JPH03229820A - Production of nonoriented silicon steel sheet - Google Patents

Production of nonoriented silicon steel sheet

Info

Publication number
JPH03229820A
JPH03229820A JP2022066A JP2206690A JPH03229820A JP H03229820 A JPH03229820 A JP H03229820A JP 2022066 A JP2022066 A JP 2022066A JP 2206690 A JP2206690 A JP 2206690A JP H03229820 A JPH03229820 A JP H03229820A
Authority
JP
Japan
Prior art keywords
temperature
steel
steel sheet
annealing
iron loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022066A
Other languages
Japanese (ja)
Other versions
JPH0819465B2 (en
Inventor
Akihiko Nishimoto
昭彦 西本
Kunikazu Tomita
邦和 冨田
Seiji Nakamura
清治 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP2022066A priority Critical patent/JPH0819465B2/en
Publication of JPH03229820A publication Critical patent/JPH03229820A/en
Publication of JPH0819465B2 publication Critical patent/JPH0819465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the magnetic properties, such as iron loss, of a blanked, sheared, and stress-relief-annealed stock by subjecting an Al-containing steel in which P content is properly regulated to hot rolling under specific temp. Conditions, applying pickling and cold rolling to the resulting rolled plate, and then subjecting the resulting rolled sheet to annealing. CONSTITUTION:A steel having a composition consisting of, by weight, <=0.0050% C, 0.06-1.0% Si, 0.5 1.5% Mn, 0.01-0.06% P, <0.010% S, 0.1-0.5% Al, <=0.0050% N, and the balance Fe with inevitable impurities is cast. The resulting cast slab is hot-rolled under the conditions of <=1170 deg.C heating temp., Ar3 transformation point or below of finishing temp., and 600-720 deg.C coiling temp. After pickling and cold rolling, the resulting sheet is annealed at 625-800 deg.C. This steel sheet is subjected, if necessary, to the application of an insulating film, etc., and to baking, by which a semiprocessed steel sheet is formed. This steel sheet is blanked and sheared and is then subjected to stress relief annealing so that heating rate HR( deg.C/min) at 350-700 deg.C satisfies HR>=60[P]+1.4, where P means P content in the steel sheet. By this method, a nonoriented silicon steel sheet excellent in magnetic properties can be produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、需要家で打ち抜き・剪断加工後、歪取焼鈍さ
れること−を前提としたセミプロセス無方向性電磁鋼板
の製造方法、および打ち抜き・剪断加工と歪取焼鈍工程
を含む無方向性電磁鋼板の製造方法に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention provides a method for producing semi-processed non-oriented electrical steel sheets, which is premised on being subjected to stress relief annealing after punching and shearing at the customer's end; The present invention relates to a method for manufacturing non-oriented electrical steel sheets including punching/shearing and strain relief annealing processes.

〔従来の技術〕[Conventional technology]

近年、省エネルギーの社会的要請から、冷蔵庫、クーラ
ー等に使用される小型モータの効率向上、蛍光灯安定器
の小型化、温度上昇防止等の要求があり、このためこれ
らのコア材として用いられる無方向性電磁鋼板に対して
も、高磁束密度−低鉄損化のニーズが高い。
In recent years, due to social demands for energy conservation, there have been demands for improving the efficiency of small motors used in refrigerators, air conditioners, etc., downsizing fluorescent lamp ballasts, and preventing temperature rises. There is also a strong need for high magnetic flux density and low core loss for grain-oriented electrical steel sheets.

このような背景のもとで、近年、鉄損は比較的高いもの
の低コストで磁束密度が高い、SiS2.0%のいわゆ
る低級無方向性電磁鋼板の需要と、その低鉄損化に対す
る要求が増大しつつある。このような低級無方向性電磁
鋼板の低鉄損化を具現したものとして、鋼板を需要家で
打ち抜き・剪断加工後、歪取焼鈍するようにしたセミプ
ロセス材がある。このセミプロセス材は以下の(1)、
(2)に大別される。
Against this background, in recent years there has been an increase in demand for so-called low-grade non-oriented electrical steel sheets with 2.0% SiS, which have relatively high iron loss but are low cost and have high magnetic flux density, and demands for lower iron loss. It is increasing. A semi-processed material that embodies the low core loss of such a low-grade non-oriented electrical steel sheet is a steel sheet that is punched and sheared at the customer's end and then subjected to stress relief annealing. This semi-processed material has the following (1):
It is broadly classified into (2).

(1)1次冷圧、焼鈍後、2次冷圧として1〜10%程
度の調圧を施したものを、需要家で打ち抜き・剪断加工
後、歪取焼鈍する。2回冷圧によるセミプロセス材。こ
の鋼板は調圧歪による全粒成長によって歪取焼鈍時に結
晶粒を粗大化させ、低鉄損化を図るものであるが、同時
に磁束密度も低下するという欠点がある。
(1) After primary cold pressing and annealing, the product is subjected to pressure adjustment of about 1 to 10% as secondary cold pressing, and then punched and sheared by the customer, followed by strain relief annealing. Semi-processed material by double cold pressing. This steel sheet coarsens the crystal grains during strain relief annealing through whole-grain growth due to controlled strain, and is intended to reduce core loss, but it also has the drawback of decreasing magnetic flux density.

(2)フルプロセス材と同様に1回の冷間圧延と焼鈍を
施したものを、需要家で打ち抜き・剪断加工後、歪取焼
鈍する、1回冷圧によるセミプロセス材(プロセス的に
はフルプロセス材を需要家で再度焼鈍することになるた
め、以下便宜的に「フルプロセス焼鈍材」と呼ぶ)。こ
の鋼板は鉄損の低下式は2回冷圧によるものに比べて小
さいものの、磁束密度があまり低下しないという長所が
ある。
(2) Semi-processed material (in terms of process), which is cold-rolled and annealed once in the same way as full-processed material, then punched and sheared at the customer's end, and then annealed to remove strain. Since the full process material is annealed again by the consumer, it will be referred to as ``full process annealed material'' for convenience hereafter). Although this steel plate has a smaller iron loss reduction formula than that obtained by double cold pressing, it has the advantage that the magnetic flux density does not decrease much.

これらのうち、最近は器具の小型化・高効率化の観点か
ら従来の(1)のセミプロセス材に加えて、磁束密度上
有利な(2)のフルプロセス焼鈍材の需要が急増してい
る。このようなフルプロセス焼鈍材の場合、磁束密度を
劣化させることなく、(1)の2冷圧によるセミプロセ
ス材に比べ見劣りのする鉄損を改善することが課題とな
る。
Of these, demand has recently increased rapidly for (2) full-process annealed materials, which are advantageous in terms of magnetic flux density, in addition to conventional (1) semi-processed materials from the viewpoint of downsizing and increasing efficiency of equipment. . In the case of such a full process annealed material, the challenge is to improve the iron loss, which is inferior to the semi-processed material by two cold pressures (1), without deteriorating the magnetic flux density.

従来、フルプロセス焼鈍材の鉄損或いは磁束密度改善に
対し、以下のような技術が開示されている。
Conventionally, the following techniques have been disclosed for improving iron loss or magnetic flux density of full process annealed materials.

まず、製造プロセスを考慮したものには、以下のような
技術がある。
First, there are the following technologies that take manufacturing processes into consideration.

(a)特開昭57−35628号: 熱延板の短時間焼鈍を行う技術 (b)特開昭58−136718号: 超高温巻取による自己焼鈍により上 記熱延板の短時間焼鈍を代替する技 術 (c)特開昭61−15920号: Ar3変態点以上で仕上圧延した熱延 板を水冷して組織の微細化を図り、 さらにこれを冷圧後1回復焼鈍程度 の低温で焼鈍することで組織を微細 なままとし、これにより歪取焼鈍時 の粒成長性を向上させる技術 また、成分条件を考慮したものには、以下のような技術
がある。すなわち、これらは成分を考慮して歪取焼鈍時
の粒成長性を改善することで、歪取焼鈍後の粒径を大き
くし、鉄損を低下させる技術である。
(a) JP-A-57-35628: Technology for short-time annealing of hot-rolled sheets (b) JP-A-58-136718: Substitution of short-time annealing of hot-rolled sheets by self-annealing using ultra-high temperature coiling Technology (c) JP-A No. 61-15920: A hot-rolled sheet finish-rolled above the Ar3 transformation point is water-cooled to refine the structure, and then annealed at a low temperature of about 1 recovery annealing after cold rolling. There are also techniques for keeping the structure fine and thereby improving grain growth during strain relief annealing, as well as techniques that take component conditions into consideration. That is, these are techniques for increasing the grain size after strain relief annealing and reducing iron loss by improving grain growth during strain relief annealing in consideration of the components.

(i)粒成長性を劣化させる微細AINの析出防止に関
するもの (d)特公昭59−20731号; Al≦0.1%鋼においてBを添加し、Nを粒成長に対
する悪影響の少ない BNとして固定する技術 (e)特公昭62−49321号: 同  上 (f)特公昭62−21849号: 同  上 (g)特公昭58−55210号: Al≦0.001%とし、実質上AINフリーとする技
術 (蓋)粒成長性を劣化させる微細MnSの析出防止に関
するもの (h)極低S化技術 (i)特開昭63−103023号: Al≦0.002%鋼においてCaを添加し、Sを粒成
長に対する悪影響の少 ないCaSとして固定する技術 〔発明が解決しようとする課題〕 以上のように、従来フルプロセス焼鈍材の特性改善に関
して種々の技術が提案されているが、これらはいずれも
次のような問題点を有している。
(i) Regarding prevention of precipitation of fine AIN that deteriorates grain growth (d) Japanese Patent Publication No. 59-20731; Adding B to Al≦0.1% steel and fixing N as BN that has less negative effect on grain growth (e) Japanese Patent Publication No. 62-49321: Same as above (f) Japanese Patent Publication No. 62-21849: Same as above (g) Japanese Patent Publication No. 58-55210: Al≦0.001%, making it virtually AIN-free Technology (lid) Regarding prevention of precipitation of fine MnS that deteriorates grain growth (h) Ultra-low S reduction technology (i) JP-A-63-103023: Adding Ca to S in Al≦0.002% steel [Problem to be solved by the invention] As described above, various techniques have been proposed for improving the properties of full process annealed materials, but all of these techniques are as follows: It has the following problems.

まず、製造プロセスを考慮したもののうち、(a)は熱
延板焼鈍付加によるコスト上昇が、また、(b)は超高
温巻取によるスケール増大とそれに伴う酸洗性の低下、
或いは粒界酸化に起因した表面性状の著しい劣化が問題
となる。また、(C)では、熱延板の水冷による形状不
良に加え、低温焼鈍に起因した著しい硬質化が打ち抜き
・剪断加工時に問題を起こす。このように製造プロセス
の改変によるものは未だ幾多の課題を残しており、十分
満足のいくものとは言い離い。
First, among the manufacturing processes taken into consideration, (a) is the increase in cost due to the addition of hot-rolled sheet annealing, and (b) is the increase in scale due to ultra-high temperature coiling and the resulting decrease in pickling properties.
Alternatively, significant deterioration of surface properties due to grain boundary oxidation becomes a problem. In addition, in (C), in addition to poor shape of the hot-rolled sheet due to water cooling, significant hardening caused by low-temperature annealing causes problems during punching and shearing. As described above, there are still many problems to be solved by modifying the manufacturing process, and it is far from completely satisfactory.

また、成分を考慮したものでは、(d)〜(i)のいず
れもがA1≦0.1%(実施例等からして実質上はAl
≦0.02%)の鋼についての技術であり、AI≧0.
1%を含む鋼については、その特性改善について有用な
技術は見い出されていない。もとより、A1≧0.1%
の鋼では、 AINが比較的粗大に析出するためAIN
に対する考慮は不要であるものの、 AIは固有抵抗を
大きく上昇させるため、低鉄損のフルプロセス焼鈍材を
製造する上で積極的に活用すべき元素であり、この意味
でAI≧0.1%鋼の特性改善が望まれるものである。
In addition, considering the components, all of (d) to (i) are A1≦0.1% (from the examples etc., it is substantially Al
≦0.02%), and AI≧0.
No useful technology has been found for improving the properties of steel containing 1%. Of course, A1≧0.1%
In steel, AIN precipitates relatively coarsely, so AIN
Although it is not necessary to consider AI, it is an element that should be actively used in manufacturing full process annealed materials with low core loss, as it greatly increases the specific resistance.In this sense, AI≧0.1% It is desirable to improve the properties of steel.

本発明はこのような事情に鑑み、AIを0.1%以上含
むフルプロセス焼鈍材、および該フルプロセス焼鈍材を
素材とする打ち抜き・剪断加ニー歪取焼鈍材の特性改善
、特に鉄損の改善をその目的とする。
In view of these circumstances, the present invention aims to improve the properties of full process annealed materials containing 0.1% or more of AI and punched/sheared knee strain relief annealed materials made from the full process annealed materials, especially reducing iron loss. Its purpose is to improve.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、A1≧0.1%のフルプロセス焼鈍材の
特性改善について鋭意研究を重ねた結果、AINおよび
MnSの析出制御に加えて、P量の適正化および歪取焼
鈍時の加熱速度の適正化が重要であることを新たに見出
し、本発明を完成させたものである。
As a result of extensive research into improving the properties of full-process annealed materials with A1≧0.1%, the present inventors found that, in addition to controlling the precipitation of AIN and MnS, the amount of P was optimized and heating during strain relief annealing was conducted. The present invention was completed based on the new discovery that optimizing the speed is important.

すなわち、本発明の構成は以下の通りである。That is, the configuration of the present invention is as follows.

(1)打ち抜き・剪断加工後、歪取焼鈍が施されるセミ
プロセス無方向性電磁鋼板の製造方法において1重量%
で、C≦0.0050%、0.06%≦Si≦1.0%
、0.5%≦Mn≦1.5%、0.01%≦P≦0.0
6%、S<0.010%、0.1%≦Al≦0.5%、
N≦0.0050%、残部Feおよび不可避的不純物か
らなる鋼を、加熱温度1170℃以下、仕上温度Ar3
変態点以下、巻取温度600℃以上720℃以下で熱間
圧延し、次いで酸洗および冷間圧延した後、625℃以
上800℃以下の温度にて焼鈍し、必要に応じて絶縁皮
膜等の塗布・焼付けを施すことを特徴とする無方向性電
磁鋼板の製造方法。
(1) 1% by weight in the manufacturing method of semi-processed non-oriented electrical steel sheet, which is subjected to strain relief annealing after punching and shearing.
So, C≦0.0050%, 0.06%≦Si≦1.0%
, 0.5%≦Mn≦1.5%, 0.01%≦P≦0.0
6%, S<0.010%, 0.1%≦Al≦0.5%,
Steel consisting of N≦0.0050%, balance Fe and unavoidable impurities was heated at a heating temperature of 1170°C or less and a finishing temperature of Ar3.
Below the transformation point, hot-rolled at a coiling temperature of 600°C or higher and 720°C or lower, then pickled and cold rolled, then annealed at a temperature of 625°C or higher and 800°C or lower to form an insulating film, etc. as necessary. A method for producing a non-oriented electrical steel sheet, characterized by applying coating and baking.

(2)重量%で、C≦0.0050%、0.06%≦S
i≦1゜0%、0.5%≦Mn≦1.5%、0.01%
≦P≦0.06%、S(0,010%、0.1%≦AI
≦0.5%、N≦0.0050%。
(2) In weight%, C≦0.0050%, 0.06%≦S
i≦1゜0%, 0.5%≦Mn≦1.5%, 0.01%
≦P≦0.06%, S(0,010%, 0.1%≦AI
≦0.5%, N≦0.0050%.

残部Feおよび不可避的不純物からなる鋼を、加熱温度
1170℃以下、仕上温度Ar、変態点以下1巻取温度
600℃以上720℃以下で熱間圧延し、次いで酸洗お
よび冷間圧延した後、625℃以上800℃以下の温度
にて焼鈍し、必要に応じて絶縁皮膜等の塗布・焼付けを
施してセミプロセス鋼板となし、該鋼板を打ち抜き・剪
断加工後、350〜700℃の温度域における加熱速度
HR(’C/5in)が、 HR≧60[P] + 1.4 但し、P:鋼板のP含有量(すt%) を満足するようにして歪取焼鈍することを特徴とする無
方向性電磁鋼板の製造方法。
After hot rolling the steel consisting of the remainder Fe and unavoidable impurities at a heating temperature of 1170° C. or lower, a finishing temperature of Ar, and a coiling temperature of 600° C. or higher and 720° C. or lower below the transformation point, then pickling and cold rolling, Annealed at a temperature of 625°C or more and 800°C or less, coated with an insulating film or baked as necessary to make a semi-processed steel plate, and after punching and shearing the steel plate, The strain relief annealing is performed such that the heating rate HR ('C/5in) satisfies the following: HR≧60[P] + 1.4, where P: P content of the steel sheet (st%) A method for manufacturing non-oriented electrical steel sheets.

〔作  用〕[For production]

以下1本発明の詳細をその限定理由とともに説明する。 The details of the present invention will be explained below along with the reasons for its limitations.

まず、本発明における成分組成の限定理由は以下の通り
である。
First, the reason for limiting the component composition in the present invention is as follows.

(1) P量 Pは通常、フルプロセス材およびセミプロセス材におい
て、磁気特性を劣化させることなく硬度上昇と打ち抜き
性の向上をもたらす元素として広く添加されている。し
たがって、本発明が対象とするようなフルプロセス焼鈍
材においても、従来硬度上昇と打ち抜き性の向上を必要
とする場合には、特別な配慮なく比較的多量(0,1%
前後)に添加されるのが通常である。このように従来P
の功罪については、その硬度上昇・打ち抜き性向上効果
が明らかにされているだけであり、これ以外のPの功罪
に着目した技術は現状では皆無であるといってよい、し
かし、本発明者らがフルプロセス焼鈍材におけるPの功
罪について改めて詳細に検討したところによれば。
(1) P amount P is usually widely added to fully processed materials and semi-processed materials as an element that increases hardness and improves punchability without deteriorating magnetic properties. Therefore, even in the case of a full process annealed material, which is the object of the present invention, if it is necessary to increase hardness and improve punchability, a relatively large amount (0.1%
It is usually added before and after). In this way, conventional P
Regarding the merits and demerits of P, only its hardness increase and punchability improvement effects have been clarified, and it can be said that there are currently no other technologies that focus on the merits and demerits of P. However, the present inventors According to a detailed review of the merits and demerits of P in full process annealed materials.

Pは確かに硬度上昇と打ち抜き性の向上をもたらすもの
の、磁気特性、特に鉄損に関してはP量に適正値があり
、Pをこの適正量に制御した場合にのみ、固有抵抗の増
大を通じて鉄損の低下が得られること、そしてこの適正
量を超えてPを添加した場合には(従来、Pを添加する
場合はいずれもこの範囲)、歪取焼鈍時の粒成長性を阻
害し、却って鉄損の上昇をもたらすことが判明した。こ
のため本発明では、上記Pの適正範囲をその要件とした
Although P certainly increases hardness and improves punchability, there is an appropriate value for the amount of P when it comes to magnetic properties, especially iron loss, and only when P is controlled to this appropriate amount can iron loss be improved through an increase in specific resistance. If P is added in excess of this appropriate amount (conventionally, P is added within this range), it will inhibit grain growth during strain relief annealing, and on the contrary, it will cause the iron to deteriorate. It was found that this resulted in an increase in losses. Therefore, in the present invention, the above-mentioned appropriate range of P is a requirement.

また、さらに検討を進めた結果、鉄損に対する上記Pの
適正量の存在はフルプロセス焼鈍材に特有のものであり
、フルプロセス材や2回冷圧によるセミプロセス材の場
合にはかかる適正量の存在は認められなかった。すなわ
ち、よく知られているように鉄損は粒径に依存するとこ
ろが大きいが、フルプロセス材では冷圧−焼鈍時に比較
的粒径の小さいところで組織形成をさせるため、粒成長
の駆動力が高く、且つ焼鈍条件(特に焼鈍温度)が粒径
に対して圧倒的な影響を及ぼすため、Pの影響が顕在化
しないものと考えられる。また、2回冷圧によるセミプ
ロセス材の場合も、粒成長は調圧歪をその駆動力とする
ため、Pの影響は顕在化しない。これに対し、フルプロ
セス焼鈍材の場合は、冷圧−焼鈍により一旦ある粒径に
粒成長させたものを、再び需要家で歪取焼鈍してさらに
粗大に粒成長させるため、歪取焼鈍時は粒成長の駆動力
が粒界のエネルギー差だけであるに加えて、その駆動力
そのものも小さく、粒成長性に対するPの影響が顕在化
するものと考えられる。なお、ここでいうPの粒成長性
に対する影響のメカニズムは必ずしも明確ではないが、
Pは粒界に偏析しやすい元素であり、したがって5ol
ute −dragにより粒成長時の粒界の移動度(n
obility)を低下させるのがその本質ではないか
と考えられる。
Furthermore, as a result of further investigation, we found that the presence of an appropriate amount of P for iron loss is unique to fully process annealed materials, and that such an appropriate amount is required for fully process materials and semi-processed materials subjected to double cold pressing. The existence of was not recognized. In other words, as is well known, iron loss largely depends on the grain size, but in full-process materials, the structure is formed at relatively small grain sizes during cold pressing and annealing, so the driving force for grain growth is high. , and the annealing conditions (particularly the annealing temperature) have an overwhelming influence on the grain size, so it is thought that the influence of P does not become apparent. Also, in the case of semi-processed materials subjected to double cold pressing, the influence of P does not become apparent because the grain growth uses pressure regulating strain as its driving force. On the other hand, in the case of full process annealed materials, the grains are once grown to a certain grain size by cold pressure annealing, and then strain relief annealing is performed again by the customer to cause the grains to grow even coarser. In addition to the fact that the driving force for grain growth is only the energy difference between grain boundaries, the driving force itself is small, and it is thought that the influence of P on grain growth becomes obvious. The mechanism of the effect of P on grain growth is not necessarily clear, but
P is an element that tends to segregate at grain boundaries, and therefore 5ol
Grain boundary mobility (n
It is thought that the essence of this is to reduce the ability of the user.

次に、試験例に基づいて上記Pの功罪を明らかにすると
ともに、適正なP量についてその限定範囲と理由につい
て説明する。
Next, the merits and demerits of the above-mentioned P will be clarified based on test examples, and the limiting range and reason for the appropriate amount of P will be explained.

C: 0.0028%、Si : 0.31%、Mn 
: 0.81%、S:0.003%、Al : 0.1
3%、N : 0.0019%と一定で、P量が0.0
02〜0.088%と種々変化した鋼(A群)、および
C: 0.0043%、Si : Q、80%、阿n:
1.31%、 s :  o、ooa%、 Al : 
 0.38%、 N:0.0035%と一定で、P量が
0.003〜0.091%と種々変化した鋼(B群)を
用い、当該スラブを1150℃に加熱後、仕上温度82
0℃、巻取温度670℃の条件で熱間圧延し、酸洗後0
.5閣の仕上厚に冷間圧延したものを700℃で焼鈍し
、引き続き需要家での歪取焼鈍相当の750℃x2hr
(加熱速度7℃/win)の焼鈍に供した。第1図はこ
のようにして得られた供試材のP量と鉄損(WIS/S
。)および磁束密度(BS。)との関係を示したもので
ある。
C: 0.0028%, Si: 0.31%, Mn
: 0.81%, S: 0.003%, Al: 0.1
3%, N: constant at 0.0019%, P amount 0.0
Steel with various changes from 02 to 0.088% (A group), and C: 0.0043%, Si: Q, 80%, An:
1.31%, s: o, ooa%, Al:
Using steel (Group B) with a constant P content of 0.38%, N: 0.0035%, and varying P content from 0.003 to 0.091%, the slab was heated to 1150°C and then finished at a finishing temperature of 82%.
Hot rolled under the conditions of 0℃ and coiling temperature of 670℃, and after pickling
.. Cold rolled to a finish thickness of 5 mm, annealed at 700°C, and then continued at 750°C x 2 hours, which is equivalent to strain relief annealing at the customer.
It was subjected to annealing at a heating rate of 7° C./win. Figure 1 shows the amount of P and iron loss (WIS/S) of the sample material obtained in this way.
. ) and magnetic flux density (BS.).

同図から明らかなように、A群、B群のいずれにおいて
もP量が0.01〜0.06%の範囲でのみ、A群では
4.4W/kg前後の、またB群では3.6W/kg前
後の良好な鉄損値が得られている。これに対し、P量が
0.01%未満では固有抵抗増加による鉄損の改善式が
小さいため、またP量が0.06%超では固有抵抗増加
による鉄損の改善式を粒成長性の劣化が上回るため、と
もに鉄損はP : 0.01〜0.06%の範囲に比べ
てA群、B群とも0.6W/kg以上高くなっている。
As is clear from the figure, in both groups A and B, the amount of P is only in the range of 0.01 to 0.06%, in group A it is around 4.4 W/kg, and in group B it is 3.0 W/kg. A good iron loss value of around 6 W/kg was obtained. On the other hand, when the P content is less than 0.01%, the formula for improving iron loss due to increased resistivity is small, and when the P content exceeds 0.06%, the formula for improving iron loss due to increased resistivity is Since the deterioration exceeds that, the iron loss is higher by 0.6 W/kg or more in both groups A and B than in the range of P: 0.01 to 0.06%.

このようにP量には適正範囲があり、これはA群、B群
にかかわりなく、すなわち鋼種にかかわりなく 0.0
1〜0.06%であるため、本発明ではP量を0.01
〜0.06%と規定した。また、B、。についても、P
量が0.06%以下ではP量増加に伴うB5oの低下が
少なく、Pを0.01−0.06%とすることで良好な
り、。が得られることも判る。
In this way, there is an appropriate range for the amount of P, and this is 0.0 regardless of group A or group B, that is, regardless of the steel type.
Since it is 1 to 0.06%, in the present invention, the amount of P is 0.01%.
It was defined as ~0.06%. Also, B. Regarding P
When the amount is 0.06% or less, the decrease in B5o due to an increase in the amount of P is small, and when the amount of P is 0.01-0.06%, it is good. It can also be seen that it can be obtained.

(2)その他の成分 以上のように、P量を0.01〜0.06%の範囲に適
正化することによって、Alを0.1%以上含むフルプ
ロセス焼鈍材の鉄損は大幅に改善される。しかし、P量
のみを適正化すれば、他の成分はいかなる範囲でも許容
されるというものではなく、自ずから適正量、適正範囲
があることは言うまでもない。以下、他の成分の範囲お
よび限定理由を説明する。
(2) As mentioned above for other components, by optimizing the amount of P within the range of 0.01 to 0.06%, the iron loss of full process annealed materials containing 0.1% or more of Al can be significantly improved. be done. However, it goes without saying that optimizing only the amount of P does not mean that other components are allowed within any range, and that there are naturally appropriate amounts and ranges. The ranges of other components and the reasons for their limitations will be explained below.

C: 0.0050%超では磁気特性が劣化し、また磁
気時効上の問題もあるため、上限が 0.0050%の極低炭素鋼とする。
C: If it exceeds 0.0050%, the magnetic properties will deteriorate and there will be problems with magnetic aging, so the upper limit is 0.0050%, which is an ultra-low carbon steel.

Sj:固有抵抗を高め鉄損を低下させる効果を持つが、
この効果を十分に得るには 0.06%以上の添加が必要である。一方、1.0%を
超えて添加した場合には磁束密度が低下するとともに、
コスト上昇も招くため、上限は1.0%とする。
Sj: Has the effect of increasing specific resistance and reducing iron loss,
To fully obtain this effect, it is necessary to add 0.06% or more. On the other hand, when added in excess of 1.0%, the magnetic flux density decreases and
The upper limit is set at 1.0% because it also increases costs.

Mn=磁束密度をあまり劣化させることなく鉄損を改善
できる元素であるが、この効果を十分に発揮させるため
には0.5%以上の添加が必要である。一方、1.5%
を超えてMnを添加しても、上記効果が飽和し、却って
コストの上昇を招く。以上の理由から、Mnは0.5〜
1.5%とする。
Mn=An element that can improve iron loss without significantly deteriorating magnetic flux density, but in order to fully exhibit this effect, it is necessary to add 0.5% or more. On the other hand, 1.5%
Even if Mn is added in an amount exceeding this amount, the above effect will be saturated and the cost will increase. For the above reasons, Mn is 0.5~
It shall be 1.5%.

S:0.010%以上では粒成長性が劣化し、鉄損の上
昇を招くため、0.010%未満とする必要がある。
S: If it is 0.010% or more, grain growth deteriorates and iron loss increases, so it needs to be less than 0.010%.

Al : Sj と同様に鉄損を低下させる元素であり
積極的に添加すべきものであるが、 0.1%未満の場合、微細AINを形成し粒成長性を損
なう。これを防止し良好な鉄損値を得るために、下限は
0.1%とする。
Al: Like Sj, it is an element that reduces iron loss and should be actively added, but if it is less than 0.1%, it forms fine AIN and impairs grain growth. In order to prevent this and obtain a good iron loss value, the lower limit is set to 0.1%.

但し、0.5%を超えて添加すると磁束密度が低下し、
また徒らなコスト上昇を招くため上限は0.5%とする
However, if it is added in excess of 0.5%, the magnetic flux density will decrease,
Also, to avoid unnecessary cost increases, the upper limit is set at 0.5%.

N :0.0050%を超えると磁気特性が劣化するた
め、0.0050%を上限とする。
N: If it exceeds 0.0050%, the magnetic properties will deteriorate, so the upper limit is set at 0.0050%.

次に、処理条件について説明する。Next, processing conditions will be explained.

上記のような成分を前提とし1本発明ではさらに以下に
述べるように処理条件を特定することをその第三の要件
とする。成分を適正化したとしても、これが顕著な効果
を発揮し得るのはある特定の処理条件を経た場合だけで
あり、この条件を外れた場合には、成分適正化の効果が
大幅に減少するからである。
Based on the above-mentioned components, the third requirement of the present invention is to specify the processing conditions as described below. Even if the ingredients are optimized, this will only have a noticeable effect under certain specific processing conditions, and if these conditions are exceeded, the effect of ingredient optimization will be greatly reduced. It is.

(1)熱延加熱温度 熱延加熱温度が徒らに高いと、スラブ段階で一旦粗大に
析出したAIN、 MnSが再溶解し、以後微細に再析
出するため粒成長性が劣化する。
(1) Hot-rolling heating temperature If the hot-rolling heating temperature is unnecessarily high, AIN and MnS, which have once precipitated coarsely at the slab stage, will be re-dissolved and then finely re-precipitated, resulting in deterioration of grain growth.

その場合、AINに関しては、本発明鋼はAI≧0.1
%であるため、再析出時にAINの粗大化が起り易く、
加熱温度の上限は比較的高温になると思われるが、Mn
Sに関してはこのような粗大化は期待できない。したが
って、加熱温度の上限は主としてMnSの再溶解・再析
出の面から決定されることになる。かかる考察の下で、
本発明者らは以下に示す実験・検討を行い、熱延加熱温
度の上限を決定した。
In that case, regarding AIN, the steel of the present invention has an AI≧0.1
%, coarsening of AIN tends to occur during reprecipitation,
The upper limit of the heating temperature is thought to be relatively high, but Mn
Regarding S, such coarsening cannot be expected. Therefore, the upper limit of the heating temperature is determined mainly from the viewpoint of redissolution and reprecipitation of MnS. Under such consideration,
The present inventors conducted the following experiments and studies and determined the upper limit of the hot rolling heating temperature.

C: 0.0028%、Si : 0.31%、Mn:
0.81%、P:0゜057%、 S : 0.003
%、Al : 0.13%、N : 0.0019%か
らなる鋼(鋼C1成分はいずれも本発明範囲)およびC
: 0.0043%、Si : 0.80%、Mn:1
.31%。
C: 0.0028%, Si: 0.31%, Mn:
0.81%, P: 0°057%, S: 0.003
%, Al: 0.13%, N: 0.0019% (both steel C1 components are within the scope of the present invention) and C
: 0.0043%, Si: 0.80%, Mn: 1
.. 31%.

P : 0.015%、S : 0.008%、Al 
: 0.38%、N : 0.0035%からなる鋼(
鋼D、成分はいずれも本発明範囲)を用い、当該スラブ
を種々の温度に加熱後、仕上温度820℃、巻取温度7
00℃の条件で熱間圧延し、酸洗後0.5膿の仕上厚に
冷間圧延したものを、700℃で焼鈍し、引き続き需要
家での歪取焼鈍相当の750″CX2hr(加熱速度7
℃/5in)の焼鈍に供した。
P: 0.015%, S: 0.008%, Al
: 0.38%, N: 0.0035% (
After heating the slab to various temperatures, the finishing temperature was 820°C and the winding temperature was 7.
The product was hot rolled at 00℃, pickled and then cold rolled to a finish thickness of 0.5℃, annealed at 700℃, and then heated at 750''CX2hr (heating rate) equivalent to strain relief annealing at the customer. 7
℃/5in).

第2図は、このようして得られた供試材の鉄損(W、、
、、。)を熱延加熱温度で整理したものである。同図か
ら、鋼C5鋼りとも、すなわち鋼種にかかわらず、加熱
温度が1170℃以下で、鋼CではW、、 / 5.<
4.5W/kg、鋼りではW。
Figure 2 shows the iron loss (W,...
,,. ) are arranged by hot rolling heating temperature. From the same figure, it can be seen that steel C5 steel, that is, regardless of the steel type, the heating temperature is 1170°C or less, and steel C is W. / 5. <
4.5W/kg, W for steel.

7sI、〈3.6W/kg前後の良好な鉄損値が得られ
ることが判る。これに対し、加熱温度が1170°Cを
超える場合は、主としてMnSの再溶解・微細再析出に
起因した粒成長劣化により、成分が本発明範囲にある錆
C1鋼りであっても、1170℃以下加熱の場合に比べ
てWIS/S。が0.5W/kg以上高くなっている。
7sI, it can be seen that a good iron loss value of around 3.6 W/kg can be obtained. On the other hand, if the heating temperature exceeds 1170°C, grain growth deterioration mainly due to remelting and fine reprecipitation of MnS will cause rusted C1 steel whose composition is within the range of the present invention to exceed 1170°C. WIS/S compared to the case of heating. is higher than 0.5 W/kg.

なお、磁束密度(B、。)に関しては、上記検討範囲に
おいては鋼Cで1゜75 T前後、鋼りで1.72 T
前後とほぼ一定となり、熱延加熱温度の影響は小さかっ
た。
Regarding the magnetic flux density (B, .), in the above study range, it is around 1°75 T for steel C and 1.72 T for steel.
It was almost constant between before and after, and the influence of hot rolling heating temperature was small.

以上の結果に基づき、本発明では熱間圧延における加熱
温度を1170℃以下と規定する。
Based on the above results, the present invention specifies the heating temperature in hot rolling to be 1170° C. or lower.

(2)熱延仕上温度 Ar、変態点以上で熱延を終了した場合、磁気特性、特
に磁束密度が大幅に低下するため、仕上温度はArc変
態点以下とする。
(2) Hot rolling finishing temperature Ar: If hot rolling is finished at a temperature above the transformation point, the magnetic properties, particularly the magnetic flux density, will be significantly reduced, so the finishing temperature is set below the Arc transformation point.

(3)熱延巻取温度 第2図で用いた鋼Cおよび鋼りを用い、当該スラブを1
140℃に加熱後、仕上温度を830℃と一定にし1巻
取温度を種々変えて熱間圧延したものを、酸洗後0.5
■厚に冷間圧延し、次いで700℃で焼鈍し、引き続き
需要家での歪取焼鈍相当の750℃X2hr(加熱速度
7℃/win)の焼鈍に供した。第3図はこのようにし
て得られた供試材の鉄損(W工、7.。)、磁束密度(
B、。)および表面粗さRaを熱延巻取温度で整理した
ものである。
(3) Hot rolling coiling temperature Using steel C and steel used in Figure 2, the slab was
After being heated to 140°C, the finishing temperature was kept constant at 830°C and the winding temperature was varied and hot rolled.
(2) It was cold rolled to a thick thickness, then annealed at 700°C, and then annealed at 750°C for 2 hours (heating rate 7°C/win), which is equivalent to strain relief annealing at the customer. Figure 3 shows the iron loss (W process, 7..) and magnetic flux density (
B. ) and surface roughness Ra are arranged according to the hot rolling coiling temperature.

同図から、鋼C1鋼りとも、すなわち鋼種にかかわりな
く、600〜720℃の巻取温度で良好な磁気特性(鋼
C: Wx−y −o” 4−5W/kg、 B s。
From the same figure, it can be seen that steel C1 has good magnetic properties (Steel C: Wx-y-o" 4-5W/kg, Bs.

! 1.75 T、鋼D : Wls y 、。z3.
6W/kg 、 B −8! 1.72 T ”)と表
面性状 (Ra<0.4μm)が得られることがわかる
。これに対し、本発明成分条件を満足した鋼C1鋼りで
あっても、巻取温度が600℃未満の場合は、熱延板の
再結晶の進展、粗粒化とAIN、 MnSの粗大化が不
十分となり、鉄損、磁束密度とも大幅に劣化している。
! 1.75 T, Steel D: Wlsy,. z3.
6W/kg, B-8! 1.72 T”) and surface texture (Ra<0.4μm).On the other hand, even with steel C1 that satisfies the compositional conditions of the present invention, the coiling temperature is less than 600℃. In the case of , the progress of recrystallization of the hot-rolled sheet, the coarsening of grains, and the coarsening of AIN and MnS are insufficient, and both iron loss and magnetic flux density are significantly deteriorated.

また、逆に巻取温度が720℃を超える場合には、磁気
特性上は問題がないものの、巻取時に難酸洗性の内部酸
化層が発達し、粒界酸化も著しく、これが酸洗時粒界侵
触を起こし、これを起点に冷圧時微少クラックが多発し
、Ra)0.7μmと表面性状の大幅な劣化をきたす。
On the other hand, if the winding temperature exceeds 720°C, although there is no problem with magnetic properties, an internal oxidation layer that is difficult to pickle will develop during winding, and grain boundary oxidation will be significant, and this will occur during pickling. Grain boundary invasion occurs, and this causes frequent microcracks during cold pressing, resulting in significant deterioration of the surface quality to Ra) 0.7 μm.

以上の結果から、本発明では熱間圧延における巻取温度
を600℃以上720℃以下と規定する。
From the above results, in the present invention, the coiling temperature in hot rolling is defined as 600°C or more and 720°C or less.

(4)酸洗および冷間圧延 特に規定する必要はなく、常法により行うことができる
(4) Pickling and cold rolling There is no need to specify anything in particular, and they can be carried out by conventional methods.

(5)冷圧後の焼鈍温度 この焼鈍温度が800℃を超えると粒径が粗大となり、
磁気特性上好ましくない(111)粒が発達し、磁束密
度が低下する。また軟質化も著しく、コイルの巻きぐせ
に起因して、打ち抜き時或いは打ち抜き品の積層・かし
め時に不良品を生じ易くなるため、上限は800℃とす
る。一方。
(5) Annealing temperature after cold pressing When this annealing temperature exceeds 800°C, the grain size becomes coarse.
(111) grains, which are unfavorable in terms of magnetic properties, develop and the magnetic flux density decreases. The upper limit is set at 800° C. since the softening is also significant, and due to the curling of the coil, defective products are likely to be produced during punching or when stacking and caulking the punched products. on the other hand.

需要家での歪取焼鈍後の鉄損は冷圧後の本焼鈍温度にほ
とんど依存しないため、この意味からは焼鈍温度の下限
はないが、625℃を下回る低温焼鈍を行った場合には
、硬質化が著しく打ち抜き性の劣化を招く。すなわち、
著しい硬質材を打ち抜くため型の損耗が激しく、連続打
ち抜き時のかえり高さの増加が加速される。このため焼
鈍温度の下限は625℃とする必要がある。
The iron loss after strain relief annealing at the customer's end hardly depends on the main annealing temperature after cold pressing, so from this point of view there is no lower limit to the annealing temperature, but if low temperature annealing below 625°C is performed, Hardening significantly leads to deterioration of punching properties. That is,
Since extremely hard materials are punched, the die is subject to severe wear and tear, and the increase in burr height during continuous punching is accelerated. Therefore, the lower limit of the annealing temperature needs to be 625°C.

(6)打ち抜き・剪断加工後の焼鈍条件鋼板は上述した
焼鈍の後、必要に応じて絶縁皮膜等の塗布、焼付が施さ
れてフルプロセス焼鈍材としての最終製品となり、その
後、打ち抜き・剪断加工され、さらに歪取焼鈍が施され
る。
(6) Annealing conditions after punching and shearing After the above-mentioned annealing, the steel plate is coated with an insulating film and baked as necessary to become a final product as a full process annealed material, and then punched and sheared. Then, strain relief annealing is performed.

この打ち抜き・剪断加工および歪取焼鈍は、通常需要家
においてなされる。
This punching/shearing process and stress relief annealing are normally performed at the customer.

ここで、上述したような条件で製造されたフルプロセス
焼鈍材では、所望の磁気特性を得るためには歪取焼鈍時
の加熱速度が重要であり、鋼板の製造法を歪取焼鈍まで
含めて考えた場合、歪取焼鈍時の加熱速度を規定する必
要がある。
For full-process annealed materials manufactured under the conditions described above, the heating rate during strain relief annealing is important in order to obtain the desired magnetic properties, and the manufacturing method of the steel sheet, including strain relief annealing, is important. Considering this, it is necessary to specify the heating rate during strain relief annealing.

これは、前述したように歪取焼鈍時、Pの粒界偏析に起
因した5olute −dragにより粒界の移動度が
低下し、粒成長性が劣化することから、本発明ではPの
低減化をその特徴としているが、このようにP量を低下
したとしても、歪取焼鈍時の加熱速度が不適切に遅い場
合には、粒界移動とPの粒界偏析が競合するか、或いは
後者が勝り1粒界はP偏析を起こし、その後粒界はこの
偏析したPをsolute−drag シながら移動せ
ざるを得ず、この結果、粒界移動度の低下、すなわち粒
成長性の劣化をきたすからである。したがって、歪取焼
鈍時の加熱速度に関しては偏析のし易さ、すなわちP量
に応じた下限値が存在することになる。また、ここで問
題となるのはPの粒界偏析であるため、加熱速度の下限
は粒界偏析の活発な350〜700℃の範囲で考えれば
よいことになる。
This is because, as mentioned above, during strain relief annealing, grain boundary mobility decreases due to 5olute-drag caused by grain boundary segregation of P, and grain growth deteriorates. However, even if the amount of P is reduced in this way, if the heating rate during strain relief annealing is inappropriately slow, grain boundary movement and grain boundary segregation of P may compete, or the latter may Advantage 1: Grain boundaries cause P segregation, and then the grain boundaries have no choice but to move the segregated P as a solute-drag, resulting in a decrease in grain boundary mobility, that is, a deterioration in grain growth. It is. Therefore, regarding the heating rate during strain relief annealing, there is a lower limit value depending on the ease of segregation, that is, the amount of P. Moreover, since the problem here is grain boundary segregation of P, the lower limit of the heating rate should be considered in the range of 350 to 700° C. where grain boundary segregation is active.

以下、試験例に基づき、この加熱速度の下限とその限定
理由について説明する。
Hereinafter, the lower limit of this heating rate and the reason for the limitation will be explained based on test examples.

前述した鋼A群、B群を用い、当該スラブを1130℃
に加熱後、仕上温度840℃、巻取温度700℃の条件
で熱間圧延し、酸洗後0.5 mmの仕上厚に冷間圧延
したものを、次いで700℃で焼鈍し、引き続き需要家
での歪取焼鈍相当の750℃X2hrの焼鈍を、350
〜700℃における加熱速度を種々変えて行った。第4
図はこのようにして得られた供試材の鉄損(W□515
0)をP量と350〜700℃における加熱速度HR(
℃/m1n)で整理したものである。 同図から、0.
01≦P≦0.06%を満たす本発明鋼にあっては、A
群、B群とも、すなわち鋼種にかかわりなく、加熱速度
HRの下限がHR= 60〔P〕 +1.4というP量
の関数となること、そして加熱速度がこれ以上の場合に
、A群ではW工、7.。<4.6W/kg、B群ではW
工s y so<3.7W/kgと良好な鉄損値が得ら
れることが判る。これに対し、たとえ0.01≦P≦0
.06%という本発明成分条件を満足する鋼であっても
、加熱速度が上記式で規定される下限を下回ると、Pの
粒界偏析に起因して歪取焼鈍時の粒成長性が劣化し、A
群、B群ともに鉄損は0,3W/kg以上高くなってし
まう。
Using the aforementioned steel groups A and B, the slab was heated to 1130°C.
After being heated to , hot rolled at a finishing temperature of 840°C and a coiling temperature of 700°C, pickled and cold rolled to a finishing thickness of 0.5 mm, then annealed at 700°C and subsequently sold to customers. Annealing at 750°C for 2 hours, which is equivalent to strain relief annealing at
The heating rate at ~700°C was varied. Fourth
The figure shows the iron loss (W□515) of the sample material obtained in this way.
0) as P amount and heating rate HR at 350 to 700°C (
℃/m1n). From the same figure, 0.
In the steel of the present invention satisfying 01≦P≦0.06%, A
In both groups and B, regardless of the steel type, the lower limit of the heating rate HR is HR = 60 [P] + 1.4, which is a function of the amount of P, and when the heating rate is higher than this, in group A, W Engineering, 7. . <4.6 W/kg, W in group B
It can be seen that a good iron loss value can be obtained, with an iron loss value of <3.7 W/kg. On the other hand, even if 0.01≦P≦0
.. Even if the steel satisfies the present invention composition condition of 0.6%, if the heating rate falls below the lower limit specified by the above formula, the grain growth during strain relief annealing will deteriorate due to grain boundary segregation of P. ,A
The iron loss in both group and B group increases by 0.3 W/kg or more.

また、P<0.01%またはP)0.06%と本発明範
囲を逸脱する鋼においては、いかなる加熱速度において
も良好な鉄損が得られないことも確認できる。なお、磁
束密度(B、。)に関しては、加熱速度の影響は小さか
った。
It can also be confirmed that in steels with P<0.01% or P)0.06%, which is outside the range of the present invention, good iron loss cannot be obtained at any heating rate. Note that the influence of the heating rate on the magnetic flux density (B, .) was small.

以上の結果から、本発明では歪取焼鈍時の加熱速度HR
(’C/m1n)を、HR≧60[P量 + 1.4と
規定する。一方、上限については磁気特性の面からは特
に規定する必要はないが、徒らに加熱速度を大きくした
場合には、温度分布の不均一や、これによる鋼板の変形
が生じる。
From the above results, in the present invention, the heating rate HR during strain relief annealing is
('C/m1n) is defined as HR≧60 [P amount + 1.4. On the other hand, there is no need to specify the upper limit from the viewpoint of magnetic properties, but if the heating rate is increased unnecessarily, the temperature distribution becomes non-uniform and the steel sheet is thereby deformed.

したがって加熱速度の上限は、需要家毎に歪取焼鈍炉の
仕様、焼鈍10ツトの量等を勘案して決定する必要があ
る。
Therefore, the upper limit of the heating rate needs to be determined for each customer by taking into account the specifications of the strain relief annealing furnace, the amount of annealing, etc.

歪取焼鈍温度、時間については、上記のように加熱速度
を適正化することにより、Pの粒界偏析を回避できるた
め、特段の配慮の必要はなく、常法通り720〜800
℃、1〜2hr程度の条件でよい。
Regarding strain relief annealing temperature and time, grain boundary segregation of P can be avoided by optimizing the heating rate as described above, so there is no need for special consideration, and the temperature and time are 720 to 800 as usual.
℃ for about 1 to 2 hours.

〔実施例〕〔Example〕

第1表に示す鋼成分のスラブを第2−a表〜第2−c表
に示す熱延条件で熱間圧延し、これを酸洗後仕上厚0.
5noに冷間圧延した後、引き続き同表に示す焼鈍温度
にて3 min焼鈍した。
A slab having the steel composition shown in Table 1 was hot rolled under the hot rolling conditions shown in Tables 2-a to 2-c, and after pickling, the finished thickness was 0.
After cold rolling to No. 5, it was annealed for 3 min at the annealing temperature shown in the same table.

このようにして得られた焼鈍板について、各頂点が0.
38の矩形の打ち抜き型(SKS3)にて、クリアラン
ス7%、速度200spm、打ち抜き油使用の条件で1
5万回の連続打ち抜き試験を行い、15万回打ち抜き時
のかえり高さを測定した。また、上記焼鈍板を需要家で
の歪取焼鈍相当の750℃X2hrの焼鈍に供した後、
磁気特性をJIS法に基づくエプスタイン試験にて評価
した。これらの測定の結果を第2−a表〜第2− c表
に併せて示す。
Regarding the annealed plate thus obtained, each vertex is 0.
1 with a 38 rectangular punching die (SKS3), a clearance of 7%, a speed of 200 spm, and the use of punching oil.
A continuous punching test was conducted for 50,000 times, and the burr height after 150,000 punches was measured. In addition, after subjecting the above annealed plate to annealing at 750°C for 2 hours, which is equivalent to strain relief annealing at the customer,
The magnetic properties were evaluated using the Epstein test based on the JIS method. The results of these measurements are also shown in Tables 2-a to 2-c.

なお、これらの実施例のうち、第2−a表は成分条件の
影響を、第2=b表は熱間圧延−焼鈍条件の影響を、ま
た第2−c表は歪取焼鈍時の加熱速度の影響をそれぞれ
調べたものである。
Of these examples, Table 2-a shows the effects of component conditions, Table 2-b shows the effects of hot rolling-annealing conditions, and Table 2-c shows the effects of heating during strain relief annealing. The influence of speed was investigated.

第2−a表〜第2− c表から明らかなように、本発明
法によるものは良好な磁気特性(鉄損:Wユ、7.。と
磁束密度:B5゜)と打ち抜き性(かえり高さ≦25μ
m)が得られている。これに対して、比較法(成分、製
造条件のいずれか一方が本発明範囲より外れるもの)で
は鉄損、磁束密度、打ち抜き性のいずれかが劣っている
(鉄損:W工、7.。は本発明法に比べて0.5W/k
g以上高く、磁束密度二B5oは本発明法に比べて0.
02 T以上低い)。また、比較法のうち焼鈍温度が本
発明条件の下限を下回っているものについては、磁気特
性は良好であるものの、抜き打ち試験でのかえり高さが
50μm以上にもなり、打ち抜き性が劣化していること
が判る。
As is clear from Tables 2-a to 2-c, the products produced by the method of the present invention have good magnetic properties (iron loss: W, 7.0 and magnetic flux density: B5°) and punchability (burr height). Sa≦25μ
m) has been obtained. On the other hand, the comparative method (one in which either the components or manufacturing conditions are outside the scope of the present invention) is inferior in core loss, magnetic flux density, or punching property (iron loss: W process, 7. is 0.5W/k compared to the method of the present invention.
g or higher, and the magnetic flux density 2B5o is 0.g higher than that of the method of the present invention.
02 T or more low). In addition, among the comparative methods, the annealing temperature is lower than the lower limit of the conditions of the present invention, although the magnetic properties are good, the burr height in the punching test is 50 μm or more, and the punching performance is deteriorated. I know that there is.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、特殊な合金元素の添加やプ
ロセスの付加等によるコスト上昇を招くことなく、簡便
に磁気特性および打ち抜き性に優れた無方向性電磁鋼板
のフルプロセス焼鈍材、およびこれを素材とした打ち抜
き・剪断加ニー歪取焼鈍材を製造することができる。
According to the present invention described above, a full process annealing material of a non-oriented electrical steel sheet that easily has excellent magnetic properties and punchability without causing a cost increase due to the addition of special alloying elements or addition of processes, and A punched, sheared, strain-relieving annealed material can be manufactured using this material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鉄損と磁束密度に対するP量の影響とその適
正範囲を示すグラフである。第2図は、鉄損に対する熱
延加熱温度の影響とその適正範囲を示すグラフである。 第3図は、鉄損。 磁束密度、表面粗さに対する熱延巻取温度の影響とその
適正範囲を示すグラフである。第4図は、鉄損に対する
歪取焼鈍時の加熱速度およびP量の影響とその適正範囲
を示すグラフである。 0.02 0.04 0.06 0.08 0.10 P量 (Wtolo> 竹 Aj ? 図 000 1100    1200   1300解延加熱温l
11(0C) 第 図 熱延を取温度(0C)
FIG. 1 is a graph showing the influence of the amount of P on iron loss and magnetic flux density and its appropriate range. FIG. 2 is a graph showing the influence of hot rolling heating temperature on iron loss and its appropriate range. Figure 3 shows iron loss. It is a graph showing the influence of hot rolling winding temperature on magnetic flux density and surface roughness and its appropriate range. FIG. 4 is a graph showing the influence of the heating rate and the amount of P during strain relief annealing on iron loss and its appropriate range. 0.02 0.04 0.06 0.08 0.10 P amount (Wtolo> Bamboo Aj ? Figure 000 1100 1200 1300 Melting heating temperature l
11 (0C) Diagram Temperature of hot rolling (0C)

Claims (2)

【特許請求の範囲】[Claims] (1)打ち抜き・剪断加工後、歪取焼鈍が施されるセミ
プロセス無方向性電磁鋼板の製造方法において、重量%
で、C≦0.0050%、0.06%≦Si≦1.0%
、0.5%≦Mn≦1.5%、0.01%≦P≦0.0
6%、S<0.010%、0.1%≦Al≦0.5%、
N≦0.0050%、残部Feおよび不可避的不純物か
らなる鋼を、加熱温度1170℃以下、仕上温度Ar_
3変態点以下、巻取温度600℃以上720℃以下で熱
間圧延し、次いで酸洗および冷間圧延した後、625℃
以上800℃以下の温度にて焼鈍し、必要に応じて絶縁
皮膜等の塗布・焼付けを施すことを特徴とする無方向性
電磁鋼板の製造方法。
(1) In a method for manufacturing semi-processed non-oriented electrical steel sheets in which strain relief annealing is performed after punching and shearing, weight%
So, C≦0.0050%, 0.06%≦Si≦1.0%
, 0.5%≦Mn≦1.5%, 0.01%≦P≦0.0
6%, S<0.010%, 0.1%≦Al≦0.5%,
Steel consisting of N≦0.0050%, balance Fe and unavoidable impurities is heated at a heating temperature of 1170°C or less and a finishing temperature Ar_
3 transformation point or lower, hot rolling at a coiling temperature of 600°C or higher and 720°C or lower, then pickling and cold rolling, then 625°C
A method for producing a non-oriented electrical steel sheet, which comprises annealing at a temperature of 800° C. or lower, and applying and baking an insulating film or the like as necessary.
(2)重量%で、C≦0.0050%、0.06%≦S
i≦1.0%、0.5%≦Mn≦1.5%、0.01%
≦P≦0.06%、S<0.010%、0.1%≦Al
≦0.5%、N≦0.0050%、残部Feおよび不可
避的不純物からなる鋼を、加熱温度1170℃以下、仕
上温度Ar_3変態点以下、巻取温度600℃以上72
0℃以下で熱間圧延し、次いで酸洗および冷間圧延した
後、625℃以上800℃以下の温度にて焼鈍し、必要
に応じて絶縁皮膜等の塗布・焼付けを施してセミプロセ
ス鋼板となし、該鋼板を打ち抜き・剪断加工後、350
〜700℃の温度域における加熱速度HR(℃/min
)が、 HR≧60〔P〕+1.4 但し、P:鋼板のP含有量(wt%) を満足するようにして歪取焼鈍することを特徴とする無
方向性電磁鋼板の製造方法。
(2) In weight%, C≦0.0050%, 0.06%≦S
i≦1.0%, 0.5%≦Mn≦1.5%, 0.01%
≦P≦0.06%, S<0.010%, 0.1%≦Al
Steel consisting of ≦0.5%, N≦0.0050%, balance Fe and unavoidable impurities is heated at a heating temperature of 1170°C or lower, a finishing temperature of Ar_3 or lower than the transformation point, and a coiling temperature of 600°C or higher72
After hot rolling at 0°C or lower, then pickling and cold rolling, annealing at a temperature of 625°C or higher and 800°C or lower, and applying and baking an insulating film as necessary to produce a semi-processed steel sheet. None, after punching and shearing the steel plate, 350
Heating rate HR in the temperature range of ~700°C (°C/min
), HR≧60[P]+1.4, where P: P content (wt%) of the steel sheet.
JP2022066A 1990-02-02 1990-02-02 Non-oriented electrical steel sheet manufacturing method Expired - Fee Related JPH0819465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022066A JPH0819465B2 (en) 1990-02-02 1990-02-02 Non-oriented electrical steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022066A JPH0819465B2 (en) 1990-02-02 1990-02-02 Non-oriented electrical steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH03229820A true JPH03229820A (en) 1991-10-11
JPH0819465B2 JPH0819465B2 (en) 1996-02-28

Family

ID=12072524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022066A Expired - Fee Related JPH0819465B2 (en) 1990-02-02 1990-02-02 Non-oriented electrical steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JPH0819465B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530069B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100544738B1 (en) * 2001-12-20 2006-01-24 주식회사 포스코 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
KR100940714B1 (en) * 2002-12-23 2010-02-08 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
WO2015025759A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
JP2018003049A (en) * 2016-06-28 2018-01-11 新日鐵住金株式会社 Electrical steel sheet excellent in space factor and manufacturing method therefor
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530069B1 (en) * 2001-12-20 2005-11-22 주식회사 포스코 Manufacturing method for non-oriented electrical steel sheet having low core loss and high magnetic induction after stress relief annealing
KR100544738B1 (en) * 2001-12-20 2006-01-24 주식회사 포스코 Manufacturing Method for Non-Oriented Electrical Steel Sheet having Superior Punchability and Low Core Loss after Stress Relief Annealing
KR100940714B1 (en) * 2002-12-23 2010-02-08 주식회사 포스코 Method for manufacturing non-oriented electrical steel sheet having low core loss after stress relief annealing
US10102951B2 (en) 2013-03-13 2018-10-16 Jfe Steel Corporation Non-oriented electrical steel sheet having excellent magnetic properties
WO2015025759A1 (en) * 2013-08-20 2015-02-26 Jfeスチール株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
CN105378130A (en) * 2013-08-20 2016-03-02 杰富意钢铁株式会社 Non-oriented magnetic steel sheet having high magnetic flux density, and motor
US10006109B2 (en) 2013-08-20 2018-06-26 Jfe Steel Corporation Non-oriented electrical steel sheet and hot rolled steel sheet thereof
US10597759B2 (en) 2013-08-20 2020-03-24 Jfe Steel Corporation Non-oriented electrical steel sheet having high magnetic flux density and motor
US10941458B2 (en) 2015-02-18 2021-03-09 Jfe Steel Corporation Non-oriented electrical steel sheet, production method therefor, and motor core
JP2018003049A (en) * 2016-06-28 2018-01-11 新日鐵住金株式会社 Electrical steel sheet excellent in space factor and manufacturing method therefor

Also Published As

Publication number Publication date
JPH0819465B2 (en) 1996-02-28

Similar Documents

Publication Publication Date Title
JP5724824B2 (en) Method for producing non-oriented electrical steel sheet with good magnetic properties in rolling direction
JP2023507435A (en) Non-oriented electrical steel sheet and manufacturing method thereof
US6773514B1 (en) Method for producing non-grain oriented electric sheet steel
JP3456352B2 (en) Grain-oriented electrical steel sheet with excellent iron loss characteristics and method of manufacturing the same
JPH03229820A (en) Production of nonoriented silicon steel sheet
JPH05140648A (en) Manufacture of now-oriented silicon steel sheet having high magnetic flux density and low core loss
JPH0978129A (en) Production of nonortiented silicon steel sheet extremely excellent in magnetic property in all orientation
JP2023554123A (en) Non-oriented electrical steel sheet and its manufacturing method
JPH07228953A (en) Nonoriented silicon steel sheet reduced in iron loss and its production
JPH03211258A (en) Non-oriented silicon steel sheet having excellent magnetic properties and surface properties
JP2680519B2 (en) Manufacturing method of high magnetic flux density unidirectional electrical steel sheet
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH03229821A (en) Production of nonoriented silicon steel sheet
JP3179986B2 (en) Method for producing unidirectional silicon steel sheet with excellent magnetic properties
KR100240984B1 (en) The manufacturing method for 0.5mm oriented electric steelsheet
JPH06279858A (en) Production of non-oriented electric steel sheet excellent in magnetic property and surface property
JPH08143960A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JPH02104620A (en) Production of non-oriented magnetic steel sheet having low iron loss
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
JPH02104619A (en) Production of non-oriented magnetic steel sheet having excellent iron loss characteristic
JPH06184640A (en) Production of high magnetic flux density grain-oriented silicon steel sheet
JPH06279859A (en) Production of non-oriented electric steel sheet extremely excellent in core loss and magnetic flux density
KR20010039572A (en) Non-oriented electrical steel sheet excellent in permeability and method of producing the same
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
JPH09125145A (en) Production of nonoriented silicon steel sheet high in magnetic flux density and low in iron loss

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees