JPS628497B2 - - Google Patents

Info

Publication number
JPS628497B2
JPS628497B2 JP13055083A JP13055083A JPS628497B2 JP S628497 B2 JPS628497 B2 JP S628497B2 JP 13055083 A JP13055083 A JP 13055083A JP 13055083 A JP13055083 A JP 13055083A JP S628497 B2 JPS628497 B2 JP S628497B2
Authority
JP
Japan
Prior art keywords
temperature
resistance
content
heat
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13055083A
Other languages
Japanese (ja)
Other versions
JPS6024344A (en
Inventor
Tatsumori Yabuki
Takashi Asako
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP13055083A priority Critical patent/JPS6024344A/en
Publication of JPS6024344A publication Critical patent/JPS6024344A/en
Publication of JPS628497B2 publication Critical patent/JPS628497B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、特に重油や高炉ガスなどの高温燃
焼雰囲気において、すぐれた高温圧縮抵抗性、高
温耐酸化性、高温耐食性、および高温耐摩耗性
(以下、これらを総称して高温特性という)を示
すFe−Ni−Cr系耐熱合金に関するものである。 一般に、例えば製鉄用の加熱炉や均熱炉、ある
いは熱処理炉などにおいては、燃料として重油や
高炉ガスなどが使用されており、このため、これ
らの炉の構造部材であるスキツド金物やその他の
炉床部材は、1200〜1350℃の高温にして、かつ腐
食性および酸化性のきわめて強いバナジウム酸化
物(V酸化物)や硫黄酸化物(S酸化物)などを
含有する高温燃焼雰囲気にさらされることにな
り、しかもこれらの炉の使用条件は日増しに苛酷
さを増している。 かかる状況下において、現在、これらの炉の構
造部材の製造には、主としてFe−30%Cr−22%
Niの組成を有するFe基耐熱合金や、Co−28%Cr
−20%Feの組成を有するCo基耐熱合金が使用さ
れているが、前者のFe基耐熱合金は、特に苛酷
な条件下での使用に際して満足する高温特性を示
さず、一方後者のCo基耐熱合金は、前記Fe基耐
熱合金に比して良好な高温特性を示すものの、上
記の1300〜1350℃の高温燃焼雰囲気においては高
温圧縮抵抗性が十分でなく、このため、これらの
合金は、その使用範囲が限定されるのが現状であ
る。 そこで、本発明者等は、上述のような観点か
ら、高温特性のすぐれた材料を開発すべく研究を
行なつた結果、重量%で、 C:0.1〜0.6%、 Si:0.1〜2%、 Mn:0.1〜2%、 Cr:25〜35%、 Ni:30%超〜47%、 Co:1〜10%、 Hf:0.001〜0.45%、 を含有し、さらに必要に応じて、 W:0.1〜6%、 Mo:0.1〜6%、 Ti:0.1〜3%、 Nb:0.1〜3%、 Ta:0.1〜3%、 のうちの1種または2種以上を含有し、残りが
Feと不可避不純物からなる組成を有するFe−Ni
−Cr系合金は、特に1200〜1300℃の高温にし
て、かつ腐食性および酸化性のきわめて強いV酸
化物やS酸化物などを含有する高温燃焼雰囲気に
おいて、すぐれた高温特性、すなわち高温圧縮抵
抗性、高温耐酸化性、高温耐食性、および高温耐
摩耗性を示すという知見を得たのである。 この発明は、上記知見にもとづいてなされたも
のであつて、以下に成分組成範囲を上記の通りに
限定した理由を説明する。 (a) C C成分には、素地に固溶して強度(圧縮抵抗
性)を向上させ、かつ合金成分であるCr、
W、Hf、さらにMo、Ti、Nb、およびTaなど
と給合してM7C3、MC、およびM23C6型などの
炭化物を形成して硬さ(耐摩耗性を向上させる
と共に、溶接性および鋳造性を向上させる作用
があるが、その含有量が0.1%未満では前記作
用に所望の効果が得られず、一方0.6%を越え
て含有させると、前記炭化物の析出が多くなる
ばかりでなく、その粒径も粗大化して靭性を低
下させ、さらに素地の融点を下げて耐熱性低下
の原因となることから、その含有量を0.1〜0.6
%と定めた。 (b) Si Si成分には、Crと共に高温燃焼雰囲気での
高温耐食性および高温耐酸化性を向上させる作
用があるほか、脱酸作用、並びに溶湯の流動性
を改善して鋳造性を向上させる作用があり、さ
らに高温圧縮抵抗性(高温強度)を向上させる
作用があるが、その含有量が0.1%未満では前
記作用に所望の効果が得られず、一方2%を越
えて含有させると、Crとの関連において鞁性
および溶接性が低下するようになることから、
その含有量を0.1〜2%と定めた。 なお、Si成分には、上記のような脱酸作用が
あるので、これを脱酸剤として使用した場合な
どには、不可避不純物として0.1%未満の範囲
で含有する場合があるが、この場合には、不可
避不純物含有量を含め、全体含有量が0.1%以
上になるようにすればよい。 (c) Mn Mn成分には、素地に固溶してオーステナイ
トを安定化させるほか、脱酸作用があり、さら
に耐熱衝撃性および高温耐摩耗性(高温硬さ)
を向上させる作用があるが、その含有量が0.1
%未満では前記作用に所望の効果が得られず、
一方2.0%を越えて含有させると、高温耐食性
および高温耐酸化性に劣化傾向が現われるよう
になることから、その含有量を0.1〜2.0%と定
めた。 また、Mn成分にも、上記のように脱酸作用
のほか、脱硫作用があるので、これを脱酸脱硫
剤として使用した場合などには、Si成分と同様
に不可避不純物として0.1%未満の範囲で含有
する場合があるが、この場合も不可避不純物含
有量を含め、全体含有量が0.1%以上になるよ
うに成分調整すればよい。 (d) Cr Cr成分には、その一部が素地に固溶し、特
に燃焼雰囲気での高温耐食性および高温耐酸化
性を向上させると共に、残りの部分が炭化物を
形成して硬さを向上させ、もつて高温耐摩耗性
を向上させる作用があるが、その含有量が25%
未満では前記作用に所望の効果が得られず、一
方35%を越えて含有させると靭性が低下するよ
うになることから、その含有量を25〜35%と定
めた。 (e) Ni Ni成分には、オーステナイト地を安定にし
て靭性を高めるほか、Crと共に燃焼雰囲気中
での高温耐水性および高温耐酸化性を向上させ
る作用があるが、その含有量が30%以下では前
記作用に所望の効果が得られず、一方47%を越
えて含有させてもより一層の改善効果は現われ
ないことから、その含有量を30%超〜47%と定
めた。 (f) Co Co成分には、素地に固溶して耐熱衝撃性を
一段と向上させ、かつ高温硬さ(高温耐摩耗
性)を改善する作用があるが、その含有量が1
%未満では前記作用に所望の効果を得ることが
できず、一方10%を越えて含有させてもより一
層の向上効果は現われず、経済性を考慮して、
その含有量を1〜10%と定めた。 (g) Hf Hf成分には、主としてFe、Ni、およびCr成
分にて形成されたオーステナイト素地に固溶し
て高温強度(高温圧縮抵抗性)および高温耐酸
化性を向上させるほか、Cと結合してMC型炭
化物を形成し、高温硬さ(高温耐摩耗性)を向
上させる作用があるが、その含有量が0.001未
満では前記作用に所望の効果が得られず、一方
0.45%を越えて含有させてもより一層の向上効
果が現われないばかりでなく、大気溶解に際し
て含有歩留が低下して経済的でないことから、
その含有量を0.001〜0.45%と定めた。 (h) WおよびMo これらの成分には、素地に固溶して、これを
強化し、かつ炭化物を形成して高温強度(高温
圧縮抵抗性および高温硬さ(高温耐摩耗性)を
一段と向上させる作用があるので、これらの特
性により一層の向上効果が要求される場合に必
要に応じて含有されるが、その含有量が0.1%
未満では前記作用に所望の効果が得られず、一
方6%を越えて含有させると、靭性が低下する
ようになることから、その含有量をそれぞれ
W:0.1〜6%、Mo:0.1〜9%と定めた。 (i) Ti、Nb、およびTa これらの成分には、素地の結晶粒の成長を著
しく抑制し、むしろ結晶粒を微細化し、かつ
MC型の炭化物および窒化物を形成して、高温
強度(高温圧縮抵抗性)および高温硬さ(高温
耐摩耗性)を一段と向上させる作用があるの
で、これらの特性が要求される場合に必要に応
じて含有されるが、その含有量が、それぞれ
0.1%未満では前記作用に所望の向上効果が得
られず、一方、それぞれ3%を越えて含有させ
ると、高温における炭化物形成が促進されて靭
性が低下するようになるばかりでなく、燃焼雰
囲気での酸化物の生成も顕著となつて高温耐食
性および高温耐酸化性が劣化するようになるこ
とから、その含有量を、それぞれTi:0.3〜3
%、Nb:0.1〜3%、およびTa:0.1〜3%と
定めた。 なお、不可避不純物として、Zrを含有する場
合があるが、その含有量が0.3%を越えると、
靭性、鋳造性、および溶接性に悪影響を及ぼす
ようになるので、Zrの含有量は0.3%を越えて
はならない。 つぎに、この発明のFe−Ni−Cr系耐熱合金を
実施例により具体的に説明する。 実施例 通常の高周波溶解炉を用い、それぞれ第1表に
示される通りの成分組成をもつた溶湯を大気中に
て溶解し、ついで砂型に鋳造することによつて、
本発明耐熱合金1〜28および比較耐熱合金、さら
に従来耐熱合金1、2の各種試験片をそれぞれ製
造し、高温圧縮抵抗性を評価する目的で高温引張
試験と高温圧縮クリープ試験を行ない、また燃焼
雰囲気での高温耐食性と高温耐酸化性を評価する
目的で耐バナジウムアタツク試験と耐酸化試験を
行ない、さらに高温耐摩耗性を評価する目的で
1000℃におけるビツカース硬さを測定した。 なお、高温引張試験では1000℃における引張強
さ、0.2%耐力、および伸びを測定した。 高温圧縮クリープ試験は、拘束溶接熱サイクル
再現装置を用いて行ない、1200℃における圧縮変
形抵抗を圧縮変形量が0.05%/hrの時点の応力値
で求めた。 また、耐バナジウムアタツク試験は、学振法に
基づき、腐食灰(85%V2O5+15%Na2SO4)を試
験片20mg/cm2の割合で塗布し、800℃に加熱した
竪型の電気炉中に20時間加熱保持の条件で行な
い、試験後の腐食減量を測定した。 さらに耐酸化試験は、試験片を1300℃に加
This invention exhibits excellent high-temperature compression resistance, high-temperature oxidation resistance, high-temperature corrosion resistance, and high-temperature wear resistance (hereinafter collectively referred to as high-temperature properties), especially in high-temperature combustion atmospheres such as heavy oil and blast furnace gas. This relates to Fe-Ni-Cr heat-resistant alloys. Generally, heavy oil, blast furnace gas, etc. are used as fuel in heating furnaces, soaking furnaces, heat treatment furnaces, etc. for iron manufacturing, and for this reason, skid metal fittings, which are the structural members of these furnaces, and other furnaces are used as fuel. Floor materials must be exposed to a high-temperature combustion atmosphere of 1,200 to 1,350°C and containing highly corrosive and oxidizing vanadium oxides (V oxides) and sulfur oxides (S oxides). Moreover, the conditions under which these furnaces are used are becoming increasingly severe. Under such circumstances, currently Fe-30% Cr-22% is mainly used to manufacture the structural members of these furnaces.
Fe-based heat-resistant alloy with Ni composition, Co-28%Cr
A Co-based heat-resistant alloy with a composition of −20% Fe has been used, but the former Fe-based heat-resistant alloy does not exhibit satisfactory high-temperature properties when used under particularly harsh conditions, while the latter Co-based heat-resistant alloy Although these alloys exhibit better high-temperature properties than the Fe-based heat-resistant alloys, they do not have sufficient high-temperature compression resistance in the above-mentioned high-temperature combustion atmosphere of 1,300 to 1,350 degrees Celsius. Currently, the scope of use is limited. Therefore, from the above-mentioned viewpoint, the present inventors conducted research to develop a material with excellent high-temperature properties, and as a result, the results were as follows: C: 0.1-0.6%, Si: 0.1-2%, Contains Mn: 0.1 to 2%, Cr: 25 to 35%, Ni: more than 30% to 47%, Co: 1 to 10%, Hf: 0.001 to 0.45%, and further contains W: 0.1 as necessary. ~6%, Mo: 0.1~6%, Ti: 0.1~3%, Nb: 0.1~3%, Ta: 0.1~3%.
Fe-Ni with a composition consisting of Fe and unavoidable impurities
-Cr-based alloys have excellent high-temperature properties, that is, high-temperature compression resistance, especially in high-temperature combustion atmospheres of 1200 to 1300°C and containing extremely corrosive and oxidizing V oxides and S oxides. They obtained the knowledge that it exhibits high-temperature oxidation resistance, high-temperature corrosion resistance, and high-temperature wear resistance. This invention was made based on the above knowledge, and the reason why the component composition range was limited as described above will be explained below. (a) C The C component includes Cr, which is a solid solution in the base material to improve strength (compression resistance) and is an alloying component.
By combining W, Hf, Mo, Ti, Nb, and Ta, etc., carbides such as M 7 C 3 , MC, and M 23 C 6 are formed to improve hardness (wear resistance and It has the effect of improving weldability and castability, but if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 0.6%, the precipitation of the carbides will increase. In addition, the particle size becomes coarser and reduces toughness, which further lowers the melting point of the substrate and causes a decrease in heat resistance.
%. (b) Si Along with Cr, the Si component has the effect of improving high-temperature corrosion resistance and high-temperature oxidation resistance in a high-temperature combustion atmosphere, as well as deoxidizing effect and the effect of improving the fluidity of molten metal to improve castability. Cr has the effect of improving high-temperature compression resistance (high-temperature strength), but if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 2%, Cr As the solder properties and weldability decrease in relation to
Its content was set at 0.1-2%. In addition, since the Si component has the deoxidizing effect as described above, when it is used as a deoxidizing agent, it may be contained as an unavoidable impurity in a range of less than 0.1%. The total content, including the content of unavoidable impurities, should be 0.1% or more. (c) Mn In addition to stabilizing austenite by solid solution in the base material, Mn component has a deoxidizing effect, and also has thermal shock resistance and high-temperature wear resistance (high-temperature hardness).
It has the effect of improving the
If it is less than %, the desired effect cannot be obtained,
On the other hand, if the content exceeds 2.0%, the high-temperature corrosion resistance and high-temperature oxidation resistance tend to deteriorate, so the content was set at 0.1 to 2.0%. In addition, the Mn component also has a desulfurization effect in addition to the deoxidizing effect as mentioned above, so when it is used as a deoxidizing and desulfurizing agent, it is used as an unavoidable impurity in the range of less than 0.1%. However, in this case as well, the ingredients should be adjusted so that the total content, including the content of unavoidable impurities, is 0.1% or more. (d) Cr A part of the Cr component forms a solid solution in the base material, improving high-temperature corrosion resistance and high-temperature oxidation resistance, especially in a combustion atmosphere, and the remaining part forms carbide to improve hardness. , which has the effect of improving high-temperature wear resistance, but its content is 25%.
If the content is less than 35%, the desired effect cannot be obtained, while if the content exceeds 35%, the toughness will decrease, so the content was set at 25 to 35%. (e) Ni In addition to stabilizing the austenite base and increasing its toughness, the Ni component has the effect of improving high-temperature water resistance and high-temperature oxidation resistance in a combustion atmosphere together with Cr, but its content is 30% or less. In this case, the desired effect cannot be obtained in the above-mentioned action, and on the other hand, even if the content exceeds 47%, no further improvement effect appears, so the content was set at more than 30% to 47%. (f) Co The Co component has the effect of further improving thermal shock resistance and high-temperature hardness (high-temperature abrasion resistance) when dissolved in the base material, but its content is 1.
If the content is less than 10%, the desired effect cannot be obtained in the above action, and on the other hand, if the content exceeds 10%, no further improvement effect will be obtained.
Its content was set at 1 to 10%. (g) Hf The Hf component improves high-temperature strength (high-temperature compression resistance) and high-temperature oxidation resistance by solidly dissolving in the austenitic matrix, which is mainly composed of Fe, Ni, and Cr components, and also combines with C. to form MC-type carbide, which has the effect of improving high-temperature hardness (high-temperature wear resistance), but if the content is less than 0.001, the desired effect cannot be obtained;
Even if the content exceeds 0.45%, not only will further improvement effects not be achieved, but the content yield will decrease upon dissolution in the atmosphere, making it uneconomical.
Its content was determined to be 0.001 to 0.45%. (h) W and Mo These components dissolve solidly in the base material, strengthen it, and form carbides to further improve high-temperature strength (high-temperature compression resistance and high-temperature hardness (high-temperature wear resistance)). Therefore, it is included as necessary when further improvement effects are required due to these properties, but the content is 0.1%.
If the content is less than 6%, the desired effect cannot be obtained, while if the content exceeds 6%, the toughness will decrease. %. (i) Ti, Nb, and Ta These components significantly suppress the growth of crystal grains in the base material, rather they make the crystal grains finer and
It forms MC-type carbides and nitrides to further improve high-temperature strength (high-temperature compression resistance) and high-temperature hardness (high-temperature wear resistance), so it is necessary when these properties are required. However, the content varies depending on the
If the content is less than 0.1%, the desired effect of improving the above action cannot be obtained, while if the content exceeds 3%, not only will the formation of carbides at high temperatures be promoted and the toughness will decrease, but also the Since the formation of Ti oxides becomes noticeable and the high-temperature corrosion resistance and high-temperature oxidation resistance deteriorate, the content is reduced to Ti: 0.3 to 3.
%, Nb: 0.1-3%, and Ta: 0.1-3%. In addition, Zr may be contained as an unavoidable impurity, but if the content exceeds 0.3%,
The content of Zr should not exceed 0.3%, as it will have a negative effect on toughness, castability, and weldability. Next, the Fe-Ni-Cr heat-resistant alloy of the present invention will be specifically explained with reference to Examples. Example By melting molten metals having the compositions shown in Table 1 in the atmosphere using an ordinary high-frequency melting furnace, and then casting them into sand molds,
Various test pieces of heat-resistant alloys 1 to 28 of the present invention, comparative heat-resistant alloys, and conventional heat-resistant alloys 1 and 2 were manufactured, and subjected to high-temperature tensile tests and high-temperature compression creep tests for the purpose of evaluating high-temperature compression resistance. Vanadium attack resistance tests and oxidation resistance tests were conducted to evaluate high-temperature corrosion resistance and high-temperature oxidation resistance in an atmosphere, and further to evaluate high-temperature wear resistance.
The Vickers hardness at 1000°C was measured. In the high-temperature tensile test, tensile strength, 0.2% proof stress, and elongation at 1000°C were measured. The high-temperature compression creep test was conducted using a restrained welding thermal cycle reproduction device, and the compression deformation resistance at 1200°C was determined by the stress value at the time when the amount of compression deformation was 0.05%/hr. In addition, the vanadium attack resistance test was conducted based on the Jakushin Law, in which corrosive ash (85% V 2 O 5 + 15% Na 2 SO 4 ) was applied to the test piece at a rate of 20 mg/cm 2 and the test piece was heated to 800°C. The test was carried out under conditions of heating and holding in a type electric furnace for 20 hours, and the corrosion weight loss after the test was measured. Furthermore, in the oxidation resistance test, the specimen was heated to 1300℃.

