倍以上。 10. —種無方向性電磁鋼板,其特徵爲:是封於 請專利範圍第1至9項之任何一項所述的鋼板實施應 火而製成的。 11 ·如申請專利範圍第1 0項之無方向性電磁鋼 REM 合中 ,其 別限 以下 ,其 別限 以下 ,其 ,其 程所 ^ 800 ,其 得再 如申 變退 板, -2- 1276693 其中上述應變退火的溫度是700 °C〜800 °C。 ]2 · —種旋轉機用轉子構件,其特徵爲:該旋轉機用 轉子構件是將申請專利範圍第1項至第9項之任何一項所 述的無方向性電鋼板堆疊而成的。 1 3 . —種旋轉機用定子構件,其特徵爲:該旋轉機用Further, 1276693 further contains at least one selected from the group consisting of a mass percentage of 〇·〇〇〇ι% to 0.10% and a mass percentage of 0.0001% to 0.01% of Ca. 5. In the above-mentioned unavoidable impurities in the non-oriented electrical steel sheet of claim 1, the content of Ti, Nb and V is determined to be 0.0020% or less (including 0) of Ti; Nb is 0.0050% (including 〇) ); V is 0.0060% or less (including 0). 6. In the above-mentioned unavoidable impurities in the non-oriented electrical steel sheet of claim 1 of the patent application, the mass percentage of S and 0 is 0.0050% or less (including 0) in S; Ο is 0.0100% (including 〇) . 7. The average grain size D of the above recrystallized grains in the non-oriented electrical steel sheet of claim 1 is 6 // m to 2 5 // m. 8. The non-oriented electrical steel sheet according to claim 1, wherein the steel sheet is a steel sheet produced by at least cold rolling and subsequent final annealing annealing, and the temperature of the final finish annealing is 700 ° C -t. 9 • The non-oriented electrical steel sheet of claim 1 is subjected to strain annealing at 750 ° C for two hours to increase the average particle size of the crystal grains by more than two times. A non-oriented electrical steel sheet, which is produced by applying a fire to a steel sheet according to any one of claims 1 to 9. 11 · If the non-directional electromagnetic steel REM is in the scope of patent application No. 10, it is limited to the following, and it is limited to the following, and its process is ^ 800, which may be re-released as a declaration, -2- 1276693 wherein the temperature of the strain annealing is 700 ° C to 800 ° C. A rotor member for a rotary machine, characterized in that the rotor member for a rotating machine is obtained by stacking the non-oriented electric steel sheets according to any one of the first to ninth aspects of the patent application. 1 3 . A stator member for a rotating machine, characterized in that: 定子構件是將申請專利範圍第1項至第9項之任何一項所 述的無方向性電磁鋼板堆疊之後,再實施應變退火而製成 的。 14. 一種旋轉機,其特徵爲: 該旋轉機具有申請專利範圍第1 2項所述的旋轉機用 轉子構件以及申請專利範圍第1 3項所述的旋轉機用定子 構件, 且該旋轉機用轉子構件與該旋轉機用定子構件都是以 同一種無方向性電磁鋼板作爲素材。The stator member is formed by stacking the non-oriented electrical steel sheets according to any one of the first to ninth aspects of the patent application, and then performing strain annealing. A rotary machine, comprising: the rotor member for a rotating machine according to claim 12; and the stator member for a rotating machine according to claim 13 of the patent, wherein the rotary machine Both the rotor member and the stator member for the rotating machine use the same non-oriented electrical steel sheet as a material.
TW92121498A 2002-08-06 2003-08-06 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine TWI276693B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229251A JP4718749B2 (en) 2002-08-06 2002-08-06 High magnetic flux density non-oriented electrical steel sheet for rotating machine and member for rotating machine

Publications (2)

Publication Number Publication Date
TW200403346A TW200403346A (en) 2004-03-01
TWI276693B true TWI276693B (en) 2007-03-21

Family

ID=31492289

Family Applications (1)

Application Number Title Priority Date Filing Date
TW92121498A TWI276693B (en) 2002-08-06 2003-08-06 Nonoriented magnetic steel sheet, member for rotary machine and rotary machine

Country Status (5)

Country Link
JP (1) JP4718749B2 (en)
KR (1) KR100567239B1 (en)
CN (1) CN1277945C (en)
TW (1) TWI276693B (en)
WO (1) WO2004013365A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1632582B1 (en) * 2003-05-06 2011-01-26 Nippon Steel Corporation Non-oriented electrical steel sheet excellent in core loss and manufacturing method thereof
DE602004018942D1 (en) 2004-11-24 2009-02-26 Giovanni Arvedi Hot-rolled magnetic steel strip for producing stacked magnetic core sheets
RU2496905C1 (en) * 2009-07-31 2013-10-27 ДжФЕ СТИЛ КОРПОРЕЙШН Electrical steel plate with oriented grains
KR101110257B1 (en) * 2009-08-07 2012-02-16 주식회사 포스코 Non-oriented electrical steel sheet with high magnetic flux density and manufacturing method thereof
JP5423616B2 (en) * 2009-09-14 2014-02-19 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties and method for producing cast steel strip for producing non-oriented electrical steel sheet
KR101223113B1 (en) * 2010-12-27 2013-01-17 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheets having excellent magnetic properties and high permeability and non-oriented electrical steel sheets thereof
CN103827333B (en) 2011-09-27 2016-09-21 杰富意钢铁株式会社 Non-oriented magnetic steel sheet
JP6057082B2 (en) 2013-03-13 2017-01-11 Jfeスチール株式会社 Non-oriented electrical steel sheet with excellent magnetic properties
CA2956686C (en) * 2014-07-31 2019-01-08 Jfe Steel Corporation Non-oriented electrical steel sheet and method for producing the same, and motor core and method of producing the same
KR101719231B1 (en) 2014-12-24 2017-04-04 주식회사 포스코 Grain oriented electical steel sheet and method for manufacturing the same
JP6048699B2 (en) 2015-02-18 2016-12-21 Jfeスチール株式会社 Non-oriented electrical steel sheet, manufacturing method thereof and motor core
WO2017016604A1 (en) * 2015-07-29 2017-02-02 Aperam Feco alloy, fesi alloy or fe sheet or strip and production method thereof, magnetic transformer core produced from said sheet or strip, and transformer comprising same
JP6390876B2 (en) 2015-08-04 2018-09-19 Jfeスチール株式会社 Method for producing non-oriented electrical steel sheet with excellent magnetic properties
KR20180034573A (en) * 2015-10-02 2018-04-04 제이에프이 스틸 가부시키가이샤 Non-oriented electromagnetic steel sheet and manufacturing method of same
US10658885B2 (en) 2015-11-27 2020-05-19 Nidec Corporation Motor and manufacturing method of motor
KR101728028B1 (en) * 2015-12-23 2017-04-18 주식회사 포스코 Non-oriented electrical steel sheet and method for manufacturing the same
US11114227B2 (en) 2015-12-28 2021-09-07 Jfe Steel Corporation Non-oriented electrical steel sheet and method for manufacturing non-oriented electrical steel sheet
TWI622655B (en) * 2016-01-15 2018-05-01 Jfe Steel Corp Non-oriented electromagnetic steel plate and manufacturing method thereof
JP6627617B2 (en) * 2016-04-01 2020-01-08 トヨタ自動車株式会社 Motor manufacturing method
CN105925884B (en) * 2016-05-30 2018-03-09 宝山钢铁股份有限公司 A kind of high magnetic strength, low iron loss non-oriented silicon steel sheet and its manufacture method
US11056256B2 (en) 2016-10-27 2021-07-06 Jfe Steel Corporation Non-oriented electrical steel sheet and method of producing same
JP6738047B2 (en) * 2017-05-31 2020-08-12 Jfeスチール株式会社 Non-oriented electrical steel sheet and its manufacturing method
DE102018201618A1 (en) 2018-02-02 2019-08-08 Thyssenkrupp Ag Afterglow, but not nachglühpflichtiges electrical tape
WO2019225529A1 (en) * 2018-05-21 2019-11-28 Jfeスチール株式会社 Non-oriented electromagnetic steel sheet and method for manufacturing same
JP7284383B2 (en) * 2019-02-28 2023-05-31 日本製鉄株式会社 Non-oriented electrical steel sheet
WO2020188812A1 (en) * 2019-03-20 2020-09-24 日本製鉄株式会社 Non-oriented electromagnetic steel sheet
CN110205462A (en) * 2019-06-28 2019-09-06 武汉钢铁有限公司 Used in high-speed motor method for producing non-oriented silicon steel
US20230366058A1 (en) * 2020-11-27 2023-11-16 Nippon Steel Corporation Non-oriented electrical steel sheet, method for producing same, and hot-rolled steel sheet
KR20230132814A (en) * 2021-02-19 2023-09-18 닛폰세이테츠 가부시키가이샤 A hot-rolled steel sheet for non-oriented electrical steel sheets, a manufacturing method for a hot-rolled steel sheet for non-oriented electrical steel sheets, and a manufacturing method for non-oriented electrical steel sheets.

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3456295B2 (en) * 1995-03-31 2003-10-14 Jfeスチール株式会社 Melting method of steel for non-oriented electrical steel sheet
JPH09263908A (en) * 1996-03-26 1997-10-07 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet and its production
JPH10212555A (en) * 1997-01-29 1998-08-11 Sumitomo Metal Ind Ltd Nonoriented silicon steel sheet excellent in magnetic property and its production
JP4218136B2 (en) * 1999-06-24 2009-02-04 Jfeスチール株式会社 Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JP2002206114A (en) * 2000-12-28 2002-07-26 Nippon Steel Corp Method for manufacturing nonoriented silicon steel sheet
CN108454769A (en) * 2018-03-29 2018-08-28 曾东斌 A kind of super labour-saving bicycle

Also Published As

Publication number Publication date
WO2004013365A1 (en) 2004-02-12
TW200403346A (en) 2004-03-01
CN1556869A (en) 2004-12-22
JP4718749B2 (en) 2011-07-06
KR20040039438A (en) 2004-05-10
KR100567239B1 (en) 2006-04-03
CN1277945C (en) 2006-10-04
JP2004068084A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
TWI276693B (en) Nonoriented magnetic steel sheet, member for rotary machine and rotary machine
TWI674322B (en) Method for manufacturing non-oriented electrical steel sheet, method for manufacturing motor core, and motor core
JP5228379B2 (en) Non-oriented electrical steel sheet with excellent strength and magnetic properties and manufacturing method thereof
JP4586669B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP5273235B2 (en) Method for producing non-oriented electrical steel sheet
JP5028992B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP5194535B2 (en) High strength non-oriented electrical steel sheet
TWI499677B (en) A non-oriented electrical steel sheet, a manufacturing method thereof, a laminate for a motor core, and a method of manufacturing the same
JP4380199B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2016511795A (en) Cold rolled flat steel product for applying deep drawing and method for producing the same
JP4319889B2 (en) Non-oriented electrical steel sheet with excellent all-round magnetic properties and method for producing the same
JP6763148B2 (en) Non-oriented electrical steel sheet
JP2016513178A (en) Cold rolled flat steel product used for deep drawing and its manufacturing method
JP5824965B2 (en) Method for producing non-oriented electrical steel sheet
JP4710458B2 (en) Method for producing non-oriented electrical steel sheet for rotor
JP2017057456A (en) High strength member for motor using non-oriented electromagnetic steel sheet and manufacturing method therefor
JP2001335897A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP5614063B2 (en) High tension non-oriented electrical steel sheet with excellent high-frequency iron loss
JPH07228953A (en) Nonoriented silicon steel sheet reduced in iron loss and its production
JP2001323351A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP4551110B2 (en) Method for producing non-oriented electrical steel sheet
JP2001323352A (en) Nonoriented silicon steel sheet having low core loss and high magnetic flux density and excellent in workability and recyclability
JP2000045040A (en) Nonoriented silicon steel sheet excellent in machinability and reduced in iron loss
JP4280139B2 (en) Non-oriented electrical steel sheet and manufacturing method thereof
JP2005126748A (en) High fatigue strength non-oriented magnetic steel sheet superior in magnetic properties, and manufacturing method therefor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees