JPS6344814B2 - - Google Patents

Info

Publication number
JPS6344814B2
JPS6344814B2 JP55006895A JP689580A JPS6344814B2 JP S6344814 B2 JPS6344814 B2 JP S6344814B2 JP 55006895 A JP55006895 A JP 55006895A JP 689580 A JP689580 A JP 689580A JP S6344814 B2 JPS6344814 B2 JP S6344814B2
Authority
JP
Japan
Prior art keywords
less
hearth
weld cracking
cracking resistance
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55006895A
Other languages
Japanese (ja)
Other versions
JPS56105458A (en
Inventor
Jiro Ichikawa
Masakuni Fujikura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP689580A priority Critical patent/JPS56105458A/en
Publication of JPS56105458A publication Critical patent/JPS56105458A/en
Publication of JPS6344814B2 publication Critical patent/JPS6344814B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、炉床レール、炉床ローラー、ラジア
ントチユーブなどのごとく1000℃以上の高温下で
使用される耐溶接割れ特性の優れた炉床部材に関
するものである。 鋼塊加熱炉の炉床レール、炉床ロールなどは、
1000℃以上の温度で曝され、しかも数トン〜数十
トンの赤熱した鋼塊が搬送・搬入・移送されるた
め、これらの材料としては1000℃以上の高温下で
充分な強度と耐酸化性を備えている必要がある。
現在、この種の用途にはUMCo50(30Cr−50Co−
Fe)、20Co系(29Cr−20Ni−20Co−5W−2Nb−
Fe)などのCoを多量に含む耐熱鋳造合金が用い
られているが、炉床部材などのごとく苛酷な条件
で使用される場合には上記の鋳造合金においても
まだ充分とはいえず、より高性能な炉床部材用の
耐熱鋳造合金の開発が要望されている。 そこで本発明者等は、UMCo50または20Co系
耐熱鋳造合金にくらべてさらにすぐれた高温特性
を保有し、溶接時にミクロ割れを生じがたいすぐ
れた耐溶接割れ特性を持ち、しかも安価な炉床部
材を開発することを目的として各種成分元素の影
響を詳細に調査した結果、以下に示す成分組成の
鋳造合金は1000℃以上の高温領域において優れた
強度および耐酸化性を保有し、かつ耐溶接割れ特
性にも優れており、炉床部材用としてきわめて好
適であることを確認した。 すなわち、本発明に係る耐溶接割れ特性の優れ
た炉床部材は、 (1) 重量%で、(C+N):0.20超過〜1.50%、
Si:2.50%以下、Mn:2.50%以下、Ni:15.0〜
60.0%、Cr:15.0〜40.0%、W:3.0〜10.0%、
Ti:0.02〜3.0%、Zr:0.008〜2.0%を含有し、
残余が実質的にFeからなる耐溶接割れ特性の
優れた炉床部材。 (2) 第1発明組成にたいしてさらにCo:2.0%以
下、Mo:5.0%以下、Nb:3.0%以下、Ta:
3.0%以下のうちから選んだ1種または2種以
上の元素を含有し、残余が実質的にFeからな
る耐溶接割れ特性の優れた炉床部材。 (3) 第1発明組成にたいしてさらにREM:2.0%
以下、Ca:0.02%以下、Al:4.0%以下のうち
から選んだ1種または2種以上の元素を含有
し、残余が実質的にFeからなる耐溶接割れ特
性の優れた炉床部材。 (4) 第1発明組成にたいしてさらにB:0.0001〜
0.05%を含有し、残余が実質的にFeからなる耐
溶接割れ特性の優れた炉床部材。 であることを特徴としているものである。 本発明に係る耐溶接割れ特性の優れた炉床部材
は、比較的安価な元素を組合わせて最良の高温特
性および耐溶接割れ特性が得られるように合金設
計して得られたものであり、UMCo50または
20Co系合金にくらべて高温強度、耐酸化性、ク
リープ強度ともに優れており、かつ耐溶接割れ特
性にも優れているため、炉床レール、炉床ローラ
ー、ラジアントチユーブなどの炉床部材としてき
わめて好適なものである。 次に、本発明に係る耐溶接割れ特性の優れた炉
床部材の成分組成範囲(重量%)の限定理由を以
下に述べる。 (C+N):0.20超過〜1.50% CとNはともに基地中に固溶するとともにCr、
W、Ti、Zrと結合して微細な炭化物および/ま
たは窒化物を形成し、高温強度を向上させるのに
きわめて有効な元素であり、両元素の総和で0.20
%超過含有させる必要がある。この場合、Nは含
有されていなくても良好な高温特性を確保するこ
とができるが、高温引張強さが特に要求される場
合にはNを積極的に含有させることが好ましい。 以上のごとくCとNは有効な元素であるが、多
量に含有させると靫性、溶接性等が低下するため
1.50%以下に限定した。 Si:2.50%以下 溶解時の脱酸元素として必要であるほか、耐酸
化性、耐浸炭性の向上に有効な元素であり、積極
的に含有させることが好ましいが、多量に含有さ
せるとσ相が生成された高温強度が低下するため
2.50%以下に限定した。 Mn:2.50%以下 溶解時の脱酸、脱硫精錬剤として有効な元素で
あるが、多量に含有させると耐酸化性が劣化する
ため2.50%以下に限定した。 Ni:15.0〜60.0% Niはオーステナイトを安定化し、耐熱性、耐
浸炭性および高温強度を向上させるために有効な
元素であり、少なくとも15.0%以上含有させる必
要がある。Ni量が多いほどオーステナイトは安
定化するため多量に含有するとよいが、他の成分
とのバランス上15.0〜60.0%の範囲に限定した。 Cr:15.0〜40.0% Crは高温における耐酸化性を向上させるため
に最も有効な元素であり、少なくとも15.0%以上
含有させる必要がある。ただし、多量に含有する
とδ相が生成され、靫性が低下するため15.0〜
40.0%の範囲に限定した。 W:3.0〜10.0% Wは基地に固溶するとともにCと結合してW―
C系炭化物を生成し高温強度を著しく改善する効
果がある。この効果は3.0%以上の添加でより確
実に認められ、その量が多いほど向上するが、一
方において靫性が低下するため好適な範囲は3.0
〜10.0%である。 Ti:0.02〜3.0% TiもWと同様に基地への固溶およびCと結合
してT―C系炭化物を生成し、高温強度を著しく
改善する効果がある。この場合理論的には究明さ
れていないが、Wとの相乗効果が強く高温強度が
著しく改善されることを実験的に確認した。この
効果は少量の含有で認められ、その量が多いほど
向上するが、一方において靫性が低下するため好
適な範囲は0.02〜3.0%である。 Zr:0.008〜2.0% Zrは高温における耐酸化性および強度の向上
に有効であるばかりでなく、溶接時におけるミク
ロ割れの発生を阻止して耐溶接割れ特性の向上に
きわめて有効であり、少なくとも0.008%以上含
有させる必要がある。ただし多量に含有させても
その効果は少なく、逆に耐酸化性が劣化しはじめ
るので2.0%以下に限定した。 上記の成分組成により1000℃以上の高温領域に
おいて優れた強度および耐酸化性と耐溶接割れ特
性を確保できるが、さらに以下の元素を含有させ
ると高温特性がより一層向上する。 Co:2.0%以下、Mo:5.0%以下、Nb:3.0%以
下、Ta:3.0%以下のうちから選んだ1種または
2種以上 これらの元素はいずれも基地中に固溶して基地
を強化するとともに、一部は炭化物となつて析出
するため高温強度の向上に有効である。 しかし多量に含有させてもその効果は少なく、
むしろ靫性が低下するため好適な範囲はそれぞれ
Coにあつては2.0%以下、Moにあつては5.0%以
下、Nbにあつては3.0%以下、Taにあつては3.0
%以下である。 REM:2.0%以下、Ca:0.02%以下、Al:4.0%
以下のうちから選んだ1種または2種以上 これらの元素はいずれも酸素との親和力が極め
て大きく耐酸化性の向上に有効な元素である。し
かし多量に含有させてもその効果は少なく、むし
ろ靫性が低下するため好適な範囲はそれぞれ
REM(希土類元素のうちの1種または2種以上)
にあつては2.0%以下、Caにあつては0.02%以下、
Alにあつては4.0%以下である。 B:0.0001〜0.05% 微量の含有で高温におけるクリープ強度を向上
させるために有効な元素であるが、多量に含有さ
せると硼化物を形成して靫性を劣化させるため、
その好適な範囲は0.0001〜0.05%である。 次に本発明に係る耐溶接割れ特性の優れた炉床
部材の特徴を実施例により詳細に説明する。 実施例 1 第1表に示すごとき成分組成の本発明炉床部材
用合金および比較の炉床部材用合金として従来か
ら用いられているUMCo50合金と20Co系合金を
溶製し、JIS―G5121に基づくA号舟型試験片を
採取して各種特性値を調べた。
The present invention relates to hearth members such as hearth rails, hearth rollers, radiant tubes, etc., which are used at high temperatures of 1000° C. or higher and have excellent weld cracking resistance. Hearth rails, hearth rolls, etc. of steel ingot heating furnaces are
Since red-hot steel ingots weighing several tons to several tens of tons are transported, transported, and exposed to temperatures of 1000℃ or higher, these materials must have sufficient strength and oxidation resistance at high temperatures of 1000℃ or higher. It is necessary to have the following.
Currently, UMCo50 (30Cr−50Co−
Fe), 20Co (29Cr−20Ni−20Co−5W−2Nb−
Heat-resistant cast alloys containing a large amount of Co such as Fe) are used, but even the above cast alloys are not sufficient when used under harsh conditions such as hearth parts, and higher There is a need for the development of heat-resistant casting alloys for high-performance hearth components. Therefore, the present inventors have developed a hearth member that has superior high-temperature properties compared to UMCo50 or 20Co-based heat-resistant cast alloys, has excellent weld cracking resistance that does not cause microcracks during welding, and is also inexpensive. As a result of detailed investigation of the influence of various component elements for the purpose of development, we found that the cast alloy with the composition shown below has excellent strength and oxidation resistance in the high temperature range of 1000℃ or higher, and has excellent weld cracking resistance. It was confirmed that the material has excellent properties and is extremely suitable for use in hearth members. That is, the hearth member with excellent weld cracking resistance according to the present invention has (1) (C+N) in weight%: exceeding 0.20 to 1.50%;
Si: 2.50% or less, Mn: 2.50% or less, Ni: 15.0~
60.0%, Cr: 15.0-40.0%, W: 3.0-10.0%,
Contains Ti: 0.02~3.0%, Zr: 0.008~2.0%,
A hearth member with excellent weld cracking resistance, the remainder of which is essentially Fe. (2) In addition to the first invention composition, Co: 2.0% or less, Mo: 5.0% or less, Nb: 3.0% or less, Ta:
A hearth member with excellent weld cracking resistance, containing one or more elements selected from 3.0% or less, with the remainder being substantially Fe. (3) In addition to the first invention composition, REM: 2.0%
A hearth member having excellent weld cracking resistance, containing one or more elements selected from the following: Ca: 0.02% or less and Al: 4.0% or less, with the remainder being substantially Fe. (4) In addition to the first invention composition, B: 0.0001~
A hearth member with excellent weld cracking resistance, containing 0.05% Fe, with the remainder essentially consisting of Fe. It is characterized by the fact that The hearth member with excellent weld cracking resistance according to the present invention is obtained by designing an alloy by combining relatively inexpensive elements to obtain the best high temperature characteristics and weld cracking resistance, UMCo50 or
It has superior high-temperature strength, oxidation resistance, and creep strength compared to 20Co alloys, and also has excellent weld cracking resistance, making it extremely suitable for hearth components such as hearth rails, hearth rollers, and radiant tubes. It is something. Next, the reason for limiting the composition range (weight %) of the hearth member having excellent weld cracking resistance according to the present invention will be described below. (C+N): Exceeding 0.20 to 1.50% Both C and N are dissolved in the base, and Cr,
It is an extremely effective element that combines with W, Ti, and Zr to form fine carbides and/or nitrides and improves high-temperature strength, and the sum of both elements is 0.20.
It is necessary to contain it in excess of %. In this case, good high-temperature properties can be ensured even if N is not included, but if high-temperature tensile strength is particularly required, it is preferable to actively include N. As mentioned above, C and N are effective elements, but if they are included in large amounts, the toughness, weldability, etc. will decrease.
Limited to 1.50% or less. Si: 2.50% or less In addition to being necessary as a deoxidizing element during melting, it is an effective element for improving oxidation resistance and carburization resistance, and it is preferable to include it actively, but if it is included in a large amount, is produced because the high temperature strength decreases
Limited to 2.50% or less. Mn: 2.50% or less Mn is an effective element as a deoxidizing and desulfurizing refining agent during melting, but it is limited to 2.50% or less since oxidation resistance deteriorates if it is included in a large amount. Ni: 15.0 to 60.0% Ni is an effective element for stabilizing austenite and improving heat resistance, carburization resistance, and high-temperature strength, and must be contained at least 15.0%. The higher the amount of Ni, the more stable the austenite becomes, so it is better to include a larger amount, but in view of the balance with other components, it is limited to a range of 15.0 to 60.0%. Cr: 15.0-40.0% Cr is the most effective element for improving oxidation resistance at high temperatures, and must be contained at least 15.0%. However, if it is contained in a large amount, δ phase will be generated and the dazzling property will decrease.
It was limited to a range of 40.0%. W: 3.0 to 10.0% W is dissolved in the base and combined with C to form W-
It has the effect of producing C-based carbides and significantly improving high-temperature strength. This effect is more clearly observed when the amount is 3.0% or more, and the larger the amount, the better the effect, but on the other hand, the eyelids decrease, so the preferred range is 3.0%.
~10.0%. Ti: 0.02-3.0% Like W, Ti also forms a solid solution in the matrix and combines with C to form TC-based carbides, which has the effect of significantly improving high-temperature strength. Although this case has not been investigated theoretically, it has been experimentally confirmed that the synergistic effect with W is strong and high-temperature strength is significantly improved. This effect is observed when contained in a small amount, and the larger the amount, the better the effect, but on the other hand, the eyelids decrease, so the preferred range is 0.02 to 3.0%. Zr: 0.008~2.0% Zr is not only effective in improving oxidation resistance and strength at high temperatures, but also extremely effective in preventing the occurrence of microcracks during welding and improving weld cracking resistance. % or more. However, even if it is contained in a large amount, the effect is small and oxidation resistance begins to deteriorate, so it was limited to 2.0% or less. The above component composition ensures excellent strength, oxidation resistance, and weld cracking resistance in the high temperature range of 1000°C or higher, but the high temperature properties are further improved by further containing the following elements. One or more elements selected from Co: 2.0% or less, Mo: 5.0% or less, Nb: 3.0% or less, Ta: 3.0% or less. All of these elements are dissolved in the base to strengthen the base. At the same time, some of it precipitates as carbide, which is effective in improving high-temperature strength. However, even if it is contained in large amounts, its effect is small;
Rather, the eyelidness decreases, so the preferred range is
2.0% or less for Co, 5.0% or less for Mo, 3.0% or less for Nb, and 3.0% for Ta.
% or less. REM: 2.0% or less, Ca: 0.02% or less, Al: 4.0%
One or more elements selected from the following: All of these elements have a very high affinity for oxygen and are effective in improving oxidation resistance. However, even if it is contained in a large amount, the effect is small, and the eyelids will actually decrease, so the suitable range for each is limited.
REM (one or more rare earth elements)
2.0% or less for Ca, 0.02% or less for Ca,
For Al, it is 4.0% or less. B: 0.0001 to 0.05% It is an effective element for improving creep strength at high temperatures when contained in a small amount, but when contained in a large amount, it forms borides and deteriorates the tackiness.
Its preferred range is 0.0001-0.05%. Next, the characteristics of the hearth member having excellent weld cracking resistance according to the present invention will be explained in detail using examples. Example 1 UMCo50 alloy and 20Co alloy, which have been conventionally used as hearth member alloys of the present invention and comparative hearth member alloys, having the composition shown in Table 1 were melted and prepared based on JIS-G5121. A boat-shaped test piece was taken and various characteristic values were investigated.

【表】【table】

【表】 クリープ特性 第1表の成分組成を有する舟型試験片からクリ
ープ試験片を採取し、炉床部材用としてのクリー
プ特性評価試験に供した。第1図に結果の一例と
して温度:1100℃、負荷応力:2Kg/mm2の条件下
における破断までの寿命時間を示した。 同図にみられるごとく比較例のUMCo50から
なるもの(供試材No.6)ではほぼ5時間で破断
し、また20Co系からなるもの(供試材No.7)で
は80時間で破断したのにたいして本発明例による
ものではいずれも90時間以上の破断寿命を示して
いる。 以上のごとく本発明例によるものでは1000℃以
上の高温下におけるクリープ特性がきわめて優れ
ていることを確認した。 高温引張特性 第1表の成分組成を有する舟型試験片から高温
引張試験片を採取し、炉床部材としての高温引張
特性評価試験に供した。第2図に結果の一例とし
て1100℃の高温下における引張特性を示した。同
図にみられるごとく比較例のUMCo50からなる
もの(供試材No.6)では引張強さ:5.5Kg/mm2
伸び:3.5%程度の特性を示しているのにたいし
て本発明例によるものでは比較例の20Co系合金
からなるもの(供試材No.7)と同程度もしくはそ
れ以上の強度特性を示している。 以上のごとく本発明例によるものでは1000℃以
上の高温下における強度特性がきわめて優れてい
ることを確認した。 高温耐酸化特性 第1表の成分組成を有する舟型試験片から耐酸
化性試験片を採取し、炉床部材用としての耐酸化
性評価試験に供した。第3図に結果の一例として
1200℃の高温中に100時間曝露した場合の酸化増
量を示した。同図にみられるごとく、比較的良好
な高温強度およびクリープ特性を示した比較例の
20Co系合金からなるもの(供試材No.7)は酸化
増量が著しく大であり、耐酸化性の面では問題が
あることを示している。これにたいして本発明例
によるものではいずれもUMCo50合金からなる
ものと同程度もしくはそれ以下の酸化増量を示し
ている。すなわち本発明例によるものでは1000℃
以上の高温下における強度特性および耐酸化性と
もに優れており、炉床部材用としてバランスのと
れたものであることを確認した。 耐溶接割れ特性 炉床部材用としては加熱炉本体または冷却パイ
プとの接続が必要となるため材料自体の溶接性、
とくに溶接時にミクロ割れが生じがたい耐溶接割
れ特性をも具備すべき特性の一つである。そこで
第1表の成分組成を有する舟型試験片から耐溶接
割れ特性試験片を採取し、第4図に示すような要
領で炭素鋼と突き合わせ溶接を行なつた。その後
第4図にA―A′面で切断し、同面を研摩後B部
のミクロ割れを観察した。第2表に溶接条件およ
び溶接部のミクロ割れ数を示した。
[Table] Creep properties A creep test piece was taken from a boat-shaped test piece having the composition shown in Table 1, and was subjected to a creep property evaluation test for use as a hearth member. As an example of the results, Fig. 1 shows the life time until rupture under the conditions of temperature: 1100°C and load stress: 2 Kg/mm 2 . As seen in the figure, the comparative example made of UMCo50 (sample material No. 6) broke in about 5 hours, and the material made of 20Co (sample material No. 7) broke in 80 hours. On the other hand, all of the samples according to the present invention have a rupture life of 90 hours or more. As described above, it was confirmed that the samples according to the present invention have extremely excellent creep properties at high temperatures of 1000°C or higher. High-temperature tensile properties A high-temperature tensile test piece was taken from a boat-shaped test piece having the composition shown in Table 1, and subjected to a high-temperature tensile property evaluation test as a hearth member. Figure 2 shows the tensile properties at a high temperature of 1100°C as an example of the results. As seen in the figure, the comparative example made of UMCo50 (sample material No. 6) had a tensile strength of 5.5 Kg/mm 2 ,
Although the specimen according to the present invention exhibits an elongation of approximately 3.5%, the specimen according to the present invention exhibits a strength characteristic comparable to or greater than that of the comparative example made of a 20Co alloy (sample material No. 7). As described above, it was confirmed that the examples of the present invention have extremely excellent strength properties at high temperatures of 1000°C or higher. High-temperature oxidation resistance properties An oxidation resistance test piece was taken from a boat-shaped test piece having the composition shown in Table 1, and was subjected to an oxidation resistance evaluation test for use as a hearth member. Figure 3 shows an example of the results.
The figure shows the oxidation weight gain when exposed to a high temperature of 1200℃ for 100 hours. As seen in the figure, the comparative example showed relatively good high-temperature strength and creep properties.
The material made of 20Co alloy (sample material No. 7) showed a significantly large increase in weight due to oxidation, indicating that there was a problem in terms of oxidation resistance. On the other hand, all of the examples according to the present invention show an increase in oxidation weight equal to or less than that of the UMCo50 alloy. That is, in the case of the example of the present invention, the temperature is 1000°C.
It was confirmed that the material has excellent strength properties and oxidation resistance at the above-mentioned high temperatures, and is well-balanced for use as a hearth member. Weld cracking resistance properties As hearth parts require connection to the heating furnace body or cooling pipe, the weldability of the material itself,
In particular, one of the characteristics that should be provided is weld cracking resistance, which makes it difficult for microcracks to occur during welding. Therefore, test pieces for weld cracking resistance were taken from boat-shaped test pieces having the chemical compositions shown in Table 1, and butt welded with carbon steel in the manner shown in FIG. Thereafter, it was cut along the A-A' plane as shown in FIG. 4, and after polishing the same surface, microcracks in the B section were observed. Table 2 shows the welding conditions and the number of microcracks in the weld.

【表】【table】

【表】 同表にみられるように比較例のUMCo50合金
からなるものおよび20Co系合金からなるもので
はともに溶接部にミクロ割れが発生したのにたい
して本発明例によるものではいずれも溶接割れは
全く発生せず、比較例にくらべて良好な耐溶接割
れ特性を示すことを確認した。 実施例 2 第3表に示す成分組成を有する0.2C−25Ni−
28Cr−6W−1.5Ti−0.09Zr系と0.4C−30Ni−
34Cr−5W−0.3Ti−0.03Zr系の本発明炉床部材用
合金を溶製し、JIS―G5121に基づくA号舟型試
験片を採取して実施例1と同様な方法で各種特性
値を調査した。
[Table] As shown in the same table, micro cracks occurred in the welds in both the comparative example made of UMCo50 alloy and the one made of 20Co alloy, but no weld cracks occurred in any of the inventive examples. However, it was confirmed that the weld cracking resistance was better than that of the comparative example. Example 2 0.2C-25Ni- having the component composition shown in Table 3
28Cr−6W−1.5Ti−0.09Zr series and 0.4C−30Ni−
The 34Cr-5W-0.3Ti-0.03Zr alloy for hearth members of the present invention was melted, No. A boat-shaped test pieces based on JIS-G5121 were taken, and various characteristic values were measured in the same manner as in Example 1. investigated.

【表】 その結果を第4表にまとめて示した。【table】 The results are summarized in Table 4.

【表】 同表にみられるごとく第二発明例は第一発明例
にくらべて高温強度が高く、また第三発明例は酸
化増量が少なく、また第4発明例はクリープ破断
寿命が長いことが明瞭に認められる。以上のごと
く第2〜第4発明例は第1発明例よりもさらに優
れた高温特性を保有することを確認した。また第
1〜第4発明例ともに炭素鋼との突合わせ溶接に
おいても割れの発生はまつたく確認できなかつ
た。 以上説明してきたように、本発明に係る炉床部
材は、1000℃以上の高温下における高温強度が、
従来から用いられている20Co系合金からなる炉
床部材と同等もしくはそれ以上であり、また耐酸
化性はUMCo50からなる炉床部材と同等もしく
はそれ以上であり、しかも溶接割れが発生しにく
いという特徴があり、炉床部材としてはきわめて
バランスのよいものである。さらに高価なCoが
多量に含有されていないためコスト的にも安価で
あり、炉床部材としての最近の要望にたいして十
分に対応できるという優れた効果をもたらしうる
ものである。
[Table] As shown in the table, the second invention example has higher high temperature strength than the first invention example, the third invention example has less oxidation weight gain, and the fourth invention example has a longer creep rupture life. clearly recognized. As described above, it was confirmed that the second to fourth invention examples had even better high-temperature characteristics than the first invention example. In addition, in both the first to fourth invention examples, no cracking was clearly observed during butt welding with carbon steel. As explained above, the hearth member according to the present invention has high-temperature strength at a high temperature of 1000°C or higher.
It has the same or better oxidation resistance than hearth members made of conventionally used 20Co alloys, and has the same or better oxidation resistance than hearth members made of UMCo50, and is less prone to weld cracking. As a hearth member, it is extremely well-balanced. Furthermore, since it does not contain a large amount of expensive Co, it is inexpensive and has the excellent effect of being able to fully meet recent demands for hearth members.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明例と比較例のクリープ破断寿命
時間を示す図、第2図は同様に高温引つ張り強さ
を示す図、第3図は同様に酸化増量を示す図、第
4図は突合わせ溶接要領を示す図である。
Figure 1 is a graph showing the creep rupture life time of the inventive example and the comparative example, Figure 2 is a graph showing the high temperature tensile strength, Figure 3 is a graph showing the oxidation weight gain, and Figure 4 is a graph showing the oxidation weight increase. FIG. 2 is a diagram showing a procedure for butt welding.

Claims (1)

【特許請求の範囲】 1 重量%で、(C+N):0.20超過〜1.50%、
Si:2.50%以下、Mn:2.50%以下、Ni:15.0〜
60.0%、Cr:15.0〜40.0%、W:3.0〜10.0%、
Ti:0.02〜3.0%、Zr:0.008〜2.0%を含有し、残
余が実質的にFeからなる耐溶接割れ特性の優れ
た炉床部材。 2 重量%で、(C+N):0.20超過〜1.50%、
Si:2.50%以下、Mn:2.50%以下、Ni:15.0〜
60.0%、Cr:15.0〜40.0%、W:3.0〜10.0%、
Ti:0.02〜3.0%、Zr:0.008〜2.0%、およびCo:
2.0%以下、Mo:5.0%以下、Nb:3.0%以下、
Ta:3.0%以下のうちから選んだ1種または2種
以上を含有し、残余が実質的にFeからなる耐溶
接割れ特性の優れた炉床部材。 3 重量%で、(C+N):0.20超過〜1.50%、
Si:2.50%以下、Mn:2.50%以下、Ni:15.0〜
60.0%、Cr:15.0〜40.0%、W:3.0〜10.0%、
Ti:0.02〜3.0%、Zr:0.008〜2.0%、および
REM:2.0%以下、Ca:0.02%以下、Al:4.0%
以下のうちから選んだ1種または2種以上を含有
し、残余が実質的にFeからなる耐溶接割れ特性
の優れた炉床部材。 4 重量%で、(C+N):0.20超過〜1.50%、
Si:2.50%以下、Mn:2.50%以下、Ni:15.0〜
60.0%、Cr:15.0〜40.0%、W:3.0〜10.0%、
Ti:0.02〜3.0%、Zr:0.008〜2.0%、B:0.0001
〜0.05%を含有し、残余が実質的にFeからなる耐
溶接割れ特性の優れた炉床部材。
[Claims] 1% by weight, (C+N): more than 0.20 to 1.50%,
Si: 2.50% or less, Mn: 2.50% or less, Ni: 15.0~
60.0%, Cr: 15.0-40.0%, W: 3.0-10.0%,
A hearth member containing Ti: 0.02 to 3.0%, Zr: 0.008 to 2.0%, and having excellent weld cracking resistance, the remainder being substantially Fe. 2 Weight% (C+N): over 0.20 ~ 1.50%,
Si: 2.50% or less, Mn: 2.50% or less, Ni: 15.0~
60.0%, Cr: 15.0-40.0%, W: 3.0-10.0%,
Ti: 0.02~3.0%, Zr: 0.008~2.0%, and Co:
2.0% or less, Mo: 5.0% or less, Nb: 3.0% or less,
Hearth member with excellent weld cracking resistance, containing one or more selected from Ta: 3.0% or less, with the remainder being substantially Fe. 3 Weight% (C+N): over 0.20 ~ 1.50%,
Si: 2.50% or less, Mn: 2.50% or less, Ni: 15.0~
60.0%, Cr: 15.0-40.0%, W: 3.0-10.0%,
Ti: 0.02~3.0%, Zr: 0.008~2.0%, and
REM: 2.0% or less, Ca: 0.02% or less, Al: 4.0%
A hearth member having excellent weld cracking resistance and containing one or more selected from the following, the remainder being substantially Fe. 4 Weight% (C+N): over 0.20 ~ 1.50%,
Si: 2.50% or less, Mn: 2.50% or less, Ni: 15.0~
60.0%, Cr: 15.0-40.0%, W: 3.0-10.0%,
Ti: 0.02~3.0%, Zr: 0.008~2.0%, B: 0.0001
A hearth member with excellent weld cracking resistance, containing ~0.05% Fe, with the remainder essentially consisting of Fe.
JP689580A 1980-01-25 1980-01-25 Heat-resistant cast alloy Granted JPS56105458A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP689580A JPS56105458A (en) 1980-01-25 1980-01-25 Heat-resistant cast alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP689580A JPS56105458A (en) 1980-01-25 1980-01-25 Heat-resistant cast alloy

Publications (2)

Publication Number Publication Date
JPS56105458A JPS56105458A (en) 1981-08-21
JPS6344814B2 true JPS6344814B2 (en) 1988-09-07

Family

ID=11650953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP689580A Granted JPS56105458A (en) 1980-01-25 1980-01-25 Heat-resistant cast alloy

Country Status (1)

Country Link
JP (1) JPS56105458A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026947A1 (en) * 1993-05-13 1994-11-24 Nippon Steel Corporation High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723050A (en) * 1980-07-18 1982-02-06 Sumitomo Metal Ind Ltd Heat resistant steel with excellent high temp. strength
JPS5757863A (en) * 1980-09-22 1982-04-07 Kubota Ltd Heat resistant conveying roller
JPS5916954A (en) * 1982-07-20 1984-01-28 Nippon Steel Corp Roller for continuous casting
JPS59229470A (en) * 1983-06-03 1984-12-22 Mitsubishi Metal Corp High toughness fe-cr-ni cast heat resistant alloy
JPS6141746A (en) * 1984-08-01 1986-02-28 Nippon Steel Corp High strength and high corrosion resistance heat resisting steel superior in hot workability
JPS62243736A (en) * 1986-04-15 1987-10-24 Kubota Ltd Heat resistant alloy
US4787945A (en) * 1987-12-21 1988-11-29 Inco Alloys International, Inc. High nickel chromium alloy
JPH01242751A (en) * 1988-03-24 1989-09-27 Asahi Eng Co Ltd Heat-resisting alloy excellent in carburizing resistance
JPH03243746A (en) * 1990-02-21 1991-10-30 Taihei Kinzoku Kogyo Kk Heat-resistant cast steel excellent in high temperature property
JPH0832941B2 (en) * 1990-07-26 1996-03-29 日本冶金工業株式会社 Sheath heater coated pipe material for cooking
JPH10121172A (en) * 1996-10-21 1998-05-12 Kubota Corp Heat resisting alloy steel for hearth metal of steel heating furnace
JP2850229B2 (en) * 1996-12-17 1999-01-27 神鋼パンテツク株式会社 Firing furnace

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921322A (en) * 1972-06-20 1974-02-25
JPS4998719A (en) * 1973-01-29 1974-09-18
JPS5086414A (en) * 1973-12-06 1975-07-11
JPS5086413A (en) * 1973-12-06 1975-07-11
JPS53108822A (en) * 1977-03-07 1978-09-22 Mitsubishi Metal Corp Iron alloy having corrosion resistance, oxidation resistance and strength at high temperature
JPS5681661A (en) * 1979-12-06 1981-07-03 Daido Steel Co Ltd Heat resistant cast alloy

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4921322A (en) * 1972-06-20 1974-02-25
JPS4998719A (en) * 1973-01-29 1974-09-18
JPS5086414A (en) * 1973-12-06 1975-07-11
JPS5086413A (en) * 1973-12-06 1975-07-11
JPS53108822A (en) * 1977-03-07 1978-09-22 Mitsubishi Metal Corp Iron alloy having corrosion resistance, oxidation resistance and strength at high temperature
JPS5681661A (en) * 1979-12-06 1981-07-03 Daido Steel Co Ltd Heat resistant cast alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026947A1 (en) * 1993-05-13 1994-11-24 Nippon Steel Corporation High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance

Also Published As

Publication number Publication date
JPS56105458A (en) 1981-08-21

Similar Documents

Publication Publication Date Title
EP0384433B1 (en) Ferritic heat resisting steel having superior high-temperature strength
JP2002144080A (en) Ni BASED HEAT RESISTANT BRAZING FILLER METAL
JPS6344814B2 (en)
JPH02267240A (en) Heat-resistant alloy
JPS6142781B2 (en)
JPS634897B2 (en)
JP3434180B2 (en) Ferritic heat-resistant steel with excellent creep characteristics in the weld heat affected zone
JPS6254388B2 (en)
JPH05195138A (en) Heat resistant alloy having excellent carburization resistance and high creep rupture strength under conditions of high temperature and low stress
JPS596910B2 (en) heat resistant cast steel
JP2928904B2 (en) Welding material for high strength and high corrosion resistant ferritic steel
JPH022942B2 (en)
JPH0987787A (en) Heat resistant alloy excellent in oxidation resistance, carburization resistance, high temperature creep fracture strength and ductility after aging
JPH03264647A (en) Overlay stainless clad steel which is made of low-alloy steel for high-temperature and high-pressure service as base metal and has excellent peeling resistance
JPS596909B2 (en) heat resistant cast steel
JPS628497B2 (en)
JPS5928552A (en) High strength ni base cast alloy excellent in high temperature characteristics
JPS61217555A (en) Heat resistant austenitic steel
JPH046242A (en) Heat-resistant cast steel
KR840000545B1 (en) Heat resrstant cast alloy
JPH07258783A (en) Heat resistant alloy excellent in carburization resistance
JPS625224B2 (en)
JPS634898B2 (en)
JPH07233446A (en) Carburizing resistant and heat resistant cast alloy steel
JPS62151548A (en) Heat resistance ferritic high-cr cast steel