【表】【table】

【表】【table】

【表】【table】

【表】 熱した竪型の電気炉中で200時間連続加熱の条件
で行ない、試験後の酸化減量を測定した。これら
の測定結果を第2表に示した。 第2表に示される結果から、本発明耐熱合金1
〜28は、いずれも上記の従来Fe基耐熱合金およ
び従来Co基耐熱合金に相当する組成を有する従
来耐熱合金1、2に比して、一段とすぐれた高温
強度(高温圧縮抵抗性)、高温硬さ(高温耐摩耗
性)、高温耐食性、および高温耐酸化性をもつこ
とが明らかである。これに対して、比較耐熱合金
1〜9に見られるように、構成成分のうちのいず
れかの成分含有量(第1表に※を付したもの)が
この発明の範囲から外れると、上記の特性のうち
少なくともいずれかの特性が劣つたものになるこ
とがわかる。 上述のように、この発明のFe−Ni−Cr系耐熱
合金は、すぐれた高温圧縮抵抗性、高温耐食性、
高温耐酸化性、および高温耐摩耗性を有し、特に
高温の腐食性および酸化性のきわめて強い酸化物
に対して、すぐれた高温耐食性を示すので、特に
燃料として重油や高炉ガスなどを使用する製鉄用
の加熱炉や均熱炉、さらには熱処理炉などの構造
部材、例えばスキツド金物やその他の炉床部材な
どとして用いた場合に著しく長期の使用寿命を示
すなど工業上有用な特性を有するものである。
[Table] The test was conducted under conditions of continuous heating for 200 hours in a heated vertical electric furnace, and the oxidation loss was measured after the test. The results of these measurements are shown in Table 2. From the results shown in Table 2, the heat-resistant alloy 1 of the present invention
-28 have superior high-temperature strength (high-temperature compression resistance) and high-temperature hardness compared to conventional heat-resistant alloys 1 and 2, which have compositions corresponding to the conventional Fe-based heat-resistant alloys and conventional Co-based heat-resistant alloys. It is clear that the material has excellent properties such as high-temperature wear resistance, high-temperature corrosion resistance, and high-temperature oxidation resistance. On the other hand, as seen in Comparative Heat Resistant Alloys 1 to 9, if the content of any of the constituent components (marked with * in Table 1) falls outside the scope of this invention, the above-mentioned It can be seen that at least one of the characteristics becomes inferior. As mentioned above, the Fe-Ni-Cr heat-resistant alloy of the present invention has excellent high-temperature compression resistance, high-temperature corrosion resistance,
It has high-temperature oxidation resistance and high-temperature wear resistance, and exhibits excellent high-temperature corrosion resistance, especially against highly corrosive and oxidizing oxides at high temperatures, so it is especially suitable for use with heavy oil, blast furnace gas, etc. as fuel. Items that have industrially useful properties such as exhibiting an extremely long service life when used as structural members for steel manufacturing heating furnaces, soaking furnaces, and heat treatment furnaces, such as skid metal fittings and other hearth parts. It is.

Claims (1)

【特許請求の範囲】 1 C:0.1〜0.6%、 Si:0.1〜2%、 Mn:0.1〜2% Cr:25〜35%、 Ni:30%超〜47%、 Co:1〜10%、 Hf:0.001〜0.45%、 を含有し、残りがFeと不可避不純物からなる組
成(以上重量%)を有することを特徴とする高温
燃焼雰囲気においてすぐれた高温特性を示すFe
−Ni−Cr系耐熱合金。 2 C:0.1〜0.6%、 Si:0.1〜2%、 Mn:0.1〜2% Cr:25〜35%、 Ni:30%超〜47%、 Co:1〜10%、 Hf:0.001〜0.45%、 を含有し、さらに、 W:0.1〜6%、 Mo:0.1〜6%、 のうちの1種または2種を含有し、残りがFeと
不可避不純物からなる組成(以上重量%)を有す
ることを特徴とする高温燃焼雰囲気においてすぐ
れた高温特性を示すFe−Ni−Cr系耐熱合金。 3 C:0.1〜0.6%、 Si:0.1〜2%、 Mn:0.1〜2% Cr:25〜35%、 Ni:30%超〜47%、 Co:1〜10%、 Hf:0.001〜0.45%、 を含有し、さらに、 Ti:0.1〜3%、 Nb:0.1〜3%、 Ta:0.1〜3%、 のうちの1種または2種以上を含有し、残りが
Feと不可避不純物からなる組成(以上重量%)
を有することを特徴とする高温燃焼雰囲気におい
てすぐれた高温特性を示すFe−Ni−Cr系耐熱合
金。 4 C:0.1〜0.6%、 Si:0.1〜2%、 Mn:0.1〜2% Cr:25〜35%、 Ni:30%超〜47%、 Co:1〜10%、 Hf:0.001〜0.45%、 を含有し、さらに、 W:0.1〜6%、 Mo:0.1〜6%、 のうちの1種または2種と、 Ti:0.1〜3%、 Nb:0.1〜3%、 Ta:0.1〜3%、 のうちの1種または2種以上とを含有し、残りが
Feと不可避不純物からなる組成(以上重量%)
を有することを特徴とする高温燃焼雰囲気におい
てすぐれた高温特性を示すFe−Ni−Cr系耐熱合
金。
[Claims] 1 C: 0.1 to 0.6%, Si: 0.1 to 2%, Mn: 0.1 to 2%, Cr: 25 to 35%, Ni: more than 30% to 47%, Co: 1 to 10%, Fe exhibiting excellent high-temperature properties in a high-temperature combustion atmosphere, characterized by having a composition (weight %) of Hf: 0.001 to 0.45%, with the remainder consisting of Fe and unavoidable impurities.
-Ni-Cr heat-resistant alloy. 2 C: 0.1-0.6%, Si: 0.1-2%, Mn: 0.1-2% Cr: 25-35%, Ni: more than 30%-47%, Co: 1-10%, Hf: 0.001-0.45% , and further contains one or two of the following: W: 0.1 to 6%, Mo: 0.1 to 6%, and the remainder is Fe and unavoidable impurities (weight %). A Fe-Ni-Cr heat-resistant alloy that exhibits excellent high-temperature properties in a high-temperature combustion atmosphere. 3 C: 0.1-0.6%, Si: 0.1-2%, Mn: 0.1-2% Cr: 25-35%, Ni: more than 30%-47%, Co: 1-10%, Hf: 0.001-0.45% , and further contains one or more of the following: Ti: 0.1 to 3%, Nb: 0.1 to 3%, Ta: 0.1 to 3%, and the remainder is
Composition consisting of Fe and unavoidable impurities (more than % by weight)
An Fe-Ni-Cr heat-resistant alloy that exhibits excellent high-temperature properties in a high-temperature combustion atmosphere. 4 C: 0.1-0.6%, Si: 0.1-2%, Mn: 0.1-2% Cr: 25-35%, Ni: more than 30%-47%, Co: 1-10%, Hf: 0.001-0.45% , and further contains one or two of the following: W: 0.1-6%, Mo: 0.1-6%, Ti: 0.1-3%, Nb: 0.1-3%, Ta: 0.1-3 %, contains one or more of the following, and the rest is
Composition consisting of Fe and unavoidable impurities (more than % by weight)
An Fe-Ni-Cr heat-resistant alloy that exhibits excellent high-temperature properties in a high-temperature combustion atmosphere.
JP13055083A 1983-07-18 1983-07-18 Heat-resistant fe-ni-cr alloy Granted JPS6024344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13055083A JPS6024344A (en) 1983-07-18 1983-07-18 Heat-resistant fe-ni-cr alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13055083A JPS6024344A (en) 1983-07-18 1983-07-18 Heat-resistant fe-ni-cr alloy

Publications (2)

Publication Number Publication Date
JPS6024344A JPS6024344A (en) 1985-02-07
JPS628497B2 true JPS628497B2 (en) 1987-02-23

Family

ID=15036953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13055083A Granted JPS6024344A (en) 1983-07-18 1983-07-18 Heat-resistant fe-ni-cr alloy

Country Status (1)

Country Link
JP (1) JPS6024344A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719748U (en) * 1993-09-16 1995-04-07 純一郎 久世 Photo Lens support for tripod

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6144402B1 (en) * 2016-10-28 2017-06-07 株式会社クボタ Heat-resistant steel for hearth hardware
CN110004321B (en) * 2018-01-05 2021-04-20 比亚迪股份有限公司 Copper-based microcrystalline alloy, preparation method thereof and electronic product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719748U (en) * 1993-09-16 1995-04-07 純一郎 久世 Photo Lens support for tripod

Also Published As

Publication number Publication date
JPS6024344A (en) 1985-02-07

Similar Documents

Publication Publication Date Title
JPS6344814B2 (en)
US5223214A (en) Heat treating furnace alloys
JPS58117848A (en) High strength cast ni alloy showing superior corrosion and oxidation resistance at high temperature in combustion atmosphere
JPS6221860B2 (en)
JPS6254388B2 (en)
JPS628497B2 (en)
JPH07118790A (en) Spheroidal graphite cast iron excellent in high temperature strength
JPS628506B2 (en)
JPS629180B2 (en)
JPS5943851A (en) High-strength cast alloy having superior characteristic at high temperature
JPS6330383B2 (en)
JP3207082B2 (en) Cr-based heat-resistant alloy
JP2733989B2 (en) Free cutting steel with excellent hot ductility
JPS6134497B2 (en)
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JP2018070900A (en) Austenitic heat resistant cast steel
JPS5928552A (en) High strength ni base cast alloy excellent in high temperature characteristics
US4927602A (en) Heat and corrosion resistant alloys
JPS59229470A (en) High toughness fe-cr-ni cast heat resistant alloy
JPH0598397A (en) Ferrous heat resistant alloy excellent in high temperature corrosion resistance
JPS597345B2 (en) High-strength alloy steel with excellent high-temperature corrosion resistance and high-temperature oxidation resistance
JPS6147900B2 (en)
JPS626629B2 (en)
JPS58117847A (en) High strength cast ni alloy showing superior corrosion and oxidation resistance at high temperature in combustion atmosphere
JPS63199850A (en) Low alloyed heat resisting cast steel