JPS6254388B2 - - Google Patents

Info

Publication number
JPS6254388B2
JPS6254388B2 JP11565283A JP11565283A JPS6254388B2 JP S6254388 B2 JPS6254388 B2 JP S6254388B2 JP 11565283 A JP11565283 A JP 11565283A JP 11565283 A JP11565283 A JP 11565283A JP S6254388 B2 JPS6254388 B2 JP S6254388B2
Authority
JP
Japan
Prior art keywords
temperature
content
resistance
effect
furnaces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11565283A
Other languages
Japanese (ja)
Other versions
JPS609848A (en
Inventor
Tatsumori Yabuki
Takashi Asako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP11565283A priority Critical patent/JPS609848A/en
Publication of JPS609848A publication Critical patent/JPS609848A/en
Publication of JPS6254388B2 publication Critical patent/JPS6254388B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、すぐれた高温圧縮抵抗性、高温耐
酸化性、高温耐食性、および高温耐摩耗性(以
下、これらを総称して高温特性という)を有し、
特にこれらの特性が要求される重油や高炉ガスな
どを燃料として用いる加熱炉や均熱炉、あるいは
熱処理炉などの高温燃焼炉における構造部材の製
造に使用するのに適したCo基耐熱合金に関する
ものである。 一般に、例えば製鉄用の加熱炉や均熱炉、ある
いは熱処理炉などにおいては、燃料として重油や
高炉ガスなどが使用されており、このため、これ
らの炉の構造部材であるスキツド金物やその他の
炉床部材は、1200〜1350℃の高温にして、かつ腐
食性および酸化性のきわめて強いバナジウム酸化
物(V酸化物)や硫黄酸化物(S酸化物)などを
含有する高温燃焼雰囲気にさらされることにな
り、しかもこれらの炉の使用条件は日増しに苛酷
さを増している。 かかる状況下において、現在、これらの炉の構
造部材の製造には、主としてFe−30%Cr−22%
Niの組成を有するFe基耐熱合金や、Co−28%Cr
−20%Feの組成を有するCo基耐熱合金が使用さ
れているが、前者のFe基耐熱合金は、特に苛酷
な条件下での使用に際して満足する高温特性を示
さず、一方後者のCo基耐熱合金は、前記Fe基耐
熱合金に比して良好な高温特性を示すものの、上
記の1300〜1350℃の高温燃焼雰囲気においては高
温圧縮抵抗性が十分でなく、このため、これらの
合金は、その使用範囲が限定されるのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、高温特性のすぐれた材料を開発すべく研究を
行なつた結果、重量%で、 C:0.005〜0.2%、 Si:0.1〜2%、 Mn:0.1〜2%、 Cr:25〜35%、 Ni:10〜30%、 Fe:1〜25%、 Mo:0.1〜10%、 Hf:0.001〜0.45%、 を含有し、さらに必要に応じて、 Ti:0.1〜2%、 Nb:0.1〜2%、 Ta:0.1〜2%、 W:0.1〜10%、 のうちの1種または2種以上を含有し、残りが
Coと不可避不純物からなる組成を有するCo基合
金は、特に燃料として重油や高炉ガスなどを使用
する加熱炉や均熱炉、あるいは熱処理炉などの高
温燃焼炉や構造部材がさらされる、1200〜1300℃
の高温にして、かつ腐食性および酸化性のきわめ
て強いV酸化物やS酸化物などを含有する高温燃
焼雰囲気において、すぐれた高温特性、すなわち
高温圧縮抵抗性、高温耐酸化性、高温耐食性、お
よび高温耐摩耗性を示すという知見を得たのであ
る。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) C C成分には、素地に固溶して強度(圧縮抵抗
性)を向上させ、かつ合金成分であるCr、
Mo、Hf、さらにW、Ti、NbおよびTaなどと
結合してM7C3、MC、およびM23C6型などの炭
化物を形成して硬さ(耐摩耗性)を向上させる
と共に、溶接性および鋳造性を向上させる作用
があるが、その含有量が0.005%未満では前記
作用に所望の効果が得られず、一方0.2%を越
えて含有させると、前記炭化物の析出が多くな
るばかりでなく、その粒径も粗大化して靭性を
低下させ、さらに素地の融点を下げて耐熱性低
下の原因となることから、その含有量を0.005
〜0.2%と定めた。 (b) Si Si成分には、Crと共に高温燃焼雰囲気での
高温耐食性および高温耐酸化性を向上させる作
用があるほか、脱酸作用、並びに溶湯の流動性
を改善して鋳造性を向上させる作用があり、さ
らに高温圧縮抵抗性(高温強度)を向上させる
作用があるが、その含有量が0.1%未満では前
記作用に所望の効果が得られず、一方2%を越
えて含有させると、Crとの関連において靭性
および溶接性が低下するようになることから、
その含有量を0.1〜2%と定めた。 なお、Si成分には、上記のように脱酸作用が
あるので、これを脱酸剤として使用した場合な
どには、不可避不純物として0.1%未満の範囲
で含有する場合があるが、この場合には、不可
避不純物含有量を含め、全体含有量が0.1%以
上になるようにすればよい。 (c) Mn Mn成分には、素地に固溶してオーステナイ
トを安定化させるほか、脱酸作用があり、さら
に耐熱衝撃性および高温耐摩耗性(高温硬さ)
を向上させる作用があるが、その含有量が0.1
%未満では前記作用に所望の効果が得られず、
一方2.0%を越えて含有させると、高温耐食性
および高温耐酸化性に劣化傾向が現われるよう
になることから、その含有量を0.1〜2.0%と定
めた。 また、Mn成分にも、上記のように脱酸作用
のほか、脱硫作用があるので、これを脱酸脱硫
剤として使用した場合などには、Si成分と同様
に不可避不純物として0.1%未満の範囲で含有
する場合があるが、この場合も不可避不純物含
有量を含め、全体含有量が0.1%以上になるよ
うに成分調整すればよい。 (d) Cr Cr成分には、その一部が素地に固溶し、特
に燃焼雰囲気での高温耐食性および高温耐酸化
性を向上させると共に、残りの部分が炭化物を
形成して硬さを向上させ、もつて高温耐摩耗性
を向上させる作用があるが、その含有量が25%
未満では前記作用に所望の効果が得られず、一
方35%を越えて含有させると靭性が低下するよ
うになることから、その含有量を25〜35%と定
めた。 (e) Ni Ni成分には、オーステナイト地を安定にし
て靭性を高めるほか、Crと共に燃焼雰囲気中
での高温耐食性および高温耐酸化性を向上させ
る作用があるが、その含有量が10%未満では前
記作用に所望の効果が得られず、一方30%を越
えて含有させてもより一層の改善効果は現われ
ないことから、その含有量を10〜30%と定め
た。 (f) Fe Fe成分は、所定量を含有する場合、Coと同
等の作用効果を発揮するので、コスト低減をは
かる目的で高価なCo成分の1部代替成分とし
て含有されるが、その含有量が1%未満では経
済的効果が十分でなく、一方25%を越えて含有
させると、高温圧縮低抗性(高温強度)が低下
するようになることから、その含有量を1〜25
%と定めた。 (g) Mo Mo成分には、素地に固溶して、これを強化
し、かつ炭化物を形成して高温強度(高温圧縮
抵抗性)および高温硬さ(高温耐摩耗性)を向
上させる作用があるが、その含有量が0.1%未
満では前記作用に所望の効果が得られず、一方
10%を越えて含有させると、靭性が低下するよ
うになることから、その含有量を0.1〜10%と
定めた。 (h) Hf Hf成分には、主としてCo、Cr、およびNi成
分にて形成されたオーステナイト素地に固溶し
て高温強度(高温圧縮抵抗性)および高温耐酸
化性を向上させるほか、Cと結合してMC型炭
化物を形成し、高温硬さ(高温耐摩耗性)を向
上させる作用があるが、その含有量が0.001%
未満では前記作用に所望の効果が得られず、一
方0.45%を越えて含有させてもより一層の向上
効果が現われないばかりでなく、大気溶解に際
して含有歩留が低下して経済的でないことか
ら、その含有量を0.001〜0.45%と定めた。 (i) W W成分には、Moとの共存において素地に固
溶して、これを一段と強化するほか、炭化物を
形成して一段と高温強度(高温圧縮抵抗性)お
よび高温硬さ(高温耐摩耗性)を向上させる作
用があるので、特にこれらの特性が要求される
場合に必要に応じて含有されるが、その含有量
が0.1未満では前記作用に所望の向上効果が得
られず、一方10%を越えて含有させると靭性が
低下するようになることから、その含有量を
0.1〜10%と定めた。 (j) Ti、Nb、およびTa これらの成分には、素地の結晶粒の成長を著
しく抑制し、むしろ結晶粒を微細化し、かつ
MC型の炭化物および窒化物を形成して、高温
強度(高温圧縮抵抗性)および高温硬さ(高温
耐摩耗性)を一段と向上させる作用があるの
で、これらの特性が要求される場合に必要に応
じて含有されるが、その含有量が、それぞれ
0.1%未満では前記作用に所望の向上効果が得
られず、一方、それぞれ2%を越えて含有させ
ると、高温における炭化物形成が促進されて靭
性が低下するようになるばかりでなく、燃焼雰
囲気での酸化物の生成も顕著となつて高温耐食
性および高温耐酸化性が劣化するようになるこ
とから、その含有量を、それぞれTi:0.1〜2
%、Nb:0.1〜2%、およびTa:0.1〜2%と
定めた。 なお、不可避不純物として、Zrを含有する場
合があるが、その含有量が0.3%を越えると、
靭性、鋳造性、および溶接性に悪影響を及ぼす
ようになるので、Zrの含有量は0.3%を越えて
はならない。 つぎに、この発明のCo基耐熱合金を実施例に
より具体的に説明する。 実施例 通常の高周波溶解炉を用い、それぞれ第1表に
示される通りの成分組成をもつた溶湯を大気中に
て溶解し、ついで砂型に鋳造することによつて、
本発明耐熱合金1〜28および比較耐熱合金、さら
に従来耐熱合金1、2の各種試験片をそれぞれ製
造し、高温圧縮抵抗性を評価する目的で高温引張
試験と高温圧縮クリープ試験を行ない、また燃焼
雰囲気での高温耐食性と高温耐酸化性を評価する
目的で耐パナジウムアタツク試験と耐酸化試験を
行ない、さらに高温耐摩耗性を評価する目的で
1000℃におけるビツカース硬さを測定した。 なお、高温引張試験では1000℃における引張
This invention has excellent high-temperature compression resistance, high-temperature oxidation resistance, high-temperature corrosion resistance, and high-temperature wear resistance (hereinafter collectively referred to as high-temperature properties),
Particularly related to Co-based heat-resistant alloys suitable for use in manufacturing structural members in high-temperature combustion furnaces such as heating furnaces, soaking furnaces, or heat treatment furnaces that use fuel such as heavy oil or blast furnace gas, which require these properties. It is. Generally, heavy oil, blast furnace gas, etc. are used as fuel in heating furnaces, soaking furnaces, heat treatment furnaces, etc. for iron manufacturing, and for this reason, skid metal fittings, which are the structural members of these furnaces, and other furnaces are used as fuel. Floor materials must be exposed to a high-temperature combustion atmosphere of 1,200 to 1,350°C and containing highly corrosive and oxidizing vanadium oxides (V oxides) and sulfur oxides (S oxides). Moreover, the conditions under which these furnaces are used are becoming increasingly severe. Under such circumstances, currently Fe-30% Cr-22% is mainly used to manufacture the structural members of these furnaces.
Fe-based heat-resistant alloy with Ni composition, Co-28%Cr
A Co-based heat-resistant alloy with a composition of −20% Fe has been used, but the former Fe-based heat-resistant alloy does not exhibit satisfactory high-temperature properties when used under particularly harsh conditions, while the latter Co-based heat-resistant alloy Although these alloys exhibit better high-temperature properties than the Fe-based heat-resistant alloys, they do not have sufficient high-temperature compression resistance in the above-mentioned high-temperature combustion atmosphere of 1,300 to 1,350 degrees Celsius. Currently, the scope of use is limited. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a material with excellent high-temperature properties, and as a result, the results were as follows: C: 0.005-0.2%, Si: 0.1-2%, Contains Mn: 0.1-2%, Cr: 25-35%, Ni: 10-30%, Fe: 1-25%, Mo: 0.1-10%, Hf: 0.001-0.45%, and further contains as necessary. Contains one or more of the following: Ti: 0.1-2%, Nb: 0.1-2%, Ta: 0.1-2%, W: 0.1-10%, and the rest is
Co-based alloys, which have a composition consisting of Co and unavoidable impurities, are exposed to high-temperature combustion furnaces and structural members such as heating furnaces, soaking furnaces, or heat treatment furnaces that use heavy oil or blast furnace gas as fuel. ℃
It has excellent high-temperature properties, namely high-temperature compression resistance, high-temperature oxidation resistance, high-temperature corrosion resistance, and They found that it exhibits high-temperature wear resistance. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C The C component includes Cr, which is a solid solution in the base material to improve strength (compression resistance) and is an alloying component.
Mo, Hf, and further combine with W, Ti, Nb, Ta, etc. to form carbides such as M 7 C 3 , MC, and M 23 C 6 types to improve hardness (wear resistance) and improve welding. However, if the content is less than 0.005%, the desired effect cannot be obtained, while if the content exceeds 0.2%, the precipitation of carbides will increase. The content is reduced to 0.005%, and its particle size becomes coarser, reducing toughness and lowering the melting point of the substrate, causing a decrease in heat resistance.
It was set at ~0.2%. (b) Si Along with Cr, the Si component has the effect of improving high-temperature corrosion resistance and high-temperature oxidation resistance in a high-temperature combustion atmosphere, as well as deoxidizing effect and the effect of improving the fluidity of molten metal to improve castability. Cr has the effect of improving high-temperature compression resistance (high-temperature strength), but if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 2%, Cr As toughness and weldability decrease in relation to
Its content was set at 0.1-2%. As mentioned above, the Si component has a deoxidizing effect, so when it is used as a deoxidizing agent, it may be contained as an unavoidable impurity in a range of less than 0.1%. The total content, including the content of unavoidable impurities, should be 0.1% or more. (c) Mn In addition to stabilizing austenite by solid solution in the base material, Mn component has a deoxidizing effect, and also has thermal shock resistance and high-temperature wear resistance (high-temperature hardness).
It has the effect of improving the
If it is less than %, the desired effect cannot be obtained in the above action,
On the other hand, if the content exceeds 2.0%, the high-temperature corrosion resistance and high-temperature oxidation resistance tend to deteriorate, so the content was set at 0.1 to 2.0%. In addition, the Mn component also has a desulfurization effect in addition to the deoxidizing effect as mentioned above, so when it is used as a deoxidizing and desulfurizing agent, it is used as an unavoidable impurity in the range of less than 0.1%. However, in this case as well, the ingredients should be adjusted so that the total content, including the content of unavoidable impurities, is 0.1% or more. (d) Cr A part of the Cr component forms a solid solution in the base material, improving high-temperature corrosion resistance and high-temperature oxidation resistance, especially in a combustion atmosphere, and the remaining part forms carbides to improve hardness. , which has the effect of improving high-temperature wear resistance, but its content is 25%.
If the content is less than 35%, the desired effect cannot be obtained, while if the content exceeds 35%, the toughness will decrease, so the content was set at 25 to 35%. (e) Ni In addition to stabilizing the austenitic structure and increasing its toughness, Ni has the effect of improving high-temperature corrosion resistance and high-temperature oxidation resistance in a combustion atmosphere together with Cr, but if its content is less than 10%, The content was set at 10 to 30% because the desired effect could not be obtained in the above-mentioned action, and on the other hand, even if the content exceeded 30%, no further improvement effect would appear. (f) Fe When Fe component is contained in a specified amount, it exhibits the same effect as Co, so it is included as a partial substitute for the expensive Co component for the purpose of cost reduction. If the content is less than 1%, the economic effect will not be sufficient, while if the content exceeds 25%, the high temperature compression resistance (high temperature strength) will decrease.
%. (g) Mo The Mo component has the effect of forming a solid solution in the base material, strengthening it, and forming carbides to improve high-temperature strength (high-temperature compression resistance) and high-temperature hardness (high-temperature abrasion resistance). However, if the content is less than 0.1%, the desired effect cannot be obtained;
If the content exceeds 10%, the toughness decreases, so the content was set at 0.1 to 10%. (h) Hf The Hf component improves high-temperature strength (high-temperature compression resistance) and high-temperature oxidation resistance by solidly dissolving in the austenite matrix, which is mainly composed of Co, Cr, and Ni components, and also combines with C. to form MC-type carbide, which has the effect of improving high-temperature hardness (high-temperature wear resistance), but its content is 0.001%.
If the content is less than 0.45%, the desired effect cannot be obtained; on the other hand, if the content exceeds 0.45%, not only will no further improvement effect be obtained, but the content yield will decrease upon dissolution in the atmosphere, making it uneconomical. , its content was determined to be 0.001-0.45%. (i) W The W component coexists with Mo to form a solid solution in the base material and further strengthen it, and also forms carbides to further improve high temperature strength (high temperature compression resistance) and high temperature hardness (high temperature wear resistance). However, if the content is less than 0.1, the desired effect of improving the above-mentioned properties cannot be obtained; If the content exceeds %, the toughness will decrease, so the content should be
It was set at 0.1-10%. (j) Ti, Nb, and Ta These components significantly suppress the growth of crystal grains in the base material, or rather make the crystal grains finer and
It forms MC-type carbides and nitrides to further improve high-temperature strength (high-temperature compression resistance) and high-temperature hardness (high-temperature wear resistance), so it is necessary when these properties are required. However, the content varies depending on the
If the content is less than 0.1%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 2%, not only will the formation of carbides at high temperatures be promoted and the toughness will decrease, but also the toughness will decrease in the combustion atmosphere. Since the formation of Ti oxides becomes noticeable and the high-temperature corrosion resistance and high-temperature oxidation resistance deteriorate, the content is reduced to Ti: 0.1 to 2.
%, Nb: 0.1-2%, and Ta: 0.1-2%. In addition, Zr may be contained as an unavoidable impurity, but if the content exceeds 0.3%,
The content of Zr should not exceed 0.3%, as it will have a negative effect on toughness, castability, and weldability. Next, the Co-based heat-resistant alloy of the present invention will be specifically explained with reference to Examples. Example By melting molten metals having the compositions shown in Table 1 in the atmosphere using an ordinary high-frequency melting furnace, and then casting them into sand molds,
Various test pieces of heat-resistant alloys 1 to 28 of the present invention, comparative heat-resistant alloys, and conventional heat-resistant alloys 1 and 2 were manufactured, and subjected to high-temperature tensile tests and high-temperature compression creep tests for the purpose of evaluating high-temperature compression resistance. Panadium attack resistance test and oxidation resistance test were conducted to evaluate high-temperature corrosion resistance and high-temperature oxidation resistance in the atmosphere, and further to evaluate high-temperature wear resistance.
The Vickers hardness at 1000°C was measured. In addition, in the high temperature tensile test, the tensile temperature at 1000℃ was

【表】【table】

【表】【table】

【表】【table】

【表】 強さ、0.2%耐力、および伸びを測定した。 高温圧縮クリープ試験は、拘束溶接熱サイクル
再現装置を用いて行ない、1200℃における圧縮変
形抵抗を圧縮変形量が0.05%hrの時点の応力値で
求めた。 また、耐バナジウムアタツク試験は、学振法に
基づき、腐食灰(85%V2O5+15%Na2SO4)を試
験片に20mg/cm2の割合で塗布し、800℃に加熱し
た竪型の電気炉中に20時間加熱保持の条件で行な
い、試験後の腐食減量を測定した。 さらに耐酸化試験は、試験片を1300℃に加熱し
た竪型の電気炉中で200時間連続加熱の条件で行
ない、試験後の酸化減量を測定した。これらの測
定結果を第2表に示した。 第2表に示される結果から、本発明耐熱合金1
〜28は、いずれも上記の従来Fe基耐熱合金およ
び従来Co基耐熱合金に相当する組成を有する従
来耐熱合金1、2に比して、一段とすぐれた高温
強度(高温圧縮抵抗性)、高温硬さ(高温耐摩耗
性)、高温耐食性、および高温耐酸化性をもつこ
とが明らかである。これに対して、比較耐熱合金
1〜10に見られるように、構成成分のうちのいず
れかの成分含有量(第1表に※印を付したもの)
がこの発明の範囲から外れると、上記の特性のう
ち少なくともいずれかの特性が劣つたものになる
ことがわかる。 上述のように、この発明のCo基耐熱合金は、
すぐれた高温圧縮抵抗性、高温耐食性、高温耐酸
化性、および高温耐摩耗性を有し、特に高温の腐
食性および酸化性のきわめて強い酸化物に対し
て、すぐれた高温耐食性を示すので、特に燃料と
して重油や高炉ガスなどを使用する製鉄用の加熱
炉、さらには熱処理炉などの構造部材、例えばス
キツド金物やその他の炉床部材などとして用いた
場合に著しく長期の使用寿命を示すなど工業上有
用な特性を有するのである。
[Table] Strength, 0.2% proof stress, and elongation were measured. The high-temperature compression creep test was conducted using a restrained welding thermal cycle reproduction device, and the compressive deformation resistance at 1200°C was determined by the stress value at the time when the amount of compressive deformation was 0.05% hr. In addition, for the vanadium attack resistance test, corrosive ash (85% V 2 O 5 + 15% Na 2 SO 4 ) was applied to the test piece at a rate of 20 mg/cm 2 and heated to 800°C, based on the Jakushin Law. The test was carried out in a vertical electric furnace under conditions of heating and holding for 20 hours, and the corrosion loss after the test was measured. Furthermore, the oxidation resistance test was conducted under the condition that the test piece was continuously heated for 200 hours in a vertical electric furnace heated to 1300°C, and the oxidation loss after the test was measured. The results of these measurements are shown in Table 2. From the results shown in Table 2, the heat-resistant alloy 1 of the present invention
-28 have superior high-temperature strength (high-temperature compression resistance) and high-temperature hardness compared to conventional heat-resistant alloys 1 and 2, which have compositions corresponding to the conventional Fe-based heat-resistant alloys and conventional Co-based heat-resistant alloys. It is clear that the material has excellent properties such as high-temperature wear resistance, high-temperature corrosion resistance, and high-temperature oxidation resistance. On the other hand, as seen in Comparative Heat Resistant Alloys 1 to 10, the content of any of the constituent components (marked with * in Table 1)
It can be seen that when deviates from the scope of the present invention, at least one of the above characteristics becomes inferior. As mentioned above, the Co-based heat-resistant alloy of the present invention is
It has excellent high-temperature compression resistance, high-temperature corrosion resistance, high-temperature oxidation resistance, and high-temperature abrasion resistance, and it exhibits excellent high-temperature corrosion resistance, especially against highly corrosive and oxidizing oxides at high temperatures. It has an industrial advantage, as it has an extremely long service life when used as a structural member of steelmaking heating furnaces that use heavy oil or blast furnace gas as fuel, as well as heat treatment furnaces, such as skid metal fittings and other hearth parts. It has useful properties.

Claims (1)

【特許請求の範囲】 1 C:0.005〜0.2%、Si:0.1〜2%、 Mn:0.1〜2%、Cr:25〜35%、 Ni:10〜30%、Fe:1〜25%、 Mo:0.1〜10%、Hf:0.001〜0.45%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有することを特徴とする高温
燃焼炉の構造部材用Co基耐熱合金。 2 C:0.005〜0.2%、Si:0.1〜2%、 Mn:0.1〜2%、Cr:25〜35%、 Ni:10〜30%、Fe:1〜25%、 Mo:0.1〜10%、Hf:0.001〜0.45%、 を含有し、さらに、 W:0.1〜10% を含有し、残りがCoと不可壁不純物からなる組
成(以上重量%)を有することを特徴とする高温
燃焼炉の構造部材用Co基耐熱合金。 3 C:0.005〜0.2%、Si:0.1〜2%、 Mn:0.1〜2%、Cr:25〜35%、 Ni:10〜30%、Fe:1〜25%、 Mo:0.1〜10%、Hf:0.001〜0.45%、 を含有し、さらに、 Ti:0.1〜2%、Nb:0.1〜2%、 Ta:0.1〜2%、 のうちの1種または2種以上を含有し、残りが
Coと不可壁不純物からなる組成(以上重量%)
を有することを特徴とする高温燃焼炉の構造部材
用Co基耐熱合金。 4 C:0.005〜0.2%、Si:0.1〜2%、 Mn:0.1〜2%、Cr:25〜35%、 Ni:10〜30%、Fe:1〜25%、 Mo:0.1〜10%、Hf:0.001〜0.45%、 を含有し、さらに、 Ti:0.1〜2%、Nb:0.1〜2%、Ta:0.1〜2
%、 のうちの1種または2種以上と、 W:0.1〜10%、 を含有し、残りがCoと不可避不純物からなる組
成(以上重量%)を有することを特徴とする高温
燃焼炉の構造部材用Co基耐熱合金。
[Claims] 1 C: 0.005-0.2%, Si: 0.1-2%, Mn: 0.1-2%, Cr: 25-35%, Ni: 10-30%, Fe: 1-25%, Mo A Co-based heat-resistant alloy for structural members of high-temperature combustion furnaces, characterized in that it contains: 0.1 to 10% Hf, 0.001 to 0.45% Hf, and the remainder consists of Co and inevitable impurities (weight %). 2 C: 0.005-0.2%, Si: 0.1-2%, Mn: 0.1-2%, Cr: 25-35%, Ni: 10-30%, Fe: 1-25%, Mo: 0.1-10%, A structure of a high-temperature combustion furnace characterized by containing Hf: 0.001 to 0.45%, and further containing W: 0.1 to 10%, with the remainder consisting of Co and non-wall impurities (weight %). Co-based heat-resistant alloy for parts. 3 C: 0.005-0.2%, Si: 0.1-2%, Mn: 0.1-2%, Cr: 25-35%, Ni: 10-30%, Fe: 1-25%, Mo: 0.1-10%, Contains Hf: 0.001-0.45%, and further contains one or more of the following: Ti: 0.1-2%, Nb: 0.1-2%, Ta: 0.1-2%, and the rest is
Composition consisting of Co and non-wall impurities (more than % by weight)
A Co-based heat-resistant alloy for structural members of high-temperature combustion furnaces, characterized by having: 4 C: 0.005-0.2%, Si: 0.1-2%, Mn: 0.1-2%, Cr: 25-35%, Ni: 10-30%, Fe: 1-25%, Mo: 0.1-10%, Contains Hf: 0.001-0.45%, Ti: 0.1-2%, Nb: 0.1-2%, Ta: 0.1-2
%, and W: 0.1 to 10%, with the remainder consisting of Co and unavoidable impurities (weight %). Co-based heat-resistant alloy for parts.
JP11565283A 1983-06-27 1983-06-27 Heat resistant co alloy Granted JPS609848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11565283A JPS609848A (en) 1983-06-27 1983-06-27 Heat resistant co alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11565283A JPS609848A (en) 1983-06-27 1983-06-27 Heat resistant co alloy

Publications (2)

Publication Number Publication Date
JPS609848A JPS609848A (en) 1985-01-18
JPS6254388B2 true JPS6254388B2 (en) 1987-11-14

Family

ID=14667939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11565283A Granted JPS609848A (en) 1983-06-27 1983-06-27 Heat resistant co alloy

Country Status (1)

Country Link
JP (1) JPS609848A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002731A (en) * 1989-04-17 1991-03-26 Haynes International, Inc. Corrosion-and-wear-resistant cobalt-base alloy
US5226980A (en) * 1990-02-06 1993-07-13 Diado Tokushuko Kabushiki Kaisha Skid rail alloy
DE10108581B4 (en) * 2001-02-22 2009-08-27 Mri Devices Daum Gmbh Material for magnetic resonance imaging
US8075839B2 (en) 2006-09-15 2011-12-13 Haynes International, Inc. Cobalt-chromium-iron-nickel alloys amenable to nitride strengthening
CN109280813B (en) * 2018-12-03 2020-03-17 宝鸡文理学院 Cobalt-based high-temperature alloy and preparation method thereof

Also Published As

Publication number Publication date
JPS609848A (en) 1985-01-18

Similar Documents

Publication Publication Date Title
JPS6344814B2 (en)
US5223214A (en) Heat treating furnace alloys
JPS6221860B2 (en)
JPS58117848A (en) High strength cast ni alloy showing superior corrosion and oxidation resistance at high temperature in combustion atmosphere
JPS6254388B2 (en)
JPS628497B2 (en)
JP3644532B2 (en) Ni-base heat-resistant alloy with excellent hot workability, weldability and carburization resistance
JPS628506B2 (en)
JPS5943851A (en) High-strength cast alloy having superior characteristic at high temperature
JPH07103447B2 (en) High purity heat resistant steel
JPS629180B2 (en)
JPS6330383B2 (en)
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JP2733989B2 (en) Free cutting steel with excellent hot ductility
JP3207082B2 (en) Cr-based heat-resistant alloy
JP2018070900A (en) Austenitic heat resistant cast steel
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS59229470A (en) High toughness fe-cr-ni cast heat resistant alloy
JPS5928552A (en) High strength ni base cast alloy excellent in high temperature characteristics
JPS626629B2 (en)
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance
JPS58117847A (en) High strength cast ni alloy showing superior corrosion and oxidation resistance at high temperature in combustion atmosphere
JPS5931854A (en) High strength cast alloy having superior characteristic at high temperature
JPS6147900B2 (en)
JPS597345B2 (en) High-strength alloy steel with excellent high-temperature corrosion resistance and high-temperature oxidation resistance