JP4463663B2 - Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof - Google Patents

Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof Download PDF

Info

Publication number
JP4463663B2
JP4463663B2 JP2004321205A JP2004321205A JP4463663B2 JP 4463663 B2 JP4463663 B2 JP 4463663B2 JP 2004321205 A JP2004321205 A JP 2004321205A JP 2004321205 A JP2004321205 A JP 2004321205A JP 4463663 B2 JP4463663 B2 JP 4463663B2
Authority
JP
Japan
Prior art keywords
less
temperature steam
steel material
atmosphere
oxidation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004321205A
Other languages
Japanese (ja)
Other versions
JP2006131945A (en
Inventor
幸寛 西田
一幸 景岡
学 奥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nippon Steel Nisshin Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Nisshin Co Ltd filed Critical Nippon Steel Nisshin Co Ltd
Priority to JP2004321205A priority Critical patent/JP4463663B2/en
Publication of JP2006131945A publication Critical patent/JP2006131945A/en
Application granted granted Critical
Publication of JP4463663B2 publication Critical patent/JP4463663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/082Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
    • F28F21/083Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel

Landscapes

  • Engineering & Computer Science (AREA)
  • Fuel Cell (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、高温強度と耐高温水蒸気酸化性に優れたフェライト系鋼材であって、特に固体高分子型燃料電池の熱交換器などの高温水蒸気に曝される用途に適したフェライト系鋼材に関するものである。   The present invention relates to a ferritic steel material excellent in high-temperature strength and high-temperature steam oxidation resistance, and particularly to a ferritic steel material suitable for applications exposed to high-temperature steam such as a heat exchanger of a polymer electrolyte fuel cell. It is.

近年、石油を代表とする化石燃料の枯渇化,CO2排出による地球温暖化等の問題から、従来の発電システムや内燃機関に替わる新しいシステムの実用化が求められている。その1つとして、自動車,家庭用コージェネレーションシステム等の動力源に有望な固体高分子型燃料電池(PEFC)が注目されている。 In recent years, due to problems such as the depletion of fossil fuels represented by petroleum and global warming due to CO 2 emissions, there has been a demand for practical applications of new systems that replace conventional power generation systems and internal combustion engines. As one of them, a polymer electrolyte fuel cell (PEFC) that is promising as a power source for automobiles, home cogeneration systems, and the like has attracted attention.

PEFCの電池作動温度は70〜100℃程度と低いが、起動時間短縮のため、起動時には作動温度まで急速に昇温させる必要がある。加えて、限られた設置スペースでエネルギーを賄うためにシステムのエネルギー効率の向上が重要になってくる。さらに、天然ガスやガソリン等の炭化水素系燃料の改質により水素を供給するタイプでは、改質器を800℃程度の高温で作動させる必要がある。このため、自動車用途,コージェネレーションシステム用途では500〜800℃の高温で耐久性を有する高温熱交換器の必要性が高まっている。   Although the battery operating temperature of PEFC is as low as about 70 to 100 ° C., it is necessary to rapidly raise the operating temperature to the operating temperature at the time of starting in order to shorten the starting time. In addition, it is important to improve the energy efficiency of the system in order to cover energy in a limited installation space. Furthermore, in a type in which hydrogen is supplied by reforming a hydrocarbon-based fuel such as natural gas or gasoline, it is necessary to operate the reformer at a high temperature of about 800 ° C. For this reason, the necessity of the high temperature heat exchanger which has durability at the high temperature of 500-800 degreeC is increasing in the use for a motor vehicle, and a cogeneration system.

図1に、高温熱交換器の一例として、直交型熱交換器の構造を模式的に示す。平板状のプレート1の間に、波板からなるフィン2を1層毎に流体の通過方向が直交するように交互に挟んで組み立てられている。各プレート1とフィン2は、通常、Niロウなどを用いてロウ付けされる。プレート1は板厚0.1〜2mm程度、フィン2は板厚0.01〜1mm程度の金属板で作られている。従来、これらの金属部材にはSUS310Sなどの高Cr・高Ni耐熱ステンレス鋼や、インコロイ800系の鉄基高合金が使われていた。   FIG. 1 schematically shows the structure of an orthogonal heat exchanger as an example of a high-temperature heat exchanger. The fins 2 made of corrugated plates are alternately sandwiched between the flat plates 1 so that the fluid passage directions are orthogonal to each other. Each plate 1 and fin 2 are usually brazed using Ni solder or the like. The plate 1 is made of a metal plate having a thickness of about 0.1 to 2 mm, and the fin 2 is made of a metal plate having a thickness of about 0.01 to 1 mm. Conventionally, a high Cr / high Ni heat resistant stainless steel such as SUS310S or an incoloy 800 series iron-based high alloy has been used for these metal members.

燃料電池システム(PEFCタイプ)では、改質器で発生するバーナーの燃焼排ガスを熱交換器で冷却し、その熱は例えば水素ガスを加湿する加湿器に利用される。バーナーの燃焼排ガスは500〜800℃と高温であり、ガス成分にはH2O(水蒸気)が多量に含まれるとともにO2,H2,CO2,CO,HC等が混在する。一方、その熱を受け取る側の流体も、水や水蒸気に富んだものとなる。したがって、この用途の熱交換器は、高温の水蒸気や水素に曝される環境で優れた耐久性を有しなければならない。また、自動車用途では頻繁に、また家庭用コージェネレーションシステムでも1回/日の起動・停止が繰り返されるため、熱膨張係数の低い材料で構成することが望まれる。 In a fuel cell system (PEFC type), combustion exhaust gas of a burner generated in a reformer is cooled by a heat exchanger, and the heat is used for a humidifier that humidifies hydrogen gas, for example. The combustion exhaust gas of the burner is as high as 500 to 800 ° C., and the gas component contains a large amount of H 2 O (water vapor) and O 2 , H 2 , CO 2 , CO, HC, etc. are mixed. On the other hand, the fluid receiving the heat is also rich in water and water vapor. Therefore, the heat exchanger for this application must have excellent durability in an environment exposed to high-temperature steam and hydrogen. Moreover, since it is frequently started up and stopped once a day in automobile applications and also in a household cogeneration system, it is desired to be made of a material having a low thermal expansion coefficient.

従来材である上記SUS310Sはオーステナイト系であるため、本来的にフェライト系鋼種よりも高温水蒸気には強く、高温強度も比較的高い。しかし素材コストが高いこと、熱膨張係数が大きいことなど、問題も多い。インコロイ800系はさらに高価である。燃料電池システムを自動車用や家庭用コージェネレーションシステム用などとして普及させるにはコスト低減が重要なキーポイントの1つになっていることから、熱交換器は低廉なフェライト系鋼種で構成することが望まれる。熱膨張係数の面でもフェライト系鋼が有利である。   Since SUS310S, which is a conventional material, is austenitic, it is inherently more resistant to high-temperature steam than ferritic steel types and has a relatively high high-temperature strength. However, there are many problems such as high material cost and large thermal expansion coefficient. Incoloy 800 series is even more expensive. Cost reduction is one of the important key points for popularizing fuel cell systems for automobiles and household cogeneration systems, so heat exchangers can be made of inexpensive ferritic steel grades. desired. Ferritic steel is also advantageous in terms of thermal expansion coefficient.

下記特許文献1には、高温水蒸気雰囲気に曝される石油系燃料改質器の環境を考慮したフェライト系ステンレス鋼が記載されている。これは耐高温水蒸気酸化性を改善するためにSiとAlの含有量を高くする手段を採用している。
特許文献2にも燃料改質器にフェライト系ステンレス鋼を適用した例が示されている。これは2.5%以上のAlを含有させることによって耐水蒸気酸化性を改善している。
Patent Document 1 below describes ferritic stainless steel considering the environment of a petroleum fuel reformer exposed to a high-temperature steam atmosphere. This employs means for increasing the contents of Si and Al in order to improve the high temperature steam oxidation resistance.
Patent Document 2 also shows an example in which ferritic stainless steel is applied to a fuel reformer. This improves steam oxidation resistance by containing 2.5% or more of Al.

一方、特許文献3には熱交換器用のフェライト系ステンレス鋼が記載されている。ただし、高温水蒸気雰囲気での使用は想定されておらず、燃料電池システムの高温熱交換器として耐え得るフェライト系鋼材を実現する手法は未知である。   On the other hand, Patent Document 3 describes ferritic stainless steel for heat exchangers. However, use in a high-temperature steam atmosphere is not assumed, and a method for realizing a ferritic steel material that can endure as a high-temperature heat exchanger of a fuel cell system is unknown.

特開2003−160840号公報JP 2003-160840 A 特開2003−286005号公報JP 2003-286005 A 特開平7−292446号公報JP 7-292446 A

前述のように、燃料電池システムの普及には高温熱交換器のコストダウンが欠かせない。従来のSUS310Sやインコロイ800系の合金は高価であり、安価な材料との代替要求が強い。また熱膨張係数が小さいフェライト系鋼種の適用が望まれる。
特許文献1,2に開示のフェライト系鋼は耐水蒸気酸化性の向上を意図したものである。しかし、Al含有量が高いためロウ付け性に劣る。したがってこれらは熱交換器用に最適な材料とは言えない。また、SiやAl含有量が高いので、自動車用燃料電池システムの熱交換器用途としてはまだコストが高すぎる。
一方、特許文献3のフェライト系鋼をそのまま高温水蒸気雰囲気に用いても充分な耐久性は期待できない。
As described above, the cost reduction of the high temperature heat exchanger is indispensable for the spread of the fuel cell system. Conventional SUS310S and Incoloy 800 series alloys are expensive, and there is a strong demand for replacement with inexpensive materials. In addition, it is desired to use a ferritic steel type having a small thermal expansion coefficient.
The ferritic steels disclosed in Patent Documents 1 and 2 are intended to improve steam oxidation resistance. However, since the Al content is high, the brazing property is inferior. Therefore, these are not optimal materials for heat exchangers. In addition, since the Si and Al contents are high, the cost is still too high for use as a heat exchanger in an automotive fuel cell system.
On the other hand, even if the ferritic steel of Patent Document 3 is used as it is in a high-temperature steam atmosphere, sufficient durability cannot be expected.

本発明はこのような現状に鑑み、安価なフェライト系鋼種を用いて、500〜800℃という高温水蒸気雰囲気で使用可能な優れた耐久性を付与した鋼材を開発し提供することを目的とする。   In view of such a current situation, an object of the present invention is to develop and provide a steel material imparted with excellent durability that can be used in a high-temperature steam atmosphere of 500 to 800 ° C. using an inexpensive ferritic steel type.

発明者らは種々検討の結果、安価なフェライト系ステンレス鋼であっても、以下のいずれかの手法により高温水蒸気雰囲気での耐久性を顕著に改善できることを見出した。
〔手法A〕フェライト系鋼材の表面に研磨歪みを付与した状態で、高温水蒸気雰囲気に曝して使用する。
〔手法B〕フェライト系鋼材の表面に研磨歪みを付与した状態で、特定の酸化性雰囲気下で加熱処理を施し、これを高温水蒸気雰囲気に曝して使用する。
As a result of various studies, the inventors have found that even in the case of an inexpensive ferritic stainless steel, durability in a high-temperature steam atmosphere can be remarkably improved by any of the following methods.
[Method A] The surface of the ferritic steel material is used by exposing it to a high-temperature steam atmosphere in a state where polishing strain is applied.
[Method B] A surface of the ferritic steel material is subjected to a heat treatment in a specific oxidizing atmosphere in a state where polishing distortion is applied, and this is used by being exposed to a high-temperature steam atmosphere.

手法Aは、研磨歪みの作用により、実際の使用環境に曝した場合の初期段階で安定な保護皮膜を迅速に形成させるものであり、この保護皮膜がその後長期にわたり優れた耐高温水蒸気酸化性を担うのである。
手法Bは、研磨歪みの作用により、予め優れた耐高温水蒸気酸化性を示す保護皮膜を形成させておき、これを実際の高温水蒸気酸化雰囲気に曝して使用するものである。
Method A is to quickly form a stable protective film at the initial stage when exposed to the actual use environment due to the action of polishing strain, and this protective film has excellent high-temperature steam oxidation resistance over a long period thereafter. It bears.
In Method B, a protective film exhibiting excellent high-temperature steam oxidation resistance is formed in advance by the action of polishing distortion, and this is used by exposing it to an actual high-temperature steam oxidation atmosphere.

研磨後の鋼材がそのまま使用できる用途であれば、手法Aがコスト的に有利であることは言うまでもない。しかし、熱交換器部材の場合にはロウ付け(例えばNiロウ付け)の工程を経た後、実際の使用に供される。Niロウ付けは一般的に構成部材全体を1000℃程度の高温に保持することにより行われる。この場合、せっかく付与した研磨歪みは除去されてしまい、優れた耐高温水蒸気酸化性は失われる。手法Bはこの問題を解消するために極めて有意義である。ロウ付け時の熱処理で保護皮膜を形成するための処理を兼ねることが可能だからである。
本発明はこれらの知見に基づいて完成したものである。
Needless to say, Method A is advantageous in terms of cost if the steel material after polishing can be used as it is. However, in the case of a heat exchanger member, after being subjected to a brazing process (for example, Ni brazing), it is provided for actual use. Ni brazing is generally performed by keeping the entire component at a high temperature of about 1000 ° C. In this case, the applied polishing distortion is removed, and the high temperature steam oxidation resistance is lost. Method B is extremely useful for solving this problem. This is because the heat treatment during brazing can also serve as a treatment for forming a protective film.
The present invention has been completed based on these findings.

すなわち、手法Bに沿って上記目的を達成する手段として、耐高温水蒸気酸化性を付与した鋼材として、質量%で、C:0.03%以下,Si:0.1超え〜1.5%,Mn:1.5%以下,Cr:9〜24%,S:0.01%以下,N:0.03%以下,Al:0〜1.0%,Mo:0〜3.0%,Nb:0〜0.80%,Ti:0〜0.50%,Cu:0〜2.0%、残部がFeおよび不可避的不純物からなり、表面に研磨歪みを付与した鋼材に対して、
例えば大気を真空排気または不活性ガスで置換して酸素分圧が1×10-5〜2×10-1Paとなるようにした900〜1250℃の減圧雰囲気に10〜3600秒保持する熱処理、
を施して得られる耐高温水蒸気酸化性に優れたフェライト系鋼材が提供される。
That is, as a means for achieving the above-mentioned object along the method B, as a steel material imparted with high temperature steam oxidation resistance, in mass%, C: 0.03% or less, Si: more than 0.1 to 1.5%, Mn: 1.5% or less, Cr: 9 to 24%, S: 0.01% or less, N: 0.03% or less, Al: 0 to 1.0%, Mo: 0 to 3.0%, Nb : 0 to 0.80%, Ti: 0 to 0.50%, Cu: 0 to 2.0%, with the balance being Fe and unavoidable impurities, with the surface imparting polishing strain,
For example, a heat treatment for holding for 10 to 3600 seconds in a reduced pressure atmosphere of 900 to 1250 ° C. in which the atmosphere is evacuated or replaced with an inert gas so that the oxygen partial pressure becomes 1 × 10 −5 to 2 × 10 −1 Pa.
There is provided a ferritic steel material excellent in high-temperature steam oxidation resistance obtained by applying the above.

ここで、Al,Mo,Nb,Ti,Cuは任意添加元素である。下限0%は、当該元素が無添加であり、かつ含有量が通常の製鋼現場での分析手法で測定限界以下である場合を意味する。   Here, Al, Mo, Nb, Ti, and Cu are arbitrarily added elements. The lower limit of 0% means that the element is not added and the content is not more than the measurement limit by an analysis method in a normal steelmaking field.

前記の研磨歪みを付与する手段として、i) JIS R 6001に規定される50番以上の番手で研磨仕上げする手段、あるいは、ii) JIS G 4305に規定されるNo.4研磨仕上げを施す手段、を採用することができる。   As means for imparting the polishing strain, i) means for polishing and finishing with a number of 50 or more as defined in JIS R 6001, or ii) means for performing No. 4 polishing finish as defined in JIS G 4305, Can be adopted.

これらの耐高温水蒸気酸化性に優れた鋼材として、特に、70体積%H2O+30体積%CH4,600℃の雰囲気下に200時間保持する耐高温水蒸気試験を施したとき、その試験前後における質量増加が0.2mg/cm2以下となる耐高温水蒸気酸化性を有するものが提供される。
鋼材の用途として、500〜800℃の高温水蒸気に接触する熱交換器部材が挙げられる。
As these steel materials excellent in high temperature steam oxidation resistance, particularly when subjected to a high temperature steam test for 200 hours in an atmosphere of 70% by volume H 2 O + 30% by volume CH 4 and 600 ° C., the mass before and after the test What has high-temperature steam oxidation resistance that increases to 0.2 mg / cm 2 or less is provided.
As an application of the steel material, a heat exchanger member that comes into contact with high-temperature steam at 500 to 800 ° C can be mentioned.

また、手法Aに沿った鋼材の使用態様として、前記化学組成を有し、表面に研磨歪みが付与された鋼材を、500〜800℃の高温水蒸気に接触する環境に曝して使用する、耐高温水蒸気酸化性に優れたフェライト系鋼材の使用方法が提供される。   Moreover, as a usage mode of the steel material according to the method A, the steel material having the above-described chemical composition and having a surface subjected to polishing strain is used by being exposed to an environment in contact with high-temperature steam at 500 to 800 ° C. Provided is a method for using a ferritic steel material excellent in water vapor oxidation.

さらに、手法Bに沿った鋼材の使用態様として、前記化学組成を有する鋼材の表面に研磨歪みを付与した後、大気を真空排気または不活性ガスにより置換して酸素分圧が1×10-5〜2×10-1Paとなるようにした900〜1250℃の雰囲気に10〜3600秒保持する熱処理を施した鋼材を、500〜800℃の高温水蒸気に接触する環境に曝して使用する、耐高温水蒸気酸化性に優れたフェライト系鋼材の使用方法が提供される。 Furthermore, as a use mode of the steel material according to the method B, after applying polishing strain to the surface of the steel material having the above chemical composition, the atmosphere is evacuated or replaced with an inert gas so that the oxygen partial pressure is 1 × 10 −5. A steel material that has been heat-treated for 10 to 3600 seconds in an atmosphere at 900 to 1250 ° C. that is adjusted to 2 × 10 −1 Pa is used by being exposed to an environment that is in contact with high-temperature steam at 500 to 800 ° C. A method of using a ferritic steel material having excellent high-temperature steam oxidation is provided.

本発明は以下のようなメリットを有するものである。
(1)素材が安価なフェライト系鋼であるから、高温水蒸気に曝される各種構造物の低コスト化に貢献できる。
(2)フェライト系鋼は熱膨張係数が小さいため、昇温・降温の繰り返しが多い用途に有利である。
(3)燃料電池用の熱交換器のように高温加熱(Niロウ付けなど)を経て作られる構造物においても優れた耐高温水蒸気酸化性が実現できる。
(4)高Al化の手法を採用しないのでロウ付け性が良好である。
したがって本発明は、特に自動車用および家庭用コージェネレーションシステムの燃料電池システムの普及に大きく寄与し得るものである。
The present invention has the following merits.
(1) Since the material is an inexpensive ferritic steel, it can contribute to cost reduction of various structures exposed to high-temperature steam.
(2) Since ferritic steel has a small coefficient of thermal expansion, it is advantageous for applications where the temperature is repeatedly increased and decreased.
(3) Excellent resistance to high temperature steam oxidation can be realized even in a structure made through high temperature heating (Ni brazing or the like) like a heat exchanger for a fuel cell.
(4) The brazing property is good because the method of increasing Al is not used.
Therefore, the present invention can greatly contribute to the spread of fuel cell systems for automobile and household cogeneration systems.

フェライト系鋼はオーステナイト系よりも熱膨張係数が小さく、熱疲労特性に優れている。しかし、多量の水蒸気を含む高温雰囲気に曝されると、一般的にオーステナイト系鋼よりも容易に酸化が進行する。すなわち、500〜600℃の温度域で酸化量が増大し、赤褐色のスケール(通称「赤スケール」)が多量に生成する。この酸化は部材の穴あきを招き、また生成した赤スケールは配管系統の目詰まり等のトラブルを引き起こす。   Ferritic steel has a smaller coefficient of thermal expansion than austenite, and is excellent in thermal fatigue characteristics. However, when exposed to a high temperature atmosphere containing a large amount of water vapor, oxidation generally proceeds more easily than austenitic steel. That is, the amount of oxidation increases in the temperature range of 500 to 600 ° C., and a large amount of reddish brown scale (commonly known as “red scale”) is generated. This oxidation leads to holes in the member, and the generated red scale causes troubles such as clogging of the piping system.

水蒸気酸化のメカニズムは未だ十分解明されていない。ただ、高温水蒸気雰囲気に曝したときにステンレス鋼材表面に生成する初期の酸化皮膜を安定化させることによって、水蒸気酸化を抑制できることがわかっている。特許文献1に開示されるSiとAlの複合添加や、特許文献2に開示される高Al化は、そのような酸化皮膜の安定化を実現するための手段である。   The mechanism of steam oxidation has not been fully elucidated. However, it has been found that steam oxidation can be suppressed by stabilizing the initial oxide film formed on the surface of the stainless steel material when exposed to a high-temperature steam atmosphere. The combined addition of Si and Al disclosed in Patent Document 1 and the increase in Al disclosed in Patent Document 2 are means for realizing stabilization of such an oxide film.

本発明者らは、SiやAlの添加に頼らずに高温水蒸気雰囲気下で優れた保護作用を発揮する初期皮膜を形成させる手法を検討してきた。その結果、表面に研磨歪みを付与した状態で、「使用環境である高温水蒸気雰囲気」あるいは「酸化性の高温雰囲気」に曝す手法が極めて有効であることを見出した。
フェライト系鋼の表面を機械的に研磨すると、金属表層には転位や滑り帯が多数形成され、表層から50〜100μm程度の深さまで研磨歪みを導入することができる。この表層部における歪みが、高温加熱時にCrおよびSiの表層への拡散を促進し、結果として、酸化のごく初期の段階で鋼材表層に保護的な酸化皮膜を形成させると考えられる。
The inventors of the present invention have studied a method of forming an initial film that exhibits excellent protective action in a high-temperature steam atmosphere without depending on the addition of Si or Al. As a result, it was found that a technique of exposing to a “high temperature steam atmosphere as a use environment” or “oxidizing high temperature atmosphere” with polishing distortion on the surface is extremely effective.
When the surface of the ferritic steel is mechanically polished, a number of dislocations and slip bands are formed on the metal surface layer, and polishing strain can be introduced to a depth of about 50 to 100 μm from the surface layer. It is considered that the distortion in the surface layer portion promotes the diffusion of Cr and Si to the surface layer during high-temperature heating, and as a result, forms a protective oxide film on the steel material surface layer at the very initial stage of oxidation.

〔鋼の化学組成〕
本発明で対象とするフェライト系鋼の合金成分について説明する。
Crは、鋼の耐食性,耐酸化性を確保する上で重要な成分である。600℃前後での耐高温水蒸気酸化性を改善するには、9質量%以上のCrが必要である。しかし、24質量%を超えると加工性,低温靱性が劣化し、また475℃脆化が生じやすくなるので好ましくない。ステンレス鋼としての高耐食性を確保するには11質量%以上のCr含有が好ましく、14質量%以上が一層好ましい。また、低温靱性,振動による耐衝撃性を重視する場合は、20質量%以下のCr含有量とすることが好ましい。
[Chemical composition of steel]
The alloy components of the ferritic steel targeted in the present invention will be described.
Cr is an important component for ensuring the corrosion resistance and oxidation resistance of steel. In order to improve the high temperature steam oxidation resistance at around 600 ° C., 9 mass% or more of Cr is required. However, if it exceeds 24 mass%, the workability and the low-temperature toughness deteriorate, and 475 ° C embrittlement tends to occur, which is not preferable. In order to ensure high corrosion resistance as stainless steel, the Cr content is preferably 11% by mass or more, and more preferably 14% by mass or more. Further, when importance is attached to low temperature toughness and impact resistance due to vibration, the Cr content is preferably 20% by mass or less.

CおよびNは、高温強度、特にクリープ特性を改善する成分であるが、フェライト系鋼に過剰添加すると加工性,低温靱性を著しく劣化させることがある。また、TiやNbとの反応によって炭窒化物を生成しやすく、高温強度の改善に有効な固溶Tiや固溶Nbを減少させる。したがって本発明では、C,Nはいずれも0.03質量%以下に制限する。   C and N are components that improve high-temperature strength, particularly creep properties, but if added excessively to ferritic steel, workability and low-temperature toughness may be significantly degraded. In addition, carbonitrides are easily generated by reaction with Ti and Nb, and solid solution Ti and solid solution Nb effective in improving high temperature strength are reduced. Therefore, in the present invention, both C and N are limited to 0.03 mass% or less.

Mnは、フェライト系鋼の耐スケール剥離性を向上させる成分である。しかし、1.5質量%を超えると鋼材が硬質化し、加工性,低温靱性の低下を招く。   Mn is a component that improves the scale peel resistance of the ferritic steel. However, if it exceeds 1.5% by mass, the steel material becomes hard, and the workability and low temperature toughness are reduced.

Sは、熱間加工性,耐溶接高温割れ性に悪影響を及ぼす成分である。異常酸化の基点ともなる。このため、S含有量は0.01質量%以下に制限する。   S is a component that adversely affects hot workability and weld hot crack resistance. It also serves as a starting point for abnormal oxidation. For this reason, S content is restrict | limited to 0.01 mass% or less.

Siは、高温水蒸気酸化の進行を抑止する保護皮膜の形成に有効な成分である。すなわち、研磨後の熱処理によって自ら酸化皮膜中に濃化するとともに、同皮膜中に生成したCr系酸化物の安定化にも有効に作用すると考えられる。このような作用は0.1質量%を超えるSi含有によってもたらされるが、0.2質量%以上のSi含有量を確保することが好ましい。ただし、1.5質量%を超えて過剰にSiを添加すると、加工性、特に延性が著しく低下し、低温靱性も低下する。また、鋼材表面に疵が生じやすくなり、製造性も劣化する。   Si is an effective component for forming a protective film that suppresses the progress of high-temperature steam oxidation. That is, it is thought that it concentrates in the oxide film itself by the heat treatment after polishing, and also effectively acts to stabilize the Cr-based oxide formed in the film. Such an effect is brought about by the Si content exceeding 0.1% by mass, but it is preferable to ensure a Si content of 0.2% by mass or more. However, if Si is added in excess of 1.5% by mass, workability, particularly ductility, is remarkably lowered, and low-temperature toughness is also lowered. Moreover, it becomes easy to produce wrinkles on the steel material surface, and manufacturability also deteriorates.

Alは、水蒸気酸化性の向上に有効であるが、ロウ付け性を劣化させる。また過剰のAl含有は溶接性をも劣化させる。したがって、Alを添加する場合は、1.0質量%以下の含有量範囲で行う必要がある。0.6質量%未満とすることが一層好ましい。   Al is effective in improving the steam oxidation property, but deteriorates the brazing property. Excessive Al content also degrades weldability. Therefore, when adding Al, it is necessary to carry out in the content range of 1.0 mass% or less. More preferably, it is less than 0.6 mass%.

Moは、固溶強化により高温強度および耐熱疲労特性を向上させるので、これらの特性を重視する場合は必要に応じて添加することができる。ただし、過剰のMo添加は鋼材を硬質化するので、Moを添加する場合は3.0質量%以下の範囲で行う必要がある。   Mo improves the high-temperature strength and heat fatigue resistance by solid solution strengthening, and can be added as necessary when importance is attached to these characteristics. However, since excessive Mo addition hardens the steel material, it is necessary to add Mo in a range of 3.0% by mass or less.

NbおよびTiは、析出強化によりフェライト系鋼の高温強度を更に向上させるので、必要に応じて添加することができる。上記作用を充分に発揮させるには、Nbの場合0.05質量%以上、Tiの場合0.03質量%以上の含有量とすることが望ましい。しかし、これらの元素を過剰に添加すると鋼材が硬質化するので、Nbは0.80質量%以下、Tiは0.50質量%以下の範囲で添加する必要がある。なお、NbとTiは上記範囲内で複合添加しても構わない。   Nb and Ti further improve the high-temperature strength of the ferritic steel by precipitation strengthening, and can be added as necessary. In order to sufficiently exhibit the above action, it is desirable that the content be 0.05 mass% or more in the case of Nb and 0.03 mass% or more in the case of Ti. However, if these elements are added excessively, the steel material becomes hard, so it is necessary to add Nb in a range of 0.80% by mass or less and Ti in a range of 0.50% by mass or less. Nb and Ti may be added in combination within the above range.

Cuは、析出強化または固溶強化によりフェライト系鋼の高温強度を更に向上させるので、必要に応じて添加することができる。上記作用を充分に発揮させるには、0.1質量%以上の含有量とすることが望ましい。ただし、Cuを過剰添加すると鋼材が硬質化するので、Cuを添加する場合は2.0質量%以下の範囲で行う必要がある。   Since Cu further improves the high-temperature strength of ferritic steel by precipitation strengthening or solid solution strengthening, it can be added as necessary. In order to fully exhibit the said effect | action, it is desirable to set it as 0.1 mass% or more content. However, when Cu is added excessively, the steel material becomes hard, so when adding Cu, it is necessary to carry out within a range of 2.0 mass% or less.

その他の成分については特に規定しないが、一般的な不純物元素であるP,O,Ni等は可能な限り低減することが望ましい。Pは0.04質量%まで、Oは0.02質量%まで、Niは0.6質量%まで、それぞれ許容される。なお、高レベルの加工性や溶接性を確保する場合はP,O,Niを更に厳しく規制すればよい。
耐熱性の改善に有効なW,Ta,V,Zrや、熱間加工性の改善に有効なB,Mg,Co等の元素も必要に応じて添加することができる。
Other components are not particularly defined, but it is desirable to reduce general impurity elements such as P, O, and Ni as much as possible. P is allowed up to 0.04% by mass, O up to 0.02% by mass and Ni up to 0.6% by mass. In order to secure a high level of workability and weldability, P, O, and Ni may be more strictly regulated.
Elements such as W, Ta, V, Zr effective for improving heat resistance and B, Mg, Co, etc. effective for improving hot workability can be added as required.

以上の化学組成を有するフェライト系鋼材の表面に研磨歪みを付与した後、これを使用環境である高温水蒸気雰囲気に曝すか(手法A)、あるいは予め酸化性の高温雰囲気に保持して(手法B)、耐高温水蒸気酸化性を付与する。以下、これらの手法について説明する。   After imparting polishing strain to the surface of a ferritic steel material having the above chemical composition, it is exposed to a high-temperature steam atmosphere that is the environment in which it is used (Method A) or held in advance in an oxidizing high-temperature atmosphere (Method B). ), Imparts high temperature steam oxidation resistance. Hereinafter, these methods will be described.

〔手法A〕
まず、通常の方法により鋼材(例えば鋼板)を製造し、その表面に研磨歪みを付与する。具体的には、JIS R 6001に規定される50番以上の番手で研磨仕上げすることにより研磨歪みを導入することができる。あまり研磨番手が高い(目が細かい)と生産性に劣るので、600番以下で行うことが望ましい。番手の異なる研磨を順次施してもよい。また、JIS G 4305に規定されるNo.4研磨仕上げを施すことによっても充分な研磨歪みが付与される。
[Method A]
First, a steel material (for example, a steel plate) is manufactured by a normal method, and polishing distortion is applied to the surface. Specifically, polishing distortion can be introduced by polishing and finishing with a number of 50 or more as defined in JIS R 6001. If the polishing count is too high (fine eyes), the productivity will be inferior. Polishing with different counts may be performed sequentially. Moreover, sufficient polishing distortion is imparted by applying No. 4 polishing finish defined in JIS G 4305.

次に、このような研磨歪みを有した状態の鋼材を使用環境である500〜800℃の高温水蒸気雰囲気に曝すことによって、研磨を施さない状態よりも表面へのCr,Siの拡散が著しく速くなる。その結果、CrやSiが濃化した初期酸化皮膜が迅速に形成される。このCr,Si系酸化皮膜が、その後の水蒸気酸化を顕著に抑制するのである。例えば、70体積%H2O+30体積%CH4,600℃の雰囲気下に200時間保持する耐高温水蒸気試験を施したとき、表面に赤スケールの発生が認められず、その試験前後における質量増加が0.2mg/cm2以下となるような、優れた耐高温水蒸気酸化性を呈するものが得られる。 Next, by exposing the steel material having such a polishing strain to a high-temperature steam atmosphere of 500 to 800 ° C., which is the use environment, the diffusion of Cr and Si to the surface is significantly faster than in the case where the polishing is not performed. Become. As a result, an initial oxide film enriched with Cr and Si is rapidly formed. This Cr, Si-based oxide film significantly suppresses subsequent steam oxidation. For example, when a high temperature steam resistance test is performed for 200 hours in an atmosphere of 70% by volume H 2 O + 30% by volume CH 4 and 600 ° C., no red scale is observed on the surface, and the mass increase before and after the test A material exhibiting excellent high temperature steam oxidation resistance such as 0.2 mg / cm 2 or less is obtained.

ここで、200時間保持したときに質量増加が0.2mg/cm2以下であるか否かは、当該高温水蒸気雰囲気において異常な酸化が防止できるか否か、つまり、「赤スケール」の連続的な発生が防げるか否か、を評価するための基準となる。すなわち、前記600℃の高温水蒸気雰囲気に200時間曝した後の質量増加が0.2mg/cm2以下である性能を有していれば、そのフェライト系鋼材は、500〜800℃の高温水蒸気雰囲気において、異常な酸化を起こさない耐久性を有することが、数多くの実験から明らかになった。逆に、前記条件で質量増加が0.2mg/cm2を超える鋼材は、たとえ200時間で異常な酸化を起こしていなくても、さらに長時間の保持あるいは700℃や800℃といった高温での保持によって異常な酸化を生じる場合が多く、安定した耐高温水蒸気酸化性を有する鋼材と判定することはできない。この意味で、前記条件の実験における「質量増加0.2mg/cm2」という数値は異常な酸化が生じるかどうかを分ける臨界値であると言える。 Here, whether or not the mass increase is 0.2 mg / cm 2 or less when held for 200 hours is whether or not abnormal oxidation can be prevented in the high-temperature steam atmosphere, that is, the continuous “red scale” This is a standard for evaluating whether or not the occurrence of a problem can be prevented. That is, if the mass increase after being exposed to the 600 ° C. high temperature steam atmosphere for 200 hours is 0.2 mg / cm 2 or less, the ferritic steel material has a high temperature steam atmosphere of 500 to 800 ° C. It has become clear from numerous experiments that it has durability that does not cause abnormal oxidation. On the contrary, a steel material whose mass increase exceeds 0.2 mg / cm 2 under the above conditions is maintained for a longer time or at a high temperature such as 700 ° C. or 800 ° C. even if abnormal oxidation does not occur in 200 hours. As a result, abnormal oxidation often occurs, and it cannot be determined that the steel material has stable high-temperature steam oxidation resistance. In this sense, it can be said that the numerical value “mass increase 0.2 mg / cm 2 ” in the experiment under the above conditions is a critical value that determines whether or not abnormal oxidation occurs.

手法Aでは、研磨後に表層の研磨歪みが除去されないように、研磨済みの鋼材を高温の還元性雰囲気(例えば400℃以上の100%水素雰囲気)の加熱処理に供することなく水蒸気雰囲気に適用することが肝要である。   In Method A, the polished steel material is applied to a steam atmosphere without being subjected to a heat treatment in a high-temperature reducing atmosphere (for example, a 100% hydrogen atmosphere at 400 ° C. or higher) so that polishing distortion of the surface layer is not removed after polishing. Is essential.

〔手法B〕
まず、前記手法Aの場合と同様の方法により、研磨歪みを導入した鋼材を用意する。次いで、その鋼材に対して、酸素分圧1×10-5〜2×10-1Pa,900〜1250℃の酸化性雰囲気に10〜3600秒保持する熱処理を施す。この熱処理によって、前記と類似のCr,Si系酸化皮膜を迅速に形成させることができるのである。
[Method B]
First, a steel material into which polishing strain is introduced is prepared by the same method as in the method A. Next, the steel material is subjected to heat treatment for 10 to 3600 seconds in an oxidizing atmosphere having an oxygen partial pressure of 1 × 10 −5 to 2 × 10 −1 Pa and 900 to 1250 ° C. By this heat treatment, a Cr, Si-based oxide film similar to the above can be rapidly formed.

この熱処理条件はNiロウ付け時の加熱処理に充分利用可能な条件である。つまり、Niロウ付けの処理を、同時に耐高温水蒸気酸化性を付与するための熱処理として兼ねることができる点に手法Bの大きなメリットがある。したがって手法Bは、Niロウ付けを必要とする部材、例えば燃料電池システム用の高温熱交換器部材に極めて適している。   This heat treatment condition is a condition that can be sufficiently used for the heat treatment during Ni brazing. That is, there is a great merit of the method B in that the Ni brazing treatment can be used simultaneously as a heat treatment for imparting high temperature steam oxidation resistance. Therefore, Method B is very suitable for members that require Ni brazing, such as high temperature heat exchanger members for fuel cell systems.

加熱温度900℃以上、保持時間10秒以上とすることでNiロウを溶融させることができる。ただし、1250℃以上になると鋼材の結晶粒が粗大化し、強度が著しく低下してしまう。また、3600秒以上の長時間加熱は不経済である。
酸素分圧が1×10-5Pa未満だと表面に保護皮膜を形成させるに足る充分な酸素が供給されない。一方、酸素分圧は高ければ高いほど良好な酸化皮膜が形成されるが、手法Bの加熱処理方法としてNiロウ付けを選択した場合、良好なロウ付けを行うためには酸素分圧を2×10-1Pa以下とする必要がある。すなわち、酸素分圧が2×10-1Paを超えるとロウが溶融する前にNiロウおよび素材が酸化されてしまい、良好な接合が行えない。
なお、この熱処理雰囲気は酸化性の雰囲気である必要がある。そのような雰囲気は大気を真空排気することによって容易に得られるが、N,Ar等の不活性ガスで置換することでも得ることができる。
Ni wax can be melted by setting the heating temperature to 900 ° C. or more and the holding time to 10 seconds or more. However, when it becomes 1250 degreeC or more, the crystal grain of steel materials will coarsen and intensity | strength will fall remarkably. Further, heating for a long time of 3600 seconds or more is uneconomical.
If the oxygen partial pressure is less than 1 × 10 −5 Pa, sufficient oxygen is not supplied to form a protective film on the surface. On the other hand, the higher the oxygen partial pressure, the better the oxide film is formed. However, when Ni brazing is selected as the heat treatment method of Method B, the oxygen partial pressure is set to 2 × to achieve good brazing. It is necessary to set it as 10 < -1 > Pa or less. That is, when the oxygen partial pressure exceeds 2 × 10 −1 Pa, the Ni brazing material and the material are oxidized before the brazing melt, and good bonding cannot be performed.
This heat treatment atmosphere needs to be an oxidizing atmosphere. Such an atmosphere can be easily obtained by evacuating the air, but it can also be obtained by substituting with an inert gas such as N or Ar.

このようにして予め保護皮膜を形成した鋼材は、既に研磨歪みは除去されているが、この状態で500〜800℃の高温水蒸気雰囲気に曝したとき、水蒸気酸化の進行が顕著に抑制され、異常酸化が防止される。具体的には前記と同様に、70体積%H2O+30体積%CH4,600℃の雰囲気下に200時間保持する耐高温水蒸気試験を施したとき、その試験前後における質量増加が0.2mg/cm2以下となるような、優れた耐高温水蒸気酸化性を呈するのである。 In this way, the steel material on which the protective film has been formed in advance has already been freed from polishing distortion, but when exposed to a high-temperature steam atmosphere at 500 to 800 ° C. in this state, the progress of steam oxidation is remarkably suppressed and abnormal. Oxidation is prevented. Specifically, in the same manner as described above, when a high temperature steam resistance test was performed for 200 hours in an atmosphere of 70% by volume H 2 O + 30% by volume CH 4 and 600 ° C., the mass increase before and after the test was 0.2 mg / kg. It exhibits excellent high-temperature steam oxidation resistance such as cm 2 or less.

表1に示す組成のフェライト系鋼を30kg真空溶解炉で溶製した後、粗圧延、熱延、焼鈍、酸洗、冷延、仕上げ焼鈍を経て板厚1.5mmの冷延焼鈍鋼板を製造した。   After the ferritic steel having the composition shown in Table 1 is melted in a 30 kg vacuum melting furnace, a cold rolled annealed steel sheet having a thickness of 1.5 mm is manufactured through rough rolling, hot rolling, annealing, pickling, cold rolling, and finish annealing. did.

Figure 0004463663
Figure 0004463663

各冷延焼鈍鋼板のうち、本発明規定範囲の化学組成をもつ鋼1〜鋼5の鋼板を用いて、以下の3通りの仕上げ材を作製した。
[1] JIS G 4305に規定されるNo.2D仕上げを施した冷延焼鈍鋼板。
[2] JIS G 4305に規定されるNo.4仕上げを施した研磨仕上げ鋼板。
[3] JIS R 6001に準拠して400番の番手で研磨した研磨仕上げ鋼板。
これら[1]〜[3]の仕上げ材について、以下の2通りの手法で耐高温水蒸気酸化性を調べた。
i) 直接、高温水蒸気雰囲気(600℃,70体積%H2O+30体積%CH4)に200時間保持する手法。
ii) 大気を真空排気して酸素分圧が2×10-5Pa(全圧は1×10-4Pa)となるようにした減圧雰囲気下で1150℃×3分保持の熱処理を施した後、高温水蒸気雰囲気(600℃,70体積%H2O+30体積%CH4)に200時間保持する手法。
Of the cold-rolled annealed steel plates, the following three types of finishing materials were prepared using steel plates 1 to 5 having a chemical composition in the range specified in the present invention.
[1] A cold-rolled annealed steel sheet having a No. 2D finish defined in JIS G 4305.
[2] Polished steel sheet with No. 4 finish specified in JIS G 4305.
[3] Polished steel sheet polished with No. 400 according to JIS R 6001.
About these [1]-[3] finishing materials, high temperature steam oxidation resistance was investigated by the following two methods.
i) A method of directly holding in a high-temperature steam atmosphere (600 ° C., 70% by volume H 2 O + 30% by volume CH 4 ) for 200 hours.
ii) After performing a heat treatment of holding at 1150 ° C. for 3 minutes under a reduced pressure atmosphere in which the atmosphere is evacuated and the oxygen partial pressure is 2 × 10 −5 Pa (total pressure is 1 × 10 −4 Pa) , A method of holding in a high-temperature steam atmosphere (600 ° C., 70% by volume H 2 O + 30% by volume CH 4 ) for 200 hours.

上記i)ii)の手法における高温水蒸気雰囲気は自動車用燃料電池システムの高温熱交換器の使用環境を考慮したものである。耐高温水蒸気酸化性は、i)ii)とも、高温水蒸気雰囲気に保持する前後の試験片単位面積当たりの質量変化によって以下のように評価した。
○:質量増加が0.2mg/cm2以下のもの
×:質量増加が0.2mg/cm2を超えるもの
この場合、○評価のものは500〜800℃の高温水蒸気雰囲気下で異常酸化の生じない優れた耐久性を呈すると判断することができ(前述)、合格と判定される。結果を表2に示す。
The high temperature steam atmosphere in the above method i) ii) considers the usage environment of the high temperature heat exchanger of the automotive fuel cell system. The high-temperature steam oxidation resistance was evaluated as follows in both i) and ii) by the change in mass per unit area of the test piece before and after being held in the high-temperature steam atmosphere.
○: Mass increase is 0.2 mg / cm 2 or less ×: Mass increase is more than 0.2 mg / cm 2 In this case, ○ is evaluated that abnormal oxidation occurs in a high-temperature steam atmosphere at 500 to 800 ° C. It can be determined that it exhibits excellent durability (described above) and is determined to be acceptable. The results are shown in Table 2.

Figure 0004463663
Figure 0004463663

表2からわかるように、研磨歪みを導入していない2D仕上げ材の場合、耐高温水蒸気酸化性の改善を図ることはできなかった。
これに対し、No.4仕上げ材および400番研磨仕上げ材では、i)の手法およびii)の手法のいずれにおいても優れた耐高温水蒸気酸化性を付与することができた。この場合、i)が前記「手法A」に相当し、ii)が前記「手法B」に相当する。
As can be seen from Table 2, in the case of the 2D finishing material into which no polishing strain was introduced, the high temperature steam oxidation resistance could not be improved.
On the other hand, the No. 4 finish and the No. 400 polishing finish were able to impart excellent high temperature steam oxidation resistance in both the methods i) and ii). In this case, i) corresponds to the “method A”, and ii) corresponds to the “method B”.

表1の鋼4,鋼5,鋼6〜鋼8の5鋼種について、前記冷延焼鈍鋼板(板厚1.5mm)を用いて、更に冷延、焼鈍、酸洗を施し、板厚0.5mmの鋼板および板厚0.2mmの鋼板を作製し、これらの表面に最終仕上げとしてJIS G 4305に規定されるNo.4研磨仕上を施した。この0.2mm厚の板をプレス加工により波形に加工して「フィン」とし、0.5mm厚の板を「プレート」として、「プレート」−「フィン」−「プレート」で構成される単層のプレート型熱交換器を作製した。両プレート間の間隔は約1.5mmである。プレートとフィンの接合はNiロウ付けで行った。NiロウとしてBNi−5を用い、ロウ付け時の加熱条件は、大気を真空排気して酸素分圧が4×10-2Pa(全圧は2×10-1Pa)の減圧雰囲気下で1080℃×10分保持したのち、更に昇温して1160℃×10分保持する方法とした。得られたプレート型熱交換器から幅10mm×長さ50mmの耐久試験片を切り出した。この場合、幅方向に垂直な断面にフィンの波形の切り口が現れるようにした。 For the five steel types of steel 4, steel 5, steel 6 to steel 8 in Table 1, cold rolling, annealing and pickling were further performed using the cold-rolled annealed steel plate (plate thickness 1.5 mm), and the plate thickness was set to 0.00. A steel plate having a thickness of 5 mm and a steel plate having a thickness of 0.2 mm was prepared, and a No. 4 polishing finish defined in JIS G 4305 was applied to these surfaces as a final finish. This 0.2 mm thick plate is processed into a corrugated shape by press working to form a “fin”, and a 0.5 mm thick plate is designated as a “plate”. A plate type heat exchanger was prepared. The distance between both plates is about 1.5 mm. The plate and fin were joined by Ni brazing. BNi-5 is used as the Ni brazing, and the heating conditions during brazing are 1080 under a reduced pressure atmosphere in which the atmosphere is evacuated and the oxygen partial pressure is 4 × 10 −2 Pa (total pressure is 2 × 10 −1 Pa). After holding at 10 ° C. for 10 minutes, the temperature was further raised and held at 1160 ° C. for 10 minutes. A durability test piece having a width of 10 mm and a length of 50 mm was cut out from the obtained plate-type heat exchanger. In this case, a corrugated cut of the fin appears in a cross section perpendicular to the width direction.

耐久試験は、「10%水蒸気を含む空気中で600℃×25分保持 → 10分間水冷」のサイクルを1000サイクル繰り返す方法で行った。耐久試験後の試験片について外観観察および顕微鏡観察を行い、プレートとフィンの変形または亀裂の有無を調べた。
プレートに関しては、熱疲労によりプレート端面で板が外側または内側に曲がる現象に着目し、以下のように評価し、○評価を合格とした。
○:板の変形角が10°以下のもの
×:板の変形角が10°を超えるもの
フィンに関しては、熱疲労起因の亀裂の有無により以下のように評価し、○評価を合格とした。
○:熱疲労起因の亀裂が認められないもの
×:熱疲労起因の亀裂が認められるもの
また、耐高温水蒸気酸化性については、耐久試験後のプレート部とフィン部を全体的に観察して以下のように評価し、○評価を合格とした。
○:深さ5μmを超える侵食が認められないもの
×:深さ5μmを超える侵食が認められるもの
結果を表3に示す。
The endurance test was performed by a method in which a cycle of “retaining 600 ° C. × 25 minutes in air containing 10% water vapor → water cooling for 10 minutes” was repeated 1000 cycles. Appearance observation and microscopic observation were performed on the test piece after the durability test, and the presence or absence of deformation or cracking of the plate and the fin was examined.
With regard to the plate, focusing on the phenomenon that the plate bends outward or inward at the end face of the plate due to thermal fatigue, it was evaluated as follows, and the evaluation was accepted.
○: The plate has a deformation angle of 10 ° or less. ×: The plate has a deformation angle of more than 10 °. The fins were evaluated as follows depending on the presence or absence of cracks caused by thermal fatigue, and the evaluation was “good”.
○: No cracks due to thermal fatigue are observed ×: Cracks due to thermal fatigue are observed Further, regarding high temperature steam oxidation resistance, the plate portion and fin portion after the endurance test are generally observed and The evaluation was evaluated as pass.
○: No erosion exceeding 5 μm in depth X: No erosion exceeding 5 μm in depth is shown in Table 3.

Figure 0004463663
Figure 0004463663

表3からわかるように、鋼4,鋼5の発明対象鋼を用いた熱交換器ではプレートの変形,フィンの亀裂が見当たらず、また水蒸気酸化による深さ5μmを超える侵食も認められなかった。
これに対し、オーステナイト系鋼である鋼6(SUS304相当)、鋼7(SUS316L相当)、鋼8(SUS310S相当)を用いた例では、いずれも水蒸気酸化による深さ5μmを超える侵食が見られ、かつプレート部には大きな変形が生じていた。また鋼6および鋼7では、フィン部に熱疲労起因の亀裂が生じていた。
As can be seen from Table 3, in the heat exchangers using steels 4 and 5, the plate deformation and fin cracks were not found, and erosion exceeding a depth of 5 μm due to steam oxidation was not observed.
On the other hand, in the examples using steel 6 (equivalent to SUS304), steel 7 (equivalent to SUS316L), steel 8 (equivalent to SUS310S), which are austenitic steels, erosion exceeding a depth of 5 μm due to steam oxidation is observed. In addition, the plate portion was greatly deformed. In Steel 6 and Steel 7, cracks due to thermal fatigue occurred in the fin portion.

直交型熱交換器の構造を模式的に表した斜視図。The perspective view which represented typically the structure of the orthogonal type heat exchanger.

符号の説明Explanation of symbols

1 プレート
2 フィン
1 plate 2 fins

Claims (7)

質量%で、C:0.03%以下,Si:0.1超え〜1.5%,Mn:1.5%以下,Cr:9〜24%,S:0.01%以下,N:0.03%以下,Al:0〜1.0%,Mo:0〜3.0%,Nb:0〜0.80%,Ti:0〜0.50%,Cu:0〜2.0%、残部がFeおよび不可避的不純物からなり、表面に研磨歪みを付与した鋼材に対して、
酸素分圧1×10-5Pa以上,900〜1250℃の雰囲気に10〜3600秒保持する熱処理、
を施して得られる耐高温水蒸気酸化性に優れたフェライト系鋼材。
In mass%, C: 0.03% or less, Si: more than 0.1 to 1.5%, Mn: 1.5% or less, Cr: 9 to 24%, S: 0.01% or less, N: 0 0.03% or less, Al: 0 to 1.0%, Mo: 0 to 3.0%, Nb: 0 to 0.80%, Ti: 0 to 0.50%, Cu: 0 to 2.0%, For the steel material whose balance is made of Fe and inevitable impurities and whose surface is subjected to polishing distortion,
A heat treatment in which an oxygen partial pressure of 1 × 10 −5 Pa or higher and 900 to 1250 ° C. is maintained for 10 to 3600 seconds;
Ferritic steel material with excellent high-temperature steam oxidation resistance obtained by applying.
質量%で、C:0.03%以下,Si:0.1超え〜1.5%,Mn:1.5%以下,Cr:9〜24%,S:0.01%以下,N:0.03%以下,Al:0〜1.0%,Mo:0〜3.0%,Nb:0〜0.80%,Ti:0〜0.50%,Cu:0〜2.0%、残部がFeおよび不可避的不純物からなる化学組成を有し、JIS R 6001に規定される50番以上の番手で研磨仕上げした鋼材に対して、
大気を真空排気または不活性ガスにより置換して酸素分圧が1×10-5〜2×10-1Paとなるようにした900〜1250℃の雰囲気に10〜3600秒保持する熱処理、
を施して得られる耐高温水蒸気酸化性に優れたフェライト系鋼材。
In mass%, C: 0.03% or less, Si: more than 0.1 to 1.5%, Mn: 1.5% or less, Cr: 9 to 24%, S: 0.01% or less, N: 0 0.03% or less, Al: 0 to 1.0%, Mo: 0 to 3.0%, Nb: 0 to 0.80%, Ti: 0 to 0.50%, Cu: 0 to 2.0%, For the steel material having the chemical composition composed of Fe and unavoidable impurities in the balance and polished and finished with a number 50 or higher as defined in JIS R 6001,
Heat treatment for holding for 10 to 3600 seconds in an atmosphere of 900 to 1250 ° C. in which the atmosphere is evacuated or replaced with an inert gas so that the oxygen partial pressure becomes 1 × 10 −5 to 2 × 10 −1 Pa.
Ferritic steel material with excellent high-temperature steam oxidation resistance obtained by applying.
質量%で、C:0.03%以下,Si:0.1超え〜1.5%,Mn:1.5%以下,Cr:9〜24%,S:0.01%以下,N:0.03%以下,Al:0〜1.0%,Mo:0〜3.0%,Nb:0〜0.80%,Ti:0〜0.50%,Cu:0〜2.0%、残部がFeおよび不可避的不純物からなる化学組成を有し、JIS G 4305に規定されるNo.4研磨仕上げが施された鋼材に対して、
大気を真空排気または不活性ガスにより置換して酸素分圧が1×10-5〜2×10-1Paとなるようにした900〜1250℃の雰囲気に10〜3600秒保持する熱処理、
を施して得られる耐高温水蒸気酸化性に優れたフェライト系鋼材。
In mass%, C: 0.03% or less, Si: more than 0.1 to 1.5%, Mn: 1.5% or less, Cr: 9 to 24%, S: 0.01% or less, N: 0 0.03% or less, Al: 0 to 1.0%, Mo: 0 to 3.0%, Nb: 0 to 0.80%, Ti: 0 to 0.50%, Cu: 0 to 2.0%, For the steel material having the chemical composition composed of Fe and inevitable impurities and having a No. 4 polishing finish defined in JIS G 4305,
Heat treatment for holding for 10 to 3600 seconds in an atmosphere of 900 to 1250 ° C. in which the atmosphere is evacuated or replaced with an inert gas so that the oxygen partial pressure becomes 1 × 10 −5 to 2 × 10 −1 Pa.
Ferritic steel material with excellent high-temperature steam oxidation resistance obtained by applying.
70体積%H2O+30体積%CH4,600℃の雰囲気下に200時間保持する耐高温水蒸気試験を施したとき、その試験前後における質量増加が0.2mg/cm2以下となる請求項1〜3に記載の耐高温水蒸気酸化性に優れたフェライト系鋼材。 70% by volume H 2 O + 30% by volume CH 4 , when subjected to a high temperature steam resistance test held for 200 hours in an atmosphere of 600 ° C., the mass increase before and after the test is 0.2 mg / cm 2 or less. 3. A ferritic steel material excellent in high temperature steam oxidation resistance according to 3. 前記耐高温水蒸気酸化性に優れたフェライト系鋼材が、500〜800℃の高温水蒸気に接触する熱交換器部材に使用されるものである請求項1〜3に記載の耐高温水蒸気酸化性に優れたフェライト系鋼材。   The high-temperature steam oxidation resistance according to claim 1, wherein the ferritic steel material excellent in high-temperature steam oxidation resistance is used for a heat exchanger member that contacts high-temperature steam at 500 to 800 ° C. Ferritic steel. 質量%で、C:0.03%以下,Si:0.1超え〜1.5%,Mn:1.5%以下,Cr:9〜24%,S:0.01%以下,N:0.03%以下,Al:0〜1.0%,Mo:0〜3.0%,Nb:0〜0.80%,Ti:0〜0.50%,Cu:0〜2.0%、残部がFeおよび不可避的不純物からなり、表面に研磨歪みが付与された鋼材を、500〜800℃の高温水蒸気に接触する環境に曝して使用する、耐高温水蒸気酸化性に優れたフェライト系鋼材の使用方法。   In mass%, C: 0.03% or less, Si: more than 0.1 to 1.5%, Mn: 1.5% or less, Cr: 9 to 24%, S: 0.01% or less, N: 0 0.03% or less, Al: 0 to 1.0%, Mo: 0 to 3.0%, Nb: 0 to 0.80%, Ti: 0 to 0.50%, Cu: 0 to 2.0%, A ferritic steel material excellent in high-temperature steam oxidation resistance, wherein the balance is made of Fe and inevitable impurities, and the steel material having a surface subjected to polishing strain is exposed to an environment in contact with high-temperature steam at 500 to 800 ° C. how to use. 質量%で、C:0.03%以下,Si:0.1超え〜1.5%,Mn:1.5%以下,Cr:9〜24%,S:0.01%以下,N:0.03%以下,Al:0〜1.0%,Mo:0〜3.0%,Nb:0〜0.80%,Ti:0〜0.50%,Cu:0〜2.0%、残部がFeおよび不可避的不純物からなる鋼材の表面に研磨歪みを付与した後、大気を真空排気または不活性ガスにより置換して酸素分圧が1×10-5〜2×10-1Paとなるようにした900〜1250℃の雰囲気に10〜3600秒保持する熱処理を施した鋼材を、500〜800℃の高温水蒸気に接触する環境に曝して使用する、耐高温水蒸気酸化性に優れたフェライト系鋼材の使用方法。 In mass%, C: 0.03% or less, Si: more than 0.1 to 1.5%, Mn: 1.5% or less, Cr: 9 to 24%, S: 0.01% or less, N: 0 0.03% or less, Al: 0 to 1.0%, Mo: 0 to 3.0%, Nb: 0 to 0.80%, Ti: 0 to 0.50%, Cu: 0 to 2.0%, After applying polishing strain to the surface of the steel material, the balance of which is Fe and inevitable impurities, the atmosphere is replaced with vacuum exhaust or inert gas, and the oxygen partial pressure becomes 1 × 10 −5 to 2 × 10 −1 Pa. A ferritic material excellent in high-temperature steam oxidation resistance, which is used by exposing a steel material subjected to heat treatment in an atmosphere of 900 to 1250 ° C. for 10 to 3600 seconds to be exposed to an environment in contact with high-temperature steam at 500 to 800 ° C. How to use steel.
JP2004321205A 2004-11-04 2004-11-04 Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof Active JP4463663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004321205A JP4463663B2 (en) 2004-11-04 2004-11-04 Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004321205A JP4463663B2 (en) 2004-11-04 2004-11-04 Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof

Publications (2)

Publication Number Publication Date
JP2006131945A JP2006131945A (en) 2006-05-25
JP4463663B2 true JP4463663B2 (en) 2010-05-19

Family

ID=36725755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004321205A Active JP4463663B2 (en) 2004-11-04 2004-11-04 Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof

Country Status (1)

Country Link
JP (1) JP4463663B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5105822B2 (en) * 2006-10-18 2012-12-26 日新製鋼株式会社 Heat transfer material for heat collection and manufacturing method thereof
JP2008156692A (en) * 2006-12-22 2008-07-10 Nisshin Steel Co Ltd Ferritic stainless steel for high-temperature device of fuel cell
JP2009007601A (en) * 2007-06-26 2009-01-15 Nisshin Steel Co Ltd Ferritic stainless steel member for heat collection apparatus
JP2010116622A (en) * 2008-11-14 2010-05-27 Nisshin Steel Co Ltd Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
US20120111529A1 (en) * 2009-07-27 2012-05-10 Nisshin Steel Co., Ltd. Ferritic stainless steel for egr cooler and egr cooler
ES2604714T3 (en) * 2011-11-22 2017-03-08 Nippon Steel & Sumitomo Metal Corporation Heat resistant ferritic steel, and its manufacturing method
JP6051844B2 (en) * 2011-12-26 2016-12-27 株式会社ノーリツ Latent heat recovery type hot water generating device and manufacturing method thereof
UA111115C2 (en) 2012-04-02 2016-03-25 Ейкей Стіл Пропертіс, Інк. cost effective ferritic stainless steel
US20140065005A1 (en) * 2012-08-31 2014-03-06 Eizo Yoshitake Ferritic Stainless Steel with Excellent Oxidation Resistance, Good High Temperature Strength, and Good Formability
JP6799387B2 (en) * 2016-05-17 2020-12-16 日鉄ステンレス株式会社 Manufacturing method of ferritic stainless steel with excellent steam oxidation resistance

Also Published As

Publication number Publication date
JP2006131945A (en) 2006-05-25

Similar Documents

Publication Publication Date Title
CA2762899C (en) Ferritic stainless steel material for brazing and heat exchanger member
CN102027146B (en) Ferrite-group stainless steel
JP5264199B2 (en) EGR cooler using ferritic stainless steel
WO2009084526A1 (en) Ferric stainless steel having excellent brazeability
JP2010116622A (en) Ferritic stainless steel for heat pipe and steel sheet, and heat pipe and high temperature waste heat recovery device
JP5141296B2 (en) Ferritic stainless steel with excellent high temperature strength and toughness
JP3995978B2 (en) Ferritic stainless steel for heat exchanger
WO2016152854A1 (en) Stainless steel having excellent brazeability
WO2011013193A1 (en) Ferritic stainless steel for egr cooler and egr cooler
WO2017073093A1 (en) Ferritic stainless steel for fuel cell with excellent anti-creep strength and manufacturing method therefor
EP3369832A1 (en) Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER
JP2017150016A (en) Ferritic stainless steel and manufacturing method therefor
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP4463663B2 (en) Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
EP3064606B1 (en) Ferritic stainless steel for use in fuel reformer and method of manufacturing ferritic stainless steel
JP2006134662A (en) Heat exchanger for fuel cell system of automobile
JP7270444B2 (en) Ferritic stainless steel sheet and manufacturing method thereof
JP2009007601A (en) Ferritic stainless steel member for heat collection apparatus
JP2018150606A (en) Austenitic stainless steel sheet and gasket
JP5464037B2 (en) Austenitic stainless steel, stainless steel products, and methods for producing them
JP3915717B2 (en) Thin stainless steel sheet
JP3827988B2 (en) Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance
JP3942876B2 (en) Ferritic stainless steel for hydrocarbon fuel reformer
JP2005330501A (en) Austenitic stainless steel for exhaust manifold
JP4078881B2 (en) Austenitic stainless steel sheet for heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4463663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250