JPH07228953A - Nonoriented silicon steel sheet reduced in iron loss and its production - Google Patents

Nonoriented silicon steel sheet reduced in iron loss and its production

Info

Publication number
JPH07228953A
JPH07228953A JP6019410A JP1941094A JPH07228953A JP H07228953 A JPH07228953 A JP H07228953A JP 6019410 A JP6019410 A JP 6019410A JP 1941094 A JP1941094 A JP 1941094A JP H07228953 A JPH07228953 A JP H07228953A
Authority
JP
Japan
Prior art keywords
iron loss
annealing
grain size
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6019410A
Other languages
Japanese (ja)
Other versions
JP2861787B2 (en
Inventor
Takashi Tanaka
隆 田中
Hiroyoshi Yashiki
裕義 屋鋪
Mitsuyo Doi
光代 土居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6019410A priority Critical patent/JP2861787B2/en
Publication of JPH07228953A publication Critical patent/JPH07228953A/en
Application granted granted Critical
Publication of JP2861787B2 publication Critical patent/JP2861787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14775Fe-Si based alloys in the form of sheets

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a silicon steel sheet reduced in iron loss in a high frequency region by preparing a nonoriented silicon steel sheet containing Si, Al, and Mn under specific conditions and having specific crystalline grain size. CONSTITUTION:A slab of steel, which has a composition consisting of, by weight, <1.5% Si, 2.5-6.0% Al, 1.0-3.0% Mn, and the balance essentially Fe with inevitable impurities and satisfying inequality I, is prepared. This steel slab is hot-rolled, subjected to hot rolled plate annealing at 650-1000 deg.C, and finished to product sheet thickness by means of two-time cold rolling, while process-annealed between cold rolling stages, by regulating the drafts in the first and the second cold rolling to 40-80%, respectively. Then annealing is done. By the above procedure, crystalline grain size R (mum) [where (f) is excitation frequency (Hz)] is regulated to a figure in the range satisfying inequality II. By this method, the nonoriented silicon steel sheet, excellent in average magnetic properties in the entire-peripheral direction of sheet thickness or average magnetic properties in a rolling direction and in a direction perpendicular to the rolling direction, can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気機器の鉄心として
広く用いられる鉄損の低い無方向性電磁鋼板に関し、と
りわけ高周波域で使用される回転機用および小型変圧器
用の鉄心に好適な無方向性電磁鋼板とその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-oriented electrical steel sheet having a low iron loss, which is widely used as an iron core for electric equipment, and is particularly suitable for iron cores for rotating machines and small transformers used in a high frequency range. The present invention relates to a grain-oriented electrical steel sheet and a method for manufacturing the same.

【0002】[0002]

【従来の技術】最近の電気機器では、高効率化や小型化
を目的に高周波域で使用されるものが増加する傾向にあ
り、高周波域での鉄損の低い電磁鋼板への要望が高まっ
てきている。
2. Description of the Related Art Recent electric appliances tend to be used in a high frequency range for the purpose of high efficiency and miniaturization, and there is an increasing demand for magnetic steel sheets having a low iron loss in the high frequency range. ing.

【0003】鉄損は一般に、周波数の一乗に比例するヒ
ステリシス損と周波数の二乗に比例する渦電流損の和と
して表すことができる。従って、高周波域では周波数の
二乗に比例する渦電流損の鉄損に占める割合が高くな
り、渦電流の低減が低鉄損化にとって極めて重要とな
る。渦電流を低減するためには、板厚を薄くすることと
電気抵抗を増加することが有効であることが知られてい
る。つまり、薄肉化と合金元素の添加による鋼板の電磁
抵抗増加が、高周波用の電磁鋼板の開発の大きな指針と
なる。
Iron loss can be generally expressed as the sum of a hysteresis loss proportional to the frequency squared and an eddy current loss proportional to the frequency squared. Therefore, in the high frequency range, the ratio of the eddy current loss proportional to the square of the frequency to the iron loss is high, and reduction of the eddy current is extremely important for reducing the iron loss. It is known that reducing the plate thickness and increasing the electrical resistance are effective for reducing the eddy current. In other words, increasing the electromagnetic resistance of the steel sheet due to thinning and addition of alloying elements is a major guideline for the development of electromagnetic steel sheets for high frequencies.

【0004】特開昭62−103321号公報には、6.5 %前後
のSiを含有した高珪素鋼板の製造方法が示されている。
鉄にSiを添加して行くと6.5 %前後の添加量で磁歪がほ
ぼ0になるため、ヒステリシス損が著しく低くなる。ま
た、高Si添加では電気抵抗が高くなるため渦電流損を下
げるのにも有利である。従って、6.5 %Si前後の高珪素
鋼板では、ヒステリシス損と渦電流損の両方の鉄損要因
を同時に下げることができるため、同等の電気抵抗を有
するそのほかの高合金鋼に比べ、良好な鉄損が得られる
と考えられている。
Japanese Unexamined Patent Publication (Kokai) No. 62-103321 discloses a method for producing a high silicon steel sheet containing about 6.5% Si.
When Si is added to iron, the magnetostriction becomes almost 0 at an addition amount of around 6.5%, so that the hysteresis loss becomes extremely low. Further, addition of a high amount of Si increases the electric resistance, which is also advantageous in reducing eddy current loss. Therefore, in a high silicon steel sheet with around 6.5% Si, both iron loss factors such as hysteresis loss and eddy current loss can be reduced at the same time, so it is better than other high alloy steels with similar electrical resistance. Is believed to be obtained.

【0005】しかし、この発明に示されているような高
珪素鋼板は極めて脆く、たとえ製造できても鋼板の使用
者側で鉄心に加工するには特殊な設備や条件が必要とな
るため、用途が非常に限られたものになる。
However, the high silicon steel sheet as shown in the present invention is extremely brittle, and even if it can be manufactured, the user of the steel sheet needs special equipment and conditions to process it into an iron core. Will be very limited.

【0006】特開昭62−196354号公報および特開昭62−
196358号公報には、Siを 2.5〜7.0%含有し、かつW:
0.05〜3.0 %、Mo:0.05〜3.0 %、Ti:0.05〜3.0 %、
Mn:0.1〜11.5%、Ni: 0.1〜20.0%、Co: 0.5〜20.0
%、Cr: 0.1〜10.0%およびAl: 0.5〜13.0%のうちか
ら選んだ1種または2種以上を、20.0%を超えない範囲
で含有した高合金軟磁性鋼板が示されている。
JP-A-62-196354 and JP-A-62-196354
In 196358, the content of Si is 2.5 to 7.0%, and W:
0.05-3.0%, Mo: 0.05-3.0%, Ti: 0.05-3.0%,
Mn: 0.1-11.5%, Ni: 0.1-20.0%, Co: 0.5-20.0
%, Cr: 0.1 to 10.0% and Al: 0.5 to 13.0%, a high alloy soft magnetic steel sheet containing one or more selected from the range of not more than 20.0%.

【0007】これらの発明の鋼板においても、6.5 %前
後のSiを含有させた場合には鉄損は良好になるが、打ち
抜き性は当然悪くなる。一方、Siを他の合金成分で置換
した場合には良好な鉄損が得られない。また、これらの
発明では溶湯急冷法が主要な製造方法であると考えら
れ、板厚が0.30mm以下の極めて薄い板厚のものに限定さ
れている。このため、やはり用途は限定されたものとな
らざるを得ない。
Also in the steel sheets of these inventions, when Si of about 6.5% is contained, the iron loss becomes good, but the punching property naturally becomes poor. On the other hand, when Si is replaced with another alloy component, good iron loss cannot be obtained. Further, in these inventions, the melt quenching method is considered to be the main manufacturing method, and the plate thickness is limited to an extremely thin plate thickness of 0.30 mm or less. For this reason, the application is inevitably limited.

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記のよう
な従来の製造方法における板厚の制約やそれによる用途
の限定を解消し、さらに製品鋼板の冷間加工性、打ち抜
き加工性および磁気特性を改善するためになされたもの
である。
DISCLOSURE OF THE INVENTION The present invention solves the restrictions on the plate thickness in the conventional manufacturing method as described above and the limitation of applications due to the restrictions, and further, the cold workability, the punching workability and the magnetic property of the product steel sheet. This was done to improve the characteristics.

【0009】本発明の目的は、高周波域における鉄損が
低く、かつ板厚全周方向の平均磁気特性または圧延方向
とその直角方向の平均磁気特性に優れ、さらに打ち抜き
切断のような鉄心への加工が容易な無方向性電磁鋼板
と、種々の板厚の製品が容易に造り分けられる一般的な
熱間圧延、冷間圧延を経るプロセスを用いて、それらを
製造する方法を提供することにある。
The object of the present invention is to provide a low iron loss in a high frequency range and an excellent average magnetic property in the entire circumferential direction of the plate thickness or in a direction perpendicular to the rolling direction, and further to an iron core such as punch cutting. To provide a non-oriented electrical steel sheet that is easy to process and a method for manufacturing them by using a process that undergoes general hot rolling and cold rolling that allows products of various thicknesses to be easily manufactured separately. is there.

【0010】[0010]

【課題を解決するための手段】本発明の要旨は、下記
(1)の無方向性電磁鋼板と (2)、(3) のその製造方法に
ある。
The summary of the present invention is as follows.
The non-oriented electrical steel sheet of (1) and its manufacturing method of (2) and (3).

【0011】(1)重量%で、Si:1.5 %未満、Al: 2.5
〜6.0 %およびMn: 1.0〜3.0 %を含み、かつ下記式
を満足し、残部は実質的にFeおよび不可避的不純物から
なり、結晶粒径R (μm) が下記式を満足する鉄損の
低い無方向性電磁鋼板。
(1) wt%, Si: less than 1.5%, Al: 2.5
-6.0% and Mn: 1.0-3.0%, satisfying the following formula, the balance substantially consisting of Fe and inevitable impurities, and having a crystal grain size R (μm) satisfying the following formula: low iron loss Non-oriented electrical steel sheet.

【0012】 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。[Si (%) + Al (%) + 1/2 · Mn (%)] ≧ 5.5% (500 × f −1/3 −20) ≦ R ≦ (500 × f − 1/3 +20) ···, where f represents the excitation frequency (Hz).

【0013】(2)上記(1) 記載の化学成分と式を満足
し、残部は実質的にFeおよび不可避的不純物からなる鋼
スラブを熱間圧延した後、中間焼鈍を挟む2回の冷間圧
延で1回目、2回目の圧下率を共に40〜80%として製品
板厚に仕上げた後焼鈍を行い、結晶粒径R (μm) を上
記式を満たす範囲とする鉄損の低い無方向性電磁鋼板
の製造方法。
(2) A steel slab satisfying the chemical composition and formula described in (1) above, the balance consisting essentially of Fe and unavoidable impurities, is hot-rolled and then subjected to two cold-rolling steps with intermediate annealing. Non-directionality with low iron loss, with the grain size R (μm) within the range satisfying the above formula, after finishing the product sheet thickness by setting both the first and second rolling reductions to 40 to 80% Manufacturing method of electrical steel sheet.

【0014】(3)上記(1) 記載の化学成分と式を満足
し、残部は実質的にFeおよび不可避的不純物からなる鋼
スラブを熱間圧延した後、 650〜1000℃で熱延板焼鈍を
施してから、中間焼鈍を挟む2回の冷間圧延で1回目、
2回目の圧下率を共に40〜80%として製品板厚に仕上げ
た後焼鈍を行い、結晶粒径R (μm) を上記式を満た
す範囲とする鉄損の低い無方向性電磁鋼板の製造方法。
(3) A steel slab satisfying the chemical composition and formula described in (1) above, the balance consisting essentially of Fe and unavoidable impurities, is hot-rolled and then annealed at 650 to 1000 ° C. The first cold rolling between the first and second intermediate rollings.
Method for producing non-oriented electrical steel sheet with low iron loss in which the grain size R (μm) is within a range that satisfies the above formula after finishing the product sheet thickness with the second reduction rate of both 40 to 80% .

【0015】上記(2) の製造方法は、回転機鉄心用の無
方向性電磁鋼板を対象とするものであり、板厚全周方向
の平均磁気特性に優れることが重要であるため、製品の
磁気特性の評価はリング試験片を用いて行う。上記(3)
の製造方法は、小型変圧器鉄心(EIコア)用のそれを
対象とするものであり、圧延方向とその直角方向の平均
磁気特性に優れることが重要であるため、同じく評価は
エプスタイン試験片を用いて行う。
The manufacturing method of the above (2) is intended for non-oriented electrical steel sheets for iron cores of rotating machines, and since it is important that the average magnetic properties in the entire thickness direction are excellent, The magnetic properties are evaluated using a ring test piece. Above (3)
The manufacturing method of is intended for small transformer cores (EI cores), and it is important to have excellent average magnetic properties in the rolling direction and the direction perpendicular to the rolling direction. Perform using.

【0016】[0016]

【作用】前述のように6.5 %Si前後の高珪素含有鋼は、
高周波域における鉄損に対し有利であるが、極めて脆く
冷間圧延時に割れが生じ易い。また、たとえ割れずに冷
間圧延ができたとしても、ユーザーで打ち抜き加工のよ
うな鉄心への加工作業を行う際には、極めて特殊な条件
が要求される。
[Operation] As mentioned above, the high silicon content steel of around 6.5% Si is
Although it is advantageous for iron loss in the high frequency range, it is extremely brittle and easily cracks during cold rolling. Even if cold rolling can be performed without cracking, extremely special conditions are required when a user performs a working operation on an iron core such as punching.

【0017】本発明者らは、冷間圧延時の延性が良好で
高珪素鋼と同等の良好な鉄損を有し、かつ鉄心加工が容
易な無方向性電磁鋼板の製造方法を詳細に検討した。そ
の結果、下記〜の知見を見いだした。
The inventors of the present invention have studied in detail the method for producing a non-oriented electrical steel sheet which has good ductility during cold rolling, has good iron loss equivalent to that of high silicon steel, and is easy to work on an iron core. did. As a result, the following findings were found.

【0018】適正量のSi、Mn、Alの複合添加で電気抵
抗を増加させた鋼板では、6.5 %前後のSiを単独添加し
て電気抵抗を増加した鋼板と同等の良好な鉄損が得られ
る。
In the steel sheet whose electric resistance is increased by adding a proper amount of Si, Mn, and Al, the same good iron loss as that of the steel sheet whose electric resistance is increased by adding 6.5% Si alone is obtained. .

【0019】しかも、打ち抜き加工性はSi単独添加の場
合に比べ優れている。
Moreover, the punching workability is superior to the case of adding Si alone.

【0020】使用される励磁周波数に応じた最適な結
晶粒径に制御することにより、良好な鉄損が得られる。
A good iron loss can be obtained by controlling the crystal grain size to be optimum according to the excitation frequency used.

【0021】熱延板焼鈍で鋼板を再結晶させることに
より、圧延方向とその直角方向の平均の鉄損の改善が得
られる。この場合は、小型変圧器鉄心用に好適な無方向
性電磁鋼板となる。
By recrystallizing the steel sheet by hot-rolled sheet annealing, improvement of the average iron loss in the rolling direction and the direction perpendicular to the rolling direction can be obtained. In this case, the non-oriented electrical steel sheet is suitable for a small transformer core.

【0022】冷間圧延は中間焼鈍を挟んで2回施し、
いずれの圧延においても圧下率を40〜80%とすること
が、鉄損の改善に有効である。
Cold rolling is performed twice with an intermediate annealing between them,
In any rolling, setting the reduction rate to 40 to 80% is effective for improving iron loss.

【0023】次に、本発明の電磁鋼板またはその素材鋼
の化学組成、製品電磁鋼板の結晶粒径および製造方法を
前記のように限定した理由を説明する。%は重量%を意
味する。
Next, the reasons why the chemical composition of the magnetic steel sheet of the present invention or its raw material steel, the crystal grain size of the product magnetic steel sheet, and the manufacturing method are limited as described above will be explained. % Means% by weight.

【0024】(1)製品電磁鋼板またはその素材鋼の化
学組成 Si:1.5 %未満 Siは、含有量が増加するほど鋼板の電気抵抗が上昇して
渦電流損を低下させ、結果として鉄損を低減させる効果
を有する。しかし、Si含有量が1.5 %以上になると、冷
間圧延や打ち抜き加工時に割れが生じやすくなる。よっ
て、Si含有量は1.5 %未満とした。望ましい下限は0.1
%である。
(1) Chemical composition of product electromagnetic steel sheet or its material steel Si: less than 1.5% As Si content increases, the electrical resistance of the steel sheet increases and eddy current loss decreases, resulting in iron loss. Has the effect of reducing. However, if the Si content is 1.5% or more, cracks are likely to occur during cold rolling and punching. Therefore, the Si content is set to less than 1.5%. The preferred lower limit is 0.1
%.

【0025】Mn: 1.0〜3.0 % MnはSiと同様に鋼板の電気抵抗を上昇させるのに有効で
あり、鉄損低減の観点から積極的な添加が有効である。
また、適正量のAlとともに複合添加することにより、高
周波域において極めて良好な鉄損を得ることができる。
これらの効果を得るためには、1.0 %以上含有させる必
要がある。一方、3.0 %を超えると強度が上昇しすぎて
冷間圧延を困難にすることから、その上限を3.0 %とし
た。
Mn: 1.0 to 3.0% Mn is effective in increasing the electric resistance of the steel sheet as in the case of Si, and positive addition is effective from the viewpoint of reducing iron loss.
Further, by adding a combination with an appropriate amount of Al, it is possible to obtain extremely good iron loss in the high frequency range.
To obtain these effects, it is necessary to contain 1.0% or more. On the other hand, if it exceeds 3.0%, the strength will increase excessively, making cold rolling difficult, so the upper limit was made 3.0%.

【0026】Al: 2.5〜6.0 % 上記のようにAlを適正量のMnとともに複合添加すること
により、高周波域において板厚全周方向の平均特性に優
れた電磁鋼板を得ることができる。
Al: 2.5 to 6.0% By adding Al together with an appropriate amount of Mn as described above, it is possible to obtain a magnetic steel sheet having excellent average characteristics in the entire thickness circumferential direction in the high frequency range.

【0027】Al添加により板厚全周方向の平均鉄損が向
上する理由の一つとしては、{100}面が多く含まれ
た集合組織が形成されるためと考えられる。Al含有量が
2.5%未満では上記の効果は小さい。他の理由として
は、Al添加が顕著な電気抵抗の増加効果を持つからであ
り、2.5 %未満では電気抵抗が低すぎて高周波域での鉄
損を低下させることができない。
One of the reasons why the addition of Al improves the average iron loss in the circumferential direction of the plate thickness is considered to be that a texture containing many {100} planes is formed. Al content is
If it is less than 2.5%, the above effect is small. Another reason is that the addition of Al has a remarkable effect of increasing the electric resistance, and if it is less than 2.5%, the electric resistance is too low to reduce the iron loss in the high frequency range.

【0028】しかし、MnとAlの複合添加が鉄損改善に極
めて有効であることは、以上のふたつの理由からだけで
は説明できず、渦電流損に対する磁区構造の影響を考慮
しなければならない。すなわち、これら二つの元素の適
量添加が、高周波域での渦電流損に対し有利な磁区構造
を生じさせるためではないかと考えられる。
However, the fact that the combined addition of Mn and Al is extremely effective for improving the iron loss cannot be explained only from the above two reasons, and the influence of the magnetic domain structure on the eddy current loss must be taken into consideration. That is, it is considered that the addition of appropriate amounts of these two elements causes a magnetic domain structure advantageous for eddy current loss in the high frequency region.

【0029】一方、Al含有量が6.0 %を超えると、冷間
圧延や打ち抜き加工時に割れが発生し易いため、その上
限値は6.0 %とした。
On the other hand, if the Al content exceeds 6.0%, cracks are likely to occur during cold rolling or punching, so the upper limit was made 6.0%.

【0030】Si+Al+ 1/2・Mn:5.5 %以上 Si、Al、Mnを添加すると、前述のようにいずれも鋼板の
電気抵抗を増加させるため、高周波域において極めて良
好な鉄損を得ることができる。このような鉄損改善の効
果は、Si+Al+ 1/2・Mnが5.5 %未満では得ることがで
きない。すなわち、5.5 %未満では電気抵抗が低すぎて
高周波域での鉄損を下げることができないからである。
なお、Mnの係数が 1/2であるのは、Mnの電気抵抗増加に
及ぼす影響がSi、Alの半分であるからである。
Si + Al + 1 / 2.Mn: 5.5% or more When Si, Al, and Mn are added, the electrical resistance of the steel sheet is increased as described above, so that extremely good iron loss can be obtained in the high frequency range. . Such an effect of improving iron loss cannot be obtained when Si + Al + 1/2 · Mn is less than 5.5%. That is, if it is less than 5.5%, the electric resistance is too low to reduce the iron loss in the high frequency range.
The reason why the coefficient of Mn is 1/2 is that the effect of Mn on the increase in electrical resistance is half that of Si and Al.

【0031】上記三元素以外は鋼スラブでなるべく低く
抑えることが望ましい。例えば、Cは鉄損に悪影響を与
えるので、0.010 %以下、更に言えば0.005 %以下が望
ましい。製品段階で残存したCは炭化物を生成し、これ
が磁壁移動の障害となり鉄損が増加するからである。
Except for the above three elements, it is desirable to keep the steel slab as low as possible. For example, C adversely affects iron loss, so 0.010% or less, more specifically 0.005% or less, is desirable. This is because C remaining in the product stage forms carbides, which impedes domain wall movement and increases iron loss.

【0032】SはMnと結合してMnSを形成し、炭化物と
同様に磁壁移動の障害となり鉄損の劣化をもたらす。従
って、S含有量が低いほど鉄損は改善されるので、0.00
6 %以下、更に言えば0.003 %以下が望ましい。
S combines with Mn to form MnS, which becomes an obstacle to the movement of the domain wall similarly to the carbide, and causes the deterioration of iron loss. Therefore, the lower the S content, the better the iron loss.
6% or less, more preferably 0.003% or less is desirable.

【0033】Pは鋼板を脆化させるので、0.020 %以下
が望ましい。
Since P makes the steel sheet brittle, 0.020% or less is desirable.

【0034】NはAlと結合してAlNを形成し磁壁移動の
障害となるため、低くすることが必要であり、0.0060%
以下にすることが望ましい。
N is combined with Al to form AlN and becomes an obstacle to the movement of the domain wall. Therefore, it is necessary to reduce N to 0.0060%.
The following is desirable.

【0035】なお、割れ防止の観点から、Bを0.0020%
以下の範囲で含有させることは妨げない。
From the viewpoint of preventing cracking, B is 0.0020%.
It does not prevent inclusion in the following range.

【0036】(2)結晶粒径 前述のように、製品鋼板においては、鉄損に最適な結晶
粒径R(μm)が存在し、その関係は次式で示される
ことがわかった。但し、fは励磁周波数(Hz)である。
(2) Crystal Grain Size As described above, it was found that the product steel sheet has the optimum crystal grain size R (μm) for iron loss, and the relationship is expressed by the following equation. However, f is the excitation frequency (Hz).

【0037】 ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ すなわち、最適な結晶粒径Rは基本的に励磁周波数fの
立方根に反比例する。
(500 × f −1/3 −20) ≦ R ≦ (500 × f −1/3 +20) · That is, the optimum crystal grain size R is basically inversely proportional to the cube root of the excitation frequency f.

【0038】式中のfの係数500 および−20と+20
は、実験結果から求めたものである。
The coefficients of f in the equation 500 and -20 and +20
Is obtained from the experimental result.

【0039】結晶粒径Rを上記式を満たすように制御
することにより、最適な鉄損を得ることができる。この
理由については以下のように考えられる。
An optimum iron loss can be obtained by controlling the crystal grain size R so as to satisfy the above formula. The reason for this is considered as follows.

【0040】一般に最適結晶粒径は、渦電流損とヒステ
リシス損との兼ね合いで決まる。すなわち、結晶粒径が
大きくなると磁壁移動の障害となる結晶粒界の面積が減
少するため、ヒステリシス損が低減する。励磁周波数が
大きくなるにつれて最適粒径が小さくなるのは、周波数
の増大に伴い、磁壁の移動速度が大きくなり、渦電流損
の鉄損に占める割合が高くなるためであると考えられ
る。
Generally, the optimum crystal grain size is determined by the balance between the eddy current loss and the hysteresis loss. That is, as the crystal grain size increases, the area of the crystal grain boundary, which hinders the domain wall movement, decreases, so that the hysteresis loss decreases. It is considered that the optimum grain size decreases as the excitation frequency increases because the moving speed of the domain wall increases and the ratio of the eddy current loss to the iron loss increases as the frequency increases.

【0041】しかし、結晶粒径が ( 500×f-1/3+20 )
を超えて大きくなると磁区幅が大きくなり、磁壁の移動
速度も大きくなることによって渦電流損が増加し、ヒス
テリシス損の低減分を上回るようになる。この結果、渦
電流損とヒステリシス損を合わせた全鉄損が増加する。
However, if the crystal grain size is (500 × f -1/3 +20)
If it exceeds, the magnetic domain width increases, and the moving speed of the domain wall also increases, so that the eddy current loss increases and exceeds the reduction amount of the hysteresis loss. As a result, total iron loss including eddy current loss and hysteresis loss increases.

【0042】一方、結晶粒径が ( 500×f-1/3−20 )未
満の細粒になると、渦電流損の低減よりもヒステリシス
損の増加が上回り、渦電流損とヒステリシス損を合わせ
た全鉄損が増加する。
On the other hand, when the crystal grain size is smaller than (500 × f −1/3 −20), the increase of the hysteresis loss exceeds the reduction of the eddy current loss, and the eddy current loss and the hysteresis loss are combined. Total iron loss increases.

【0043】(3)製造方法 次にこの発明の製造工程と条件について説明する。素材
の鋼スラブは前記の組成をもつものである。これは、転
炉、電気炉等で溶製し、必要があれば真空脱ガス等の処
理を施した溶鋼を、連続鋳造法でスラブにしたもの、あ
るいはインゴットにして分塊圧延したもののいずれでも
よい。
(3) Manufacturing Method Next, the manufacturing process and conditions of the present invention will be described. The raw steel slab has the above composition. This is either melted in a converter, an electric furnace, etc., and if necessary melted steel that has been subjected to vacuum degassing, etc., made into a slab by continuous casting, or slab-rolled as an ingot. Good.

【0044】スラブは熱間圧延を行うことになるが、そ
の条件については特に制約はない。
The slab is hot-rolled, but there is no particular restriction on the conditions.

【0045】しかし、望ましいのは、加熱温度で1100〜
1250℃、仕上温度で 700〜950 ℃である。
However, it is preferable that the heating temperature is 1100 to
The temperature is 1250 ℃, and the finishing temperature is 700-950 ℃.

【0046】(a) 熱延板焼鈍 熱延板焼鈍は、製品の磁気特性に応じて必要により行
う。熱延板焼鈍で熱延板を再結晶させることにより、特
に、圧延方向とその直角方向の鉄損を改善することがで
きる。これは、熱延板が再結晶・粒成長することによ
り、冷間圧延後の焼鈍において{110}<001>に
配向した集合組織となるためである。
(A) Annealing of hot-rolled sheet Annealing of hot-rolled sheet is carried out if necessary according to the magnetic characteristics of the product. By recrystallizing the hot-rolled sheet by annealing the hot-rolled sheet, the iron loss in the rolling direction and the direction perpendicular thereto can be improved. This is because the hot-rolled sheet is recrystallized and grain-grown to form a texture oriented in {110} <001> during annealing after cold rolling.

【0047】焼鈍は箱焼鈍方式でも連続焼鈍方式でも可
能であるが、焼鈍温度は 650〜1000℃の範囲とする。焼
鈍温度が650 ℃未満では熱延板の再結晶が十分に進行せ
ず、焼鈍の効果が得られない。一方、1000℃を超えると
結晶粒が粗大化し過ぎ、冷間圧延時に割れが生じ易くな
る。
The annealing can be performed by a box annealing method or a continuous annealing method, but the annealing temperature is set in the range of 650 to 1000 ° C. If the annealing temperature is less than 650 ° C, recrystallization of the hot rolled sheet does not proceed sufficiently and the effect of annealing cannot be obtained. On the other hand, if the temperature exceeds 1000 ° C., the crystal grains become too coarse and cracks are likely to occur during cold rolling.

【0048】箱焼鈍の場合には、 650〜900 ℃が、連続
焼鈍の場合には 750〜1000℃が、それぞれ望ましい。
In the case of box annealing, 650 to 900 ° C. is preferable, and in the case of continuous annealing, 750 to 1000 ° C. is preferable.

【0049】(b) 冷間圧延 冷間圧延条件は本発明において極めて重要な要件であ
る。良好な鉄損を得るために、中間焼鈍を挟む2回の冷
間圧延の圧下率を共に40〜80%とすることが必要であ
る。
(B) Cold Rolling Cold rolling conditions are extremely important requirements in the present invention. In order to obtain a good iron loss, it is necessary to set the rolling reductions of the two cold rollings with the intermediate annealing to 40 to 80%.

【0050】熱延板のままで、またはその後熱延板焼鈍
を施した後、中間焼鈍を挟む2回の冷間圧延を行い、こ
のときの圧下率を共に40〜80%の範囲で適正化しておか
ないと、2回目の冷間圧延後に後述する適正な焼鈍を施
しても、鉄損に有利な集合組織とならない。
[0050] The hot-rolled sheet as it is, or after the hot-rolled sheet is annealed, cold rolling is performed twice with intermediate annealing sandwiched, and the reduction ratios at this time are both optimized within the range of 40 to 80%. If not done, even if appropriate annealing described later is performed after the second cold rolling, the texture does not become advantageous for iron loss.

【0051】冷間圧延は室温でもよいが、割れ防止の観
点から温間圧延を行ってもよい。温間圧延する場合の温
度は300 ℃以下が望ましい。300 ℃を超えると圧延の形
状制御が困難になると共に、圧延油も特殊なものとなる
からである。
Cold rolling may be performed at room temperature, but warm rolling may be performed from the viewpoint of preventing cracking. The temperature for warm rolling is preferably 300 ° C or lower. This is because if the temperature exceeds 300 ° C, it becomes difficult to control the shape of rolling and the rolling oil becomes special.

【0052】中間焼鈍の方法と条件は特に限定しない
が、箱焼鈍方式と連続焼鈍方式のいずれでも可能であ
り、温度は 650〜1000℃の均熱とするのが望ましい。
The method and conditions of the intermediate annealing are not particularly limited, but either a box annealing method or a continuous annealing method is possible, and it is desirable that the temperature is soaked at 650 to 1000 ° C.

【0053】(c) 冷間圧延後の焼鈍 製品鋼板で所望の良好な鉄損を得るために、2回の冷間
圧延により所定の板厚に仕上げられた鋼板に、焼鈍を施
し、再結晶と粒成長を行わせる。この場合の焼鈍方法も
箱焼鈍、連続焼鈍のいずれでもよいが、焼鈍条件は焼鈍
した後の結晶粒径が前記の式を満たすように選定す
る。このときの条件として望ましいのは、箱焼鈍の場
合、温度で 650〜950 ℃、時間で10分〜48時間の範囲、
さらに望ましいのは、それぞれ、 700〜900 ℃、30分〜
24時間の範囲である。連続焼鈍の場合、温度で 700〜10
00℃、時間で10秒〜5分間の範囲、さらに望ましいの
は、それぞれ、 750〜950 ℃、30秒〜2分間の範囲であ
る。
(C) Annealing after cold rolling In order to obtain the desired good iron loss in the product steel sheet, the steel sheet finished to a predetermined thickness by two cold rollings is annealed and recrystallized. And cause grain growth. The annealing method in this case may be either box annealing or continuous annealing, but the annealing conditions are selected so that the grain size after annealing satisfies the above formula. In this case, in the case of box annealing, it is desirable that the temperature is 650 to 950 ℃, the time is 10 minutes to 48 hours.
More desirable is 700-900 ℃, 30 minutes-
The range is 24 hours. In the case of continuous annealing, the temperature is 700 to 10
The temperature is 00 ° C., the time is 10 seconds to 5 minutes, more preferably 750 to 950 ° C., and the time is 30 seconds to 2 minutes, respectively.

【0054】[0054]

【実施例】以下に示す例のうち、実施例1〜4が小型変
圧器用を、実施例5〜8が回転機用を、それぞれ対象と
する無方向性電磁鋼板である。
EXAMPLES Among the examples shown below, Examples 1 to 4 are non-oriented electrical steel sheets intended for small transformers and Examples 5 to 8 are intended for rotary machines.

【0055】(実施例1)高周波炉で表1に示す組成の
7種類の供試鋼を真空溶製し、50kgインゴットとした。
これらの供試鋼は、Gを除き電気抵抗がほぼ等しい高合
金組成のものである。供試鋼の電気抵抗を表1に示す。
表1に示す三元素以外は、全ての鋼種においてC:0.00
30%以下、P: 0.015%以下、S:0.0020%以下、N:
0.0030%以下であり、その他の元素も不可避的不純物レ
ベルであった。
Example 1 Seven kinds of test steels having the compositions shown in Table 1 were vacuum-melted in a high frequency furnace to obtain a 50 kg ingot.
These test steels are of high alloy composition except for G, which have almost the same electric resistance. Table 1 shows the electric resistance of the test steel.
C: 0.00 for all steel types except the three elements shown in Table 1.
30% or less, P: 0.015% or less, S: 0.0020% or less, N:
It was 0.0030% or less, and other elements were inevitable impurity levels.

【0056】各インゴットは1130℃に加熱した後、仕上
温度830 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、800 ℃で1時間均熱の熱延板焼鈍を施してから、
1回目の冷間圧延を行い、0.80mm厚とした(圧下率:65
%)。鋼種C、D、E、F、Gは目標の板厚まで圧延で
きたものの、鋼種A、Bは割れが入り圧延できなかっ
た。そこで、鋼種A、Bは試験片を300 ℃まで加熱して
温間圧延を施し、目標の板厚とした。
Each ingot was heated to 1130 ° C. and then hot-rolled at a finishing temperature of 830 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm.
Next, after soaking the hot-rolled sheet for 1 hour at 800 ℃,
The first cold rolling was performed to a thickness of 0.80 mm (reduction ratio: 65
%). Steel types C, D, E, F, and G were able to be rolled to the target plate thickness, but steel types A and B were cracked and could not be rolled. Therefore, for the steel types A and B, the test pieces were heated to 300 ° C. and warm-rolled to obtain the target plate thickness.

【0057】1回目の冷間圧延板に880 ℃で1分間均熱
の中間焼鈍を施した後、鋼種A、Bについては 300℃
で、鋼種C、D、E、F、Gについては室温で、それぞ
れ2回目の冷間圧延を行い、0.35mm厚に仕上げた(圧下
率:56%)。
The first cold-rolled sheet was soaked and intermediately annealed at 880 ° C. for 1 minute, and then the steel types A and B were heated to 300 ° C.
Then, the steel types C, D, E, F, and G were each cold-rolled at room temperature for the second time and finished to a thickness of 0.35 mm (reduction ratio: 56%).

【0058】2回目の冷間圧延板に870 ℃で1分間均熱
の焼鈍を行ってから、打ち抜きによりエプスタイン磁気
測定試験片 (幅30mm、長さ 280mm:継目、横目半々) を
作製した。しかし、鋼種A、Bは端面から亀裂が入り割
れてしまった。そこで、鋼種A、Bについては放電加工
により上記の磁気測定試験片に加工した。
The second cold-rolled sheet was subjected to soaking annealing at 870 ° C. for 1 minute, and then punched to prepare an Epstein magnetism test piece (width 30 mm, length 280 mm: seam, half-split). However, the steel types A and B had cracks from the end faces and were cracked. Then, about the steel types A and B, it processed into the said magnetic measurement test piece by electrical discharge machining.

【0059】これらの磁気測定試験片は750 ℃で2時間
の歪取り焼鈍を実施した。その後、励磁周波数1kHz で
JIS C2550 に定める可聴周波鉄損試験により鉄損を測定
し、表1に示す結果を得た。
These magnetic measurement test pieces were subjected to strain relief annealing at 750 ° C. for 2 hours. After that, at excitation frequency 1 kHz
The iron loss was measured by the audio frequency iron loss test specified in JIS C2550, and the results shown in Table 1 were obtained.

【0060】焼鈍後の結晶粒径は40〜60μmであり、励
磁周波数1kHz での最適結晶粒径の範囲 (30〜70μm)
内にあった。なお、表1には各鋼種の冷間圧延および打
ち抜きでの割れ発生有(×)無(○)も併せて示す。
The crystal grain size after annealing is 40 to 60 μm, and the optimum crystal grain size range at the excitation frequency of 1 kHz (30 to 70 μm)
It was inside. Table 1 also shows whether or not cracks occurred (x) and no (o) during cold rolling and punching of each steel type.

【0061】[0061]

【表1】 [Table 1]

【0062】本発明鋼種であるC、Dは、冷間圧延や打
ち抜き加工で割れの発生がなく極めて良好な加工性を示
すと共に、鉄損も、従来から良好であることが知られて
いる高珪素鋼に相当する鋼種Aと同等の良好なものであ
ることがわかる。また、本発明鋼種よりもSiが高い鋼種
E、同じくMnが低い鋼種F、および同じく( Si+Al+1/
2 ・Mn )が低い鋼種Gでは、加工性は良好であるが、鉄
損が劣っている。
The steel grades C and D of the present invention show extremely good workability without cracking during cold rolling or punching, and have been known to have good iron loss. It can be seen that it is as good as steel type A corresponding to silicon steel. Further, the steel grade E having a higher Si than the steel grade of the present invention, the steel grade F having a lower Mn, and the same (Si + Al + 1 /
Steel type G with a low 2 · Mn) has good workability but poor iron loss.

【0063】(実施例2)高周波炉で表2に示す組成の
供試鋼を真空溶製し、50kgインゴットとした。表2に示
す三元素以外の含有量は、全ての鋼種において実施例1
と同様のレベルであった。
(Example 2) A test steel having the composition shown in Table 2 was vacuum-melted in a high frequency furnace to obtain a 50 kg ingot. The contents other than the three elements shown in Table 2 are the same as in Example 1 in all steel types.
It was the same level as.

【0064】各インゴットは1100℃に加熱した後、仕上
温度810 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、表2に示す温度で1分間均熱の熱延板焼鈍を行っ
た後、表2に示す圧下率と板厚条件で1回目の冷間圧延
を行った。ただし、試験No.1は熱延板焼鈍なしである。
次いで、770 ℃で1時間均熱の中間焼鈍を行った後、表
2に示す圧下率で2回目の冷間圧延により、0.23mm厚に
仕上げ、さらに880 ℃で1分間均熱の焼鈍を施した。
Each ingot was heated to 1100 ° C. and then hot-rolled at a finishing temperature of 810 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm.
Next, after hot-rolled sheet annealing was carried out for 1 minute at the temperature shown in Table 2, the first cold rolling was performed under the rolling reduction and sheet thickness conditions shown in Table 2. However, test No. 1 is without hot-rolled sheet annealing.
Then, after an intermediate soaking for 1 hour at 770 ° C, a second cold rolling was performed at the rolling reduction shown in Table 2 to finish the thickness to 0.23 mm, and further annealing for 1 minute at 880 ° C. did.

【0065】その後、打ち抜きにより実施例1と同様の
エプスタイン試験片を採取し、 770℃で5分間の歪取り
焼鈍を施してから実施例1と同様の方法で鉄損を測定し
た。
After that, an Epstein test piece similar to that in Example 1 was sampled by punching, subjected to strain relief annealing at 770 ° C. for 5 minutes, and then iron loss was measured in the same manner as in Example 1.

【0066】表2にこの磁気測定結果も示す。焼鈍後の
結晶粒径は、いずれも、45〜65μmであり、励磁周波数
1kHz での最適結晶粒径の範囲 (30〜70μm) 内にあっ
た。
Table 2 also shows the magnetic measurement results. The crystal grain size after annealing is 45 to 65 μm, and the excitation frequency is
It was within the range of the optimum crystal grain size (30 to 70 μm) at 1 kHz.

【0067】[0067]

【表2】 [Table 2]

【0068】本発明方法である試験No.5、6では、冷間
圧延や打ち抜き加工で割れの発生がなく極めて良好な加
工性を示すと共に、鉄損も良好なものであることがわか
る。
In Test Nos. 5 and 6 which are the methods of the present invention, it can be seen that there is no cracking in cold rolling or punching, that is, very good workability is exhibited and that iron loss is also good.

【0069】しかし、熱延板焼鈍を実施しなかった試験
No.1と、熱延板焼鈍温度が本発明範囲よりも低い試験N
o.2では、鉄損が劣っている。熱延板焼鈍温度が本発明
範囲より高い試験No.8では、冷間圧延時に割れが発生
し、以後の実験が行えなかった。
However, a test in which hot-rolled sheet annealing was not carried out
Test N with No. 1 and hot-rolled sheet annealing temperature lower than the range of the present invention
At o.2, iron loss is inferior. In test No. 8 in which the hot-rolled sheet annealing temperature was higher than the range of the present invention, cracking occurred during cold rolling, and subsequent experiments could not be performed.

【0070】1回目と2回目の冷間圧延圧下率が、本発
明範囲より高いか、または低い試験No.3、4、7では、
化学組成と熱延板焼鈍条件とが共に本発明範囲内であっ
ても鉄損が劣っている。
In the test Nos. 3, 4, and 7 in which the first and second cold rolling reductions are higher or lower than the range of the present invention,
Iron loss is inferior even if both the chemical composition and the annealing conditions of the hot rolled sheet are within the scope of the present invention.

【0071】(実施例3)高周波炉でSi:1.44%、Mn:
1.84%、Al:4.04%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様のレベルであった。
(Example 3) Si: 1.44%, Mn: in a high frequency furnace
1.84%, Al: 4.04% of the sample steel is vacuum-melted, 50kg
It was an ingot. The contents other than Si, Mn, and Al were at the same level as in Example 1 for all steel types.

【0072】各インゴットは1130℃に加熱した後、仕上
温度800 ℃の熱間圧延により2.5 mm厚の熱延板とした。
次に、780 ℃で1時間均熱の熱延板焼鈍を施してから、
室温で1回目の冷間圧延を行い、0.80mm厚とした(圧下
率:68%)。
Each ingot was heated to 1130 ° C. and then hot-rolled at a finishing temperature of 800 ° C. to obtain a hot-rolled sheet having a thickness of 2.5 mm.
Next, after soaking the hot rolled sheet for 1 hour at 780 ° C,
The first cold rolling was performed at room temperature to a thickness of 0.80 mm (reduction ratio: 68%).

【0073】次いで、750 ℃で1時間均熱の中間焼鈍を
施した後に、室温で2回目の冷間圧延を行い、0.35mm厚
に仕上げた(圧下率:56%)。その後、実施例1と同様
のエプスタイン試験片を採取してから 700〜900 ℃で30
分間均熱の焼鈍を行い、結晶粒径と励磁周波数1kHz で
の磁気の測定を実施した。
Then, after carrying out an intermediate anneal of soaking at 750 ° C. for 1 hour, a second cold rolling was carried out at room temperature to finish to a thickness of 0.35 mm (reduction ratio: 56%). After that, the same Epstein test piece as in Example 1 was sampled, and then at 700 to 900 ° C.
Annealing was performed for soaking for minutes, and the crystal grain size and magnetism at an excitation frequency of 1 kHz were measured.

【0074】図1は、焼鈍後の結晶粒径と鉄損(W
13/1k )との関係を示す図である。図示するように、結
晶粒径が励磁周波数1kHz での最適結晶粒径の範囲(30
〜70μm)内にあれば、良好な鉄損が得られることがわ
かる。
FIG. 1 shows the crystal grain size and iron loss (W
13 / 1k ) and FIG. As shown in the figure, the crystal grain size is in the range of the optimum crystal grain size at the excitation frequency of 1 kHz (30
It can be seen that good iron loss can be obtained when the thickness is within 70 μm).

【0075】(実施例4)高周波炉でSi:1.07%、Mn:
1.28%、Al:4.47%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様のレベルであった。
(Example 4) Si: 1.07%, Mn: in a high frequency furnace
1.28%, Al: 4.47% composition of the sample steel is vacuum melted, 50kg
It was an ingot. The contents other than Si, Mn, and Al were at the same level as in Example 1 for all steel types.

【0076】各インゴットは1150℃に加熱した後、仕上
温度840 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、880 ℃で1分間均熱の熱延板焼鈍を施してから、
室温で1回目の冷間圧延を行い、0.70mm厚とした(圧下
率:70%)。
Each ingot was heated to 1150 ° C. and then hot-rolled at a finishing temperature of 840 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm.
Next, after soaking the hot rolled sheet for 1 minute at 880 ° C,
The first cold rolling was performed at room temperature to a thickness of 0.70 mm (reduction ratio: 70%).

【0077】次いで、840 ℃で1分間均熱の中間焼鈍を
施した後に、室温で2回目の冷間圧延を行い、0.35mm厚
に仕上げた(圧下率:50%)。その後、実施例1と同様
のエプスタイン試験片を採取してから 750〜950 ℃で30
分間均熱の焼鈍を行い、結晶粒径と励磁周波数 400Hz
での磁気の測定を実施した。
Then, after soaking intermediate anneal at 840 ° C. for 1 minute, a second cold rolling was performed at room temperature to finish to 0.35 mm thickness (reduction ratio: 50%). After that, the same Epstein test piece as in Example 1 was sampled, and then 30 minutes at 750 to 950 ° C.
Annealing for soaking for minutes, crystal grain size and excitation frequency 400Hz
The magnetic field was measured at.

【0078】図2は、焼鈍後の結晶粒径と鉄損(W
13/400)との関係を示す図である。図示するように、結
晶粒径が、励磁周波数 400Hz での最適結晶粒径の範囲
(48〜88μm)内にあれば、良好な鉄損が得られること
がわかる。
FIG. 2 shows the crystal grain size and iron loss (W
13/400 ). As shown in the figure, if the crystal grain size is within the optimum crystal grain size range (48 to 88 μm) at the excitation frequency of 400 Hz, good iron loss can be obtained.

【0079】(実施例5)高周波炉で表3に示す組成の
7種類の供試鋼を真空溶製し、50kgインゴットとした。
これらの供試鋼は、Nを除き電気抵抗がほぼ等しい高合
金組成のものである。供試鋼の電気抵抗を表3に示す。
表3に示す三元素以外の含有量は、全ての鋼種において
実施例1と同様のレベルであった。
Example 5 Seven kinds of test steels having the compositions shown in Table 3 were vacuum-melted in a high frequency furnace to obtain a 50 kg ingot.
These test steels have a high alloy composition having almost the same electric resistance except N. Table 3 shows the electric resistance of the test steel.
The contents other than the three elements shown in Table 3 were at the same level as in Example 1 in all steel types.

【0080】各インゴットは1170℃に加熱した後、仕上
温度800 ℃の熱間圧延により2.3mm厚の熱延板とした。
次に、1回目の冷間圧延を行い、0.80mm厚とした(圧下
率:65%)。
Each ingot was heated to 1170 ° C. and then hot-rolled at a finishing temperature of 800 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm.
Next, the first cold rolling was performed to a thickness of 0.80 mm (reduction ratio: 65%).

【0081】鋼種J、K、L、M、Nは目標の板厚まで
圧延できたものの、鋼種H、Iは割れが入り圧延できな
かった。そこで、鋼種H、Iは試験片を300 ℃まで加熱
して温間圧延を施し、目標の板厚とした(圧下率:65
%)。
Steel types J, K, L, M and N were able to be rolled to a target plate thickness, but steel types H and I were cracked and could not be rolled. Therefore, for steel types H and I, the test pieces were heated to 300 ° C and warm-rolled to obtain the target plate thickness (reduction ratio: 65
%).

【0082】1回目の冷間圧延板に900 ℃で1分間均熱
の中間焼鈍を施した後、鋼種H、Iについては300 ℃
で、鋼種J、K、L、M、Nについては室温で、それぞ
れ2回目の冷間圧延を行い、0.35mm厚に仕上げた(圧下
率:56%)。
After the first cold rolling sheet was subjected to soaking and intermediate annealing at 900 ° C. for 1 minute, the steel types H and I were 300 ° C.
With respect to the steel types J, K, L, M and N, the second cold rolling was performed at room temperature to finish the thickness to 0.35 mm (reduction ratio: 56%).

【0083】2回目の冷間圧延板に850 ℃で1分間均熱
の焼鈍を行ってから、打ち抜きによりリング状磁気測定
試験片 (内径33mm、外径45mm) を作製した。しかし、鋼
種H、Iは端面から亀裂が入り割れてしまった。そこ
で、鋼種H、Iについては放電加工により上記の磁気測
定試験片に加工した。
The second cold-rolled sheet was annealed at 850 ° C. for 1 minute to obtain a ring-shaped magnetic test piece (inner diameter 33 mm, outer diameter 45 mm) by punching. However, the steel types H and I had cracks from the end faces and cracked. Therefore, for the steel types H and I, the above magnetic measurement test pieces were processed by electrical discharge machining.

【0084】これらの磁気測定試験片は750 ℃で2時間
の歪取り焼鈍を実施した。その後、励磁周波数1kHz で
鉄損を測定し、表3に示す結果を得た。
These magnetic measurement test pieces were subjected to strain relief annealing at 750 ° C. for 2 hours. Then, the iron loss was measured at an excitation frequency of 1 kHz and the results shown in Table 3 were obtained.

【0085】焼鈍後の結晶粒径は40〜60μmであり、励
磁周波数1kHz での最適結晶粒径の範囲 (30〜70μm)
内にあった。なお、表3には各鋼種の冷間圧延および打
ち抜きでの割れ発生有(×)無(○)も併せて示す。
The crystal grain size after annealing is 40 to 60 μm, and the range of the optimum crystal grain size at the excitation frequency of 1 kHz (30 to 70 μm)
It was inside. Table 3 also shows whether or not cracks occurred (x) and no (o) during cold rolling and punching of each steel type.

【0086】[0086]

【表3】 [Table 3]

【0087】本発明鋼種であるJ、Kは、冷間圧延や打
ち抜き加工で割れの発生がなく極めて良好な加工性を示
すと共に、鉄損も、従来から良好であることが知られて
いる高珪素鋼に相当する鋼種Hと同等の良好なものであ
ることがわかる。また、本発明鋼種よりもSiが高い鋼種
L、同じくMnが低い鋼種M、および同じく( Si+Al+1/
2 ・Mn )が低い鋼種Nでは、加工性は良好であるが、鉄
損が劣っている。
The steel grades J and K of the present invention show extremely good workability without cracking during cold rolling or punching, and have been known to have good iron loss as well. It can be seen that it is as good as the steel type H corresponding to silicon steel. Further, a steel type L having a higher Si than the steel type of the present invention, a steel type M having a lower Mn, and a similar (Si + Al + 1 /
Steel type N with a low 2 · Mn) has good workability but poor iron loss.

【0088】(実施例6)高周波炉で表4に示す組成の
供試鋼を真空溶製し、50kgインゴットとした。表4に示
す三元素以外の含有量は、全ての鋼種において実施例1
と同様のレベルであった。
Example 6 A sample steel having the composition shown in Table 4 was vacuum-melted in a high frequency furnace to obtain a 50 kg ingot. The contents other than the three elements shown in Table 4 are the same as in Example 1 in all steel types.
It was the same level as.

【0089】各インゴットは1150℃に加熱した後、仕上
温度810 ℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、表4に示す圧下率と板厚条件で1回目の冷間圧延
を行った。次いで、780 ℃で1時間均熱の中間焼鈍を行
った後、表4に示す圧下率で2回目の冷間圧延により、
0.23mm厚に仕上げ、さらに890 ℃で1分間均熱の焼鈍を
施した。
Each ingot was heated to 1150 ° C. and then hot-rolled at a finishing temperature of 810 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm.
Next, the first cold rolling was performed under the rolling reduction and plate thickness conditions shown in Table 4. Then, after carrying out an intermediate annealing of soaking at 780 ° C. for 1 hour, by the second cold rolling at the rolling reduction shown in Table 4,
It was finished to have a thickness of 0.23 mm and further subjected to soaking annealing at 890 ° C for 1 minute.

【0090】その後、打ち抜きにより実施例5と同様の
リング状磁気測定試験片を採取し、750 ℃で10分間の歪
取り焼鈍を施してから、実施例5と同様の方法で鉄損を
測定した。表4にこの磁気測定結果も示す。
Thereafter, a ring-shaped magnetic measurement test piece similar to that of Example 5 was sampled by punching, strain relief annealing was performed at 750 ° C. for 10 minutes, and then the iron loss was measured by the same method as in Example 5. . Table 4 also shows the magnetic measurement results.

【0091】焼鈍後の結晶粒径は、いずれも45〜65μm
であり、励磁周波数1kHz での最適結晶粒径の範囲 (30
〜70μm) 内にあった。
The crystal grain size after annealing is 45 to 65 μm in all cases.
And the range of the optimum crystal grain size at the excitation frequency of 1 kHz (30
Within ~ 70 μm).

【0092】[0092]

【表4】 [Table 4]

【0093】本発明方法である試験No.11 、12では、冷
間圧延や打ち抜き加工で割れの発生がなく、極めて良好
な加工性を示すと共に、鉄損も良好なものであることが
わかる。しかし、1回目と2回目の冷間圧延圧下率が、
本発明範囲より高いか、または低い試験No.9、10、13で
は、鉄損が劣っている。
In Test Nos. 11 and 12 which are the methods of the present invention, it is understood that no cracking occurs in cold rolling or punching, that is, very good workability is exhibited, and that iron loss is also good. However, the first and second cold rolling reduction rates are
In Test Nos. 9, 10 and 13 which are higher or lower than the range of the present invention, the iron loss is inferior.

【0094】(実施例7)高周波炉でSi:1.21%、Mn:
1.24%、Al:4.41%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様の含有量レベルであった。
(Example 7) Si: 1.21%, Mn: in a high frequency furnace
1.24%, Al: 4.41% of the sample steel is vacuum-melted, 50kg
It was an ingot. The contents other than Si, Mn, and Al were the same as those in Example 1 for all steel types.

【0095】各インゴットは1150℃に加熱した後、仕上
温度 810℃の熱間圧延により2.5 mm厚の熱延板とした。
次に、室温で1回目の冷間圧延を行い、0.80mm厚とした
(圧下率:68%)。
Each ingot was heated to 1150 ° C. and then hot-rolled at a finishing temperature of 810 ° C. to obtain a hot-rolled sheet having a thickness of 2.5 mm.
Next, the first cold rolling was performed at room temperature to a thickness of 0.80 mm (reduction ratio: 68%).

【0096】次いで、700 ℃で5時間均熱の中間焼鈍を
施した後に、室温で2回目の冷間圧延を行い、0.35mm厚
に仕上げた(圧下率:56%)。その後、打ち抜きにより
実施例5と同様のリング状磁気測定試験片を採取してか
ら、 700〜1100℃で30秒間均熱の焼鈍を行い、結晶粒径
と励磁周波数1kHz での磁気の測定を実施した。
Then, after an intermediate annealing of soaking at 700 ° C. for 5 hours, a second cold rolling was performed at room temperature to finish the thickness to 0.35 mm (reduction ratio: 56%). After that, a ring-shaped magnetic measurement test piece similar to that of Example 5 was sampled by punching, and soaking was annealed at 700 to 1100 ° C. for 30 seconds to measure the crystal grain size and magnetism at an excitation frequency of 1 kHz. did.

【0097】図3は、焼鈍後の結晶粒径と鉄損(W
13/1k )との関係を示す図である。図示するように、結
晶粒径が励磁周波数1kHz での最適結晶粒径の範囲(30
〜70μm)内にあれば、良好な鉄損が得られることがわ
かる。
FIG. 3 shows the crystal grain size and iron loss (W
13 / 1k ) and FIG. As shown in the figure, the crystal grain size is in the range of the optimum crystal grain size at the excitation frequency of 1 kHz (30
It can be seen that good iron loss can be obtained when the thickness is within 70 μm).

【0098】(実施例8)高周波炉でSi:1.03%、Mn:
1.33%、Al:4.27%の組成の供試鋼を真空溶製し、50kg
インゴットとした。Si、Mn、Al以外の含有量は、全ての
鋼種において実施例1と同様のレベルであった。
(Example 8) Si: 1.03%, Mn: in a high frequency furnace
Vacuum-melted a sample steel with a composition of 1.33%, Al: 4.27%, 50kg
It was an ingot. The contents other than Si, Mn, and Al were at the same level as in Example 1 for all steel types.

【0099】各インゴットは1120℃に加熱した後、仕上
温度 820℃の熱間圧延により2.3 mm厚の熱延板とした。
次に、室温で1回目の冷間圧延を行い、0.70mm厚とした
(圧下率:70%)。
Each ingot was heated to 1120 ° C. and then hot-rolled at a finishing temperature of 820 ° C. to obtain a hot-rolled sheet having a thickness of 2.3 mm.
Next, the first cold rolling was performed at room temperature to a thickness of 0.70 mm (reduction ratio: 70%).

【0100】次いで 740℃で1時間均熱の中間焼鈍を施
した後に、室温で2回目の冷間圧延を行い、0.35mm厚に
仕上げた(圧下率:50%)。その後、打ち抜きにより実
施例5と同様のリング状磁気測定試験片を採取してか
ら、 700〜1100℃で30秒間均熱の焼鈍を行い、結晶粒径
と励磁周波数 400Hz での磁気の測定を実施した。
Next, after soaking at 740 ° C. for 1 hour in an intermediate anneal, cold rolling was performed a second time at room temperature to finish the product to a thickness of 0.35 mm (reduction ratio: 50%). After that, a ring-shaped magnetic measurement test piece similar to that of Example 5 was sampled by punching, and soaking was annealed at 700 to 1100 ° C. for 30 seconds to measure the crystal grain size and the magnetism at an excitation frequency of 400 Hz. did.

【0101】図4は、焼鈍後の結晶粒径と鉄損(W
13/400)との関係を示す図である。図示するように、結
晶粒径が、励磁周波数 400Hz での最適結晶粒径の範囲
(48〜88μm)内にあれば、良好な鉄損が得られること
がわかる。
FIG. 4 shows the crystal grain size and iron loss (W
13/400 ). As shown in the figure, if the crystal grain size is within the optimum crystal grain size range (48 to 88 μm) at the excitation frequency of 400 Hz, good iron loss can be obtained.

【0102】[0102]

【発明の効果】本発明の無方向性電磁鋼板は、冷間加工
性および高周波域における、圧延方向とその直角方向の
平均磁気特性または板厚全周方向の平均磁気特性に優れ
るものである。この鋼板を製造する方法および鋼板を打
ち抜き加工する方法には、特殊な設備と条件を要しな
い。
INDUSTRIAL APPLICABILITY The non-oriented electrical steel sheet of the present invention is excellent in cold workability and in the high frequency range, the average magnetic characteristics in the rolling direction and the direction perpendicular thereto, or the average magnetic characteristics in the entire thickness direction. The method for manufacturing the steel sheet and the method for punching the steel sheet do not require special equipment and conditions.

【図面の簡単な説明】[Brief description of drawings]

【図1】小型変圧器用の無方向性電磁鋼板における結晶
粒径と鉄損(W13/1k ) との関係の例を示す図である。
FIG. 1 is a diagram showing an example of a relationship between crystal grain size and iron loss (W 13 / 1k ) in a non-oriented electrical steel sheet for a small transformer.

【図2】同じく結晶粒径と鉄損(W13/400) との関係の
例を示す図である。
FIG. 2 is a diagram showing an example of a relationship between crystal grain size and iron loss (W 13/400 ).

【図3】回転機用の無方向性電磁鋼板における結晶粒径
と鉄損(W13/1k ) との関係の例を示す図である。
FIG. 3 is a diagram showing an example of a relationship between a crystal grain size and a core loss (W 13 / 1k ) in a non-oriented electrical steel sheet for a rotating machine.

【図4】同じく結晶粒径と鉄損(W13/400) との関係の
例を示す図である。
FIG. 4 is a diagram showing an example of a relationship between crystal grain size and iron loss (W 13/400 ).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/16 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display H01F 1/16

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】重量%で、Si:1.5 %未満、Al: 2.5〜6.
0 %およびMn: 1.0〜3.0 %を含み、かつ下記式を満
足し、残部は実質的にFeおよび不可避的不純物からな
り、結晶粒径R (μm) が下記式を満足する鉄損の低
い無方向性電磁鋼板。 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。
1. By weight%, Si: less than 1.5%, Al: 2.5-6.
0% and Mn: 1.0 to 3.0%, satisfying the following formula, the balance consisting essentially of Fe and inevitable impurities, and having a crystal grain size R (μm) satisfying the following formula: Grain-oriented electrical steel sheet. [Si (%) + Al (%) + 1/2 ・ Mn (%)] ≧ 5.5% ・ ・ ・ ・ ・ (500 × f -1/3 -20) ≤ R ≤ (500 × f -1/3 +20) ... However, f represents the excitation frequency (Hz).
【請求項2】重量%で、Si:1.5 %未満、Al: 2.5〜6.
0 %およびMn: 1.0〜3.0 %を含み、かつ下記式を満
足し、残部は実質的にFeおよび不可避的不純物からなる
鋼スラブを熱間圧延した後、中間焼鈍を挟む2回の冷間
圧延で1回目、2回目の圧下率を共に40〜80%として製
品板厚に仕上げた後焼鈍を行い、結晶粒径R (μm)を
下記式を満たす範囲とする鉄損の低い無方向性電磁鋼
板の製造方法。 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。
2. Si: less than 1.5% by weight, Al: 2.5-6.
A steel slab containing 0% and Mn: 1.0 to 3.0% and satisfying the following formula, and the balance consisting essentially of Fe and unavoidable impurities, is hot-rolled, and then cold-rolled twice with intermediate annealing. The first and second reductions are both 40 to 80%, and after finishing the product sheet thickness, annealing is performed, and the crystal grain size R (μm) is in the range that satisfies the following formula. Steel plate manufacturing method. [Si (%) + Al (%) + 1/2 ・ Mn (%)] ≧ 5.5% ・ ・ ・ ・ ・ (500 × f -1/3 -20) ≤ R ≤ (500 × f -1/3 +20) ... However, f represents the excitation frequency (Hz).
【請求項3】重量%で、Si:1.5 %未満、Al: 2.5〜6.
0 %およびMn: 1.0〜3.0 %を含み、かつ下記式を満
足し、残部は実質的にFeおよび不可避的不純物からなる
鋼スラブを熱間圧延した後、 650〜1000℃で熱延板焼鈍
を施してから、中間焼鈍を挟む2回の冷間圧延で1回
目、2回目の圧下率を共に40〜80%として製品板厚に仕
上げた後焼鈍を行い、結晶粒径R (μm) を下記式を
満たす範囲とする鉄損の低い無方向性電磁鋼板の製造方
法。 〔Si(%) + Al(%)+ 1/2・Mn(%) 〕≧ 5.5%・・・・・ ( 500×f-1/3−20 )≦R≦ ( 500×f-1/3+20 )・・ ただし、fは励磁周波数(Hz)を表す。
3. By weight%, Si: less than 1.5%, Al: 2.5-6.
After hot rolling a steel slab containing 0% and Mn: 1.0 to 3.0% and satisfying the following formula, and the balance consisting essentially of Fe and unavoidable impurities, hot-rolled sheet annealing is performed at 650 to 1000 ° C. After being applied, the cold rolling is performed twice with intermediate annealing sandwiched between the first and second reductions of 40 to 80% to finish the product sheet thickness and then annealed. The crystal grain size R (μm) is as follows. A method for producing a non-oriented electrical steel sheet having a low iron loss within a range satisfying the formula. [Si (%) + Al (%) + 1/2 ・ Mn (%)] ≧ 5.5% ・ ・ ・ ・ ・ (500 × f -1/3 -20) ≤ R ≤ (500 × f -1/3 +20) ... However, f represents the excitation frequency (Hz).
JP6019410A 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same Expired - Fee Related JP2861787B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6019410A JP2861787B2 (en) 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6019410A JP2861787B2 (en) 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07228953A true JPH07228953A (en) 1995-08-29
JP2861787B2 JP2861787B2 (en) 1999-02-24

Family

ID=11998490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6019410A Expired - Fee Related JP2861787B2 (en) 1994-02-16 1994-02-16 Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2861787B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017933A1 (en) 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
JP2012036457A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2012036458A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2012036456A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2018024017A (en) * 2016-08-10 2018-02-15 ポスコPosco High-grade steel continuous hot rolling method
CN111699270A (en) * 2018-02-02 2020-09-22 蒂森克虏伯钢铁欧洲股份公司 Electrical strip capable of, but not forced, re-annealing
CN115341083A (en) * 2022-09-13 2022-11-15 江苏省沙钢钢铁研究院有限公司 Non-oriented silicon steel for high-frequency motor and production method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012017933A1 (en) 2010-08-04 2012-02-09 新日本製鐵株式会社 Process for producing non-oriented electromagnetic steel sheet
JP5437476B2 (en) * 2010-08-04 2014-03-12 新日鐵住金株式会社 Method for producing non-oriented electrical steel sheet
US9579701B2 (en) 2010-08-04 2017-02-28 Nippon Steel & Sumitomo Metal Corporation Manufacturing method of non-oriented electrical steel sheet
JP2012036457A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2012036458A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2012036456A (en) * 2010-08-09 2012-02-23 Sumitomo Metal Ind Ltd Non-oriented magnetic steel sheet and production method therefor
JP2018024017A (en) * 2016-08-10 2018-02-15 ポスコPosco High-grade steel continuous hot rolling method
CN107716548A (en) * 2016-08-10 2018-02-23 Posco公司 The continuous hot rolling method of high-grade steel
RU2677397C2 (en) * 2016-08-10 2019-01-16 Поско Method of continuous hot rolling of high-grade steel
CN107716548B (en) * 2016-08-10 2020-05-26 Posco公司 Hot continuous rolling method for high-grade steel
CN111699270A (en) * 2018-02-02 2020-09-22 蒂森克虏伯钢铁欧洲股份公司 Electrical strip capable of, but not forced, re-annealing
US11788168B2 (en) 2018-02-02 2023-10-17 Thyssenkrupp Steel Europe Ag Electrical steel strip that can be but doesn't have to be reannealed
CN115341083A (en) * 2022-09-13 2022-11-15 江苏省沙钢钢铁研究院有限公司 Non-oriented silicon steel for high-frequency motor and production method thereof

Also Published As

Publication number Publication date
JP2861787B2 (en) 1999-02-24

Similar Documents

Publication Publication Date Title
JP2010209467A (en) Improved method for producing non-oriented electrical steel sheet
KR20020035827A (en) Method for producing non-grain oriented electric sheet steel
JP2970423B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2861787B2 (en) Non-oriented electrical steel sheet with low iron loss and method of manufacturing the same
JP4123629B2 (en) Electrical steel sheet and manufacturing method thereof
JP3931842B2 (en) Method for producing non-oriented electrical steel sheet
JPH059666A (en) Grain oriented electrical steel sheet and its manufacture
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JP3379055B2 (en) Method for producing non-oriented electrical steel sheet with high magnetic flux density and low iron loss
JPH03229820A (en) Production of nonoriented silicon steel sheet
JP2874564B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
JP3178270B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3252692B2 (en) Non-oriented electrical steel sheet with excellent magnetic properties and method for producing the same
JP2718340B2 (en) Manufacturing method of non-oriented electrical steel sheet with low iron loss
JP3937685B2 (en) Electrical steel sheet with excellent high-frequency magnetic properties and method for producing the same
JP3434936B2 (en) Manufacturing method of ultra high magnetic flux density unidirectional electrical steel sheet
JPH08283853A (en) Production of nonoriented cilicon steel sheet excellent in magnetic property
JP7465354B2 (en) Non-oriented electrical steel sheet and its manufacturing method
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JP2666626B2 (en) Low iron loss non-oriented electrical steel sheet and its manufacturing method
JP2760262B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP3397273B2 (en) Manufacturing method for ultra-low iron loss ultra-high magnetic flux density unidirectional electrical steel sheet
JPH07258736A (en) Production of nonoriented silicon steel sheet excellent in magnetic property
JPH0841601A (en) High tensile strength nonoriented silicon steel sheet excellent in workability and magnetic property and its production

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees