JPS6134497B2 - - Google Patents

Info

Publication number
JPS6134497B2
JPS6134497B2 JP20779481A JP20779481A JPS6134497B2 JP S6134497 B2 JPS6134497 B2 JP S6134497B2 JP 20779481 A JP20779481 A JP 20779481A JP 20779481 A JP20779481 A JP 20779481A JP S6134497 B2 JPS6134497 B2 JP S6134497B2
Authority
JP
Japan
Prior art keywords
temperature
strength
content
cold workability
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20779481A
Other languages
Japanese (ja)
Other versions
JPS58110650A (en
Inventor
Hiroshi Usuda
Ichiro Tsuji
Hisataka Kawai
Hitomi Ito
Makoto Yuge
Toshiki Takeiri
Tateaki Sahira
Toshio Kojima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Metal Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP20779481A priority Critical patent/JPS58110650A/en
Publication of JPS58110650A publication Critical patent/JPS58110650A/en
Publication of JPS6134497B2 publication Critical patent/JPS6134497B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、熱間および冷間加工性にすぐれ、
高温での引張り強度と疲れ強さが高く、しかも耐
酸化性にすぐれた固溶強化型Ni基耐熱合金に関
するものである。 従来、かなり以前からガスタービン燃焼器をは
じめとする原動機用の各種高温用機器、さらには
化学工業用各種高温機器、原子力工業用機器等
に、ハステロイX合金等のNi基耐熱合金が使用
されていたが、近年になつて上記各種高温機器等
のさらに苛酷な条件での使用が可能な新しい材料
が求めらている。そこで、これらの要求に対処す
べく種々の耐熱合金が開発されてきており、超合
金と称されて実用化されている。一方上記各種機
器類は現在益々高効率化する傾向にあり、それに
ともない材料に要求される特性、すなわち耐酸化
性、高温強度、高温高サイクル被れ強さ、熱間お
よび冷間加工性等も高度なものが要求される状況
にある。そして、これらの要求特性のうち、高温
強度、高温高サイクル疲れ強さと、熱間および冷
間加工性とは一般に合金設計上相反する傾向があ
る。例えば、従来使用されているNi基超合金の
1つである固溶強化型ニツケル基耐熱合金たる、
ハステロイXで代表されるNi―Cr―Mo―Fe系合
金や、その他のNi―Cr―Mo―Co系合金は、熱間
および冷間加工性にすぐれており、この点では十
分に満足できるものであるが、高温強度や高温高
サイクル疲れ強さ等の高温特性に対する最近の苛
酷な要求を必ずしも満足していないという傾向が
ある。 本発明者等は、上述のような観点から、熱間お
よび冷間加工性と耐酸化性に著しくすぐれるとと
もに、特に高温での引張り強さと疲れ強さにも十
分満足できる耐熱合金を得るべく、種々研究を重
ねた結果、 (a) 耐酸化性、熱間および冷間加工性ともすぐれ
ているNi―Cr系合金、特にCr:20.0〜26.0%を
有するNi―Cr系合金の高温強度を向上させる
目的でMoおよびWを含有させるが、常温強度
も増加するようになるので複雑な形状への冷間
加工性が損なわれるようになる。しかし、この
MoとWの組合せを考慮し、それぞれの含有量
および両者の総量を加減すると、前記Ni―Cr
系合金の冷間加工性をそれ程損なうことなく高
温強度をより向上させることができること。し
かもこの効果はMo単独よりもMoとWの複合含
有によつてより高められること。 (b) Ni―Cr系合金へのCaの含有によつて、高温
特性および熱間加工性を改善するとともに、特
に冷間加工性の面から制約されるとMoとWの
含有量の上限を拡大することができること。 (c) MoおよびWを含有したNi―Cr系合金に、さ
らにCoをバランス良く含有せしめて組合せる
ことにより、冷間加工性を損なうことなくより
高温強度を高くし得ること。 (d) Mo,W,およびCaを含有したNi―Cr系合金
に、さらにAlおよびTiを含有させると、微細
な金属間化合物であるNi3(Al,Ti)が素地中
に均一に分散析出するようになつて高温強度を
一段と高くし得ること。 (e) Yや、Ce,La等の希土類元素を、上記(a)〜
(d)に示されるNi―Cr系合金に含有させると、
耐酸化性および熱間加工性が一段と向上するよ
うになること。 (f) 上記(a)〜(e)に示されるNi―Cr系合金にNb,
VおよびTaを含有させると、いずれもCと作
用して炭化物を析出せしめ、再結晶後の結晶粒
を微細化し、高温での高サイクル疲労強度が向
上するようになること。 以上(a)〜(f)に示す如き知見を得るに至つたので
ある。 したがつて、この発明は上記知見にもとづいて
なされたもので、重量%で(以下%の表示は重量
%を意味する)、 C:0.001〜0.15%, Ca:0.0005〜0.05%, Cr:20.0〜26.0%,望ましくは20.0〜24.0
%, Co:4.7〜9.4%、望ましくは6.5〜9.4%, Mo:5.0〜16.0%,望ましくは8.0〜10.0%, W:0.5〜4.0%, (ただし、Mo+W:9.0〜16.5%,望まし
くは10.0〜13.5%), Al:0.3〜1.5%,望ましくは0.6〜1.5%, Ti:0.1〜1.0%, を含有し、さらに必要に応じて、Y:0.001〜
0.15%および希土類元素:0.001〜0.15%のうちの
1種または2種を含有し、さりに必要に応じて、
Nb,V,およびTaのうちの1種または2種以
上:0.01〜1.0%, を含有し、残りがNiと不可避不純物からなる組
成を有し、かつ、高温強度、熱間および冷間加工
性、および耐酸化性ともにすぐれたNi基耐熱合
金に特徴を有するものである。 ついで、この発明の合金において、C,Ca,
Cr,Co,Mo,W,Al,Ti,Y,希土類元素、
Nb,V,およびTa成分の成分組成範囲を上記の
通りに限定した理由を説明する。 (a) C 成分は、合金の溶解における脱酸剤として作
用し、そのため合金中に残存する下限量として
少なくとも0.001%を要するが、0.15%を越え
て残存した場合は、基質の固溶強化元素である
MoおよびWと炭化物を過剰に形成し、結果と
して高温強度を損なうことから、その含有量を
0.001〜0.15%と限定した。 (b) Ca Ca成分は、熱間および冷間加工性、高温で
の引張り特性、高温での疲れ強さの改善に必要
なものであり、その含有量が0.0005%未満では
その効果を発揮せず、一方、0.05%を越えて含
有すると熱間加工性が著しく損なわれることか
ら、その含有量を0.0005〜0.05%に限定した。 (c) Cr Cr成分には、高温において強固な酸化被膜
を形成し耐酸化性を向上させる作用があるが、
その含有量が20.0%未満では前記作用に所望の
効果が得られず、一方、26.0%を越えて含有す
る場合には、特に高温強度を低下させることか
ら、その含有量を20.0〜26.0%と限定した。な
お、高温強度をより高い状態に保持するために
はCrの上限値を24.0%とするのが望ましい。 (d) Co Co成分には、高温強度を向上せしめる作用
があるが、その含有量が4.7%未満では前記作
用に所望の効果が得られず、一方、9.4%を越
えて含有させると常温強度が著しく高くなり、
したがつて冷間加工性が著しく劣化することか
ら、その含有量を4.7〜9.4%と限定した。な
お、Coの含有量が6.5〜9.4%の場合に最良の高
温強度が得られる。 (e) MoおよびW MoおよびW成分は、ともに高温強度を向上
させるための主要な元素であり、特にWは高サ
イクル疲れ強さの改善に顕著に作用効果を及ぼ
すが、MoおよびW成分がそれぞれ5.0%未満お
よび0.5%未満では高温強度向上に顕著な効果
を発揮せず、また、特にWが0.5%未満では高
サイクル疲れ強さ向上に顕著な効果がみられな
い。一方、MoおよびW成分がそれぞれ16.0%
および4.0%を越えて含有されている場合には
冷間加工性が著しく損なわれることとなる。し
かしながら、こらの含有量がある限定範囲内で
は、MoおよびWのそれぞれ単独よりも両者の
複合含有の方がより高い高温強度を維持しなが
ら、しかも一定の冷間加工性を維持できるもの
である。すなわち、Moが5.0〜16%,Wが0.5
〜4.0%の含有量を満足しても、(Mo+W)が
9.0未満では、高温強度向上の作用に所望の効
果が得られず、一方、(Mo+W)が16.5%を越
えた場合には冷間加工性が著しく低下するの
で、Moの含有量を5.0〜16.5%,Wの含有量を
0.5〜4.0%とした上で、(Mo+W)の総量:9.0
〜16.5%を満足しなければならない。なお、
Mo:8.0〜10.0%およびW:0.5〜4.0%を含有
し、かつ(Mo+W):10.0〜13.5%を満足し
た場合に最良の高温強度が得られる。 (f) AlおよびTi AlおよびTiは、Niと結合して微細なNi3
(Al,Ti)の金属間化合物として素地中に均一
に分散し、高温強度を一段と向上させる作用を
有するが、AlおよびTi成分がそれぞれ0.3%未
満および0.1%未満では高温強度向上に顕著な
効果を発揮せず、一方AlおよびTi成分がそれ
ぞれ1.5%および1.0%を越えて含有されている
場合には、冷間加工性が著しく損なわれるよう
になると共に、脆化も起ることから、その含有
量をそれぞれAl:0.3〜1.5%,Ti:0.1〜1.0%
と限定した。なお、Al:0.6〜1.5%およびTf:
0.1〜1.0%を含有する場合に最良の高温強度が
得られる。 (g) Yおよび希土類元素 Y,およびCe,La等の希土類成分は、耐酸
化性および熱間加工性を一段と向上させる均等
的作用を有するが、その含有量がそれぞれ
0.001%未満の場合には前記作用に所望の効果
が得られず、一方、それぞれ0.15%を越えて含
有した場合には、特に熱間加工性を低下させる
ことから、その含有量をそれぞれ0.001〜0.15
%に限定した。 (h) Nb,VおよびTa Nb,VおよびTa成分には、いずれもCと作
用して炭化物を析出させ、かつ再結晶後の結晶
粒を細かくし、特に高温での高サイクル疲労強
度を一段と向上させる均等的作用を有するが、
その含有量が0.01%未満では前記作用に所望の
効果を得ることができず、一方、その含有量が
1.0%を越えた場合には耐酸化性の著しい低下
がみられることから、その含有量を0.01〜1.0
%と限定した。 つぎに、この発明のNi基耐熱合金を実施例に
より説明する。 通常の真空溶解炉を用い、それぞれ第1表に示
される成分組成をもつた溶湯を調製し、直径:約
60mm×高さ:200mmの寸法をもつたインゴツトに
鋳造し、熱間鍛造および熱間圧延により板厚:4
mmとし、ついで板厚:2mmに冷間圧延し、最終的
に温度:1150〜1200℃に20分間保持後水焼入れの
条件で溶体化処理を施して結晶粒度をASTM粒
度番号:約6に調整することによつて、本発明合
金1〜23,比較合金1〜16,およびハステロイX
を製造した。 ついで、上記各種の合金に関し、冷間加工性を
評価する目的で、厚さ、2mm×幅:20mm×長さ:
約150mmの寸法をもつた試験片を用い、温度:室
温、bending factor=0,曲げ角度:180゜の条
件で密着曲げ試験を行ない、試験後の割れの有無
を観察した。また、前記密着曲げ試験で割れ発生
のなかつたものについて、800℃における高温引
張り試験、950℃における耐酸化性試験、および
600℃における高サイクル疲れ試験を行ない、前
記耐酸化性試験では酸化増量を測定し、前記高温
高サイクル疲れ試験では荷重:38Kg/mm2にて破断
までの繰返し数をそれぞれ測定した。これらの測
定結果を第1表に合せて示した。
This invention has excellent hot and cold workability,
The present invention relates to a solid solution strengthened Ni-based heat-resistant alloy that has high tensile strength and fatigue strength at high temperatures and excellent oxidation resistance. Ni-based heat-resistant alloys such as Hastelloy However, in recent years, there has been a demand for new materials that can be used under even harsher conditions, such as in the various high-temperature devices mentioned above. In order to meet these demands, various heat-resistant alloys have been developed and are put into practical use as superalloys. On the other hand, the various types of equipment mentioned above are currently becoming more and more efficient, and along with this, the properties required of materials, such as oxidation resistance, high temperature strength, high temperature and high cycle resistance, hot and cold workability, etc. We are in a situation where something sophisticated is required. Among these required properties, high temperature strength, high temperature high cycle fatigue strength, and hot and cold workability generally tend to conflict in terms of alloy design. For example, solid solution strengthened nickel-based heat-resistant alloy, which is one of the conventionally used Ni-based superalloys,
Ni-Cr-Mo-Fe alloys represented by Hastelloy X and other Ni-Cr-Mo-Co alloys have excellent hot and cold workability, and are fully satisfactory in this respect. However, there is a tendency that they do not necessarily satisfy the recent severe demands for high-temperature properties such as high-temperature strength and high-temperature high-cycle fatigue strength. From the above-mentioned viewpoints, the inventors of the present invention sought to obtain a heat-resistant alloy that is extremely excellent in hot and cold workability and oxidation resistance, and that is particularly satisfactory in tensile strength and fatigue strength at high temperatures. As a result of various studies, (a) the high-temperature strength of Ni-Cr alloys with excellent oxidation resistance and hot and cold workability, especially Ni-Cr alloys containing 20.0 to 26.0% Cr, was determined. Although Mo and W are included for the purpose of improving the strength, the strength at room temperature also increases, which impairs cold workability into complex shapes. However, this
Considering the combination of Mo and W and adjusting the content of each and the total amount of both, the Ni-Cr
It is possible to further improve the high temperature strength of the alloy without significantly impairing its cold workability. Moreover, this effect is enhanced more by the combined inclusion of Mo and W than by Mo alone. (b) The inclusion of Ca in Ni-Cr alloys improves high-temperature properties and hot workability, and also limits the upper limits of Mo and W contents, especially when constrained by cold workability. Being able to expand. (c) High-temperature strength can be increased without impairing cold workability by combining a Ni-Cr alloy containing Mo and W with a well-balanced content of Co. (d) When Al and Ti are further added to a Ni-Cr alloy containing Mo, W, and Ca, fine intermetallic compounds Ni 3 (Al, Ti) are uniformly dispersed and precipitated in the matrix. This makes it possible to further increase high-temperature strength. (e) Add Y and rare earth elements such as Ce and La to (a) above.
When added to the Ni-Cr alloy shown in (d),
Further improvement in oxidation resistance and hot workability. (f) Nb,
When V and Ta are included, both interact with C to precipitate carbides, refine crystal grains after recrystallization, and improve high-cycle fatigue strength at high temperatures. We have come to the knowledge shown in (a) to (f) above. Therefore, this invention was made based on the above knowledge, and in weight% (hereinafter, % means weight%): C: 0.001 to 0.15%, Ca: 0.0005 to 0.05%, Cr: 20.0 ~26.0%, preferably 20.0~24.0
%, Co: 4.7 to 9.4%, preferably 6.5 to 9.4%, Mo: 5.0 to 16.0%, preferably 8.0 to 10.0%, W: 0.5 to 4.0%, (However, Mo + W: 9.0 to 16.5%, preferably 10.0 ~13.5%), Al: 0.3~1.5%, preferably 0.6~1.5%, Ti: 0.1~1.0%, and if necessary, Y: 0.001~
Contains one or two of 0.15% and rare earth elements: 0.001 to 0.15%, and if necessary,
Contains one or more of Nb, V, and Ta: 0.01 to 1.0%, with the remainder consisting of Ni and unavoidable impurities, and has high temperature strength, hot and cold workability It is characterized by being a Ni-based heat-resistant alloy with excellent both oxidation resistance and oxidation resistance. Then, in the alloy of this invention, C, Ca,
Cr, Co, Mo, W, Al, Ti, Y, rare earth elements,
The reason why the composition ranges of Nb, V, and Ta components are limited as described above will be explained. (a) The C component acts as a deoxidizing agent in the melting of the alloy, and therefore requires a minimum amount of at least 0.001% remaining in the alloy, but if it remains in excess of 0.15%, it will act as a solid solution strengthening element in the matrix. is
Mo and W together form carbides in excess, resulting in loss of high-temperature strength, so the content should be reduced.
It was limited to 0.001-0.15%. (b) Ca Ca component is necessary for improving hot and cold workability, tensile properties at high temperatures, and fatigue strength at high temperatures, and if its content is less than 0.0005%, it will not be effective. On the other hand, if the content exceeds 0.05%, hot workability will be significantly impaired, so the content was limited to 0.0005 to 0.05%. (c) Cr The Cr component has the effect of forming a strong oxide film at high temperatures and improving oxidation resistance.
If the content is less than 20.0%, the desired effect cannot be obtained, while if the content exceeds 26.0%, the high-temperature strength will be particularly reduced. Limited. Note that in order to maintain high-temperature strength at a higher level, it is desirable to set the upper limit of Cr to 24.0%. (d) Co The Co component has the effect of improving high-temperature strength, but if its content is less than 4.7%, the desired effect cannot be obtained, while if it is contained in excess of 9.4%, the room-temperature strength is increased. becomes significantly higher,
Therefore, since cold workability deteriorates significantly, its content was limited to 4.7 to 9.4%. Note that the best high-temperature strength is obtained when the Co content is 6.5 to 9.4%. (e) Mo and W Both Mo and W components are major elements for improving high-temperature strength. In particular, W has a remarkable effect on improving high-cycle fatigue strength, but Mo and W components are When W is less than 5.0% and less than 0.5%, respectively, no remarkable effect is exhibited in improving high-temperature strength. In particular, when W is less than 0.5%, no remarkable effect is observed on improving high-cycle fatigue strength. On the other hand, Mo and W components are each 16.0%.
If the content exceeds 4.0%, cold workability will be significantly impaired. However, within a certain limited range of these contents, the combination of Mo and W can maintain higher high-temperature strength and a certain level of cold workability than each of them alone. . That is, Mo is 5.0 to 16%, W is 0.5%
Even if the content of ~4.0% is satisfied, (Mo + W)
If it is less than 9.0, the desired effect of improving high-temperature strength will not be obtained. On the other hand, if (Mo + W) exceeds 16.5%, cold workability will be significantly reduced. %, W content
After setting it as 0.5 to 4.0%, the total amount of (Mo + W): 9.0
~16.5% must be satisfied. In addition,
The best high temperature strength is obtained when Mo: 8.0 to 10.0% and W: 0.5 to 4.0% are contained, and (Mo+W): 10.0 to 13.5% is satisfied. (f) Al and Ti Al and Ti combine with Ni to form fine Ni 3
As an intermetallic compound of (Al, Ti), it is uniformly dispersed in the matrix and has the effect of further improving high-temperature strength, but when the Al and Ti components are less than 0.3% and less than 0.1%, respectively, they have a remarkable effect on improving high-temperature strength. On the other hand, if Al and Ti components exceed 1.5% and 1.0%, respectively, cold workability will be significantly impaired and embrittlement will occur. Al content: 0.3~1.5%, Ti: 0.1~1.0%
limited to. In addition, Al: 0.6-1.5% and Tf:
The best high temperature strength is obtained when the content is 0.1 to 1.0%. (g) Y and rare earth elements Y and rare earth components such as Ce and La have the uniform effect of further improving oxidation resistance and hot workability, but their contents vary depending on their content.
If the content is less than 0.001%, the desired effect cannot be obtained. On the other hand, if the content exceeds 0.15%, the hot workability is particularly reduced. 0.15
%. (h) Nb, V and Ta Nb, V and Ta components all interact with C to precipitate carbides and make crystal grains finer after recrystallization, further improving high cycle fatigue strength especially at high temperatures. Although it has an even effect of improving
If its content is less than 0.01%, the desired effect cannot be obtained;
If it exceeds 1.0%, there is a significant decrease in oxidation resistance, so the content should be reduced to 0.01 to 1.0%.
%. Next, the Ni-based heat-resistant alloy of the present invention will be explained using examples. Using an ordinary vacuum melting furnace, prepare molten metals having the compositions shown in Table 1, diameter: approx.
Cast into an ingot with dimensions of 60mm x height: 200mm, and hot forged and hot rolled to a plate thickness: 4
mm, then cold-rolled to a plate thickness of 2 mm, and finally held at a temperature of 1150-1200°C for 20 minutes and then subjected to solution treatment under water quenching conditions to adjust the grain size to ASTM grain size number: approximately 6. By doing this, the present invention alloys 1 to 23, comparative alloys 1 to 16, and Hastelloy
was manufactured. Next, for the purpose of evaluating the cold workability of the various alloys mentioned above, thickness: 2 mm x width: 20 mm x length:
Using a test piece with a size of approximately 150 mm, a close bending test was conducted at room temperature, bending factor = 0, and bending angle: 180°, and the presence or absence of cracks was observed after the test. In addition, for those that did not cause cracking in the close contact bending test, we conducted a high temperature tensile test at 800°C, an oxidation resistance test at 950°C, and
A high cycle fatigue test was conducted at 600°C, and the oxidation weight gain was measured in the oxidation resistance test, and the number of repetitions until breakage was measured at a load of 38 Kg/mm 2 in the high temperature high cycle fatigue test. These measurement results are also shown in Table 1.

【表】【table】

【表】 第1表に示される結果から、構成成分のうちの
いずれかの成分(第1表に※印で表示)がこの発
明の範囲から外れた組成を有する比較合金1〜16
は、いずれも高温高度および高温高サイクル疲れ
強さのうちの少なくとも1つの性質が劣つた ものであるのに対して、本発明合金1〜23は、い
ずれもハステロイXと同等のすぐれた冷間加工性
を有し、かつ冷間加工性、高温引張り特性、耐酸
化性、および高温高サイクル疲れ強さについては
ハステロイXと比較して一段とすぐれた特性を示
すことが明らかである。 上述のように、この発明のNi基耐熱合金は、
すぐれた高温強度、熱間および冷間加工性、およ
び耐酸化性を兼ね備えているので、ガスタービン
燃焼器をはじめとする原動機用の各種高温用機器
など、複雑な形状への加工を必要とし、しかも高
温での強度、高サイクル疲れ強さ、さらにすぐれ
た耐酸化性を要求される部品の製造に適するもの
である。
[Table] From the results shown in Table 1, Comparative Alloys 1 to 16 in which one of the constituent components (indicated with an asterisk in Table 1) is outside the scope of this invention.
All of these alloys are inferior in at least one of the properties of high-temperature altitude and high-temperature high-cycle fatigue strength, whereas all of the invention alloys 1 to 23 have excellent cold fatigue strength equivalent to Hastelloy X. It is clear that it has workability and exhibits properties that are far superior to Hastelloy X in terms of cold workability, high-temperature tensile properties, oxidation resistance, and high-temperature high-cycle fatigue strength. As mentioned above, the Ni-based heat-resistant alloy of the present invention is
It has excellent high-temperature strength, hot and cold workability, and oxidation resistance, so it can be processed into complex shapes such as gas turbine combustors and other high-temperature equipment for prime movers. Furthermore, it is suitable for manufacturing parts that require strength at high temperatures, high cycle fatigue strength, and excellent oxidation resistance.

Claims (1)

【特許請求の範囲】 1 C:0.001〜0.15%, Ca:0.0005〜0.05%, Cr:20.0〜26.0%, Co:4.7〜9.4%, Mo:5.0〜16.0%, W:0.5〜4.0%, Al:0.3〜1.5%, Ti:0.1〜1.0%, (ただし、Mo+W:9.0〜16.5%)、 Niおよび不可避不純物:残り、 (以上重量%)からなる組成を有することを特徴
とするNi基耐熱合金。 2 C:0.001〜0.15%, Ca:0.0005〜0.05%, Cr:20.0〜26.0%, Co:4.7〜9.4%, Mo:5.0〜16.0%, W:0.5〜4.0%, Al:0.3〜1.5%, Ti:0.1〜1.0%, (ただし、Mo+W:9.0〜16.5%)、 Y:0.001〜0.15%および希土類元素:0.001〜
0.15%のうの1種または2種、 Niおよび不可避不純物:残り、 (以上重量%)からなる組成を有することを特徴
とするNi基耐熱合金。 3 C:0.001〜0.15% Ca:0.0005〜0.05%, Cr:20.0〜26.0%, Co:4.7〜9.4%, Mo:5.0〜16.0%, W:0.5〜4.0%, Al:0.3〜1.5%, Ti:0.1〜1.0%, (ただし、Mo+W:9.0〜16.5%)、 Nb,V,およびTaのうちの1種または2種以
上:0.01〜10%, Niおよび不可避不純物:残り、 (以上重量%)からなる組成を有することを特徴
とするNi基耐熱合金。 4 C:0.001〜0.15%, Ca:0.0005〜0.05%, Cr:20.0〜26.0%, Co:4.7〜9.4%, Mo:5.0〜16.0%, W:0.5〜4.0%, Al:0.3〜1.5%, Ti:0.1〜1.0%, (ただし、Mo+W:9.0〜16.5%)、 Y:0.001〜0.15%および希土類元素:0.001〜
0.15%のうちの1種または2種、 Nb,V,およびTaのうちの1種または2種以
上:0.01〜1.0%、 Niおよび不可避不純物:残り、 (以上重量%)からなる組成を有することを特徴
とするNi基耐熱合金。
[Claims] 1 C: 0.001-0.15%, Ca: 0.0005-0.05%, Cr: 20.0-26.0%, Co: 4.7-9.4%, Mo: 5.0-16.0%, W: 0.5-4.0%, Al : 0.3 to 1.5%, Ti: 0.1 to 1.0%, (however, Mo+W: 9.0 to 16.5%), Ni and unavoidable impurities: the remainder (more than % by weight). . 2 C: 0.001-0.15%, Ca: 0.0005-0.05%, Cr: 20.0-26.0%, Co: 4.7-9.4%, Mo: 5.0-16.0%, W: 0.5-4.0%, Al: 0.3-1.5%, Ti: 0.1~1.0%, (Mo+W: 9.0~16.5%), Y: 0.001~0.15% and rare earth elements: 0.001~
1. A Ni-based heat-resistant alloy characterized by having a composition consisting of 0.15% of one or two types of porosity, the remainder of Ni and unavoidable impurities (at least % by weight). 3 C: 0.001-0.15% Ca: 0.0005-0.05%, Cr: 20.0-26.0%, Co: 4.7-9.4%, Mo: 5.0-16.0%, W: 0.5-4.0%, Al: 0.3-1.5%, Ti : 0.1 to 1.0%, (Mo+W: 9.0 to 16.5%), One or more of Nb, V, and Ta: 0.01 to 10%, Ni and unavoidable impurities: Remaining, (More than % by weight) A Ni-based heat-resistant alloy characterized by having a composition consisting of: 4 C: 0.001-0.15%, Ca: 0.0005-0.05%, Cr: 20.0-26.0%, Co: 4.7-9.4%, Mo: 5.0-16.0%, W: 0.5-4.0%, Al: 0.3-1.5%, Ti: 0.1~1.0%, (Mo+W: 9.0~16.5%), Y: 0.001~0.15% and rare earth elements: 0.001~
Must have a composition consisting of one or two of 0.15%, one or more of Nb, V, and Ta: 0.01 to 1.0%, and the remainder of Ni and unavoidable impurities (not less than % by weight). A Ni-based heat-resistant alloy characterized by:
JP20779481A 1981-12-22 1981-12-22 Ni-base heat resistant alloy Granted JPS58110650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20779481A JPS58110650A (en) 1981-12-22 1981-12-22 Ni-base heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20779481A JPS58110650A (en) 1981-12-22 1981-12-22 Ni-base heat resistant alloy

Publications (2)

Publication Number Publication Date
JPS58110650A JPS58110650A (en) 1983-07-01
JPS6134497B2 true JPS6134497B2 (en) 1986-08-08

Family

ID=16545598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20779481A Granted JPS58110650A (en) 1981-12-22 1981-12-22 Ni-base heat resistant alloy

Country Status (1)

Country Link
JP (1) JPS58110650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020117A1 (en) 2013-08-06 2015-02-12 日立金属Mmcスーパーアロイ株式会社 Ni-based alloy, ni-based alloy for gas turbine combustor, member for gas turbine combustor, member for liner, member for transmission piece, liner, and transmission piece
WO2020144877A1 (en) 2019-01-11 2020-07-16 吉川工業株式会社 Laminated iron core

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6237334A (en) * 1985-08-12 1987-02-18 Hitachi Ltd Ni alloy
DE102007048484A1 (en) * 2007-10-09 2009-04-16 Man Turbo Ag Hot gas-guided component of a turbomachine
CN104018029B (en) * 2014-05-21 2016-03-23 西安热工研究院有限公司 A kind of high ferro ferronickel base two-phase alloys containing rare earth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015020117A1 (en) 2013-08-06 2015-02-12 日立金属Mmcスーパーアロイ株式会社 Ni-based alloy, ni-based alloy for gas turbine combustor, member for gas turbine combustor, member for liner, member for transmission piece, liner, and transmission piece
US10208364B2 (en) 2013-08-06 2019-02-19 Hitachi Metals, Ltd. Ni-based alloy, ni-based alloy for gas turbine combustor, member for gas turbine combustor, liner member, transition piece member, liner, and transition piece
WO2020144877A1 (en) 2019-01-11 2020-07-16 吉川工業株式会社 Laminated iron core

Also Published As

Publication number Publication date
JPS58110650A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
EP1867740B1 (en) Low thermal expansion Ni-base superalloy
JP4861651B2 (en) Advanced Ni-Cr-Co alloy for gas turbine engines
US6860948B1 (en) Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
JP4521739B2 (en) Welding electrode made of nickel-base alloy and its alloy
US3366478A (en) Cobalt-base sheet alloy
JPS6179742A (en) Heat resistant alloy
JPH0346535B2 (en)
US4474733A (en) Heat resistant nickel base alloy excellent in workability and high temperature strength properties
JPS6134497B2 (en)
JPS5938365A (en) Heat-resistant cast steel
JP2003138334A (en) Ni-BASED ALLOY HAVING EXCELLENT HIGH TEMPERATURE OXIDATION RESISTANCE AND HIGH TEMPERATURE DUCTILITY
JPS5853703B2 (en) Molybdenum material with excellent hot workability
JP3271344B2 (en) Nickel-base heat-resistant alloy with excellent workability
JP2819906B2 (en) Ni-base alloy for tools with excellent room and high temperature strength
JP3265610B2 (en) Nickel-base heat-resistant alloy with excellent workability
JPH0317243A (en) Super alloy containing tantalum
JPH083665A (en) Nickel-base superalloy for die excellent in oxidation resistance and high temperature strength
JPH07103447B2 (en) High purity heat resistant steel
JPS6330381B2 (en)
JPS6254388B2 (en)
JPH0243813B2 (en) GASUTAABINYOKOKYODOCOKITAINETSUGOKIN
JPS61546A (en) High-strength heat-resistant co alloy for gas turbine
JPH05239576A (en) Nickel-base heat resistant alloy excellent in workability
JP3271345B2 (en) Nickel-base heat-resistant alloy with excellent workability
JPS628497B2 (en)