JP3827988B2 - Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance - Google Patents

Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance Download PDF

Info

Publication number
JP3827988B2
JP3827988B2 JP2001326233A JP2001326233A JP3827988B2 JP 3827988 B2 JP3827988 B2 JP 3827988B2 JP 2001326233 A JP2001326233 A JP 2001326233A JP 2001326233 A JP2001326233 A JP 2001326233A JP 3827988 B2 JP3827988 B2 JP 3827988B2
Authority
JP
Japan
Prior art keywords
resistance
mass
carburization
stainless steel
embrittlement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001326233A
Other languages
Japanese (ja)
Other versions
JP2003129192A (en
Inventor
学 奥
佳幸 藤村
芳明 堀
敏郎 名越
正天 門脇
幸徳 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, Nisshin Steel Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001326233A priority Critical patent/JP3827988B2/en
Publication of JP2003129192A publication Critical patent/JP2003129192A/en
Application granted granted Critical
Publication of JP3827988B2 publication Critical patent/JP3827988B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、水蒸気及び一酸化炭素を多量に含む雰囲気で構成部材として使用される耐水蒸気酸化性,耐浸炭性及び耐σ脆化性に優れたオーステナイト系ステンレス鋼に関する。
【0002】
【従来の技術】
石油精製プロセスは、水素化脱硫工程で大量の水素を消費するため、水素製造装置を必要とする。従来の水素製造装置では、LPGやガソリンを水蒸気と共に高温中圧の触媒雰囲気で改質することによって水素を生成していることから、JIS G5122に規定されているSCH22(25Cr−20Ni−0.4C),SCH24(25Cr−35Ni−0.4C)等の遠心力鋳造管やJIS G5122に規定されているNCF800(20Cr−32Ni−Ti−Al)等の鍛造材が水蒸気改質用反応管に使用されている(日刊工業新聞社 1995年発行「ステンレス鋼便覧第3版」第1196頁)。
【0003】
他方、オンサイト型や可搬型燃料電池の開発に伴って、電池の作動に必要な水素を得るために石油精製用に比較して小型の水素発生装置の開発・実用化が進められている。アルコール,都市ガス,LPG,灯油,ガソリン等、種々の燃料が水素源として検討されているが、水蒸気を含む触媒雰囲気中で改質反応を起こさせるために600〜1000℃の高温加熱が何れの燃料を使用する場合でも必要になる。
【0004】
小型の水素発生装置は、石油精製用の大型装置に比較して水素の供給量が一定でなく、装置も頻繁に起動停止される。この使用形態から、繰返し加熱・冷却に伴う酸化スケールの耐剥離性に優れていることが水素発生装置の構成部材に要求される。なかでも、多量の水蒸気を含み、且つ酸素が少ない改質反応部等の雰囲気下での耐スケール剥離性が重要なファクターになる。
【0005】
更に、炭化水素系燃料を使用する小型の水素発生装置では、水蒸気や水素の他に一酸化炭素,二酸化炭素等も改質反応後の雰囲気に含まれる。特に一酸化炭素が多く含まれると浸炭性雰囲気になるため、浸炭性が材質面の問題となる。しかも、水蒸気酸化雰囲気でのスケール剥離と浸炭性雰囲気での浸炭が重畳すると、従来の石油精製用水素発生装置に比較して激しい材料損傷が予想される。
【0006】
高温特性が要求される構成材料としてフェライト系,オーステナイト系等の耐熱ステンレス鋼が知られている。フェライト系ステンレス鋼は、オーステナイト系ステンレス鋼よりも熱膨張係数が小さく、酸化スケールの密着性にも優れている。しかし、高温でのC拡散速度がオーステナイト系ステンレス鋼よりも速く、耐浸炭性に劣る。熱膨張係数の小さなフェライト系ステンレス鋼は、加熱・冷却の繰返しに曝される環境下で優れた熱疲労特性を示すが、オーステナイト系ステンレス鋼よりも高温強度が低いため高温保持中の耐変形性(耐高温クリープ性)に劣っている。フェライト系ステンレス鋼のなかでも多量のAlを含む鋼種は、酸化スケールの密着性及び耐浸炭性の双方に優れているが、加工性,溶接性及び靭性に劣るため、水素発生器のような溶接構造体に適用することは困難である。
【0007】
他方、オーステナイト系ステンレス鋼は、フェライト系ステンレス鋼よりも加工性や溶接性に優れており、溶接構造体への適用は比較的容易である。しかし、大きな熱膨張係数のため、フェライト系ステンレス鋼に比較して酸化スケールの密着性が本質的に劣っている。オーステナイト系ステンレス鋼の耐高温酸化性や耐スケール剥離性を向上させるため、従来から種々の改善が検討されている。たとえば、Siを添加したSUS XM15J1(19Cr−13Ni−3.3Si),AISI314(25Cr−20Ni−2Si)等や、4.5〜6質量%のAlを含ませた鋼(特開昭55−43498号公報),Al及びSiを複合添加した鋼(特公昭54−12887号公報),REM(希土類金属)を複合添加した鋼(特公昭54−12890号公報)等が耐熱部材用オーステナイト系ステンレス鋼として開発されている。耐浸炭性に関しては、Cr及びSiの合計含有量を30質量%以上とすることにより、優れた耐浸炭性をもつ鋼材となることが知られている(日刊工業新聞社 1995年発行「ステンレス鋼便覧第3版」第407頁)。
【0008】
【発明が解決しようとする課題】
しかし、従来のオーステナイト系ステンレス鋼では、若干の水蒸気を含む燃焼雰囲気中での加熱・冷却に曝される条件下での耐スケール剥離性が必ずしも十分でない。Cr及びSiを多量に含むオーステナイト系ステンレス鋼は、冷却後の靭性に有害なσ相が高温での使用中に生じやすく、何らかの衝撃や振動が加えられたとき構造体の破損が懸念される。
【0009】
このようなことから、小型水素発生器の構造材料には、次の特性に優れていることが要求される。
▲1▼ 多量の水蒸気を含み、且つ酸素が少ない(改質反応によっては酸素を全く含まない)環境での加熱・冷却の繰返しに対する耐スケール剥離性
▲2▼ 多量の水蒸気を含み、且つ一酸化炭素を含む環境での加熱・冷却の繰返しに対する耐浸炭性
▲3▼ 長時間加熱後の耐σ脆化性
【0010】
更に溶接構造体としての使用を考慮すると、次の特性も重要である。
▲4▼ 熱疲労特性やクリープ特性に優れていること。
▲5▼ 加工性、溶接性及び靭性に優れていること。
汎用的な耐熱用オーステナイト系ステンレス鋼としては、前掲のSUS XM15J1, NCF800の他にSUS304(18Cr−8Ni),SUS309S(22Cr−12Ni),SUS310S(25Cr−20Ni)等が挙げられる。しかし、▲1▼〜▲5▼の要求特性を満足し、且つコスト的に有利な適正成分範囲が必ずしも明確にされておらず、適正材料の適用が困難であった。
【0011】
【課題を解決するための手段】
本発明は、水素発生器の構成部材として要求特性を満足させるべく合金組成を種々検討した結果案出されたものであり、合金元素の成分量を厳密に規制することによって耐スケール剥離性,耐浸炭性及び耐σ脆化性に優れたオーステナイト系ステンレス鋼を提供することを目的とする。
【0012】
本発明のオーステナイト系ステンレス鋼は,その目的を達成するため、C:0.02〜0.10質量%,Si:1.5〜2.5質量%,Mn:2.0質量%以下,P:0.04質量%以下,S:0.02質量%以下,Ni:7〜12質量%,Cr:15〜25質量%,Y及びREM(希土類金属)の1種又は2種以上:合計で0.001〜0.1質量%,N:0.02〜0.20質量%を含むことを特徴とする。
【0013】
このオーステナイト系ステンレス鋼は、Nb:0.05〜0.5質量%,Ti:0.05〜0.5質量%,Mo:0.1〜4.0質量%,Cu:0.1〜4.0質量%の1種又は2種以上を含むことができる。更に必要に応じてAl:0.01〜2.5質量%,Ca:0.001〜0.1質量%の1種又は2種を添加してもよい。
【0014】
【作用】
本発明者等は、温度域600〜1000℃の水蒸気酸化雰囲気及び浸炭雰囲気における鋼材の損傷、更にはσ脆化感受性に及ぼす合金元素の影響を調査検討した結果、次の知見を得た。
水蒸気酸化雰囲気におけるオーステナイト系ステンレス鋼の耐スケール剥離性は、大気酸化雰囲気中の耐スケール剥離性よりも劣り、酸素含有量が少ないほどスケール剥離量が多くなる。具体的には、水素発生装置の改質反応部分を反応進行に必要な加熱側と触媒による改質反応側に区分して考えると、酸素量の少ない改質反応側でスケール剥離量が多くなる。
【0015】
スケール剥離量の低減には、一定量のSiを含ませると共にY及びREMの1種又は2種以上を若干複合添加することが非常に効果的である(以下、本件明細書では、Yを包含する意味で「REM」を適宜使用する)。これにより、Cr含有量の増加を抑制でき、耐σ脆化性にも優れた鋼材の成分設計が可能となる。
水蒸気酸化雰囲気中での耐スケール剥離性を確保した上で、耐浸炭性及び耐σ脆化性の双方を改善するためには、Cr含有量を20質量%程度,Ni含有量を10質量%程度に調整した条件下でSi含有量を厳密に規制することが有効である。更に、Nb,Ti,Mo,Cuを添加すると高温強度が改善され、Al,Caの添加により連続加熱時の耐高温酸化性が改善されるが、これら任意成分の添加量を適正に規制すると耐スケール剥離性,耐浸炭性,耐σ脆化性が大きく損なわれることがない。
【0016】
以下、本発明で特定した成分設計に至った経過を含めて、より具体的に説明する。
20Cr−11Niを基本成分とする鋼に種々の量でSi及びREMを添加し、水蒸気酸化雰囲気における耐スケール剥離性に及ぼすSi及びREMの影響を調査した結果を図1に示す。本試験では、溶製時にミッシュメタル(主としてLa,Ce,Nd)としてREMを添加しており、合計量で約0.04質量%のREMを含ませている。耐スケール剥離性は、80%水蒸気を含む雰囲気中で1000℃×25分加熱→5分冷却を1サイクルとし、500サイクル繰り返した後の重量減少量で評価した。
【0017】
図1から明らかなように、Siの増加に伴ってスケール剥離量が著しく減少し、1.5質量%以上のSi添加で耐スケール剥離性が顕著に改善されており、更にREMを複合添加することによって耐スケール剥離性が一層向上していることが判る。図1では代表的な耐熱鋼であるSUS310S及びNCF800の損傷レベルを併記しているが、これら鋼種と同等以上の特性を発現させるためにはSi単独添加の場合には3質量%程度、SiとREMとの複合添加では1質量%程度のSiが必要である。
【0018】
スケール剥離試験後に試験片の断面を観察したところ、密着性が良好なスケールはCrリッチの酸化物を含み、内部酸化層にSiが存在していたが、REMを含む酸化物や元素の濃化は検出されなかった。この結果から、水蒸気酸化雰囲気中での耐スケール剥離性が改善された理由は必ずしも明らかでないものの、REMがCr及びSiの拡散を促進し、環境遮断能の強い安定した酸化物を生成させ、或いはREMそのものが微小な酸化物を形成してスケール密着性を向上させたことが窺われる。
【0019】
20Cr−11Ni−0.04REMを基本成分とする鋼に種々の添加量でSiを添加し、Si含有量が耐浸炭性及び耐σ脆化性に及ぼす影響を調査した。浸炭試験では、想定される最高使用温度(600〜1000℃)のなかでも最も激しい損傷が生じる温度条件1000℃で浸炭剤に埋没させた試験片を200時間加熱し、加熱前後の重量変化から耐浸炭性を評価した。耐σ脆化性評価試験では、最も激しいσ脆化に曝される800℃に試験片を1000時間加熱した後、室温でのシャルピー衝撃値で耐σ脆化性を評価した。
【0020】
調査結果を示す図2にみられるように、Siの増加に伴って浸炭量が減少し、1.5質量%以上のSi添加でほとんど浸炭しなくなっている。この挙動は、水蒸気酸化雰囲気における耐スケール剥離性の挙動(図1)に良く対応している。図2では耐浸炭性に優れた鋼種NCF800の浸炭量を併記しているが、本成分系に1.5質量%以上のSiを添加することによってNCF800と同等以上の耐浸炭性が発現することが判る。図2の試験とは別に800℃で1000時間以上加熱したときの耐浸炭性に関しては、本成分系に比較してNCF800が著しく劣っていた。これらの結果から、本発明に従ったオーステナイト系ステンレス鋼は、800〜1000℃の温度域でNCF800に比較して耐浸炭性に優れた鋼種といえる。
【0021】
800℃加熱での耐σ脆化性についてみると、Siの増加に伴ってシャルピー衝撃値が低下し、2.5質量%を超えるSi添加で靭性が著しく劣っている。このことから、加熱後の靭性を確保しながら耐浸炭性を改善する上で、Si含有量を1.5〜2.5質量%の範囲に厳密に規制することが重要である。
以上の結果から、十分な耐久性を備えた小型水素発生器を得るためには、Si及びREMを複合添加し、且つSi含有量の厳密な調整が必要であるといえる。
【0022】
次いで、本発明オーステナイト系ステンレス鋼に含まれる合金成分及び含有量を説明する。
C:0.02〜0.10質量%
高温強度の向上に有効な合金成分であり、0.02質量%以上で強度向上効果が顕著になる。しかし、0.10質量%を超える過剰量のCが含まれると、炭化物の析出に起因する脆化や溶接施工時のビード割れ等が生じやすくなる。好ましいC含有量の範囲は、0.04〜0.08質量%である。
【0023】
Si:1.5〜2.5質量%
水素発生器の要求特性を得る上で必要な合金成分であり、1.5質量%以上のSi添加で水蒸気酸化雰囲気における耐スケール剥離性及び浸炭雰囲気中における耐浸炭性が大幅に改善される。また、Nとの複合添加で高温強度を上昇させる作用を呈する。しかし、2.5質量%を超える過剰量のSiを添加すると、σ脆化が促進され、溶接性及び熱間加工性にも悪影響が現れる。好ましいSi含有量の範囲は、1.5〜2.0質量%である。
【0024】
Mn:2.0質量%以下
δフェライト量や加工誘起マルテンサイト量を考慮した成分バランスから、高価なNiの節減を可能にする合金成分である。しかし、2.0質量%を超える過剰量のMnを添加すると、耐高温酸化性が低下する傾向がみられる。好ましいMn含有量の範囲は、0.5〜1.5質量%である。
P:0.04質量%以下
高温強度を上昇させる反面、耐食性や耐高温酸化性を低下させる成分である。また、オーステナイト単相組織の場合、粒界に偏析して熱間加工性を低下させる。このようなことから、P含有量は低いほど好ましく、P含有量の上限を0.04質量%に設定した。
【0025】
S:0.02質量%以下
Pと同様に熱間加工性に悪影響を及ぼす成分であり、過剰にSが含まれると耐食性及び耐高温酸化性も低下する。そのため、S含有量の上限を0.02質量%に設定した。
Ni:7〜12質量%
オーステナイト系ステンレス鋼に含まれる基本成分であり、7質量%未満ではδフェライト相が多量に生成しやすくなり、耐高温酸化性及び熱間加工性が低下する。逆に12質量%を超えるNi含有量ではオーステナイト単相となりやすく、Siが含まれる本成分系では熱間加工性や溶接性が低下する。他方、耐浸炭性に関しては、一般には多いNi含有量ほど向上するが、700〜900℃の温度域では却って耐浸炭性低下傾向が示される。また、Niの過剰添加は、鋼材コストの面からも好ましくない。好ましいNi含有量の範囲は、10〜12質量%である。
【0026】
Cr:15〜25質量%
ステンレス鋼に不可欠な合金成分であり、十分な耐高温酸化性及び耐食性を確保するために15質量%以上のCrが必要である。しかし、25質量%を超える過剰量のCr含有は、耐浸炭性が向上するものの、σ脆化が生じやすくなり熱間加工性を低下させる。好ましいCr含有量の範囲は、18〜22質量%である。
【0027】
Y及び REM (希土類金属)の1種又は2種以上:合計で0.001〜0.1質量%
水蒸気酸化雰囲気中での耐スケール剥離性を向上させる合金成分であり、鋼中のSを固定して熱間加工性の改善にも有効に寄与する。微量添加であっても耐スケール剥離性の改善はみられるが、耐スケール剥離性の改善効果はY及びREMの1種又は2種以上を0.001質量%添加することによって顕著になる。耐スケール剥離性改善効果は合計0.1質量%の添加で飽和し、0.1質量%を超える過剰添加は却って熱間加工性に悪影響を及ぼす。REMは、工業的にはY合金,La合金,Ce合金,ミッシュメタル(La,Ce,Nd等を含む)として添加されることが多いが、周期律表でIIIA族に属する元素であればよい。Y及びREMの好ましい含有量は、0.02〜0.1質量%の範囲である。
【0028】
N:0.02〜0.20質量%
オーステナイト系ステンレス鋼の高温強度を上昇させる上で重要な合金成分であり、0.02質量%以上のN含有量で高温強度上昇効果が顕著になる。しかし、0.20質量%を超える過剰量のNが含まれると、加工性に悪影響が現れる。好ましいN含有量の範囲は、0.05〜0.15質量%である。
Nb:0.05〜0.5質量%
必要に応じて添加される合金成分であり、Cを固定して鋼の耐粒界腐食性を向上させる作用を呈する。また、Siを含む本成分系では、Nとの複合添加によって高温強度を上昇させることにも働く。このような作用は、0.05質量%のNb添加で顕著に現れる。しかし、0.5質量%を超える過剰量のNbを添加すると、高温強化元素のNと結合し、高温強度に有害な析出物となる。Nbの過剰添加は、σ相の生成を促進させる原因にもなる。
【0029】
Ti:0.05〜0.5質量%
必要に応じて添加される合金成分であり、Cを固定して耐粒界腐食性を向上させると共に、高温強度の改善にも有効に作用する。しかし、Tiの過剰添加は、熱間加工性及び鋼板の表面性状を劣化させる原因となる。そこで、Tiを添加する場合、0.05〜0.50質量%の範囲にTi含有量を定める。
Mo:0.1〜4.0質量%,Cu:0.1〜4.0質量%
必要に応じて添加される合金成分であり、共に高温強度及び耐食性を改善する作用を呈する。しかし、Mo及びCuの過剰添加は、鋼材コストを上昇させるばかりでなく、鋼の熱間加工性及び靭性を低下させる原因となる。そこで、Mo及びCuを添加する場合、それぞれ0.1〜4.0質量%の範囲にMo及びCuの含有量を定める。
【0030】
Al:0.01〜2.5質量%
必要に応じて添加される合金成分であり、耐高温酸化性の改善に有効な成分である反面、過剰添加は鋼の熱間加工性及び耐σ脆化性に悪影響を及ぼす。そこで、Alを添加する場合、0.01〜2.5質量%の範囲にAl含有量を定める。
Ca:0.001〜0.1質量%
必要に応じて添加される合金成分であり、REMと同様に耐高温酸化性を改善する作用を呈する。しかし、過剰添加は熱間加工性に悪影響を及ぼすため、Caを添加する場合には0.001〜0.1質量%の範囲にCa含有量を定める。
【0031】
オーステナイト系ステンレス鋼に含まれる他の成分は、本発明では特に規定されるものではないが、一般的な不純物元素であるO,Sn,Pb等は可能な限り低減することが好ましい。より好ましくは、Oの上限を0.02質量%,Sn及びPbの上限を0.1質量%に設定するが、これら成分の上限を更に厳密に規制することによって熱間加工性や溶接性が一段と高いレベルに維持される。また、熱間加工性や靭性の改善に有効な元素として知られているMg,B,Co等の成分に関しては、本発明では特に規定されるものではなく、必要に応じて適宜添加することも可能である。
【0032】
【実施例】
表1の組成をもつ各種溶鋼を真空溶解法で用意し、熱延,焼鈍,冷延,焼鈍工程を経て板厚2.0mmの冷延焼鈍板を製造した。表中、No.1〜9は本発明に従った鋼,No.10〜18は比較鋼である。比較鋼のうち、No.10はSUS304相当鋼,No.11はSUS310S相当鋼,No.12はNCF800相当鋼である。
【0033】

Figure 0003827988
【0034】
各冷延焼鈍板から試験片を切り出し、スケール剥離試験,浸炭試験及びσ脆化試験に供した。
スケール剥離試験では、露点80℃の水蒸気酸化雰囲気中で、JIS Z2282に準拠して加熱25分→冷却5分の断続加熱を1000℃で500サイクル繰り返し、試験前後の重量変化から耐スケール剥離性を評価した。
浸炭試験では、固形浸炭剤に埋没させた試験片に800℃×2000時間又は1000℃×200時間の加熱浸炭処理を施し、加熱浸炭処理前後の重量変化から耐浸炭性を評価した。
σ脆化試験では、試験片を800℃で1000時間加熱した後、JIS Z2242に準拠した衝撃試験によって室温でのシャルピー衝撃値を測定し、シャルピー衝撃値から耐σ脆化性を評価した。
【0035】
表2の調査結果にみられるように、No.1〜9の本発明鋼は、何れも水蒸気酸化雰囲気中での耐スケール剥離性及び耐浸炭性がNo.10のSUS304,No.11のSUS310S,No.12のNCF800より優れており、耐σ脆化性もSUS310Sより優れていた。
他方、No.10のSUS304相当鋼では、耐σ脆化性に優れているものの、Si含有量が少ないため耐スケール剥離性及び耐浸炭性が大きく劣っていた。No.11のSUS310S相当鋼は、Si含有量が少ないため耐スケール剥離性及び耐浸炭性が劣っており、更に多量のCrを含むことから耐σ脆化性にも劣っていた。No.12のNCF800相当鋼は、Si含有量が少ないため耐スケール剥離性に劣っており、更にNi含有量が多いことから800℃の耐浸炭性に劣っていた。
【0036】
Si含有量が本発明で規定した下限1.5質量%に満たないNo.13の比較鋼は、耐浸炭性に劣っていた。Si含有量が少なくREMを添加していないNo.14の比較鋼は、耐スケール剥離性及び耐浸炭性の双方が本発明鋼に比較して大幅に劣っていた。REM無添加のNo.15の比較鋼は、本発明鋼と同程度の耐浸炭性及び耐σ脆化性を示すものの、耐スケール剥離性に劣っていた。過剰量のSiを含むNo.16,17の比較鋼や過剰量のCrを含むNo.18の比較鋼は、良好な耐スケール剥離性及び耐浸炭性を示すものの、耐σ脆化性に劣っていた。
以上の対比から、適正量のSiを添加すると共にREMを複合添加することによって、耐スケール剥離性及び耐浸炭性が改善されることが確認される。
【0037】
Figure 0003827988
【0038】
【発明の効果】
以上に説明したように、本発明のオーステナイト系ステンレス鋼は、特定量のSiを添加すると共に、Y及びREMの1種又は2種以上を複合添加することによって、両立が困難と考えられてきた耐水蒸気酸化性,耐浸炭性及び耐σ脆化性を高レベルで確保している。このオーステナイト系ステンレス鋼は、優れた耐熱性を活用し、水蒸気及び浸炭性ガスの双方を含み、且つ加熱・冷却の繰返しが多い小型水素発生器の改質反応部材を初めとして、過酷な高温雰囲気に曝される構造部材として使用される。
【図面の簡単な説明】
【図1】 水蒸気酸化雰囲気における加熱・冷却の繰返しに起因したスケール剥離に及ぼすSi及びREM含有量の影響を表したグラフ
【図2】 浸炭性雰囲気における耐浸炭性及び時効後の靭性に及ぼすSi含有量の影響を表したグラフ[0001]
[Industrial application fields]
The present invention relates to an austenitic stainless steel excellent in steam oxidation resistance, carburization resistance and σ embrittlement resistance used as a component in an atmosphere containing a large amount of water vapor and carbon monoxide.
[0002]
[Prior art]
The oil refining process consumes a large amount of hydrogen in the hydrodesulfurization process, and thus requires a hydrogen production apparatus. In conventional hydrogen production equipment, hydrogen is generated by reforming LPG and gasoline together with steam in a high-temperature and medium-pressure catalyst atmosphere, so SCH22 (25Cr-20Ni-0.4C) specified in JIS G5122 , Forging materials such as centrifugal casting pipes such as SCH24 (25Cr-35Ni-0.4C) and NCF800 (20Cr-32Ni-Ti-Al) specified in JIS G5122 are used in the steam reforming reaction tubes (The Nikkan Kogyo Shimbun, published in 1995, “Stainless Steel Handbook 3rd Edition”, page 1196).
[0003]
On the other hand, along with the development of on-site and portable fuel cells, development and commercialization of hydrogen generators that are smaller than those for petroleum refining are being promoted in order to obtain hydrogen necessary for battery operation. Various fuels such as alcohol, city gas, LPG, kerosene, and gasoline have been studied as hydrogen sources. However, in order to cause a reforming reaction in a catalytic atmosphere containing steam, This is necessary even when using fuel.
[0004]
A small-sized hydrogen generator has a hydrogen supply amount that is not constant as compared with a large-sized device for oil refining, and the device is frequently started and stopped. From this form of use, it is required for the constituent members of the hydrogen generator that the oxide scale exfoliation resistance with repeated heating and cooling is excellent. Among them, the scale peeling resistance in an atmosphere such as a reforming reaction portion containing a large amount of water vapor and low oxygen is an important factor.
[0005]
Furthermore, in a small hydrogen generator using a hydrocarbon fuel, carbon monoxide, carbon dioxide and the like are included in the atmosphere after the reforming reaction in addition to water vapor and hydrogen. In particular, when a large amount of carbon monoxide is contained, a carburizing atmosphere is formed, and therefore carburizing becomes a problem in terms of material. In addition, if scale peeling in a steam oxidation atmosphere and carburization in a carburizing atmosphere overlap, severe material damage is expected as compared with conventional hydrogen generators for petroleum refining.
[0006]
Ferritic and austenitic heat resistant stainless steels are known as constituent materials that require high temperature characteristics. Ferritic stainless steel has a smaller coefficient of thermal expansion than austenitic stainless steel, and is excellent in adhesion of oxide scale. However, the C diffusion rate at a high temperature is faster than that of austenitic stainless steel and is inferior in carburization resistance. Ferritic stainless steel with a small coefficient of thermal expansion shows excellent thermal fatigue properties in environments exposed to repeated heating and cooling, but its high-temperature strength is lower than austenitic stainless steel, so deformation resistance during holding at high temperatures Inferior to (high temperature creep resistance). Among ferritic stainless steels, steel types containing a large amount of Al are excellent in both adhesion and carburization resistance of oxide scale, but are inferior in workability, weldability, and toughness, and are therefore welded like hydrogen generators. It is difficult to apply to structures.
[0007]
On the other hand, austenitic stainless steel is superior in workability and weldability to ferritic stainless steel and is relatively easy to apply to welded structures. However, due to the large coefficient of thermal expansion, the adhesion of oxide scale is essentially inferior compared to ferritic stainless steel. In order to improve the high temperature oxidation resistance and scale peel resistance of austenitic stainless steel, various improvements have been studied. For example, SUS XM15J1 (19Cr-13Ni-3.3Si), AISI314 (25Cr-20Ni-2Si), etc. to which Si is added, steel containing 4.5 to 6% by mass of Al (Japanese Patent Laid-Open No. 55-43498) Steel) with a composite addition of Al and Si (Japanese Patent Publication No. 54-12887), steel with a composite addition of REM (Rare Earth Metal) (Japanese Patent Publication No. 54-12890), etc. are austenitic stainless steels for heat-resistant members. Has been developed. With regard to carburization resistance, it is known that by making the total content of Cr and Si 30% by mass or more, it becomes a steel material having excellent carburization resistance (published in 1995 by Nikkan Kogyo Shimbun, Ltd., “Stainless Steel”. Handbook 3rd edition "page 407).
[0008]
[Problems to be solved by the invention]
However, conventional austenitic stainless steels do not necessarily have sufficient scale peel resistance under conditions exposed to heating and cooling in a combustion atmosphere containing some water vapor. In austenitic stainless steel containing a large amount of Cr and Si, a σ phase that is harmful to toughness after cooling is likely to occur during use at high temperatures, and there is a concern that the structure may be damaged when some kind of impact or vibration is applied.
[0009]
For this reason, the structural material of the small hydrogen generator is required to be excellent in the following characteristics.
(1) Scale peeling resistance to repeated heating and cooling in an environment containing a large amount of water vapor and a small amount of oxygen (some oxygen is not included depending on the reforming reaction) (2) Containing a large amount of water vapor and monoxide Carburization resistance to repeated heating and cooling in an environment containing carbon (3) σ embrittlement resistance after prolonged heating [0010]
In consideration of use as a welded structure, the following characteristics are also important.
(4) Excellent thermal fatigue characteristics and creep characteristics.
(5) Excellent workability, weldability and toughness.
Examples of general-purpose heat-resistant austenitic stainless steel include SUS304 (18Cr-8Ni), SUS309S (22Cr-12Ni), SUS310S (25Cr-20Ni) in addition to the above-mentioned SUS XM15J1 and NCF800. However, an appropriate component range satisfying the required characteristics (1) to (5) and advantageous in terms of cost has not been clarified, and it has been difficult to apply an appropriate material.
[0011]
[Means for Solving the Problems]
The present invention has been devised as a result of various studies of alloy compositions to satisfy the required characteristics as a component of a hydrogen generator. By strictly regulating the amount of alloy elements, the present invention has been proposed. An object of the present invention is to provide an austenitic stainless steel excellent in carburization resistance and σ embrittlement resistance.
[0012]
In order to achieve the object, the austenitic stainless steel of the present invention includes C: 0.02 to 0.10% by mass, Si: 1.5 to 2.5% by mass, Mn: 2.0% by mass or less, P : 0.04 mass% or less, S: 0.02 mass% or less, Ni: 7-12 mass%, Cr: 15-25 mass%, one or more of Y and REM (rare earth metal): in total 0.001-0.1 mass%, N: 0.02-0.20 mass% is included, It is characterized by the above-mentioned.
[0013]
This austenitic stainless steel has Nb: 0.05 to 0.5 mass%, Ti: 0.05 to 0.5 mass%, Mo: 0.1 to 4.0 mass%, Cu: 0.1 to 4 It is possible to include one or more of 0.0 mass%. Furthermore, you may add 1 type or 2 types of Al: 0.01-2.5 mass% and Ca: 0.001-0.1 mass% as needed.
[0014]
[Action]
As a result of investigating and examining the influence of alloy elements on steel material damage in a steam oxidation atmosphere and carburizing atmosphere in a temperature range of 600 to 1000 ° C., and the σ embrittlement sensitivity, the present inventors have obtained the following knowledge.
The scale peel resistance of the austenitic stainless steel in the steam oxidation atmosphere is inferior to the scale peel resistance in the atmospheric oxidation atmosphere, and the smaller the oxygen content, the larger the scale peel resistance. Specifically, when the reforming reaction portion of the hydrogen generator is divided into the heating side necessary for the reaction progress and the reforming reaction side by the catalyst, the scale peeling amount increases on the reforming reaction side with a small amount of oxygen. .
[0015]
In order to reduce the amount of scale peeling, it is very effective to add a certain amount of Si and to slightly add one or more of Y and REM (hereinafter, Y is included in this specification). In this sense, “REM” is used as appropriate). Thereby, the increase in Cr content can be suppressed and the component design of the steel material excellent in σ embrittlement resistance becomes possible.
In order to improve both the carburization resistance and the σ embrittlement resistance while ensuring the scale peel resistance in a steam oxidation atmosphere, the Cr content is about 20% by mass and the Ni content is 10% by mass. It is effective to strictly regulate the Si content under conditions adjusted to the extent. Furthermore, the addition of Nb, Ti, Mo, and Cu improves the high-temperature strength, and the addition of Al and Ca improves the high-temperature oxidation resistance during continuous heating. Scale peelability, carburization resistance, and σ embrittlement resistance are not significantly impaired.
[0016]
Hereinafter, it will be described in more detail, including the process leading to the component design specified in the present invention.
FIG. 1 shows the results of investigating the effects of Si and REM on the scale peel resistance in a steam oxidation atmosphere by adding Si and REM in various amounts to steel containing 20Cr-11Ni as a basic component. In this test, REM was added as misch metal (mainly La, Ce, Nd) at the time of melting, and a total amount of REM was included. The scale peel resistance was evaluated based on the weight loss after 500 cycles of 1000 ° C. × 25 minutes heating → 5 minutes cooling in an atmosphere containing 80% water vapor.
[0017]
As is clear from FIG. 1, the amount of scale peeling significantly decreased with the increase of Si, and the resistance to scale peeling was remarkably improved by adding 1.5% by mass or more of Si. Further, REM was added in combination. This shows that the scale peel resistance is further improved. In FIG. 1, the damage levels of typical heat-resistant steels SUS310S and NCF800 are also shown. In order to develop characteristics equivalent to or better than these steel types, about 3% by mass is added when Si alone is added. The combined addition with REM requires about 1% by mass of Si.
[0018]
When the cross section of the test piece was observed after the scale peel test, the scale with good adhesion contained a Cr-rich oxide and Si was present in the internal oxide layer. Was not detected. From this result, although it is not necessarily clear why the scale peeling resistance in the steam oxidation atmosphere is improved, REM promotes the diffusion of Cr and Si, and generates a stable oxide having a strong environmental barrier, or It appears that REM itself has formed fine oxides to improve scale adhesion.
[0019]
Various amounts of Si were added to steel containing 20Cr-11Ni-0.04REM as a basic component, and the effects of Si content on carburization resistance and σ embrittlement resistance were investigated. In the carburizing test, a test piece embedded in a carburizing agent is heated for 200 hours at a temperature condition of 1000 ° C. where the most severe damage is expected among the maximum expected operating temperatures (600 to 1000 ° C.), and resistance to changes in weight before and after heating. Carburizability was evaluated. In the σ embrittlement resistance evaluation test, the test piece was heated to 800 ° C., which was exposed to the most severe σ embrittlement, for 1000 hours, and then the σ embrittlement resistance was evaluated by the Charpy impact value at room temperature.
[0020]
As shown in FIG. 2 showing the survey results, the carburization amount decreases with the increase of Si, and the carburization hardly occurs with the addition of 1.5 mass% or more of Si. This behavior corresponds well to the behavior of scale peeling resistance in a steam oxidation atmosphere (FIG. 1). In Fig. 2, the carburizing amount of steel type NCF800, which has excellent carburization resistance, is also shown, but adding 1.5% by mass or more of Si to this component system will exhibit carburizing resistance equivalent to or higher than that of NCF800. I understand. In addition to the test of FIG. 2, NCF800 was remarkably inferior to this component system in terms of carburization resistance when heated at 800 ° C. for 1000 hours or more. From these results, it can be said that the austenitic stainless steel according to the present invention is a steel type superior in carburization resistance compared to NCF800 in the temperature range of 800 to 1000 ° C.
[0021]
As for the resistance to σ embrittlement when heated at 800 ° C., the Charpy impact value decreases as Si increases, and the toughness is remarkably inferior when Si exceeds 2.5 mass%. For this reason, in order to improve the carburization resistance while ensuring toughness after heating, it is important to strictly regulate the Si content in the range of 1.5 to 2.5 mass%.
From the above results, it can be said that in order to obtain a small hydrogen generator having sufficient durability, Si and REM are added in combination and the Si content must be strictly adjusted.
[0022]
Next, alloy components and contents contained in the austenitic stainless steel of the present invention will be described.
C: 0.02-0.10 mass%
It is an alloy component effective for improving the high-temperature strength, and the strength improving effect becomes remarkable at 0.02% by mass or more. However, when an excessive amount of C exceeding 0.10% by mass is included, embrittlement due to precipitation of carbides, bead cracking during welding, and the like are likely to occur. The range of preferable C content is 0.04-0.08 mass%.
[0023]
Si: 1.5 to 2.5% by mass
It is an alloy component necessary for obtaining the required characteristics of the hydrogen generator, and the addition of 1.5 mass% or more of Si greatly improves the scale peeling resistance in a steam oxidation atmosphere and the carburization resistance in a carburizing atmosphere. Moreover, the composite addition with N exhibits the effect of increasing the high temperature strength. However, when an excessive amount of Si exceeding 2.5% by mass is added, σ embrittlement is promoted, and the weldability and hot workability are adversely affected. The range of preferable Si content is 1.5-2.0 mass%.
[0024]
Mn: 2.0% by mass or less This is an alloy component that makes it possible to save expensive Ni from a component balance that takes into account the amount of δ ferrite and the amount of work-induced martensite. However, when an excessive amount of Mn exceeding 2.0% by mass is added, high temperature oxidation resistance tends to decrease. A preferable range of the Mn content is 0.5 to 1.5% by mass.
P: 0.04 mass% or less While increasing the high-temperature strength, it is a component that decreases the corrosion resistance and high-temperature oxidation resistance. Moreover, in the case of an austenite single phase structure, it segregates at a grain boundary and reduces hot workability. For this reason, the lower the P content, the better. The upper limit of the P content is set to 0.04% by mass.
[0025]
S: 0.02 mass% or less Like P, it is a component that adversely affects hot workability. When S is excessively contained, corrosion resistance and high-temperature oxidation resistance also deteriorate. Therefore, the upper limit of the S content is set to 0.02% by mass.
Ni: 7 to 12% by mass
It is a basic component contained in austenitic stainless steel, and if it is less than 7% by mass, a large amount of δ ferrite phase is likely to be produced, and the high-temperature oxidation resistance and hot workability are reduced. Conversely, when the Ni content exceeds 12% by mass, an austenite single phase tends to be formed, and in this component system containing Si, hot workability and weldability are lowered. On the other hand, as for carburization resistance, generally, the higher the Ni content, the better. However, in the temperature range of 700 to 900 ° C., the carburization resistance tends to decrease. Further, excessive addition of Ni is not preferable from the viewpoint of steel material cost. The range of preferable Ni content is 10-12 mass%.
[0026]
Cr: 15-25% by mass
It is an indispensable alloy component for stainless steel, and 15% by mass or more of Cr is required to ensure sufficient high-temperature oxidation resistance and corrosion resistance. However, an excessive amount of Cr exceeding 25% by mass improves the carburization resistance but tends to cause σ embrittlement and reduces hot workability. The range of preferable Cr content is 18-22 mass%.
[0027]
One or more of Y and REM (rare earth metal): 0.001 to 0.1% by mass in total
It is an alloy component that improves the scale peel resistance in a steam oxidation atmosphere, and contributes to the improvement of hot workability by fixing S in steel. Even if a trace amount is added, the scale peel resistance is improved. However, the effect of improving the scale peel resistance becomes remarkable by adding 0.001% by mass of one or more of Y and REM. The effect of improving the scale peel resistance is saturated by the addition of a total of 0.1% by mass, and excessive addition exceeding 0.1% by mass adversely affects the hot workability. Industrially, REM is often added as a Y alloy, La alloy, Ce alloy, or misch metal (including La, Ce, Nd, etc.), but any element belonging to group IIIA in the periodic table may be used. . The preferable content of Y and REM is in the range of 0.02 to 0.1% by mass.
[0028]
N: 0.02 to 0.20 mass%
It is an important alloy component for increasing the high temperature strength of austenitic stainless steel, and the effect of increasing the high temperature strength becomes significant when the N content is 0.02% by mass or more. However, when an excessive amount of N exceeding 0.20% by mass is included, an adverse effect on workability appears. The range of preferable N content is 0.05-0.15 mass%.
Nb: 0.05 to 0.5% by mass
It is an alloy component added as necessary, and exhibits the effect of fixing C and improving the intergranular corrosion resistance of steel. In addition, this component system containing Si also works to increase the high-temperature strength by the combined addition with N. Such an effect appears remarkably when 0.05% by mass of Nb is added. However, when an excessive amount of Nb exceeding 0.5% by mass is added, it combines with the high-temperature strengthening element N, and becomes a precipitate harmful to the high-temperature strength. The excessive addition of Nb also causes the generation of the σ phase.
[0029]
Ti: 0.05 to 0.5% by mass
It is an alloy component that is added as necessary, fixing C and improving intergranular corrosion resistance, and also effectively working to improve high-temperature strength. However, excessive addition of Ti causes the hot workability and the surface properties of the steel sheet to deteriorate. Then, when adding Ti, Ti content is defined in the range of 0.05-0.50 mass%.
Mo: 0.1-4.0 mass%, Cu: 0.1-4.0 mass%
It is an alloy component added as necessary, and both exhibit the effect of improving high temperature strength and corrosion resistance. However, excessive addition of Mo and Cu not only increases the steel material cost, but also causes a decrease in hot workability and toughness of the steel. Therefore, when adding Mo and Cu, the contents of Mo and Cu are determined in the range of 0.1 to 4.0% by mass, respectively.
[0030]
Al: 0.01 to 2.5% by mass
Although it is an alloy component added as necessary and is an effective component for improving high-temperature oxidation resistance, excessive addition adversely affects the hot workability and σ embrittlement resistance of steel. Then, when adding Al, Al content is defined in the range of 0.01-2.5 mass%.
Ca: 0.001 to 0.1% by mass
It is an alloy component added as necessary, and exhibits the effect of improving high-temperature oxidation resistance in the same manner as REM. However, excessive addition adversely affects hot workability, so when adding Ca, the Ca content is set in the range of 0.001 to 0.1 mass%.
[0031]
Other components contained in the austenitic stainless steel are not particularly defined in the present invention, but it is preferable to reduce O, Sn, Pb, etc., which are general impurity elements, as much as possible. More preferably, the upper limit of O is set to 0.02% by mass, and the upper limit of Sn and Pb is set to 0.1% by mass. By further strictly controlling the upper limit of these components, hot workability and weldability are improved. It is maintained at a higher level. Further, components such as Mg, B, and Co that are known as elements effective for improving hot workability and toughness are not particularly defined in the present invention, and may be appropriately added as necessary. Is possible.
[0032]
【Example】
Various molten steels having the compositions shown in Table 1 were prepared by vacuum melting, and cold-rolled annealed plates having a thickness of 2.0 mm were manufactured through hot rolling, annealing, cold rolling, and annealing processes. In the table, Nos. 1 to 9 are steels according to the present invention, and Nos. 10 to 18 are comparative steels. Of the comparative steels, No. 10 is SUS304 equivalent steel, No. 11 is SUS310S equivalent steel, and No. 12 is NCF800 equivalent steel.
[0033]
Figure 0003827988
[0034]
A test piece was cut out from each cold-rolled annealed plate and subjected to a scale peeling test, carburization test, and σ embrittlement test.
In the scale peeling test, in a steam oxidation atmosphere with a dew point of 80 ° C, intermittent heating for 25 minutes → cooling for 5 minutes is repeated 500 cycles at 1000 ° C in accordance with JIS Z2282. evaluated.
In the carburization test, a test carburized in a solid carburizing agent was subjected to a heat carburization treatment at 800 ° C. for 2000 hours or 1000 ° C. for 200 hours, and carburization resistance was evaluated from a change in weight before and after the heat carburization treatment.
In the σ embrittlement test, the test piece was heated at 800 ° C. for 1000 hours, and then the Charpy impact value at room temperature was measured by an impact test according to JIS Z2242, and the σ embrittlement resistance was evaluated from the Charpy impact value.
[0035]
As can be seen from the results of the investigation in Table 2, the No. 1-9 steels of the present invention are No. 10 SUS304 and No. 11 SUS310S. , No. 12 NCF800, and σ embrittlement resistance was also superior to SUS310S.
On the other hand, No. 10 steel equivalent to SUS304 was excellent in σ embrittlement resistance, but was poor in scale peel resistance and carburization resistance because of its low Si content. The No. 11 SUS310S equivalent steel was inferior in scale peel resistance and carburization resistance due to its low Si content, and further inferior in σ embrittlement resistance because it contained a large amount of Cr. No. 12 NCF800 equivalent steel was inferior in scale peel resistance due to its low Si content, and further inferior in carburization resistance at 800 ° C. due to its high Ni content.
[0036]
The No. 13 comparative steel whose Si content was less than the lower limit of 1.5% by mass defined in the present invention was inferior in carburization resistance. The No. 14 comparative steel with a low Si content and no REM added was significantly inferior in both scale peel resistance and carburization resistance to the steel of the present invention. The comparative steel of No. 15 with no REM addition showed carburization resistance and σ embrittlement resistance comparable to the steel of the present invention, but was inferior in scale peel resistance. The No. 16 and 17 comparative steels containing an excessive amount of Si and the No. 18 comparative steel containing an excessive amount of Cr show good scale peel resistance and carburization resistance, but are inferior in σ embrittlement resistance. It was.
From the above comparison, it is confirmed that by adding an appropriate amount of Si and adding REM in combination, the scale peeling resistance and the carburization resistance are improved.
[0037]
Figure 0003827988
[0038]
【The invention's effect】
As described above, the austenitic stainless steel of the present invention has been considered to be difficult to achieve both by adding a specific amount of Si and adding one or more of Y and REM in combination. High levels of steam oxidation resistance, carburization resistance and σ embrittlement resistance are ensured. This austenitic stainless steel utilizes harsh high-temperature atmospheres, including reforming reaction members for small hydrogen generators that use both excellent heat resistance, contain both water vapor and carburizing gas, and are frequently heated and cooled. Used as a structural member exposed to
[Brief description of the drawings]
FIG. 1 is a graph showing the effects of Si and REM content on scale peeling due to repeated heating and cooling in a steam oxidizing atmosphere. FIG. 2 is a graph showing the effects of carburization resistance and toughness after aging in a carburizing atmosphere. Graph showing the effect of content

Claims (2)

C:0.02〜0.10質量%,Si:1.5〜2.5質量%,Mn:2.0質量%以下,P:0.04質量%以下,S:0.02質量%以下,Ni:7〜12質量%,Cr:15〜25質量%,Y及びREM(希土類金属)の1種又は2種以上:合計で0.001〜0.1質量%,N:0.02〜0.20質量%を含み,残部Fe及び不可避的不純物の組成をもち、耐水蒸気酸化性,耐浸炭性及び耐σ脆化性に優れたオーステナイト系ステンレス鋼。C: 0.02-0.10 mass%, Si: 1.5-2.5 mass%, Mn: 2.0 mass% or less, P: 0.04 mass% or less, S: 0.02 mass% or less , Ni: 7-12 mass%, Cr: 15-25 mass%, one or more of Y and REM (rare earth metal): 0.001-0.1 mass% in total, N: 0.02- An austenitic stainless steel containing 0.20% by mass, having the balance of Fe and inevitable impurities, and excellent in steam oxidation resistance, carburization resistance and σ embrittlement resistance. 更にNb:0.05〜0.5質量%,Ti:0.05〜0.5質量%,Mo:0.1〜4.0質量%,Cu:0.1〜4.0質量%,Al:0.01〜2.5質量%,Ca:0.001〜0.1質量%の1種又は2種以上を含む請求項1記載のオーステナイト系ステンレス鋼。  Furthermore, Nb: 0.05 to 0.5 mass%, Ti: 0.05 to 0.5 mass%, Mo: 0.1 to 4.0 mass%, Cu: 0.1 to 4.0 mass%, Al The austenitic stainless steel according to claim 1, comprising one or more of: 0.01 to 2.5 mass%, Ca: 0.001 to 0.1 mass%.
JP2001326233A 2001-10-24 2001-10-24 Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance Expired - Lifetime JP3827988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001326233A JP3827988B2 (en) 2001-10-24 2001-10-24 Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001326233A JP3827988B2 (en) 2001-10-24 2001-10-24 Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance

Publications (2)

Publication Number Publication Date
JP2003129192A JP2003129192A (en) 2003-05-08
JP3827988B2 true JP3827988B2 (en) 2006-09-27

Family

ID=19142644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001326233A Expired - Lifetime JP3827988B2 (en) 2001-10-24 2001-10-24 Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance

Country Status (1)

Country Link
JP (1) JP3827988B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577256B2 (en) * 2006-04-05 2010-11-10 住友金属工業株式会社 Austenitic stainless steel
CN101935807B (en) * 2010-09-10 2012-11-14 钢铁研究总院 Rare earth yttrium-containing nickel-saving austenite heat-resistant stainless steel and preparation method thereof
JP6423138B2 (en) * 2013-06-14 2018-11-14 新日鐵住金ステンレス株式会社 Austenitic stainless steel for fuel reformer with excellent adhesion of oxide film and method for producing the same
CN105821339B (en) * 2015-01-06 2017-11-03 宝钢特钢有限公司 A kind of production method of the slabs made of steel continuous casting containing rare earth element
CN110129658B (en) * 2019-05-27 2020-07-10 北京科技大学 High-manganese nitrogen-free high-strength high-toughness hydrogen embrittlement-resistant austenitic stainless steel and preparation method thereof
CN112095056A (en) * 2020-09-18 2020-12-18 江苏双达泵业股份有限公司 Niobium-containing stainless steel alloy material and processing technology thereof
JP7097575B2 (en) * 2020-09-30 2022-07-08 株式會社三共合金鑄造所 High-temperature ferrite base iron-based heat-resistant alloy with excellent carburizing resistance and its manufacturing method
EP3995599A1 (en) * 2020-11-06 2022-05-11 Outokumpu Oyj Austenitic stainless steel

Also Published As

Publication number Publication date
JP2003129192A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
EP2246454B1 (en) Carburization-resistant metal material
EP1413640B1 (en) Ferritic stainless steel for member of exhaust gas flow passage
JP2011190524A (en) Ferritic stainless steel having excellent oxidation resistance, secondary processing brittleness resistance and weld zone toughness
JP3995978B2 (en) Ferritic stainless steel for heat exchanger
JP5605996B2 (en) Austenitic stainless steel for heat-resistant materials
MX2013004053A (en) Ferritic stainless steel excellent in heat resistance and workability.
EP3369832A1 (en) Al-CONTAINING FERRITIC STAINLESS STEEL WITH EXCELLENT CREEP CHARACTERISTICS, MANUFACTURING METHOD THEREFOR, AND FUEL CELL MEMBER
JP3827988B2 (en) Austenitic stainless steel with excellent steam oxidation resistance, carburization resistance and σ embrittlement resistance
JP2803538B2 (en) Ferritic stainless steel for automotive exhaust manifold
JP4463663B2 (en) Ferritic steel material excellent in high temperature steam oxidation resistance and method of use thereof
JPH0860306A (en) Ferritic stainless steel for automobile exhaust system member
WO1994026947A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JP4369596B2 (en) Heat resistant ferritic stainless steel
JP7224141B2 (en) Ferritic stainless steel sheet, manufacturing method thereof, and fuel cell member
JP2005330501A (en) Austenitic stainless steel for exhaust manifold
JP4299507B2 (en) Austenitic stainless steel with excellent red scale resistance
JP3942876B2 (en) Ferritic stainless steel for hydrocarbon fuel reformer
JPH0533104A (en) Heat resisting ferritic stainless steel excellent in heat resistance toughness at low temperature, and weldability
JP5786491B2 (en) Ferritic stainless steel for EGR cooler
JP4403029B2 (en) Austenitic stainless steel for the inner side of the double structure exhaust manifold
JP5239642B2 (en) Ferritic stainless steel with excellent thermal fatigue properties, high temperature fatigue properties and oxidation resistance
JP6429957B1 (en) Austenitic stainless steel, manufacturing method thereof, and fuel reformer and combustor member
JPH08120417A (en) Heat resistant ferritic stainless steel
JPH0711394A (en) Ferritic stainless steel excellent in high temperature oxidation resistance and scale adhesion
JP4403033B2 (en) Austenitic stainless steel for exhaust manifold

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060317

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060705

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3827988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090714

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term