JP5159751B2 - Manufacturing method of dust core and dust core obtained by this manufacturing method - Google Patents

Manufacturing method of dust core and dust core obtained by this manufacturing method Download PDF

Info

Publication number
JP5159751B2
JP5159751B2 JP2009272525A JP2009272525A JP5159751B2 JP 5159751 B2 JP5159751 B2 JP 5159751B2 JP 2009272525 A JP2009272525 A JP 2009272525A JP 2009272525 A JP2009272525 A JP 2009272525A JP 5159751 B2 JP5159751 B2 JP 5159751B2
Authority
JP
Japan
Prior art keywords
heat treatment
iron
powder
film
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009272525A
Other languages
Japanese (ja)
Other versions
JP2011114331A (en
Inventor
武史 大脇
佳寿美 柳澤
護 細川
友綱 上條
宣明 赤城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2009272525A priority Critical patent/JP5159751B2/en
Publication of JP2011114331A publication Critical patent/JP2011114331A/en
Application granted granted Critical
Publication of JP5159751B2 publication Critical patent/JP5159751B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Description

本発明は、高比抵抗の圧粉磁心の製造方法およびこの製造方法を用いて得られる圧粉磁心に関する。   The present invention relates to a method for producing a high resistivity core and a dust core obtained by using this method.

電磁気部品用圧粉磁心は、製造工程においてハンドリング性が良好なことや、コイルにするための巻き線の際に破損しない十分な機械的強度を有することが重要である。これらの点を考慮して、圧粉磁心分野では、鉄粉粒子を電気絶縁物で被覆する技術が知られている。このように、電気絶縁物で鉄粉粒子を被覆することで鉄粉粒子間が電気絶縁物を介して接着されるため、これを用いて得られる圧粉磁心は機械的強度が向上する。   It is important that the powder magnetic core for electromagnetic parts has good handling properties in the manufacturing process and has sufficient mechanical strength that does not break during winding to form a coil. In consideration of these points, in the dust core field, a technique for coating iron powder particles with an electrical insulator is known. Thus, since iron powder particle | grains are adhere | attached via an electrical insulator by coat | covering iron powder particle | grains with an electrical insulator, the mechanical strength improves the powder magnetic core obtained using this.

これまで、このような電気絶縁物の形成材料として、耐熱性の高いシリコーン樹脂を用いる技術が開発されている。また、樹脂以外の電気絶縁物(形成材料)として、りん酸等から得られるガラス状化合物を利用する技術も古くから知られている(特許文献1)。   Until now, a technique using a silicone resin having high heat resistance as a material for forming such an electrical insulator has been developed. In addition, a technique using a glassy compound obtained from phosphoric acid or the like as an electrical insulator (forming material) other than resin has been known for a long time (Patent Document 1).

さらに、本出願人は、鉄基軟磁性粉末表面に、特定の元素を含むりん酸系化成皮膜と、シリコーン樹脂皮膜とをこの順で形成することで、高磁束密度、低鉄損、高機械的強度の圧粉磁心を提供することに成功し、既に特許を受けている(特許文献2)。   Furthermore, the present applicant forms a phosphoric acid-based chemical conversion film containing a specific element and a silicone resin film in this order on the surface of the iron-based soft magnetic powder, thereby achieving a high magnetic flux density, a low iron loss, and a high machine. Has successfully provided a powder magnetic core with sufficient strength and has already received a patent (Patent Document 2).

しかし、圧粉磁心の高性能化の要求は特許文献2の出願時に比べてさらに高まっており、従来にも増して、高磁束密度、高機械的強度が求められるようになっている。   However, the demand for higher performance of the powder magnetic core is further increased compared with the time of filing of Patent Document 2, and higher magnetic flux density and higher mechanical strength are required than ever before.

磁束密度の向上には圧粉成形体を高密度に形成することが有効であり、鉄損、特にヒステリシス損を低減するには、高温で焼鈍して圧粉成形体の歪みを解放してやることが有効であると考えられている。しかし、絶縁皮膜は高温焼鈍時に劣化するため、焼鈍後に絶縁性が低下して渦電流損が増大するといった問題がある。   To improve the magnetic flux density, it is effective to form a compacted body at a high density. To reduce iron loss, especially hysteresis loss, it is necessary to anneal at a high temperature to release the distortion of the compacted body. It is considered effective. However, since the insulating film deteriorates during high-temperature annealing, there is a problem that the insulating property is lowered after annealing and eddy current loss is increased.

この問題を解決するために、特許文献3では、焼鈍温度と焼鈍時間、さらには降温条件を制御して、軟磁性部材の絶縁皮膜の熱劣化に伴う渦電流損の増大を許容範囲内に抑制しつつ焼鈍によるヒステリシス損の低減を効率よく行う方法が記載されている。   In order to solve this problem, in Patent Document 3, the annealing temperature and annealing time, and the temperature lowering conditions are controlled to suppress an increase in eddy current loss due to thermal degradation of the insulating film of the soft magnetic member within an allowable range. However, a method for efficiently reducing hysteresis loss due to annealing is described.

特許第2710152号公報Japanese Patent No. 2710152 特許第4044591号公報Japanese Patent No. 4044591 特開2009−16701号公報JP 2009-16701 A

上記特許文献3に記載の発明はシリコーン樹脂のみを絶縁皮膜の形成に用いているため、本発明者等が従来から検討しているりん酸系化成皮膜を有する鉄基軟磁性粉末には効果的とはいえなかった。そこで、本発明では、高温焼鈍後であっても高い電気絶縁性を示し、高磁束密度で、かつ、高機械的強度を示すことのできる圧粉磁心の製造方法を見出して、優れた性能の圧粉磁心を提供することを課題とした。   Since the invention described in Patent Document 3 uses only a silicone resin for forming an insulating film, it is effective for an iron-based soft magnetic powder having a phosphoric acid-based chemical film that the present inventors have been studying. That wasn't true. Therefore, in the present invention, a method for producing a dust core that exhibits high electrical insulation even after high-temperature annealing, has high magnetic flux density, and can exhibit high mechanical strength has been found. The object was to provide a dust core.

上記課題を解決することのできた本発明は、鉄基軟磁性粉末表面にりん酸系化成皮膜を有する圧粉磁心用鉄基軟磁性粉末を圧粉成形した後、圧粉成形体に熱処理を施して圧粉磁心を製造する方法において、
上記熱処理温度を550℃以上、熱処理時間を20分超とし、熱処理終了後の圧粉成形体を液媒中で冷却することを特徴とする。
The present invention, which has been able to solve the above-mentioned problems, is a method of compacting an iron-based soft magnetic powder for a dust core having a phosphoric acid-based chemical conversion film on the surface of the iron-based soft magnetic powder, and then subjecting the compact to a heat treatment. In the method of manufacturing a dust core,
The heat treatment temperature is 550 ° C. or higher, the heat treatment time is longer than 20 minutes, and the compacted body after the heat treatment is cooled in a liquid medium.

液媒としては水または油を用いることが好ましく、液媒の温度は30℃以下が好ましい。また、熱処理終了後の圧粉成形体が400℃に降温するまでの所要時間が3分未満であることがより好ましい。   As the liquid medium, water or oil is preferably used, and the temperature of the liquid medium is preferably 30 ° C. or less. Moreover, it is more preferable that the time required until the temperature of the green compact after the heat treatment is lowered to 400 ° C. is less than 3 minutes.

本発明には、上記本発明の圧粉磁心の製造方法によって得られた圧粉磁心も包含される。   The present invention also includes a dust core obtained by the method for producing a dust core of the present invention.

本発明の製造方法によれば、高温焼鈍時に渦電流損(保磁力に相当する)を増大させることなく、高い電気絶縁性、すなわち、高い比抵抗を有する圧粉磁心を製造することができた。よって、本発明の製造方法により得られる圧粉磁心は、高磁束密度、低鉄損、高機械的強度という要求特性を全て満足する高性能なものとなった。   According to the manufacturing method of the present invention, it was possible to manufacture a dust core having high electrical insulation, that is, high specific resistance without increasing eddy current loss (corresponding to coercive force) during high-temperature annealing. . Therefore, the dust core obtained by the production method of the present invention has a high performance that satisfies all of the required characteristics of high magnetic flux density, low iron loss, and high mechanical strength.

本発明の製造方法の特徴は、焼鈍工程における熱処理温度を550℃以上、熱処理時間を20分超とするところと、熱処理終了後に圧粉成形体を液媒の中に入れて冷却するところにある。   The features of the production method of the present invention are that the heat treatment temperature in the annealing step is 550 ° C. or higher and the heat treatment time is longer than 20 minutes, and that the compacted body is cooled in the liquid medium after the heat treatment is completed. .

本発明者等が検討したところ、圧粉成形体の歪み取り焼鈍工程における絶縁性の低下は、鉄粉表面のりん酸系化成皮膜(絶縁皮膜)が加熱に伴って薄肉化することと、長時間の加熱によって鉄粉間で局部的な短絡が発生することが、主な原因であることを突き止めた。また、上記のりん酸系化成皮膜の薄肉化は、概ね350℃以上でその影響が顕著になるため、圧粉成形体が350℃以上に保持される時間を、可及的に短くすることが重要と考えられた。しかしながら、圧粉成形体の歪みを取るためには、圧粉成形体を550℃以上にする必要がある。そこで、本発明では、充分な温度で歪みを取った後は、りん酸系化成皮膜の薄肉化が生じない温度まで圧粉成形体を冷却して、りん酸系化成皮膜の薄肉化を抑制することに成功した。以下、本発明を詳細に説明する。   When the present inventors examined, the insulation fall in the distortion removal annealing process of a compacting body is that the phosphoric acid type | system | group chemical conversion film (insulation film) of the iron powder surface becomes thin with heating, and long The main cause was the local short circuit between the iron powders caused by heating over time. Moreover, since the influence of the thinning of the phosphoric acid-based chemical conversion film becomes remarkable at approximately 350 ° C. or higher, the time during which the green compact is maintained at 350 ° C. or higher can be shortened as much as possible. It was considered important. However, in order to take the distortion of the green compact, the green compact needs to be 550 ° C. or higher. Therefore, in the present invention, after the strain is removed at a sufficient temperature, the green compact is cooled to a temperature at which the thinning of the phosphoric acid-based chemical film does not occur, thereby suppressing the thinning of the phosphoric acid-based chemical film. Succeeded. Hereinafter, the present invention will be described in detail.

[熱処理(焼鈍)]
本発明では、歪み取りのための焼鈍工程、すなわち熱処理工程では、550℃以上で20分超、圧粉成形体を熱処理する。550℃よりも低温の場合や、時間が短い場合、成形によって発生したヒステリシス損の増加を充分に低減させることができない。熱処理温度は、570℃以上が好ましく、590℃以上がより好ましい。熱処理温度の上限は特に限定されないが、りん酸鉄皮膜の薄膜化を抑制するには、700℃が好ましく、650℃がより好ましい。また熱処理時間は、25分以上が好ましく、27分以上がより好ましい。熱処理時間は長い方が好ましいが、長時間に亘って高温の熱処理を行うと上記したようにリン酸系化成皮膜の薄肉化が生じて絶縁性が低下するため、180分以下とすることが好ましく、60分以下がより好ましく、35分以下が特に好ましい。なお、熱処理雰囲気は特に限定されないが、窒素等の不活性ガス雰囲気下で行うことが好ましい。
[Heat treatment (annealing)]
In the present invention, in the annealing process for strain removal, that is, the heat treatment process, the green compact is heat-treated at 550 ° C. or more for more than 20 minutes. When the temperature is lower than 550 ° C. or when the time is short, an increase in hysteresis loss caused by molding cannot be sufficiently reduced. The heat treatment temperature is preferably 570 ° C. or higher, and more preferably 590 ° C. or higher. The upper limit of the heat treatment temperature is not particularly limited, but is preferably 700 ° C. and more preferably 650 ° C. in order to suppress the thinning of the iron phosphate film. The heat treatment time is preferably 25 minutes or more, and more preferably 27 minutes or more. The heat treatment time is preferably longer, but if high-temperature heat treatment is performed for a long time, the phosphoric acid-based chemical conversion film is thinned and the insulating property is lowered as described above. 60 minutes or less is more preferable, and 35 minutes or less is particularly preferable. The heat treatment atmosphere is not particularly limited, but it is preferably performed in an inert gas atmosphere such as nitrogen.

熱処理後は、圧粉成形体を速やかに冷却(急冷)する必要がある。上記したりん酸系化成皮膜の薄肉化を抑制し、絶縁性が低下するのを防止するためである。そこで本発明では、液媒を用いて冷却する。冷却速度は速い方が好ましい。冷却速度の目安としては、圧粉成形体の大きさにもよるが、熱処理後の圧粉成形体が400℃に降温するまでの時間が3分未満であることが好ましい。熱処理後の圧粉成形体が350℃に降温するまでの時間が3分未満であることがより好ましい。りん酸系化成皮膜の薄肉化を一層確実に抑制できる。   After the heat treatment, it is necessary to quickly cool (rapidly cool) the green compact. This is for suppressing the thinning of the phosphoric acid-based chemical conversion film and preventing the insulating property from being lowered. Therefore, in the present invention, cooling is performed using a liquid medium. A faster cooling rate is preferred. As an indication of the cooling rate, although it depends on the size of the green compact, it is preferable that the time until the temperature of the green compact after the heat treatment is lowered to 400 ° C. is less than 3 minutes. It is more preferable that the time until the temperature of the green compact after the heat treatment is lowered to 350 ° C. is less than 3 minutes. Thinning of the phosphoric acid-based chemical conversion film can be more reliably suppressed.

液媒としては特に限定されないが、安全性やコストの面では、水または油が好ましい。油としては、常温(25℃)で液状の焼入油が好適である。   Although it does not specifically limit as a liquid medium, From the surface of safety | security or cost, water or oil is preferable. As the oil, quenching oil that is liquid at normal temperature (25 ° C.) is suitable.

液媒を用いた冷却方法としては、液媒浴中に圧粉成形体を浸漬する方法、液媒を圧粉成形体にかけ流す方法等が挙げられ、液媒浴中に浸漬する方法は液媒の再利用が行いやすいため好ましい。   Examples of the cooling method using the liquid medium include a method of immersing the green compact in the liquid medium bath, a method of pouring the liquid medium over the green compact, and the like. This is preferable because it can be easily reused.

用いる液媒の量は多ければ多いほど、またその温度が低ければ低いほど、冷却効率は高まるが、液媒量やその温度は、コストとの兼ね合いで適宜選択すればよい。温度に関してコスト的に好ましいのは、非加熱・非冷却のままの液媒を用いることである。冷却が終了すれば、圧粉磁心が得られる。   As the amount of the liquid medium to be used is larger and the temperature is lower, the cooling efficiency is improved. However, the amount of the liquid medium and the temperature may be appropriately selected in view of cost. In terms of temperature, it is preferable to use a liquid medium that remains unheated and uncooled in terms of cost. When cooling is completed, a dust core is obtained.

上記した条件の方法で歪み取りの熱処理を行うと共に、熱処理後に液媒で冷却することで、渦電流損(保磁力に相当する)を増大させることなく、高い電気絶縁性、すなわち、高い比抵抗を有する圧粉磁心を製造することができる。   By performing heat treatment for strain relief under the above-described method and cooling with a liquid medium after heat treatment, high electrical insulation, that is, high specific resistance without increasing eddy current loss (corresponding to coercive force) is achieved. It is possible to manufacture a dust core having

以下、本発明において圧粉磁心の製造に用いられる圧粉成形体の好適な実施態様を説明する。   Hereinafter, the suitable embodiment of the compacting body used for manufacture of a powder magnetic core in this invention is demonstrated.

[鉄基軟磁性粉末]
本発明で用いる鉄基軟磁性粉末は、強磁性体の鉄基粉末であり、具体的には、純鉄粉、鉄基合金粉末(Fe−Al合金、Fe−Si合金、センダスト、パーマロイなど)、および鉄基アモルファス粉末等が挙げられる。これらの鉄基軟磁性粉末は、例えば、アトマイズ法によって溶融鉄(または溶融鉄合金)を微粒子とした後に還元し、次いで粉砕する等によって製造できる。このような製法では、ふるい分け法で評価される粒度分布で累積粒度分布が50%になる粒径(メジアン径)が20〜250μm程度の鉄基軟磁性粉末が得られるが、本発明で用いる鉄基軟磁性粉末は、粒径(メジアン径)が50〜150μm程度であることが好ましい。
[Iron-based soft magnetic powder]
The iron-based soft magnetic powder used in the present invention is a ferromagnetic iron-based powder. Specifically, pure iron powder, iron-based alloy powder (Fe-Al alloy, Fe-Si alloy, Sendust, Permalloy, etc.) , And iron-based amorphous powders. These iron-based soft magnetic powders can be produced, for example, by reducing molten iron (or molten iron alloy) into fine particles by an atomizing method, and then reducing and grinding. In such a production method, an iron-based soft magnetic powder having a particle size (median diameter) of about 20 to 250 μm that gives a cumulative particle size distribution of 50% in the particle size distribution evaluated by the sieving method can be obtained. The base soft magnetic powder preferably has a particle size (median diameter) of about 50 to 150 μm.

[りん酸系化成皮膜]
本発明で用いる圧粉成形体用鉄粉は、りん酸系化成皮膜を有している。これにより、圧粉成形体用鉄粉に電気絶縁性を付与することができる。
[Phosphate-based chemical conversion coating]
The iron powder for a green compact used in the present invention has a phosphoric acid-based chemical conversion film. Thereby, electrical insulation can be provided to the iron powder for a compacting body.

このりん酸系化成皮膜は、Pを含む化合物を用いて形成されるガラス状の皮膜であればその組成は特に限定されるものではないが、P以外に、さらにCo、Na、Sを含む化合物や、Csおよび/またはAlを含む化合物を用いて形成されるガラス状の皮膜であることが好ましい。これらの元素は、酸素が熱処理(焼鈍)時にFeと半導体を形成して比抵抗を低下させるのを抑制するからである。   The composition of the phosphoric acid-based chemical film is not particularly limited as long as it is a glassy film formed using a compound containing P. In addition to P, a compound containing Co, Na, and S is also included. Or it is preferable that it is a glassy film | membrane formed using the compound containing Cs and / or Al. This is because these elements prevent oxygen from forming a semiconductor with Fe during heat treatment (annealing) to lower the specific resistance.

りん酸系化成皮膜が、P以外に、上記Co等を含む化合物を用いて形成されるガラス状の皮膜である場合には、これらの元素の含有率は、圧粉成形体用鉄粉100質量%中の量として、Pは0.005〜1質量%、Coは0.005〜0.1質量%、Naは0.002〜0.6質量%、Sは0.001〜0.2質量%であることが好ましい。また、Csは0.002〜0.6質量%、Alは0.001〜0.1質量%であることが好ましい。CsとAlとを併用する場合も、それぞれをこの範囲内とすることが好ましい。   In the case where the phosphoric acid-based chemical film is a glassy film formed using a compound containing Co or the like other than P, the content of these elements is 100 masses of iron powder for a green compact. %, P is 0.005 to 1% by mass, Co is 0.005 to 0.1% by mass, Na is 0.002 to 0.6% by mass, and S is 0.001 to 0.2% by mass. % Is preferred. Moreover, it is preferable that Cs is 0.002-0.6 mass% and Al is 0.001-0.1 mass%. Also when Cs and Al are used in combination, it is preferable that each be within this range.

上記元素のうち、Pは酸素を介して鉄基軟磁性粉末表面と化学結合を形成する。従って、P量が0.005質量%未満の場合には、鉄基軟磁性粉末表面とりん酸系化成皮膜との化学結合量が不十分となり、強固な皮膜を形成しないおそれがあり好ましくない。一方、P量が1質量%を超える場合には、化学結合に関与しないPが未反応のまま残留し、かえって結合強度を低下させるおそれがあり、好ましくない。   Among the above elements, P forms a chemical bond with the iron-based soft magnetic powder surface through oxygen. Therefore, when the amount of P is less than 0.005% by mass, the amount of chemical bonding between the surface of the iron-based soft magnetic powder and the phosphoric acid-based chemical film is insufficient, and a strong film may not be formed. On the other hand, when the amount of P exceeds 1% by mass, P that is not involved in chemical bonding remains unreacted, which may reduce the bonding strength, which is not preferable.

Co、Na、S、Cs、Alは、熱処理(焼鈍)中にFeと酸素が半導体を形成するのを阻害して、比抵抗が低下するのを抑制する作用を有する。Co、NaおよびSは、複合添加されることによってその効果を最大化させる。また、CsとAlはいずれか一方でも構わないが、各元素の下限値は、Co、NaおよびSの複合添加の効果を発揮させるための最低量である。また、Co、Na、S、Cs、Alは、必要以上に添加量を上げると複合添加時に相対的なバランスを維持できなくなるだけでなく、酸素を介したPと鉄基軟磁性粉末表面との化学結合の生成を阻害するものと考えられる。   Co, Na, S, Cs, and Al have an effect of inhibiting Fe and oxygen from forming a semiconductor during heat treatment (annealing) and suppressing a decrease in specific resistance. Co, Na, and S are combined to maximize the effect. Further, either one of Cs and Al may be used, but the lower limit value of each element is the minimum amount for exerting the effect of combined addition of Co, Na, and S. In addition, if Co, Na, S, Cs, and Al are added more than necessary, the relative balance cannot be maintained during the composite addition, but the oxygen-mediated P and the iron-based soft magnetic powder surface It is thought to inhibit the formation of chemical bonds.

本発明のりん酸系化成皮膜には、MgやBが含まれていてもよい。これらの元素の含有率は、圧粉成形体用鉄粉100質量%中の量として、Mg、B共に、0.001〜0.5質量%であることが好適である。   The phosphoric acid-based chemical conversion film of the present invention may contain Mg or B. The content of these elements is preferably 0.001 to 0.5% by mass for both Mg and B as the amount in 100% by mass of iron powder for a green compact.

本発明のりん酸系化成皮膜の膜厚は、1〜250nm程度が好ましい。膜厚が1nmより薄いと絶縁効果が発現しない場合がある。また250nmを超えると、絶縁効果が飽和する上、圧粉成形体の高密度化の点からも望ましくない。より好ましい膜厚は、10〜50nmである。   The thickness of the phosphoric acid-based chemical conversion film of the present invention is preferably about 1 to 250 nm. If the film thickness is thinner than 1 nm, the insulating effect may not be exhibited. On the other hand, if it exceeds 250 nm, the insulating effect is saturated and it is not desirable from the viewpoint of increasing the density of the green compact. A more preferable film thickness is 10 to 50 nm.

[りん酸系化成皮膜の形成方法]
本発明で用いる圧粉成形体用鉄粉は、いずれの態様で製造されてもよいが、例えば、水および/または有機溶剤からなる溶媒にPを含む化合物を溶解させた溶液と、鉄基軟磁性粉末とを混合した後、必要に応じて前記溶媒を蒸発させて得ることができる。
[Method of forming phosphoric acid-based chemical conversion film]
The iron powder for a green compact used in the present invention may be produced in any form. For example, a solution in which a compound containing P is dissolved in a solvent composed of water and / or an organic solvent, and an iron-based soft powder. After mixing with magnetic powder, it can be obtained by evaporating the solvent if necessary.

本工程で用いる溶媒としては、水や、アルコールやケトン等の親水性有機溶剤、及びこれらの混合物が挙げられる。溶媒中には公知の界面活性剤を添加してもよい。   Examples of the solvent used in this step include water, hydrophilic organic solvents such as alcohol and ketone, and mixtures thereof. A known surfactant may be added to the solvent.

Pを含む化合物としては、例えばオルトりん酸(H3PO4)が挙げられる。また、りん酸系化成皮膜が上記の組成となるようにするための化合物としては、例えば、Co3(PO42(CoおよびP源)、Co3(PO42・8H2O(CoおよびP源)、Na2HPO4(PおよびNa源)、NaH2PO4(PおよびNa源)、NaH2PO4・nH2O(PおよびNa源)、Al(H2PO43(PおよびAl源)、Cs2SO4(CsおよびS源)、H2SO4(S源)、MgO(Mg源)、H3BO3(B源)等が使用可能である。なかでも、りん酸二水素ナトリウム塩(NaH2PO4)をP源やNa源として用いると、得られる圧粉成形体の密度、強度、比抵抗がバランス良く優れるものとなる。 Examples of the compound containing P include orthophosphoric acid (H 3 PO 4 ). In addition, examples of the compound for making the phosphoric acid-based chemical conversion film have the above composition include, for example, Co 3 (PO 4 ) 2 (Co and P sources), Co 3 (PO 4 ) 2 .8H 2 O ( Co and P sources), Na 2 HPO 4 (P and Na sources), NaH 2 PO 4 (P and Na sources), NaH 2 PO 4 .nH 2 O (P and Na sources), Al (H 2 PO 4 ) 3 (P and Al sources), Cs 2 SO 4 (Cs and S sources), H 2 SO 4 (S sources), MgO (Mg sources), H 3 BO 3 (B sources) and the like can be used. Among these, when dihydrogen phosphate sodium salt (NaH 2 PO 4 ) is used as a P source or Na source, the density, strength, and specific resistance of the obtained green compact are excellent in a well-balanced manner.

鉄基軟磁性粉末に対するPを含む化合物の添加量は、形成されるりん酸系化成皮膜の組成が上記の範囲になるものであればよい。例えば、固形分が0.01〜10質量%程度となるように調製したPを含む化合物や必要に応じて皮膜に含ませようとする元素を含む化合物の溶液を、鉄基軟磁性粉末100質量部に対し1〜10質量部程度添加して、公知のミキサー、ボールミル、ニーダー、V型混合機、造粒機等の混合機で混合することによって、形成されるりん酸系化成皮膜の組成を上記の範囲内にすることができる。   The amount of the compound containing P with respect to the iron-based soft magnetic powder may be such that the composition of the phosphoric acid-based chemical conversion film to be formed falls within the above range. For example, a solution of a compound containing P prepared so that the solid content is about 0.01 to 10% by mass and a compound containing an element to be included in the film as necessary is 100 mass of iron-based soft magnetic powder. The composition of the phosphoric acid-based chemical film formed by adding about 1 to 10 parts by mass to the part and mixing with a known mixer, ball mill, kneader, V-type mixer, granulator or the like. It can be within the above range.

また必要に応じて、上記混合工程の後、大気中、減圧下、または真空下で、150〜250℃で乾燥してもよい。乾燥後には、目開き200〜500μm程度の篩を通過させてもよい。上記工程を経ることで、りん酸系化成皮膜が形成された圧粉成形体用鉄粉が得られる。   Moreover, you may dry at 150-250 degreeC under air | atmosphere, pressure reduction, or a vacuum after the said mixing process as needed. After drying, a sieve having an opening of about 200 to 500 μm may be passed. By passing through the said process, the iron powder for compacting bodies in which the phosphoric acid type chemical film was formed is obtained.

[シリコーン樹脂皮膜]
本発明の圧粉成形体用鉄粉は、前記りん酸系化成皮膜の上にさらにシリコーン樹脂皮膜を有していてもよい。これにより、シリコーン樹脂の架橋・硬化反応終了時(圧縮時)には、粉末同士が強固に結合する。また、耐熱性に優れたSi−O結合を形成して熱的安定性に優れた絶縁皮膜となる。
[Silicone resin film]
The iron powder for a green compact of the present invention may further have a silicone resin film on the phosphoric acid-based chemical conversion film. Thereby, at the time of completion | finish of the bridge | crosslinking and hardening reaction of a silicone resin (at the time of compression), powders couple | bond together firmly. In addition, an Si—O bond having excellent heat resistance is formed, and an insulating film having excellent thermal stability is obtained.

シリコーン樹脂としては、硬化が遅いものでは粉末がべとついて皮膜形成後のハンドリング性が悪いので、二官能性のD単位(R2SiX2:Rは有機基、Xは加水分解性基)よりは、三官能性のT単位(RSiX3:R、Xは前記と同じ)を多く持つものが好ましい。しかし、四官能性のQ単位(SiX4:Xは前記と同じ)が多く含まれていると、予備硬化の際に粉末同時が強固に結着してしまい、後の成形工程が行えなくなるため好ましくない。よって、T単位が60モル%以上のシリコーン樹脂が好ましく、80モル%以上のシリコーン樹脂がより好ましく、全てT単位であるシリコーン樹脂が最も好ましい。 As a silicone resin, if the curing is slow, the powder is sticky and the handling property after film formation is poor, so the bifunctional D unit (R 2 SiX 2 : R is an organic group, X is a hydrolyzable group) Preferably has a large number of trifunctional T units (RSiX 3 : R, X is as defined above). However, if a large amount of tetrafunctional Q units (SiX 4 : X is the same as above) is contained, the powder will be firmly bound at the time of pre-curing and the subsequent molding process cannot be performed. It is not preferable. Accordingly, a silicone resin having a T unit of 60 mol% or more is preferable, a silicone resin having 80 mol% or more is more preferable, and a silicone resin having all T units is most preferable.

また、シリコーン樹脂としては、上記Rがメチル基またはフェニル基となっているメチルフェニルシリコーン樹脂が一般的で、フェニル基を多く持つ方が耐熱性は高いとされているが、本発明で採用するような高温の熱処理(焼鈍)条件では、フェニル基の存在はそれほど有効とは言えなかった。フェニル基の嵩高さが、緻密なガラス状網目構造を乱して、熱的安定性や鉄との化合物形成阻害効果を逆に低減させるのではないかと考えられる。よって、本発明では、メチル基が50モル%以上のメチルフェニルシリコーン樹脂(例えば、信越化学工業社製のKR255、KR311等)を用いることが好ましく、70モル%以上(例えば、信越化学工業社製のKR300等)がより好ましく、フェニル基を全く持たないメチルシリコーン樹脂(例えば、信越化学工業社製のKR251、KR400、KR220L,KR242A、KR240、KR500、KC89等や、東レ・ダウコーニング社製のSR2400等)が最も好ましい。なお、シリコーン樹脂(皮膜)のメチル基とフェニル基の比率や官能性については、FT−IR等で分析可能である。   Further, as the silicone resin, a methylphenyl silicone resin in which the above R is a methyl group or a phenyl group is common, and it is said that the heat resistance is higher when it has more phenyl groups, but it is adopted in the present invention. Under such high-temperature heat treatment (annealing) conditions, the presence of phenyl groups was not very effective. It is thought that the bulkiness of the phenyl group disturbs the dense glassy network structure and reduces the thermal stability and the compound formation inhibitory effect with iron. Therefore, in the present invention, it is preferable to use a methylphenyl silicone resin having a methyl group of 50 mol% or more (for example, KR255, KR311, etc. manufactured by Shin-Etsu Chemical Co., Ltd.), and 70 mol% or more (for example, manufactured by Shin-Etsu Chemical Co., Ltd.). KR300 and the like, and methyl silicone resins having no phenyl group (for example, KR251, KR400, KR220L, KR242A, KR240, KR500, KC89, etc. manufactured by Shin-Etsu Chemical Co., Ltd., SR2400 manufactured by Toray Dow Corning) Etc.) is most preferred. The ratio and functionality of the methyl group and phenyl group of the silicone resin (film) can be analyzed by FT-IR or the like.

シリコーン樹脂皮膜の付着量は、りん酸系化成皮膜とシリコーン樹脂皮膜とがこの順で形成された圧粉成形体用鉄粉を100質量%としたとき、0.05〜0.3質量%となるように調整することが好ましい。0.05質量%より少ないと、絶縁性に劣り、電気抵抗が低くなるが、0.3質量%より多く加えると、得られる圧粉成形体の高密度化が達成しにくい。   The adhesion amount of the silicone resin film is 0.05 to 0.3% by mass when the iron powder for a compacting body in which the phosphoric acid-based chemical film and the silicone resin film are formed in this order is 100% by mass. It is preferable to adjust so that it becomes. When the amount is less than 0.05% by mass, the insulation is inferior and the electric resistance is lowered. However, when the amount is more than 0.3% by mass, it is difficult to achieve a high density of the obtained green compact.

シリコーン樹脂皮膜の厚みとしては、1〜200nmが好ましい。より好ましい厚みは20〜150nmである。また、りん酸系化成皮膜とシリコーン樹脂皮膜との合計厚みは250nm以下とすることが好ましい。250nmを超えると、磁束密度の低下が大きくなる場合がある。   The thickness of the silicone resin film is preferably 1 to 200 nm. A more preferred thickness is 20 to 150 nm. The total thickness of the phosphoric acid-based chemical film and the silicone resin film is preferably 250 nm or less. If it exceeds 250 nm, the decrease in magnetic flux density may increase.

[シリコーン樹脂皮膜の形成方法]
シリコーン樹脂皮膜の形成は、例えば、シリコーン樹脂をアルコール類や、トルエン、キシレン等の石油系有機溶剤等にシリコーン樹脂を溶解させたシリコーン樹脂溶液と、りん酸系化成皮膜を有する鉄基軟磁性粉末(以下、便宜上、単に「りん酸系皮膜形成鉄粉」と称する場合がある。)とを混合し、次いで必要に応じて前記有機溶剤を蒸発させることによって行うことができる。
[Method of forming silicone resin film]
Formation of the silicone resin film is, for example, an iron-based soft magnetic powder having a silicone resin solution in which a silicone resin is dissolved in alcohols, petroleum-based organic solvents such as toluene and xylene, and a phosphoric acid-based chemical film. (Hereinafter, it may be simply referred to as “phosphoric acid-based film-forming iron powder” for the sake of convenience.) And then, if necessary, the organic solvent is evaporated.

りん酸系皮膜形成鉄粉に対するシリコーン樹脂の添加量は、形成されるシリコーン樹脂皮膜の付着量が上記の範囲になるものであればよい。例えば、固形分が大体2〜10質量%になるように調製した樹脂溶液を、前記したりん酸系化成皮膜形成鉄粉100質量部に対し、0.5〜10質量部程度添加して混合し、乾燥すればよい。0.5質量部より少ないと混合に時間がかかったり、皮膜が不均一になるおそれがある。一方、10質量部を超えると乾燥に時間がかかったり、乾燥が不充分になるおそれがある。樹脂溶液は適宜加熱しておいても構わない。混合機は前記したものと同様のものが使用可能である。   The amount of the silicone resin added to the phosphoric acid-based film-forming iron powder is not particularly limited as long as the amount of the formed silicone resin film is within the above range. For example, about 0.5 to 10 parts by mass of a resin solution prepared so that the solid content is about 2 to 10% by mass is added to and mixed with 100 parts by mass of the phosphoric acid-based chemical film forming iron powder. What is necessary is just to dry. If the amount is less than 0.5 parts by mass, mixing may take time or the film may become non-uniform. On the other hand, if it exceeds 10 parts by mass, drying may take time or drying may be insufficient. The resin solution may be appropriately heated. The same mixer as described above can be used.

乾燥工程では、用いた有機溶剤が揮発する温度で、かつ、シリコーン樹脂の硬化温度未満に加熱して、有機溶剤を充分に蒸発揮散させることが望ましい。具体的な乾燥温度としては、上記したアルコール類や石油系有機溶剤の場合は、60〜80℃程度が好適である。乾燥後には、凝集ダマを除くために、目開き300〜500μm程度の篩を通過させておくことが好ましい。   In the drying step, it is desirable to sufficiently evaporate the organic solvent by heating to a temperature at which the organic solvent used volatilizes and below the curing temperature of the silicone resin. A specific drying temperature is preferably about 60 to 80 ° C. in the case of the alcohols and petroleum organic solvents described above. After drying, it is preferable to pass through a sieve having an opening of about 300 to 500 μm in order to remove aggregated lumps.

乾燥後には、シリコーン樹脂皮膜が形成された圧粉体用鉄粉(以下、便宜上、単に「シリコーン樹脂皮膜形成鉄粉」と称する場合がある。)を加熱して、シリコーン樹脂皮膜を予備硬化させることが推奨される。予備硬化とは、シリコーン樹脂皮膜の硬化時における軟化過程を粉末状態で終了させる処理である。この予備硬化処理によって、温間成形時(100〜250℃程度)にシリコーン樹脂皮膜形成鉄粉の流れ性を確保することができる。具体的な手法としては、シリコーン樹脂皮膜形成鉄粉を、このシリコーン樹脂の硬化温度近傍で短時間加熱する方法が簡便であるが、薬剤(硬化剤)を用いる手法も利用可能である。予備硬化と、硬化(予備ではない完全硬化)処理との違いは、予備硬化処理では、粉末同士が完全に接着固化することなく、容易に解砕が可能であるのに対し、粉末の成形後に行う高温加熱硬化処理では、樹脂が硬化して粉末同士が接着固化する点である。完全硬化処理によって成形体強度が向上する。   After drying, the iron powder for a green compact on which a silicone resin film is formed (hereinafter, sometimes simply referred to as “silicone resin film-forming iron powder”) is heated to pre-cure the silicone resin film. It is recommended. The pre-curing is a process for terminating the softening process at the time of curing the silicone resin film in a powder state. By this preliminary curing treatment, the flowability of the silicone resin film-forming iron powder can be ensured during warm molding (about 100 to 250 ° C.). As a specific method, a method of heating the silicone resin film-forming iron powder in the vicinity of the curing temperature of the silicone resin for a short time is simple, but a method using a drug (curing agent) can also be used. The difference between pre-curing and curing (complete curing that is not preliminary) is that the pre-curing process can be easily crushed without completely solidifying the powder, whereas In the high temperature heat curing process to be performed, the resin is cured and the powders are bonded and solidified. The strength of the molded body is improved by the complete curing treatment.

上記したように、シリコーン樹脂を予備硬化させた後、解砕することで、流動性に優れた粉末が得られ、圧粉成形の際に成形型へ、砂のようにさらさらと投入することができるようになる。予備硬化させないと、例えば温間成形の際に粉末同士が付着して、成形型への短時間での投入が困難となることがある。実操業上、ハンドリング性の向上は非常に有意義である。また、予備硬化させることによって、得られる圧粉磁心の比抵抗が非常に向上することが見出されている。この理由は明確ではないが、硬化の際の鉄粉との密着性が上がるためではないかと考えられる。   As mentioned above, after pre-curing the silicone resin, it can be crushed to obtain a powder with excellent fluidity, which can be poured into the mold during sand compaction like sand. become able to. If it is not pre-cured, for example, powders may adhere to each other during warm molding, and it may be difficult to charge the mold in a short time. In practical operation, the improvement of handling is very significant. It has also been found that the specific resistance of the resulting dust core is greatly improved by pre-curing. Although this reason is not clear, it is thought that it may be because the adhesiveness with the iron powder at the time of curing increases.

短時間加熱法によって予備硬化を行う場合、100〜200℃で5〜100分の加熱処理を行うとよい。130〜170℃で10〜30分がより好ましい。予備硬化後も、前記したように、篩を通過させておくことが好ましい。   When pre-curing is performed by a short-time heating method, the heat treatment is preferably performed at 100 to 200 ° C. for 5 to 100 minutes. 10-30 minutes is more preferable at 130-170 degreeC. Even after preliminary curing, it is preferable to pass through a sieve as described above.

[潤滑剤]
本発明の圧粉成形体用鉄粉には、さらに潤滑剤が含有されたものであってもよい。この潤滑剤の作用により、圧粉成形体用鉄粉を圧縮成形する際の鉄粉間、あるいは鉄粉と成形型内壁間の摩擦抵抗を低減でき、成形体の型かじりや成形時の発熱を防止することができる。このような効果を有効に発揮させるためには、潤滑剤が圧粉成形体用鉄粉全量中、0.2質量%以上含有されていることが好ましい。しかし、潤滑剤量が多くなると、圧粉成形体の高密度化に反するため、0.8質量%以下にとどめることが好ましい。また、圧縮成形する際に、成形型内壁面に潤滑剤を塗布した後、成形するような場合(型潤滑成形)には、0.2質量%より少ない潤滑剤量でも構わない。
[lubricant]
The iron powder for a green compact of the present invention may further contain a lubricant. The action of this lubricant can reduce the frictional resistance between the iron powder when compressing the iron powder for compacted compacts, or between the iron powder and the inner wall of the mold, and it can reduce the mold galling and heat generation during molding. Can be prevented. In order to effectively exhibit such an effect, it is preferable that the lubricant is contained in an amount of 0.2% by mass or more in the total amount of iron powder for a green compact. However, when the amount of the lubricant is increased, it is against the densification of the green compact, so that it is preferable to keep the amount to 0.8% by mass or less. Further, when compression molding is performed, a lubricant is applied to the inner wall surface of the mold and then molded (mold lubrication molding), and the amount of lubricant may be less than 0.2% by mass.

潤滑剤としては、従来から公知のものを使用すればよく、具体的には、ステアりん酸亜鉛、ステアりん酸リチウム、ステアりん酸カルシウム等のステアりん酸の金属塩粉末、およびパラフィン、ワックス、天然または合成樹脂誘導体等が挙げられる。   As the lubricant, conventionally known ones may be used. Specifically, stearic acid metal salt powder such as zinc stearate, lithium stearate, calcium stearate, and paraffin, wax, Examples thereof include natural or synthetic resin derivatives.

[圧縮成形]
圧粉成形体は、上記圧粉成形体用鉄粉を圧縮成形することにより得られる。圧縮成形法は特に限定されず、従来公知の方法が採用可能である。
[Compression molding]
A compacting body is obtained by compression-molding the iron powder for compacting bodies. The compression molding method is not particularly limited, and a conventionally known method can be employed.

圧縮成形の好適条件は、面圧で、490MPa〜1960MPa、より好ましくは790MPa〜1180MPaである。特に、980MPa以上の条件で圧縮成形を行うと、最終的な密度が7.50g/cm3以上である圧粉磁心を得やすく、高強度で磁気特性(磁束密度)の良好な圧粉磁心が得られるため好ましい。成形温度は、室温成形、温間成形(100〜250℃)いずれも可能である。型潤滑成形で温間成形を行う方が、より高強度の圧粉磁心が得られるため、好ましい。強度の目安としては、後述する実施例における測定方法で測定した抗折強度が100MPa以上であることが好ましい。 A suitable condition for compression molding is a surface pressure of 490 MPa to 1960 MPa, more preferably 790 MPa to 1180 MPa. In particular, when compression molding is performed under conditions of 980 MPa or more, it is easy to obtain a dust core having a final density of 7.50 g / cm 3 or more, and a dust core having high strength and good magnetic properties (magnetic flux density) is obtained. Since it is obtained, it is preferable. The molding temperature can be either room temperature molding or warm molding (100 to 250 ° C.). It is preferable to perform warm molding by mold lubrication molding because a powder magnetic core with higher strength can be obtained. As a measure of strength, it is preferable that the bending strength measured by the measurement method in Examples described later is 100 MPa or more.

[圧粉磁心]
圧粉成形体を得た後は、前記した条件で熱処理とその後の液媒での冷却を行う。冷却後に圧粉磁心が得られる。
[Dust core]
After obtaining the green compact, heat treatment and subsequent cooling with a liquid medium are performed under the conditions described above. A dust core is obtained after cooling.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは全て本発明の技術的範囲に包含される。なお、特に断らない限り、「部」は「質量部」を、「%」は「質量%」をそれぞれ意味する。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention. Unless otherwise specified, “part” means “part by mass” and “%” means “% by mass”.

実験例
軟磁性粉末として純鉄粉(神戸製鋼所製;アトメル300NH;粒径80〜100μm)を用いた。
Experimental Example Pure iron powder (manufactured by Kobe Steel; Atmel 300NH; particle size 80-100 μm) was used as the soft magnetic powder.

りん酸鉄化成皮膜用処理液として、水:50部、Na2HPO4:30部、H3PO4:10部、(NH2OH)2・H2SO4:10部、Co3(PO42:10部を混合して、さらに水で10倍に希釈した処理液を用いた。この処理液50ccを上記純鉄粉1kgに添加し、V型混合機を用いて30分以上混合した後、大気中で200℃で30分乾燥し、目開き300μmの篩を通した。 As a treatment solution for an iron phosphate chemical conversion film, water: 50 parts, Na 2 HPO 4 : 30 parts, H 3 PO 4 : 10 parts, (NH 2 OH) 2 · H 2 SO 4 : 10 parts, Co 3 (PO 4 ) 2 : 10 parts were mixed, and a treatment solution diluted 10 times with water was used. 50 cc of this treatment liquid was added to 1 kg of the above pure iron powder, mixed for 30 minutes or more using a V-type mixer, dried in the atmosphere at 200 ° C. for 30 minutes, and passed through a sieve having an opening of 300 μm.

次に、メチル基が100モル%、T単位が100モル%であるシリコーン樹脂「KR220L」(信越化学工業社製)をトルエンに溶解させて、4.8%の固形分濃度の樹脂溶液を作製した。この樹脂溶液を上記鉄粉に対して樹脂固形分が0.15%となるように添加混合し、オーブン炉で大気中、75℃、30分間加熱して乾燥した後、目開き300μmの篩を通した。その後、150℃で30分間、予備硬化を行った。   Next, a silicone resin “KR220L” (manufactured by Shin-Etsu Chemical Co., Ltd.) having a methyl group of 100 mol% and a T unit of 100 mol% is dissolved in toluene to produce a resin solution having a solid content concentration of 4.8%. did. This resin solution was added to and mixed with the above iron powder so that the resin solid content was 0.15%, dried in an oven furnace at 75 ° C. for 30 minutes in the atmosphere, and then sieved with a sieve having an opening of 300 μm. I passed. Thereafter, preliminary curing was performed at 150 ° C. for 30 minutes.

続いて、ステアリン酸Znをアルコールに分散させて金型表面に塗布した後、圧粉成形体用鉄粉を入れ、面圧980MPaで室温(25℃)での圧粉成形を行った。成形体寸法は、31.75mm×12.7mm、高さ約5mmである。その後、600℃で1分間もしくは30分間、窒素雰囲気下で焼鈍した。昇温速度は約5℃/分とした。熱処理後は炉冷、室温(非加熱)の水による冷却(水クエンチ)、室温(非加熱)の油(出光興産社製;「ダフニー クエンチB」)による冷却(油クエンチ)を行った。   Subsequently, Zn stearate was dispersed in alcohol and applied to the surface of the mold, and then iron powder for a compacting body was added, and compacting was performed at a surface pressure of 980 MPa at room temperature (25 ° C.). The molded body dimensions are 31.75 mm × 12.7 mm and the height is about 5 mm. Thereafter, annealing was performed at 600 ° C. for 1 minute or 30 minutes in a nitrogen atmosphere. The heating rate was about 5 ° C./min. After the heat treatment, furnace cooling, cooling with room temperature (non-heated) water (water quench), cooling with room temperature (non-heated) oil (made by Idemitsu Kosan Co., Ltd .; “Dafney Quench B”) (oil quench) was performed.

得られた成形体の密度、保磁力、比抵抗、抗折強度を測定し、表1に示した。測定方法は以下の通りである。   The density, coercive force, specific resistance, and bending strength of the obtained molded product were measured and shown in Table 1. The measuring method is as follows.

[密度]
成形体の質量およびサイズを実測し、計算で求めた。
[density]
The mass and size of the molded body were measured and calculated.

[保磁力]
理研電子社製のBHカーブトレーサー「BHS−40S」を用い、25℃で最大印加磁場(B)を100(Oe)として測定した。
[Coercivity]
Using a BH curve tracer “BHS-40S” manufactured by Riken Denshi Co., Ltd., measurement was performed at 25 ° C. with a maximum applied magnetic field (B) of 100 (Oe).

[比抵抗]
比抵抗の測定は4端子法で行った。プローブには理化電子社製「RM−14L」を、測定器には岩崎通信機社製デジタルマルチメータ「VOAC−7510」をそれぞれ用い、4端子抵抗測定モードで測定を行った。測定は、端子間距離を7mm、プローブのストローク長を5.9mm、スプリング荷重を10−Sタイプとし、プローブを測定試料に押し当てて実施した。
[Resistivity]
The specific resistance was measured by the 4-terminal method. Measurement was performed in a four-terminal resistance measurement mode using “RM-14L” manufactured by Rika Denshi Co., Ltd. as the probe and a digital multimeter “VOAC-7510” manufactured by Iwasaki Tsushinki Co., Ltd. as the measuring instrument. The measurement was performed by setting the distance between the terminals to 7 mm, the probe stroke length to 5.9 mm, the spring load to the 10-S type, and pressing the probe against the measurement sample.

[抗折強度]
抗折強度試験は、JPMA M 09−1992(日本粉末冶金工業会企画;焼結金属材料の抗折力試験方法)に準拠した3点曲げ試験を行った。強度測定には引張試験機(島津製作所製「AUTOGRAPH AG−5000E」)を使用し、支点間距離を25mmとした。
[Folding strength]
The bending strength test was performed by a three-point bending test in accordance with JPMA M 09-1992 (Japan Powder Metallurgy Industry Association; bending strength test method for sintered metal materials). A tensile tester (“AUTOGRAPH AG-5000E” manufactured by Shimadzu Corporation) was used for the strength measurement, and the distance between fulcrums was set to 25 mm.

[降温時間]
試験片に熱電対を挿入して温度を調べながら、熱処理終了後から成形体が400℃に達するまでに要した時間を測定した。
[Cooling time]
While the thermocouple was inserted into the test piece and the temperature was examined, the time required for the compact to reach 400 ° C. after the heat treatment was completed was measured.

Figure 0005159751
Figure 0005159751

表1から明らかなとおり、成形条件自体は同じなので、いずれの成形体も密度はほとんど変わらない。しかし、比較例1では、降温速度が緩慢な炉冷を行ったので、成形体が400℃に達するまでに約40分も要しており、その結果、リン酸系化成皮膜の薄肉化が起こって絶縁性が低下し、比抵抗が大きく落ち込んだことがわかる。比較例2では、熱処理時間が短すぎてヒステリシス損を低減することができず、保磁力が高いままであった。   As apparent from Table 1, since the molding conditions themselves are the same, the density of each molded body is hardly changed. However, in Comparative Example 1, since furnace cooling with a slow temperature drop rate was performed, it took about 40 minutes for the compact to reach 400 ° C. As a result, thinning of the phosphoric acid-based chemical conversion film occurred. Thus, it can be seen that the insulation is lowered and the specific resistance is greatly reduced. In Comparative Example 2, the heat treatment time was too short to reduce the hysteresis loss, and the coercive force remained high.

実施例1および2では、充分な熱処理時間と、液媒による冷却(クエンチ)を組み合わせたことにより、保磁力、比抵抗、抗折強度がバランス良く優れたものとなった。   In Examples 1 and 2, the coercive force, specific resistance, and bending strength were excellent in a well-balanced manner by combining sufficient heat treatment time and cooling (quenching) with a liquid medium.

本発明の圧粉磁心の製造方法によれば、高磁束密度、低保磁力(低鉄損)、高機械的強度を達成し得る圧粉磁心を製造することができる。この圧粉磁心は、モータのロータやステータのコアとして有用である。   According to the method for manufacturing a dust core of the present invention, a dust core that can achieve high magnetic flux density, low coercive force (low iron loss), and high mechanical strength can be manufactured. This dust core is useful as a rotor of a motor or a core of a stator.

Claims (5)

鉄基軟磁性粉末表面にりん酸系化成皮膜を有する圧粉磁心用鉄基軟磁性粉末を圧粉成形した後、圧粉成形体に熱処理を施して圧粉磁心を製造する方法において、
上記熱処理温度を550℃以上、熱処理時間を20分超とし、熱処理終了後の圧粉成形体を液媒中で冷却することを特徴とする圧粉磁心の製造方法。
In a method for producing a dust core by compacting an iron-based soft magnetic powder for a powder magnetic core having a phosphoric acid-based chemical conversion film on the surface of the iron-based soft magnetic powder, and then subjecting the compact to a heat treatment.
A method for producing a dust core, wherein the heat treatment temperature is 550 ° C. or more, the heat treatment time is longer than 20 minutes, and the dust compact after the heat treatment is finished is cooled in a liquid medium.
液媒として水または油を用いる請求項1に記載の製造方法。   The production method according to claim 1, wherein water or oil is used as the liquid medium. 上記液媒が30℃以下である請求項1または2に記載の製造方法。   The production method according to claim 1 or 2, wherein the liquid medium is 30 ° C or lower. 熱処理終了後の圧粉成形体が400℃に降温するまでの所要時間が3分未満である請求項1〜3のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 1 to 3, wherein a time required until the temperature of the green compact after the heat treatment is lowered to 400 ° C is less than 3 minutes. 請求項1〜4のいずれかに記載の製造方法によって得られたものであることを特徴とする圧粉磁心。   A dust core obtained by the manufacturing method according to claim 1.
JP2009272525A 2009-11-30 2009-11-30 Manufacturing method of dust core and dust core obtained by this manufacturing method Expired - Fee Related JP5159751B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009272525A JP5159751B2 (en) 2009-11-30 2009-11-30 Manufacturing method of dust core and dust core obtained by this manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009272525A JP5159751B2 (en) 2009-11-30 2009-11-30 Manufacturing method of dust core and dust core obtained by this manufacturing method

Publications (2)

Publication Number Publication Date
JP2011114331A JP2011114331A (en) 2011-06-09
JP5159751B2 true JP5159751B2 (en) 2013-03-13

Family

ID=44236398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009272525A Expired - Fee Related JP5159751B2 (en) 2009-11-30 2009-11-30 Manufacturing method of dust core and dust core obtained by this manufacturing method

Country Status (1)

Country Link
JP (1) JP5159751B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5189691B1 (en) 2011-06-17 2013-04-24 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP6111524B2 (en) * 2012-03-09 2017-04-12 Jfeスチール株式会社 Manufacturing method of dust core
CN105149574B (en) * 2015-09-21 2017-04-05 中南大学 A kind of iron-base soft magnetic alloy powder coated method and soft-magnetic composite material preparation method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6274058A (en) * 1985-09-27 1987-04-04 Toshiba Corp Heat treatment for amorphous magnetic alloy core
JPS63129606A (en) * 1986-11-20 1988-06-02 Toshiba Corp Manufacture of amorphous magnetic alloy core
JP2004207365A (en) * 2002-12-24 2004-07-22 Aisin Seiki Co Ltd Magnetic circuit material and method of manufacturing the same
JP4265400B2 (en) * 2003-04-25 2009-05-20 Jfeスチール株式会社 Non-oriented electrical steel sheet and manufacturing method thereof
JP2004353037A (en) * 2003-05-29 2004-12-16 Jfe Steel Kk High-strength non-oriented electromagnetic steel sheet superior in magnetic property, and manufacturing method therefor
JP4267439B2 (en) * 2003-12-19 2009-05-27 新日本製鐵株式会社 Non-oriented electrical steel sheet with excellent magnetic properties, manufacturing method thereof and strain relief annealing method
JP2007027320A (en) * 2005-07-14 2007-02-01 Sumitomo Electric Ind Ltd Soft magnetic material, method of manufacturing the same and dust core
JP4044591B1 (en) * 2006-09-11 2008-02-06 株式会社神戸製鋼所 Iron-based soft magnetic powder for dust core, method for producing the same, and dust core

Also Published As

Publication number Publication date
JP2011114331A (en) 2011-06-09

Similar Documents

Publication Publication Date Title
JP4044591B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP5580725B2 (en) Manufacturing method of dust core and dust core obtained by the manufacturing method
JP2009228107A (en) Iron-based soft magnetic powder for dust core, method for manufacturing the same, and dust core
JP5597512B2 (en) Manufacturing method of dust core and dust core obtained by this manufacturing method
JP5202382B2 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
JP4706411B2 (en) Soft magnetic material, dust core, method for producing soft magnetic material, and method for producing dust core
KR101369109B1 (en) Method for producing dust core, and dust core obtained by the method
TWI406305B (en) Iron-based soft magnetic powder and dust core for powder core
JP4723442B2 (en) Powder cores and iron-based powders for dust cores
JP5833983B2 (en) Powder for dust core and dust core
JP4284004B2 (en) Powder for high-strength dust core, manufacturing method for high-strength dust core
JP5189691B1 (en) Iron-based soft magnetic powder for dust core, method for producing the same, and dust core
KR101519282B1 (en) Iron base soft magnetic powder for powder magnetic core, fabrication method for same, and powder magnetic core
JP5513922B2 (en) Iron-based soft magnetic powder for dust core, method for producing iron-based soft magnetic powder for dust core, and dust core
JP5159751B2 (en) Manufacturing method of dust core and dust core obtained by this manufacturing method
JP2009032880A (en) Iron-based soft magnetic powder for dust core for high frequency, and dust core
JP2011129857A (en) Method of manufacturing dust core and dust core obtained by the method
JP4856602B2 (en) Iron-based soft magnetic powder for dust core and dust core
JP4527225B2 (en) Manufacturing method of dust core
JP5427666B2 (en) Method for producing modified green compact, and powder magnetic core obtained by the production method
JP6073066B2 (en) Method for producing soft magnetic iron-based powder for dust core

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159751

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees