WO1994026947A1 - High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance - Google Patents

High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance Download PDF

Info

Publication number
WO1994026947A1
WO1994026947A1 PCT/JP1994/000767 JP9400767W WO9426947A1 WO 1994026947 A1 WO1994026947 A1 WO 1994026947A1 JP 9400767 W JP9400767 W JP 9400767W WO 9426947 A1 WO9426947 A1 WO 9426947A1
Authority
WO
WIPO (PCT)
Prior art keywords
corrosion resistance
temperature corrosion
steel
strength
austenitic heat
Prior art date
Application number
PCT/JP1994/000767
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Mimura
Masao Kikuchi
Satoshi Araki
Hisashi Naoi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP94914608A priority Critical patent/EP0708184A4/en
Publication of WO1994026947A1 publication Critical patent/WO1994026947A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent

Definitions

  • the present invention is an austenitic heat-resistant material that has extremely good high-temperature strength, has excellent weldability and good high-temperature corrosion resistance, and exhibits excellent performance when applied to a boiler whose operating environment is becoming severer. It concerns steel. Background art
  • ultra-supercritical boilers with high-temperature and high-pressure steam conditions are being planned in terms of improving economic efficiency and suppressing carbon dioxide emissions in recent years.
  • high-strength materials that can withstand use in such harsh environments include “Iron and Steel”, 70th year, S1409, or “Thermal Nuclear Power”, volume 38, page 75.
  • heat-resistant austenitic steels utilizing precipitation strengthening with carbonitrides such as Nb and Ti and solid solution strengthening with Mo have been developed.
  • An object of the present invention is to provide an austenitic heat-resistant steel having good weldability and excellent high-temperature strength and high-temperature corrosion resistance. Disclosure of the invention
  • the present inventors conducted various experiments on steel to which Mo and W were added to compensate for the decrease in high-temperature strength due to the reduction in the amount of C by solid solution strengthening. And succeeded in producing heat-resistant steel with high-temperature corrosion resistance. That is, the gist of the present invention is as follows.
  • a high-strength austenitic heat-resistant steel with excellent weldability and good high-temperature corrosion resistance characterized by containing Fe and the balance of Fe and unavoidable impurities.
  • Fig. 1 is a graph showing the effect of Mo and W on the high temperature corrosion resistance of 20Cr-25Ni steel.
  • FIG. 2 is a graph comparing the creep rupture strength of the steel of the present invention and the comparative steel with the loss of hot corrosion.
  • FIG. 3 is a graph showing the results of ballistic strain tests of SUS 347H and steels in which the main alloying elements other than C are within the scope of the present invention.
  • FIG. 3 shows the main alloying sources other than C Steel (Cr: 20 Ni: 25 W: 3%) in which the amount of carbon was changed (marked with ⁇ in the figure) and S US 347 H ( This corresponds to the comparative steel K in the examples described later.In the figure, the results of the varestraint test for evaluating the weldability of the squares are shown.
  • test conditions were: specimen thickness: 5 mm, welding method: GTAW, welding voltage: 10 V, welding current: 80 A, welding speed: 80 mm / min, and added strain: 2%. Based on the results of this test, the upper limit of the amount of C to secure good weldability was set at less than 0.02%, aiming at the same level as SUS347H.
  • Si is an element that not only is effective as a deoxidizing agent, but also improves oxidation resistance and high-temperature corrosion resistance.However, too much Si reduces creep rupture strength and toughness. . Therefore, the upper limit was set to 1.5%.
  • Mn is an element that has a deoxidizing effect and improves weldability and hot workability.
  • the lower limit of Mn was set to 0.3% in order to sufficiently deoxidize and obtain a sound lump. However, if the amount of Mn is too large, the oxidation resistance deteriorates, so the upper limit was set to 1.5%.
  • Cr is an element indispensable for oxidation resistance, steam oxidation resistance, and high temperature corrosion resistance.
  • the lower limit of the Cr content was set to 18%, which is the same as the Cr content of the austenitic stainless steel.
  • an increase in the Cr content lowers the stability of austenite, weakens the high-temperature strength, promotes the formation of intermetallic compound phases, and lowers the toughness.
  • Ni increases the austenite stability and suppresses the formation of the ⁇ phase. It is an essential element. In order to achieve austenite stability against the content of ferrite-forming elements such as Cr, the Ni content must be 20% or more. On the other hand, if the amount of Ni exceeds 40%, it is disadvantageous in terms of price, so the amount of Ni was set to 20 to 40%.
  • Both M0 and W are elements that significantly increase the high-temperature strength by solid solution strengthening, etc., but their effects are small when added to less than 0.5%, respectively, and when W exceeds 10%, Laves phase etc. This causes precipitation of intermetallic compounds, and reduces creep rupture ductility.
  • Mo is added alone
  • the high-temperature corrosion resistance deteriorates as the amount of Mo increases.
  • W must be added, and the range is 0.5 to 10%. If Mo is added in excess of 2.0%, the high-temperature corrosion resistance is particularly deteriorated even when W is added in a complex manner. Therefore, 0.5 to 2.0% is added as necessary.
  • Nb and Ti form fine carbonitrides and significantly improve the long-term cleave rupture strength.
  • the 1 ⁇ 13 amount is less than (3.05% and the Ti amount is less than 0.01%, the above effect cannot be obtained, so the lower limits of the Nb and Ti amounts are set to 05% and 0.01%, respectively.
  • the above effect is more remarkable as the amount of Nb and Ti that can form a solid solution at the solution heat treatment temperature increases, but when the Nb and Ti are added beyond the solid solubility limit, undissolved carbon-nitride Therefore, the upper limit of the amount of Nb and T i is set to 0.4% and 0.2%, respectively, and the amount of solid solution (Nb + T i) is increased within that range. To do this, Nb and Ti were added in combination.
  • B is an element that improves the cleave rupture strength as a result of increasing the grain boundary strength, but its effect is small when it is less than 0.03%, and when it exceeds 0.08%, the weldability and hot work Since the workability is reduced, the range of the B content is set to 0.003 to 0.008%.
  • N is an element that significantly improves the creep rupture strength by solid solution strengthening and the formation of nitrides. If N is less than 0.05%, the decrease in strength due to the low C content in order to improve weldability cannot be compensated for, and even if added over 3%, the increase in long-term creep rupture strength will not increase. Less, further reduces toughness. Therefore, the range of the amount of N was set to 0.05 to 0.3%.
  • U is a comparative steel.
  • is SUS 347 ⁇ equivalent steel that has been commonly used.
  • the steel of the present invention has extremely excellent high-temperature strength and high-temperature corrosion resistance as compared with SUS 347H steel.
  • L to 0 are examples in which the high-temperature strength is low without the addition of Mo and W and the Nb or B content is out of the range of the present invention.
  • P to U have relatively high strength at high temperatures, even when Mo is added alone or in combination with W, the amount of Mo is large and the high temperature corrosion resistance is poor.
  • Fig. 1 shows the effect of Mo and W on the high-temperature corrosion resistance of 20Cr—25Ni steel.
  • Mo alone is added (indicated by hatching in the figure)
  • the corrosion loss is large.
  • the high-temperature corrosion resistance is improved by adding a 1.5% composite (in the figure).
  • corrosion loss is not changed by adding W alone (indicated by ⁇ in the figure).
  • Figure 2 compares the cleave rupture strength and hot corrosion weight loss of the steel of the present invention and the comparative steel.
  • the comparative steel has low high-temperature strength and / or high-temperature corrosion resistance. It can be seen that the steel of the present invention is excellent in both high-temperature strength and high-temperature corrosion resistance.
  • an austenitic heat-resistant steel with excellent weldability and high-temperature strength and high-temperature corrosion resistance. It can be done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A high-strength austenitic heat-resisting steel that has excellent weldability and good high-temperature corrosion resistance and can exhibit excellent performance when used as the material of boilers to be used under the conditions becoming more and more severe. The steel comprises less than 0.02 % (by mass, the same will apply hereinbelow) of carbon, at most 1.5 % of silicon, 0.3-1.5 % of manganese, at most 0.02 % of phosphorus, at most 0.005 % of sulfur, 18-26 % of chromium, 20-40 % of nickel, 0.5-10.0 % of tungsten, 0.05-0.4 % of niobium, 0.01-0.2 % of titanium, 0.003-0.008 % of boron, 0.05-0.3 % of nitrogen, and if necessary at least one member of 0.5-2.0 % of molybdenum and/or 0.001-0.05 % of magnesium, 0.001-0.05 % of calcium and 0.001-0.15 % of rare earth element (REM), and the balance consisting of iron and inevitable impurities.

Description

明 細 書 溶接性に優れ、 耐高温腐食特性が良好な高強度オーステナイ 卜系耐熱鋼 技術分野  Description High strength austenitic heat-resistant steel with excellent weldability and good high-temperature corrosion resistance
本発明は、 極めて良好な高温強度を有するとともに、 優れた溶接性お よび良好な耐高温腐食特性を兼ね備えて、 使用環境が過酷化しつつある ボイラに適用して優れた性能を発揮するオーステナイト系耐熱鋼に係わ るものである。 背景技術  The present invention is an austenitic heat-resistant material that has extremely good high-temperature strength, has excellent weldability and good high-temperature corrosion resistance, and exhibits excellent performance when applied to a boiler whose operating environment is becoming severer. It concerns steel. Background art
火力発電プラントにおいては、 経済性の向上、 近年の炭酸ガス排出抑 制の点から、 蒸気条件を高温高圧化した超々臨界圧ボイラが計画されて いる。 このような過酷な環境下での使用に耐え得る高強度の材料として は、 「鉄と鋼」 第 7 0年 S 1 4 0 9頁、 あるいは 「火力原子力発電」 第 3 8巻第 7 5頁に示されているように、 N b , T i等の炭窒化物による 析出強化、 M oによる固溶強化などを利用したオーステナイト系耐熱鋼 が開発されている。  For thermal power plants, ultra-supercritical boilers with high-temperature and high-pressure steam conditions are being planned in terms of improving economic efficiency and suppressing carbon dioxide emissions in recent years. Examples of high-strength materials that can withstand use in such harsh environments include “Iron and Steel”, 70th year, S1409, or “Thermal Nuclear Power”, volume 38, page 75. As shown in, heat-resistant austenitic steels utilizing precipitation strengthening with carbonitrides such as Nb and Ti and solid solution strengthening with Mo have been developed.
しかし、 これらの耐熱鋼は多量の合金元素を含むために、 従来のォ一 ステナイト系耐熱鋼、 例えば S U S 3 4 7 Hに比べると溶接が容易とは いえず、 溶接作業性が課題となっていた。  However, since these heat-resistant steels contain a large amount of alloying elements, welding cannot be said to be easier than conventional austenitic heat-resistant steels, for example, SUS347H, and welding workability is an issue. Was.
鋼の高純化、 すなわち P , S量の低減とともに C量の低減が溶接性を 向上させるための有力な手段であることは周知の事実である。 しかし、 上述のように耐熱鋼の多くは炭窒化物により強化されており、 C量の低 下は高温強度の低下を招く。  It is a well-known fact that purifying steel, that is, reducing the amount of C together with the amount of P and S, is a powerful means to improve weldability. However, as described above, most heat-resistant steels are strengthened by carbonitrides, and a decrease in the amount of C causes a decrease in high-temperature strength.
一方、 鋼を固溶強化する目的でよく添加される M o量の増大は耐高温 腐食特性を劣化させることが知られている。 On the other hand, the increase in the amount of Mo, which is often added for the purpose of solid solution strengthening of steel, It is known to degrade the corrosion properties.
本発明は、 溶接性が良好で、 優れた高温強度、 耐高温腐食特性を有す るオーステナイト系耐熱鋼を提供することを目的とする。 発明の開示  An object of the present invention is to provide an austenitic heat-resistant steel having good weldability and excellent high-temperature strength and high-temperature corrosion resistance. Disclosure of the invention
本発明者らは、 C量の低減による高温強度の低下を固溶強化で補うベ く、 Moおよび Wを添加した鋼について、 種々の実験を行った結果、 低 Cの成分で高温強度を維持し、 かつ耐高温腐食特性を確保した耐熱鋼を 発することに成功した。 すなわち、 本発明の要旨とするところは下記 のとおりである。  The present inventors conducted various experiments on steel to which Mo and W were added to compensate for the decrease in high-temperature strength due to the reduction in the amount of C by solid solution strengthening. And succeeded in producing heat-resistant steel with high-temperature corrosion resistance. That is, the gist of the present invention is as follows.
( 1 ) 質量%で、  (1) In mass%,
C 0. 02 %未満、  C less than 0.02%,
S i 1. 5%以下、  S i 1.5% or less,
Mn 0. 3~1. 5%>  Mn 0.3 to 1.5%>
P 0. 02 %以下、  P 0.02% or less,
S 0. 005 %以下、  S 0.005% or less,
C r 1 8〜26%、  Cr 18-26%,
N i 20〜40%、  N i 20-40%,
W 0. 5~ 1 0. 0%>  W 0.5-1 0 0.0%>
Nb 0. 05〜0. 4%、  Nb 0.05-0.4%,
T i 0. 0 卜 0. 2%、  T i 0.0 0.2% 0.2%,
B 0. 003〜0. 008 %、  B 0.003 to 0.008%,
N 0. 05~0. 3%  N 0.05-0.3%
を含有し、 残部 F eおよび不可避的不純物よりなることを特徴とする溶 接性に優れ、 耐高温腐食特性が良好な高強度オーステナイ卜系耐熱鋼。 A high-strength austenitic heat-resistant steel with excellent weldability and good high-temperature corrosion resistance, characterized by containing Fe and the balance of Fe and unavoidable impurities.
(2) さらに Mo : 0. 5〜2. 0% (2) Further Mo: 0.5 to 2.0%
を含有することを特徴とする前項 (1) 記載の溶接性に優れ、 耐高温腐 食特性が良好な高強度オーステナイト系耐熱鋼。 A high-strength austenitic heat-resistant steel having excellent weldability and excellent high-temperature corrosion resistance as described in (1) above, characterized by containing:
(3) さらに  (3) Further
Mg : 0. 00 1〜0. 05%、  Mg: 0.001 to 0.05%,
C a : 0. 00 卜 0. 05%、  C a: 0.000% 0.05%,
希土類元素 (REM) : 0. 00 1~0. 1 5%  Rare earth element (REM): 0.001 to 0.15%
のうち 1種または 2種以上を含有することを特徴とする前項 (1) また は (2) 記載の溶接性に優れ、 耐高温腐食特性が良好な高強度オーステ ナイト系耐熱鋼。 図面の簡単な説明 A high-strength austenitic heat-resistant steel having excellent weldability and good hot-corrosion resistance as described in (1) or (2) above, characterized by containing one or more of these. BRIEF DESCRIPTION OF THE FIGURES
第 1図は 20 C r— 25N i鋼において耐高温腐食特性に及ぼす M o と Wの効果を示すグラフである。  Fig. 1 is a graph showing the effect of Mo and W on the high temperature corrosion resistance of 20Cr-25Ni steel.
第 2図は本発明鋼と比較鋼のクリープ破断強度と高温腐食減量を比較 するグラフである。  FIG. 2 is a graph comparing the creep rupture strength of the steel of the present invention and the comparative steel with the loss of hot corrosion.
第 3図は C以外の主要な合金元素を本発明の範囲に入れた鋼と S U S 347 Hのバリストレイン試験の結果を示すグラフである。 発明を実施するための最良の形態  FIG. 3 is a graph showing the results of ballistic strain tests of SUS 347H and steels in which the main alloying elements other than C are within the scope of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下に本発明において合金元素の範囲を上記のように定めた理由につ いて説明する。  Hereinafter, the reason why the range of the alloy element is determined as described above in the present invention will be described.
C:  C:
溶接時の高温割れや延性低下を防止するためには C量をできるかぎり 下げる必要があるが、 良好な溶接性を確保するために、 C量の上限値は 次のような実験に基づいて設定した。 第 3図に、 C以外の主要な合金元 素を本発明の範囲に入れた鋼 ( C r : 20 N i : 25 W: 3 %) で C量を変化させたもの (図中、 騮印) と、 比較のための S US 347 H (後述する実施例の比較鋼 Kに相当する。 図中、 □印) の溶接 性を評価するバリストレイン (Varestraint ) 試験の結果を示す。 同試 験の条件は、 試験片厚み: 5mm、 溶接方法: GTAW、 溶接電圧: 10 V、 溶接電流: 80 A、 溶接速度: 80 mm/m i n、 付加歪み: 2%である。 本試験結果から、 良好な溶接性を確保するための C量の上 限値を、 SUS 347 H並みを狙い、 0. 02%未満とした。 It is necessary to reduce the C content as much as possible to prevent high temperature cracking and decrease in ductility during welding.However, to ensure good weldability, the upper limit of the C content is set based on the following experiment did. Figure 3 shows the main alloying sources other than C Steel (Cr: 20 Ni: 25 W: 3%) in which the amount of carbon was changed (marked with 騮 in the figure) and S US 347 H ( This corresponds to the comparative steel K in the examples described later.In the figure, the results of the varestraint test for evaluating the weldability of the squares are shown. The test conditions were: specimen thickness: 5 mm, welding method: GTAW, welding voltage: 10 V, welding current: 80 A, welding speed: 80 mm / min, and added strain: 2%. Based on the results of this test, the upper limit of the amount of C to secure good weldability was set at less than 0.02%, aiming at the same level as SUS347H.
S i :  S i:
S iは脱酸剤として有効であるばかりではなく、 耐酸化性ゃ耐高温腐 食特性をも向上させる元素であるが、 S i量が多過ぎるとクリープ破断 強度、 靱性ゃ溶接性を低下させる。 従って、 上限を 1. 5%とした。  Si is an element that not only is effective as a deoxidizing agent, but also improves oxidation resistance and high-temperature corrosion resistance.However, too much Si reduces creep rupture strength and toughness. . Therefore, the upper limit was set to 1.5%.
Mn:  Mn:
Mnは脱酸作用を有し、 溶接性や熱間加工性を向上させる元素であ る。 十分に脱酸して健全な铸塊を得るために Mnの下限を 0. 3%とし た。 しかし、 Mn量が多すぎると耐酸化性の劣化を招くので、 上限を 1. 5%とした。  Mn is an element that has a deoxidizing effect and improves weldability and hot workability. The lower limit of Mn was set to 0.3% in order to sufficiently deoxidize and obtain a sound lump. However, if the amount of Mn is too large, the oxidation resistance deteriorates, so the upper limit was set to 1.5%.
C r :  C r:
C rは耐酸化性、 耐水蒸気酸化性、 耐高温腐食特性に不可欠の元素で ある。 従来のオーステナイト系ステンレス鋼と同等以上の特性を確保す るために、 C r量の下限をオーステナイ ト系ステンレス鋼の C r量と同 量の 18%とした。 しかし、 C r量の増加はオーステナイトの安定性を 低下させ、 高温強度を弱める上に、 金属間化合物ひ相の生成を促し、 靱 性を低下させるので上限を 26%とした。  Cr is an element indispensable for oxidation resistance, steam oxidation resistance, and high temperature corrosion resistance. In order to ensure the same or better characteristics as the conventional austenitic stainless steel, the lower limit of the Cr content was set to 18%, which is the same as the Cr content of the austenitic stainless steel. However, an increase in the Cr content lowers the stability of austenite, weakens the high-temperature strength, promotes the formation of intermetallic compound phases, and lowers the toughness.
N i :  N i:
N iはオーステナイ卜の安定性を高め、 σ相の生成を抑制するために 必須な元素である。 C rをはじめとするフェライ 卜生成元素の含有量に 対してオーステナイ卜の安定性を図るためには、 N i量を 20%以上と する必要がある。 一方、 N i量が 40%を超えると価格の面で不利とな ることから、 N i量は 20~40%とした。 Ni increases the austenite stability and suppresses the formation of the σ phase. It is an essential element. In order to achieve austenite stability against the content of ferrite-forming elements such as Cr, the Ni content must be 20% or more. On the other hand, if the amount of Ni exceeds 40%, it is disadvantageous in terms of price, so the amount of Ni was set to 20 to 40%.
Mo, W:  Mo, W:
M 0および Wはともに固溶強化などにより高温強度を顕著に高める元 素であるが、 それぞれ 0. 5%未満の添加ではその効果が小さく、 Wを 10 %を超えて添加すると Lav e s相などの金属間化合物の析出を生 じ、 クリープ破断延性を低下させる。 また、 Moを単独で添加すると、 Mo量が増加するにつれて耐高温腐食特性が劣化する。 一方、 Wは単独 添加の場合には耐高温腐食特性を劣化させない上に、 Moと複合添加す ると、 Mo単独添加鋼に比べ耐高温腐食特性が改善できることが実験に より明らかとなった。 従って、 Wは必ず添加することとし、 その範囲を 0. 5〜10%とした。 Moについては、 2. 0%を超えて添加すると Wを複合添加した場合でも耐高温腐食特性を特に低下させることから、 0. 5〜2. 0%を必要に応じて添加する。  Both M0 and W are elements that significantly increase the high-temperature strength by solid solution strengthening, etc., but their effects are small when added to less than 0.5%, respectively, and when W exceeds 10%, Laves phase etc. This causes precipitation of intermetallic compounds, and reduces creep rupture ductility. When Mo is added alone, the high-temperature corrosion resistance deteriorates as the amount of Mo increases. On the other hand, experiments have shown that when W is added alone, it does not degrade the high-temperature corrosion resistance, and when it is combined with Mo, the high-temperature corrosion resistance can be improved compared to the steel with only Mo added. Therefore, W must be added, and the range is 0.5 to 10%. If Mo is added in excess of 2.0%, the high-temperature corrosion resistance is particularly deteriorated even when W is added in a complex manner. Therefore, 0.5 to 2.0% is added as necessary.
Nb, T i :  Nb, T i:
Nb, T iは微細な炭窒化物を形成し、 長時間クリーブ破断強度を著 しく向上させる。 しかしながら、 1^13量が(3. 05%未満、 T i量が 0. 01 %未満では前記効果が得られないので、 Nb, T i量の下限を それぞれ 05%、 0. 01 %とした。 前記効果は、 固溶化熱処理温 度で固溶し得る Nb, T i量が多いほど顕著であるが、 Nb, T iの固 溶限を超えて添加すると、 未固溶の炭 ·窒化物が残存し、 クリ一プ破断 強度を低下させる。 従って、 Nb, T i量の上限をそれぞれ 0. 4%、 0. 2 %とし、 その範囲内で固溶 (Nb+T i )量を多くするために、 Nb, T iを複合添加した。 B : Nb and Ti form fine carbonitrides and significantly improve the long-term cleave rupture strength. However, if the 1 ^ 13 amount is less than (3.05% and the Ti amount is less than 0.01%, the above effect cannot be obtained, so the lower limits of the Nb and Ti amounts are set to 05% and 0.01%, respectively. The above effect is more remarkable as the amount of Nb and Ti that can form a solid solution at the solution heat treatment temperature increases, but when the Nb and Ti are added beyond the solid solubility limit, undissolved carbon-nitride Therefore, the upper limit of the amount of Nb and T i is set to 0.4% and 0.2%, respectively, and the amount of solid solution (Nb + T i) is increased within that range. To do this, Nb and Ti were added in combination. B:
Bは粒界強度を高める結果、 クリーブ破断強度を向上させる元素であ るが、 0. 0 0 3 %未満ではその効果が小さく、 また 0. 0 0 8 %を超 えると溶接性や熱間加工性が低下するので、 B量の範囲を 0. 0 0 3〜 0. 0 0 8 %とした。  B is an element that improves the cleave rupture strength as a result of increasing the grain boundary strength, but its effect is small when it is less than 0.03%, and when it exceeds 0.08%, the weldability and hot work Since the workability is reduced, the range of the B content is set to 0.003 to 0.008%.
P :  P:
Pは添加量が多いと溶接性を著しく劣化させるので上限を 0. 0 2% とした。  If P is added in a large amount, the weldability is remarkably deteriorated, so the upper limit was made 0.02%.
S :  S:
Sは粒界に偏折し、 熱間加工性を劣化させ、 またクリープ中粒界脆化 を促進させるので上限を 0. 0 0 5 %とした。  Since S is deflected to the grain boundary, deteriorating hot workability and promoting grain boundary embrittlement during creep, the upper limit was made 0.005%.
N :  N:
Nは固溶強化および窒化物の形成によってクリープ破断強度を著しく 向上させる元素である。 Nが 0. 0 5%未満では溶接性向上のために低 C量としたための強度低下分を補償できず、 また 3%を超えて添加 しても長時間のクリ一プ破断強度の増加は少なく、 さらに靱性を低下さ せる。 従って、 N量の範囲を 0. 0 5〜0. 3%とした。  N is an element that significantly improves the creep rupture strength by solid solution strengthening and the formation of nitrides. If N is less than 0.05%, the decrease in strength due to the low C content in order to improve weldability cannot be compensated for, and even if added over 3%, the increase in long-term creep rupture strength will not increase. Less, further reduces toughness. Therefore, the range of the amount of N was set to 0.05 to 0.3%.
Mg, C a, 希土類元素 (REM) :  Mg, C a, Rare earth elements (REM):
これらの元素は脱酸、 脱硫により鋼を清浄化し、 熱間加工性を高める 力 その効果を得るためには、 これらの少なくとも 1種を 0. 0 0 1 % 以上添加する必要がある。 し力、し、 Mg : 0. 0 5%、 C a : 0. 0 5 % REM: 0. 1 5%を超えて添加すると、 かえって熱間加工性を害 するので、 それぞれの添加範囲を Mg : 0. 0 0 1〜0. 0 5%、 C a : 0. 0 0 1 - 0. 0 5 %^ REM: 0. 0 0 1-0. 1 5%とした。 実施例 次に、 本発明を実施例によって具体的に説明する。 These elements cleanse the steel by deoxidation and desulfurization, and enhance the hot workability. To obtain the effect, it is necessary to add at least one of these elements in an amount of 0.0001% or more. Mg: 0.05%, Ca: 0.05% REM: Addition exceeding 0.15% will adversely affect hot workability. : 0.001 to 0.05%, Ca: 0.001 to 0.05% ^ REM: 0.001 to 0.15%. Example Next, the present invention will be described specifically with reference to examples.
表 1、 表 2 (表 1のつづき) に供試鋼の化学成分および材料特性を示 す。 これらの鋼について、 1 250 °Cで溶体化処理後、 700, 750 ででクリープ破断試験を、 また 700 °Cで高温腐食試験を実施した。 ク リ一プ破断強度については、 データを L a r s on-M i 1 1 e r法で 整理し、 700 °Cx 1 0万時間破断強度を推定した。 高温腐食試験につ いては、 K2 S04 : Na2 S04 : F e 2 (SO4 ) 3 =0. 28 : 0. 2 : 0. 5 (質量比) の石炭焚き模擬燃焼灰中に供試鋼を 20 O h 浸漬後、 腐食減量を測定した。 試験結果を表 2に示す。 Tables 1 and 2 (continued from Table 1) show the chemical composition and material properties of the test steel. These steels were subjected to a solution treatment at 1250 ° C, a creep rupture test at 700,750 and a high temperature corrosion test at 700 ° C. Regarding the creep rupture strength, the data was arranged by the Lars on-M i11 er method, and the rupture strength at 700 ° C for 100,000 hours was estimated. Hot corrosion test information about, K 2 S0 4: Na 2 S0 4: F e 2 (SO 4) 3 = 0 28:. 0. 2: a coal-fired simulated combustion ash 0.5 (weight ratio) After immersing the test steel for 20 Oh, the corrosion loss was measured. Table 2 shows the test results.
表 1および表 2に示された鋼のうち、 A~ Jは本発明鋼であり、 K~ Of the steels shown in Tables 1 and 2, A to J are the present invention steels, and K to
Uは比較鋼である。 比較鋼のうち、 Κは従来よく使用されている SUS 347 Η相当鋼である。 本発明鋼は S US 347 H鋼に比し、 非常に優 れた高温強度と耐高温腐食特性を有する。 比較鋼のうち、 L~0は Mo および W無添加で N bあるいは B量が本発明の範囲を外れているために 高温強度が低い例である。 また、 P~Uは高温強度は比較的高いが、 Mo単独添加、 あるいは Wとの複合添加であっても Mo量が多く、 耐高 温腐食特性が劣る例を示している。 U is a comparative steel. Among the comparative steels, Κ is SUS 347 Η equivalent steel that has been commonly used. The steel of the present invention has extremely excellent high-temperature strength and high-temperature corrosion resistance as compared with SUS 347H steel. Among the comparative steels, L to 0 are examples in which the high-temperature strength is low without the addition of Mo and W and the Nb or B content is out of the range of the present invention. In addition, although P to U have relatively high strength at high temperatures, even when Mo is added alone or in combination with W, the amount of Mo is large and the high temperature corrosion resistance is poor.
第 1図は、 2 0 C r— 2 5N i鋼において耐高温腐食特性に及ぼす Moと Wの効果を示すもので、 Mo単独添加 (図中、 秦印) では腐食減 量が大きいが、 Wを 1. 5%複合添加 (図中、 ▲印) することで耐高温 腐食特性が改善されることがわかる。 また、 W単独添加 (図中、 □印) では、 腐食減量は変化しないことがわかる。  Fig. 1 shows the effect of Mo and W on the high-temperature corrosion resistance of 20Cr—25Ni steel. When Mo alone is added (indicated by hatching in the figure), the corrosion loss is large. It can be seen that the high-temperature corrosion resistance is improved by adding a 1.5% composite (in the figure). In addition, it can be seen that corrosion loss is not changed by adding W alone (indicated by □ in the figure).
第 2図は、 本発明鋼と比較鋼のクリーブ破断強度と高温腐食減量を比 較するもので、 比較鋼が高温強度と耐高温腐食特性のどちらか片方もし くは両方が低いのに対し、 本発明鋼は高温強度と耐高温腐食特性の双方 に優れていることがわかる。
Figure imgf000010_0001
Figure 2 compares the cleave rupture strength and hot corrosion weight loss of the steel of the present invention and the comparative steel.The comparative steel has low high-temperature strength and / or high-temperature corrosion resistance. It can be seen that the steel of the present invention is excellent in both high-temperature strength and high-temperature corrosion resistance.
Figure imgf000010_0001
I挲 I 挲
£9Z-00/t76df/XOd[ LP69ZIP6 OAV 表 2 (表 1のつづき) £ 9Z-00 / t76df / XOd [LP69ZIP6 OAV Table 2 (continued from Table 1)
Figure imgf000011_0001
Figure imgf000011_0001
注: *印は本発明の成分範囲外にあることを示す。 産業上の利用の可能性 Note: * indicates that it is outside the range of components of the present invention. Industrial applicability
本発明により、 溶接性に優れるとともに、 高温強度と耐高温腐食特性 が確保されたオーステナイ ト系耐熱鋼が実現でき、 高温高圧ボイラへの 高強度鋼の適用を容易にするとともに、 施工コストを低下させることが できる。  According to the present invention, it is possible to realize an austenitic heat-resistant steel with excellent weldability and high-temperature strength and high-temperature corrosion resistance. It can be done.

Claims

請 求 の 範 囲 The scope of the claims
1. 質量% (以下、 %と略す) で、 1. In mass% (hereinafter abbreviated as%),
C - 0 . 02%未満、  C-less than 0.02%,
S i 1 . 5%以下、  S i 1.5% or less,
Mn 0 . 3~ 1. 5 %,  Mn 0.3 to 1.5%,
Ρ 0 • 02 %以下、  Ρ 0 • 02% or less,
s 0 . 005 %以下、  s 0.005% or less,
C r 1 8〜26%、  Cr 18-26%,
N i 2 0~40%、  N i 20-40%,
W 0 . 5-1 0. 0%、  W 0 .5-1 0 .0%,
Nb . 0 • 05〜0. 4%、  Nb. 0 • 05-0.4%,
T i 0 . 0 卜 0. 2%、  T i 0.0 0.2% 0.2%,
B . 0 . 003〜0. 008%、  B. 0.003-0.008%,
N 0 . 05-0. 3%  N 0 .05-0.3%
を含有し、 残部 F eおよび不可避的不純物よりなることを特徴とする溶 接性に優れ、 耐高温腐食特性が良好な高強度オーステナイト系耐熱鋼。 A high-strength austenitic heat-resistant steel with excellent weldability and good high-temperature corrosion resistance, characterized by containing Fe and unavoidable impurities.
2. さらに  2. Further
Mo : 0. 5-2. 0%  Mo: 0.5-2. 0%
を含有することを特徴とする請求項 1記載の溶接性に優れ、 耐高温腐食 特性が良好な高強度オーステナイト系耐熱鋼。 2. A high-strength austenitic heat-resistant steel having excellent weldability and excellent high-temperature corrosion resistance according to claim 1, characterized by comprising:
3. さらに  3. Further
Mg : 0. 00 1〜0. 05%、  Mg: 0.001 to 0.05%,
C a : 0. 00 1〜0. 05%、  C a: 0.001 to 0.05%,
希土類元素 (REM) : 0. 00 1-0. 1 5%  Rare earth element (REM): 0.000 1-0.15%
のうち 1種または 2種以上を含有することを特徴とする請求項 1または 2記載の溶接性に優れ、 耐高温腐食特性が良好な高強度オーステナイ ト 系耐熱鋼。 Claim 1 or Claim 2, characterized by containing one or more of A high-strength austenitic heat-resistant steel with excellent weldability and good high-temperature corrosion resistance as described in 2.
PCT/JP1994/000767 1993-05-13 1994-05-12 High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance WO1994026947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94914608A EP0708184A4 (en) 1993-05-13 1994-05-12 High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP5111957A JPH06322488A (en) 1993-05-13 1993-05-13 High-strength austenitic heat resistant steel excellent in weldability and satisfactory in high temperature corrosion resistance
JP5/111957 1993-05-13

Publications (1)

Publication Number Publication Date
WO1994026947A1 true WO1994026947A1 (en) 1994-11-24

Family

ID=14574397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000767 WO1994026947A1 (en) 1993-05-13 1994-05-12 High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance

Country Status (4)

Country Link
EP (1) EP0708184A4 (en)
JP (1) JPH06322488A (en)
CA (1) CA2162704A1 (en)
WO (1) WO1994026947A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739870A1 (en) * 1995-10-17 1997-04-18 Carondelet Foundry Co REFRACTORY, TOUGH AND WELDABLE ALLOY
CN114032434A (en) * 2021-10-27 2022-02-11 江苏金合特种合金材料有限公司 High corrosion-resistant N08120 material smelting and large-caliber seamless pipe production process
CN115505820A (en) * 2022-09-15 2022-12-23 山西太钢不锈钢股份有限公司 Continuous casting method of niobium-containing high-nitrogen nickel-based alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424471B2 (en) * 2003-01-29 2010-03-03 住友金属工業株式会社 Austenitic stainless steel and method for producing the same
CN100406608C (en) * 2005-04-18 2008-07-30 张光华 Ultra-strong refractory steel
US7815848B2 (en) * 2006-05-08 2010-10-19 Huntington Alloys Corporation Corrosion resistant alloy and components made therefrom
JP5670103B2 (en) * 2010-06-15 2015-02-18 山陽特殊製鋼株式会社 High strength austenitic heat resistant steel
JP5661001B2 (en) * 2011-08-23 2015-01-28 山陽特殊製鋼株式会社 High strength austenitic heat resistant steel with excellent post-aging toughness
JP5930635B2 (en) * 2011-09-26 2016-06-08 山陽特殊製鋼株式会社 Austenitic heat resistant steel having excellent high temperature strength and method for producing the same
JP5273266B2 (en) * 2012-02-08 2013-08-28 新日鐵住金株式会社 Double pipe and welded structure using the same
JP6197885B2 (en) * 2014-01-27 2017-09-20 新日鐵住金株式会社 Welding material for Ni-base heat-resistant alloy, weld metal and welded joint using the same
JP6955322B2 (en) * 2016-03-15 2021-10-27 山陽特殊製鋼株式会社 Austenitic heat-resistant steel with excellent workability, high-temperature strength and toughness after aging

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254179B2 (en) * 1979-12-06 1987-11-13 Daido Steel Co Ltd
JPS63183155A (en) * 1987-01-24 1988-07-28 Nippon Steel Corp High-strength austenitic heat-resisting alloy
JPS6344814B2 (en) * 1980-01-25 1988-09-07 Daido Steel Co Ltd

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333549A (en) * 1986-07-29 1988-02-13 Nippon Kokan Kk <Nkk> Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture
JP2510206B2 (en) * 1987-07-03 1996-06-26 新日本製鐵株式会社 High strength austenitic heat resistant steel with low Si content

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6254179B2 (en) * 1979-12-06 1987-11-13 Daido Steel Co Ltd
JPS6344814B2 (en) * 1980-01-25 1988-09-07 Daido Steel Co Ltd
JPS63183155A (en) * 1987-01-24 1988-07-28 Nippon Steel Corp High-strength austenitic heat-resisting alloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0708184A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2739870A1 (en) * 1995-10-17 1997-04-18 Carondelet Foundry Co REFRACTORY, TOUGH AND WELDABLE ALLOY
GB2306504A (en) * 1995-10-17 1997-05-07 Carondelet Foundry Co Tough weldable heat resistant alloy
CN114032434A (en) * 2021-10-27 2022-02-11 江苏金合特种合金材料有限公司 High corrosion-resistant N08120 material smelting and large-caliber seamless pipe production process
CN114032434B (en) * 2021-10-27 2023-09-26 江苏金合特种合金材料有限公司 Smelting of high corrosion resistant N08120 material and production process of large-caliber seamless pipe
CN115505820A (en) * 2022-09-15 2022-12-23 山西太钢不锈钢股份有限公司 Continuous casting method of niobium-containing high-nitrogen nickel-based alloy
CN115505820B (en) * 2022-09-15 2024-01-05 山西太钢不锈钢股份有限公司 Continuous casting method of niobium-containing high-nitrogen nickel-based alloy

Also Published As

Publication number Publication date
CA2162704A1 (en) 1994-11-24
EP0708184A1 (en) 1996-04-24
JPH06322488A (en) 1994-11-22
EP0708184A4 (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US5298093A (en) Duplex stainless steel having improved strength and corrosion resistance
JPH0621323B2 (en) High strength and high chrome steel with excellent corrosion resistance and oxidation resistance
JPH0885849A (en) High chromium ferritic heat resistant steel
JP3982069B2 (en) High Cr ferritic heat resistant steel
JP5137934B2 (en) Ferritic heat resistant steel
JP2000248337A (en) Method for improving water vapor oxidation resistance of high chromium ferritic heat resistant steel for boiler and high chromium ferritic heat resistant steel for boiler excellent in water vapor oxidation resistance
WO1994026947A1 (en) High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JPH0517850A (en) High chromium ferrite-based heat resistant steel excellent in copper checking resistance
JP3388998B2 (en) High strength austenitic heat-resistant steel with excellent weldability
JPS6123749A (en) Austenitic stainless steel having high strength at high temperature
JPS5914097B2 (en) Ferritic heat-resistant steel with improved toughness
JPH07138708A (en) Austenitic steel good in high temperature strength and hot workability
JP2561592B2 (en) Welding material for high Cr ferritic heat resistant steel
JP4523696B2 (en) TIG welding material for austenitic heat resistant steel with excellent high temperature strength
JPH0885850A (en) High chromium ferritic heat resistant steel
JPH0121864B2 (en)
JPH06228713A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JP2002180208A (en) Ferritic heat resistant steel
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JP3367831B2 (en) Welding material for high strength ferritic heat resistant steel
JP3367824B2 (en) Welding material for heat resistant ferritic steel
JPH0142346B2 (en)
JP3565155B2 (en) High strength low alloy heat resistant steel
JPH06228712A (en) Austenitic heat resistant cast steel excellent in strength at high temperature and machinability and exhaust system parts using same
JP3426880B2 (en) Welding material for high strength ferritic heat resistant steel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 1995 545673

Country of ref document: US

Date of ref document: 19951031

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2162704

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1994914608

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1994914608

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1994914608

Country of ref document: EP