JPH0317243A - Super alloy containing tantalum - Google Patents

Super alloy containing tantalum

Info

Publication number
JPH0317243A
JPH0317243A JP2093260A JP9326090A JPH0317243A JP H0317243 A JPH0317243 A JP H0317243A JP 2093260 A JP2093260 A JP 2093260A JP 9326090 A JP9326090 A JP 9326090A JP H0317243 A JPH0317243 A JP H0317243A
Authority
JP
Japan
Prior art keywords
alloy
nickel
tantalum
ppm
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2093260A
Other languages
Japanese (ja)
Inventor
Thomas J Kelly
トーマス・ジョセフ・ケリー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH0317243A publication Critical patent/JPH0317243A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE: To develop an Ni base alloy excellent in high temp. strength and ductility by subjecting an Ni base alloy obtd. by adding Ni with specified amounts of Ta and the other elements and substantially contg. no Nb to heat treatment under specified conditions.
CONSTITUTION: A slab of an Ni alloy having a compsn. contg., by weight, 8 to 16% Ta, 17 to 22% Cr, <25% Fe, <16% Co, 2 to 6% Mo, 1 to 5% Ti, 0.1 to 5% Al, B by 30 to 150 ppm (by 30 to 60 ppm in the case of casting and by 80 to 100 ppm in the case of forging) and 0.01 to 0.1% C, contg. Nb by <0.1% which is the amt. in a degree in which it is not substantially contained, contg. one or two kinds of Zr and Hf, and the balance Ni is heated at about 2000°F for 1 hr and is successively subjected to hydrostatic pressing treatment at 2050°F under 12 to 15 KSi for 3 to 5 hr. Then, it is heated at 1920°F for 4 hr, is successively heated at 1600°F for 2 hr and is moreover heated at 1350°C for 8 hr according to necessary to develop the Ni base alloy excellent in both strength and ductility in a wide temp. range from a room temp. to 1500°F.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 [発明の背景] 技術分野 本発明は、ほぼ室温から約1500″Fの温度範囲にお
いて強度特性と延性との特に高度な組合わせを保有する
改良されたニッケル基合金に関する。
BACKGROUND OF THE INVENTION TECHNICAL FIELD This invention relates to an improved nickel-based alloy that possesses a particularly advanced combination of strength properties and ductility in the temperature range from about room temperature to about 1500"F. .

一般にはニオブに対する原子対原子置換によりかなりの
量のタンタルを合金に取り込んで、次に該合金を非常に
高い温度で長時間熱処理することによって上記の改良を
行う。
These improvements are generally achieved by incorporating significant amounts of tantalum into the alloy by atom-for-atom substitution for niobium and then heat treating the alloy at very high temperatures for long periods of time.

[先行技術] 先行技術のニッケル基超合金は着丈に改良されてはいる
が、強度または延性の観点からみて欠点があり、特に高
温度すなわち約1200下を越える温度においてそうで
ある。これらの合金は一般にニッケル基合金でありクロ
ム、鉄およびコバルトの中のI P.!以上を含有して
なる。さらに、これらの合金には様々な元素を様々な組
合わせで含有させて所望する効果を生起させることがで
きる。
PRIOR ART Although the prior art nickel-based superalloys have improved length, they suffer from deficiencies from a strength or ductility standpoint, particularly at high temperatures, i.e., temperatures above about 1200°C. These alloys are generally nickel-based alloys with an IP content of chromium, iron, and cobalt. ! Contains the above. Furthermore, these alloys can contain various elements in various combinations to produce desired effects.

ニッケル基超合金においては下記のごとき元素が下記の
特性のうちの1つ以上の特住を改良するために用いられ
てきた。すなわち、強度に対して山,1”,, w, 
Ra,耐酸化性に対してCr,/V,相安定性に対して
NL.あるいは好ましい2次析出物の体積率の増加に対
して6などである。その他の添加元素としては、γ′で
ある硬化性析出物を形成するためのNやT+.およびγ
′である硬化性析出物を形成するためのcbがある。微
量元素であるC,  Bは炭化物およびホウ化物を形或
させるために添加する。その他のCc. Fk2はトラ
ンブ元素管理の目的で添加する。B. Zr, Hf’
は好ましい結晶粒界効果を促進するために添加する。多
くの元素(たとえば、Co. t%. W, Cr)は
それらの好ましい合金化特件の故に添加するが、状況に
よっては好ましくムい相(たとえばσ,μ,ラベス)の
形成に関与する。
The following elements have been used in nickel-based superalloys to improve one or more of the following properties: That is, for the strength, the peak,1”,, w,
Ra, Cr for oxidation resistance, /V, NL for phase stability. Alternatively, it is 6, etc. for a preferable increase in the volume fraction of secondary precipitates. Other additive elements include N and T+ for forming hardenable precipitates which are γ'. and γ
There is a cb for forming a hardenable precipitate. Trace elements C and B are added to form carbides and borides. Other Cc. Fk2 is added for the purpose of controlling the Trumbu element. B. Zr, Hf'
is added to promote favorable grain boundary effects. Many elements (e.g., Co. t%. W, Cr) are added because of their favorable alloying properties, but under some circumstances participate in the formation of undesirable phases (e.g., σ, μ, Laves).

γ′は、休心正方晶に配列したNL3Nb強化析出物で
あり、しかも該析出物はニッケル基超合金にニオブが存
在する場合に形成されると一般に考えられる。γ′強化
が存在する超合金にはインコネル(!oconel )
 7 1 8があり、これはアイゼルスタイン( E!
solsteln)の米国特許第3.046.108号
記載の発明に含まれる。アイゼルスタインによれば、該
合金は約4〜約g’ii%のコロンビウムを含有するこ
とが必要であるが、該合金中のコロンビウムは該合金の
4%以下のユにおいて部分的にタンタルで代替してよい
とされている。
γ' is a resting tetragonal NL3Nb reinforcing precipitate, which is generally believed to form when niobium is present in the nickel-based superalloy. Inconel (!oconel) is a superalloy with γ′ reinforcement.
There are 7 1 8, and this is Eiselstein (E!
Solsteln) US Pat. No. 3,046,108. According to Eiselstein, the alloy should contain from about 4 to about g'ii% columbium, although the columbium in the alloy may be partially replaced by tantalum in up to 4% of the alloy. It is considered okay to do so.

該合金の含有するコロンビウムを部分的にタンタルで代
替する場合、アイゼルスタインによれば特性について同
じ効果を得るためには2倍の重さのタンタルを用いなけ
ればならないとされる。さらに、タンタルを含有しない
合金および/または50%以下のコロンビウムをタンタ
ルで代替した合金についてのみ高温で切欠き延性である
とも、アイゼルスタインは述べている。したがって、タ
ンタルが限られた量だけ存在する場合にタンタルとニオ
ブとはニッケル基合金において同じ作用があるとアイゼ
ルスタインは教示する。
If the columbium content of the alloy were to be partially replaced by tantalum, Eiselstein states that twice the weight of tantalum would have to be used to obtain the same effect on properties. Additionally, Eiselstein states that only alloys that do not contain tantalum and/or that have tantalum substituted for less than 50% columbium are notch ductile at high temperatures. Therefore, Eiselstein teaches that tantalum and niobium have the same effect in nickel-based alloys when tantalum is present in limited amounts.

γ′相は高温度に長時間さらされるとγ′またはδに変
化することがあるので、通常はγ′相は安定な相ではな
い。γ″により硬化された合金は比較的低い温度では高
い引張強さと非常に良好なクリープ破断特性とを示すが
、約1 2 5 0”Fを越える温度でγ′はγ′また
はδに変化するので強度が著しく減少する。(ドナキー
,エム.ジエイ,「超合金の特性と顕微鏡組織との関係
」、超合金資料集、米国金属学会、1984年) [発明の要約] 今般、ニッケル基超合金においてはタンタルがニオブと
同じには作用しないことを発見した。むしろ、タンタル
は相当するニオブ含有合金より優れた相安定性および異
なる相関係を保有する合金を生成することを発見した。
The γ' phase is usually not a stable phase since it can change to γ' or δ when exposed to high temperatures for long periods of time. Alloys hardened by γ" exhibit high tensile strength and very good creep rupture properties at relatively low temperatures, but at temperatures above about 1250"F, γ' changes to γ' or δ. Therefore, the strength is significantly reduced. (Donachie, M. G., "Relationship between properties of superalloys and microscopic structures", Superalloy Materials Collection, American Institute of Metals, 1984) [Summary of the Invention] Nowadays, tantalum is the same as niobium in nickel-based superalloys. I discovered that it does not work. Rather, we have discovered that tantalum produces alloys that possess superior phase stability and different phase relationships than comparable niobium-containing alloys.

この相安定性の相異によって、1を含有する合金はNb
を含有する合金にくらべもっと高い温度に対しはるかに
強くなる。
Due to this difference in phase stability, alloys containing Nb
It is much more resistant to higher temperatures than alloys containing .

さらに、本発明の合金中のγ″は、相当するNb含有合
金中で起こるようには、容易にはδ相へ変化しない。
Furthermore, the γ'' in the alloys of the present invention does not readily transform into the δ phase as occurs in the corresponding Nb-containing alloys.

本発明は、約30重量%以−LのNLと約8〜約16重
量%のタンタルからなるとともに実質的にニオブを含有
しないニッケル基合金を特に意図する。
The present invention specifically contemplates a nickel-based alloy comprising about 30% by weight or more of NL, about 8 to about 16% by weight tantalum, and is substantially free of niobium.

該合金に含有させるその他の元素はクロム、鉄、コバル
ト、モリブデン、チタン、ジルコニウム、タングステン
、ハフニウム、アルミニウム、ホウ素および炭素、並び
にこれらの組合わせからなる群から主に選択する。さら
に、マンガン、ケイ素、リン、硫黄、鉛、ビスマス、テ
ルル、セレン、ニオプおよび銀のごときその他の元素が
随伴する不純物として存在することもある。
Other elements included in the alloy are primarily selected from the group consisting of chromium, iron, cobalt, molybdenum, titanium, zirconium, tungsten, hafnium, aluminum, boron and carbon, and combinations thereof. Additionally, other elements such as manganese, silicon, phosphorous, sulfur, lead, bismuth, tellurium, selenium, niopium and silver may be present as accompanying impurities.

さらに、ニオブ含有ニッケル基超合金中に含まれる実質
的にすべてのニオブについて、原子対原子に則り、タン
タルで置換することによりニオブ含有ニッケル基超合金
の高温強度特性を改良する方法にまで本発明は広く及ぶ
Furthermore, the present invention extends to a method for improving the high-temperature strength properties of a niobium-containing nickel-base superalloy by replacing substantially all of the niobium contained in the niobium-containing nickel-base superalloy with tantalum on an atom-by-atom basis. is widespread.

本発明のタンタル含有ニッケル基超合金の高温強度特性
を向上すべく、相当する二オプ含有超合金に対してより
も高い温度かつ長い時間の熱処理を施こす方法をも含む
In order to improve the high temperature strength properties of the tantalum-containing nickel-base superalloys of the present invention, the method also includes subjecting the tantalum-containing nickel-base superalloys to heat treatments at higher temperatures and for longer times than comparable diopter-containing superalloys.

[好ましい尖施の態様] 本発明の合金は約30%以上のNL (本明細書および
特許請求の範囲で表示されるすべての百分率は特にこと
わりのないかぎり重量百分率である)および約8〜約1
6%のタンタルを含有する。該合金の残部は、クロム、
鉄、コバルト、モリブデン、チタン、ジルコニウム、タ
ングステン、ハフニウム、アルミニウム、ホウ素、炭素
およびこれらの組合わせからなる群がら選択した元素な
どのニッケルと合金化して超合金を形成するために慣用
されるその他の元素がらなるであろう。さらに、マンガ
ン、ケイ素、リン、硫黄、鉛、ビスマス、テルル,セレ
ンおよび銀などのその他の元素が該合金中に随什する不
純物として存在することもある。これらの合金は吏質的
にニオプを含有しない、すなわち約1%未満、好ましく
は約0.  5%未満、最も好ましくは約0.1%未満
のNbを含むであろう。
[Preferred Sharpening Embodiments] The alloys of the present invention have a NL of about 30% or more (all percentages expressed in this specification and claims are weight percentages unless otherwise indicated) and a NL of about 8 to about 1
Contains 6% tantalum. The remainder of the alloy is chromium,
Other elements commonly used to alloy with nickel to form superalloys, such as elements selected from the group consisting of iron, cobalt, molybdenum, titanium, zirconium, tungsten, hafnium, aluminum, boron, carbon, and combinations thereof. It will be empty. Additionally, other elements such as manganese, silicon, phosphorous, sulfur, lead, bismuth, tellurium, selenium and silver may be present as incidental impurities in the alloy. These alloys are atomically free of niop, ie, less than about 1%, preferably about 0. It will contain less than 5% Nb, most preferably less than about 0.1%.

一般に、ニッケルおよびタンタルの他に約25%以下の
クロム、約40%以下の鉄、約25%以下のコバルト、
約8%以下のモリブデン、約394以下のチタン、約2
%以下のアルミニウム、約7%以下のタングステン、約
30〜約1 5 0 ppmのホウ素、および約0. 
 1%以下の炭素を該合金は含有するであろう。前記の
その他の合金化元素のごときその他の元素はそれぞれに
ついて約1%以下の量でしかも合計で約5%以下の量で
存在することもある。
Generally, in addition to nickel and tantalum, up to about 25% chromium, up to about 40% iron, and up to about 25% cobalt;
Molybdenum of about 8% or less, titanium of about 394 or less, about 2
% or less aluminum, about 7% or less tungsten, about 30 to about 150 ppm boron, and about 0.
The alloy will contain less than 1% carbon. Other elements, such as the other alloying elements described above, may be present in amounts of up to about 1% each and up to about 5% in total.

一つの好ましい合金は、約8〜約16%のタンタル、約
17〜約22%のクロム、約25%以下の鉄、約16%
以下のコバルト、ただし鉄とコバルトの合計が12%以
上、約2〜約6%のモリブデン、約1〜約5%のチタン
、約0.1〜約5%のアルミニウム、約30〜約1 5
 0 ppII1のホウ素、約0.01〜約0.  1
%の現索、残部のニッケル(随伴する不純物を含む)か
ら本質的になるとともに、鉄とコバルトの合計量が約1
2〜約25%である合金である。
One preferred alloy is about 8 to about 16% tantalum, about 17 to about 22% chromium, up to about 25% iron, about 16%
The following cobalt, provided that the total of iron and cobalt is 12% or more, about 2 to about 6% molybdenum, about 1 to about 5% titanium, about 0.1 to about 5% aluminum, about 30 to about 15
0 ppII1 boron, about 0.01 to about 0. 1
% present, the remainder nickel (including incidental impurities), and the total amount of iron and cobalt is approximately 1
2 to about 25%.

第二の好ましい合金は、約8.5〜約10%のタンタル
、約18〜約20%のクロム、約17〜約19%の鉄、
約26 5〜約4%のモリブデン、約0.75〜約2.
5%のチタン、約06 25〜約0.75%のアルミニ
ウム、約30〜約60ppm  (当該合金を鋳造する
場合)または約80〜約150ppm(当該合金を鍛錬
する場合)のホウ素、約0.03〜約0.05%の炭素
、および残部のニッケルから本質的になる。この合金の
最も好ましい態様は、約9%のタンタル、約19%のク
ロム、約18%の鉄、約3%のモリブデン、約1%のチ
タン、約0.  5%のアルミニウム、約30〜約60
ppm(当該合金を鋳造する場合)または約80〜約1
00ppm(当該合金を鍛錬する場合)のホウ素、約0
.05%の炭素、および残部のニッケルから本質的にな
る。
A second preferred alloy includes about 8.5 to about 10% tantalum, about 18 to about 20% chromium, about 17 to about 19% iron;
About 265 to about 4% molybdenum, about 0.75 to about 2.
5% titanium, about 0.6% to about 0.75% aluminum, about 30 to about 60 ppm (if the alloy is cast) or about 80 to about 150 ppm (if the alloy is wrought) boron, about 0. 0.03 to about 0.05% carbon, and the balance nickel. The most preferred embodiment of this alloy is about 9% tantalum, about 19% chromium, about 18% iron, about 3% molybdenum, about 1% titanium, about 0.9% tantalum, about 1% titanium, about 1% titanium, about 1% titanium. 5% aluminum, about 30 to about 60
ppm (if the alloy is cast) or about 80 to about 1
00ppm (if the alloy is wrought) of boron, approx.
.. It consists essentially of 0.5% carbon and the balance nickel.

第3の好ましい合金は、約30〜約40%のニッケル、
約30〜約40%の鉄、約15〜約23%のコバルト、
約8〜約16%のタンタル、および約30〜約150p
p−のホウ素から本質的になる。この合金のさらに好ま
しい態様は、約35〜約38%のニッケル、約35〜約
38%の鉄、約17〜約20%のコバルト、約8〜約1
0%のタンタル、および約30〜約60ppm(当該合
金を鋳遣する場合)または約80〜約100pp@ (
当該合金を鍛錬する場合)のホウ素から本質的になる。
A third preferred alloy is about 30 to about 40% nickel;
About 30 to about 40% iron, about 15 to about 23% cobalt,
about 8 to about 16% tantalum, and about 30 to about 150p
Consisting essentially of p- boron. More preferred embodiments of this alloy include about 35 to about 38% nickel, about 35 to about 38% iron, about 17 to about 20% cobalt, about 8 to about 1
0% tantalum, and about 30 to about 60 ppm (if the alloy is cast) or about 80 to about 100 ppm @ (
When the alloy is wrought) it consists essentially of boron.

この合金の最も好ましい態様は、約36〜約37%のニ
ッケル、約36〜約37%の鉄、約17〜約19%のコ
バルト約8。5〜約9.5%のタンタル、および約30
〜約60ppm(当該合金を鋳逍する場合)または約8
0〜約100pl)ffl(当該合金を鍛錬する場合)
のホウ素から本質的になる。
The most preferred embodiments of this alloy include about 36% to about 37% nickel, about 36% to about 37% iron, about 17% to about 19% cobalt, about 8.5% to about 9.5% tantalum, and about 30%
~about 60 ppm (when casting the alloy) or about 8
0 to about 100pl)ffl (when forging the alloy)
Consists essentially of boron.

本発明のこれら合金は鋳造してよいしまた鍛錬してよく
、慣用の方法により製造できる。
These alloys of the invention may be cast or wrought and may be manufactured by conventional methods.

本発明のこれらの合金の高温特性の改良を実現するため
には、熱処理を行うことが必要である。
In order to achieve improvements in the high temperature properties of these alloys of the invention, it is necessary to carry out a heat treatment.

該熱処理は類似のニオブ含有合金に対する慣用の熱処理
と比較してより高温度でかつかなり長時間にわたり行わ
れる。
The heat treatments are conducted at higher temperatures and for significantly longer times than conventional heat treatments for similar niobium-containing alloys.

第2の好ましい合金に対する本発明による好ましい熱処
理は、約2000°Fで約1時間加熱すること、次に約
2 0 5 0”Fにおいて約12〜約15ksiの圧
力で約3〜約51侍間熱間静水圧処理(HIP)を行う
こと、さらに約1925°Fで約4時間加熱すること、
次に約1600°Fで約2時間加熱することからなる。
A preferred heat treatment according to the present invention for a second preferred alloy is heating at about 2000°F for about 1 hour, followed by about 2050"F and a pressure of about 12 to about 15 ksi for about 3 to about 51 ksi. hot isostatically treating (HIP) and heating at about 1925° F. for about 4 hours;
It then consists of heating at about 1600°F for about 2 hours.

さらに約1350°Fで約8時間加熱する(時効する)
ことは一部の合金について最適の特性を得るために有効
であることがある。この合金をニオブ含有の態様で慣用
の熱処理を施こす場合、1600″Fの工程は含まず、
約1150°Fで約4〜8時間かけるより低い温度の時
効工程を含むことになろう。
Further heat (age) at approximately 1350°F for approximately 8 hours.
This may be useful for obtaining optimal properties for some alloys. When this alloy is conventionally heat treated in a niobium-containing embodiment, the 1600″F step is not included;
It would include a lower temperature aging step at about 1150° F. for about 4 to 8 hours.

ニオブを実質的に含有させずにタンタルを含有させてよ
り高温の熱処理条件を採用することにより、在来のニオ
ブ含有合金にくらべてγ′強化をより多く利用する合金
が製遣される。本発明の合金は時効硬化可能でありかつ
可鍛性があり、しかも強度と延性とを特に高温度で高度
に組合わせて保有することを特徴とする。さらに、アル
ミニウムおよびチタンを合金に含有させる場合、溶接部
の歪時効割れを起こすことなくアルミニウムおよびチタ
ンの合計量をニオプ含有合金における通常の使用量より
高くすることができると考えられる。
By incorporating tantalum without substantially niobium and employing higher temperature heat treatment conditions, an alloy is produced that utilizes more gamma prime strengthening than conventional niobium-containing alloys. The alloys of the invention are characterized by being age hardenable and malleable, yet possessing a high combination of strength and ductility, especially at high temperatures. Furthermore, it is believed that when aluminum and titanium are included in the alloy, the total amount of aluminum and titanium can be higher than is typically used in niop-containing alloys without strain age cracking of the weld.

該合金においてニオプに代えてタンタルを用いることの
もう一つの効果は溶接性の改良である。これは、Nb−
NL共晶の共晶温度に比較してTa − NL共品温度
が高いため熱影響部の微細割れ抵抗が向上することによ
る。
Another effect of substituting tantalum for niop in the alloy is improved weldability. This is Nb-
This is because the Ta-NL eutectic temperature is higher than the NL eutectic temperature, which improves the resistance to fine cracking in the heat-affected zone.

以下の尖施例は発明の範囲を限定する意図ではなく本発
明の合会を調製することおよび該合会の改良された特性
、特に高温度特性を実証するために開示される。
The following Examples are not intended to limit the scope of the invention, but are provided to demonstrate the preparation of the aggregates of the present invention and their improved properties, particularly high temperature properties.

火施例1 48.6%のニッケル、19.2%のクロム、18.0
%の鉄、0.02%のニオブ、9.1%のタンタル、3
,O%のモリブデン、1.04%のチタン、0.47%
のアルミニウム、0.0043%のホウ素、0.044
%の炭素、および0.02%のケイ素からなる組成物を
真空誘導炉により溶融して合金718に類似のタンタル
含有合金を作成した。溶融した合金はセラミック製の型
に鋳込んで2″×4″×174″のスラブを製逍した。
Fire Example 1 48.6% nickel, 19.2% chromium, 18.0
% iron, 0.02% niobium, 9.1% tantalum, 3
,0% molybdenum, 1.04% titanium, 0.47%
aluminum, 0.0043% boron, 0.044
A tantalum-containing alloy similar to Alloy 718 was prepared by melting a composition consisting of 1.5% carbon and 0.02% silicon in a vacuum induction furnace. The molten alloy was cast into ceramic molds to produce 2" x 4" x 174" slabs.

該スラブから作成した試験片に次のような熱処理を施し
た。すなわち、2 0 0 0 ”F 1 11.’7
間、2050”Fにて14.7ksiの熱間静水圧処理
3時間、1925″F4特間、1600″F2時間、お
よび1350″F8時間。
A test piece made from the slab was subjected to the following heat treatment. That is, 2 0 0 0 ”F 1 11.'7
3 hours of hot isostatic pressure treatment at 14.7 ksi at 2050"F, 1925"F4 special, 1600"F 2 hours, and 1350"F 8 hours.

本質的にタンタルを全く含有せずに約4.6%のニオブ
を含有するほかは同じ組成の在来の718合金を上記と
同様にして作成し718合金に対して通常行われるよう
に(第1表の脚注1に示す)熱処理した。
A conventional 718 alloy of the same composition, except containing essentially no tantalum and about 4.6% niobium, was prepared as described above and prepared as is normally done for 718 alloys (No. Heat treated (as shown in footnote 1 of Table 1).

タンタル含有合金の顕微鏡組織について判明したことは
、在来の718合金と比較して凝固時のラベス相の安定
性が同等ないし低いということである。さらに、タンタ
ル含有合金は1600”F〜1800下の範聞の温度に
暴露すなわち718合金中の成分偏析を促進させるため
に用いられる熱処理δダンブ(dump)を行ってから
もδ相を生威しない。適度な強化効果をもたらす寸法の
γ′とγ″とが好都合に分布した顕微鏡組織をタンタル
含有合金は保有する。在来の鋳造した71Bと比較して
タンタル含有合金においては、γ′およびγ″析出物は
樹枝状晶の芯部および隙間全体にわたってはるかに一様
に分布する。
What has been found in the microstructure of tantalum-containing alloys is that the stability of the Laves phase during solidification is comparable to lower than that of the conventional 718 alloy. Furthermore, tantalum-containing alloys do not develop a δ phase after exposure to temperatures in the range below 1600”F to 1800F, a heat treatment used to promote component segregation in 718 alloys, δ dump. Tantalum-containing alloys possess a microstructure with a favorable distribution of γ′ and γ″ dimensions that provide a moderate strengthening effect. In the tantalum-containing alloy compared to conventionally cast 71B, the γ' and γ'' precipitates are much more uniformly distributed throughout the dendrite core and interstices.

上記2つの合金の試験片を試験して室温および高温にお
けるそれらの機楓的性質を測定した。試験桔果は次のと
おりである。
Specimens of the above two alloys were tested to determine their mechanical properties at room and elevated temperatures. The test results are as follows.

第1表 室温  120G   +30(1  ’M温  12
00   室温  12110   1400極限引張
強さ   1551  130   122   15
1   117   178.2  147.7  1
33.30.2%オフセ   118.1  114 
  106.5  133   104   142.
5  117.11  112.8ブト耐力 伸び(%)      1,9   11.5    
9    15    11    12    If
    G絞り (%)       29.1   
22.5    21.5   29    .29 
   18     8     G1.2000″F
″71時間.2050丁/1 4.  7ksi /3
L’j間HIP.1925下71時間;1350下/8
II!r間.L15[]″F/BPj間。
Table 1 Room temperature 120G +30 (1'M temperature 12
00 Room temperature 12110 1400 Ultimate tensile strength 1551 130 122 15
1 117 178.2 147.7 1
33.30.2% offset 118.1 114
106.5 133 104 142.
5 117.11 112.8 But proof stress elongation (%) 1.9 11.5
9 15 11 12 If
G aperture (%) 29.1
22.5 21.5 29. 29
18 8 G1.2000″F
″71 hours.2050 guns/1 4.7ksi/3
HIP between L'j. 1925 lower 71 hours; 1350 lower/8
II! between r. L15[]'' between F/BPj.

2.2000″F/1時間; 2050’F/1 4.
7ksi /3B.’j間HIP.1925″F71時
間;1600”F/2叫間.1350’F/8!5間。
2.2000″F/1 hour; 2050′F/1 4.
7ksi/3B. 'j between HIP. 1925″F71 hours; 1600″F/2 hours. 1350'F/8!5 between.

3.2個の試験片の平均 4.1個の試験片 第1表から判ることは、タンタル含有718型超合金は
それに対応する二オブ含有合金と比較して高温強度特性
に優れ、しかもこれらの特性は好ましい熱処理を採用す
ることによりさらに向上することである。
Table 1 shows that the tantalum-containing type 718 superalloy has superior high-temperature strength properties compared to its niobium-containing counterpart, and that The properties can be further improved by employing suitable heat treatments.

尖施例2 36.6%のニッケル、36.6%の鉄、17.7%の
コバルト、9.1%のタンタル、および45 ppmの
ホウ素からなる組成の合金について実施例1の手順を繰
返した。これに対応する在来型の合金、すなわち原子対
原子にIllリタンタルをニオブで置換してニオプ含有
量を4.5%とした合金を比較のために作成した。実施
例1と同じようにこれらの合金を試験して機械的性質を
測定した。
Tip Example 2 The procedure of Example 1 was repeated for an alloy with a composition of 36.6% nickel, 36.6% iron, 17.7% cobalt, 9.1% tantalum, and 45 ppm boron. Ta. A corresponding conventional alloy, ie, an alloy in which Illitantalum was replaced atom by atom with niobium and the niop content was 4.5%, was prepared for comparison. These alloys were tested as in Example 1 to determine mechanical properties.

結果は次の通りである。The results are as follows.

第2表 極限引張強さ(ksi )        IIt2.
5   141.8       135    10
80.2%オフセット耐力(ksi )  159.4
   12a.B      120     89仲
び(%)             4.5    3
.0       4.8    7.0絞り (%)
               8.5     B.
5        7.0    13.0本発明のタ
ンタル含有合金は、二オブを含有するほかは同等の合金
ξ比較して引張強さおよび耐力の点で相当に強化され、
絞について減少し、伸びについて同程度の値を示す。
Table 2 Ultimate tensile strength (ksi) IIt2.
5 141.8 135 10
80.2% offset yield strength (ksi) 159.4
12a. B 120 89 Nakabi (%) 4.5 3
.. 0 4.8 7.0 Aperture (%)
8.5 B.
5 7.0 13.0 The tantalum-containing alloys of the present invention are significantly strengthened in terms of tensile strength and yield strength compared to otherwise equivalent alloys containing niobium,
It decreases with respect to aperture and shows a similar value with respect to elongation.

様々な合金についての評価から、本発明のタンタル含有
合金は対応するニオプ含有合金と比較して優れている。
Evaluation of various alloys shows that the tantalum-containing alloys of the present invention are superior to corresponding niopium-containing alloys.

実施例3 実施例1に述べた在来の718合金は溶接応力除去時の
歪時効割れに対し高度に抵抗力があるが、溶接熱影響部
の溶離割れ、および高度に拘束された状態では溶接溶融
部の凝固割れを起こしがちである。本発明におけるニオ
ブを置換するタンタルの効果を評価するために、実施例
1の合金作成手順を再度実施して5ml厚さの鋳込み状
態で試験片寸法である溶接性試験片を作成した。溶接性
の試験に先だってすべての試験片を真空中において20
00°Fで1時間熱処理し、1200″Fまで20分で
冷却した。スポットパレストレイント( SpotVa
rastralnt)溶接性試験およびミニパレストレ
インド(M!nf Varcstralnt)溶接性試
験を利用して熱影響部溶離割れおよび溶融部凝固割れの
起こりやすさを評価した。スポットパレストレイント試
験では、ガスタングステンアークによるスポット溶接部
に対しアークが消滅した直後に歪を与えて割れを熱影譬
部に制限する。ミニパレストレイント試験においては、
連続的にガスタングステンアーク溶接部生成中に歪が発
生し、先行して凝固した溶融部分に主に割れが形成され
る。全割れ長さを割れ感受性の定量的尺度として利用す
る。
Example 3 The conventional 718 alloy described in Example 1 is highly resistant to strain age cracking during weld stress relief, but elution cracking in the weld heat affected zone, and weld failure under highly restrained conditions. It tends to cause solidification cracking of the molten part. In order to evaluate the effect of tantalum replacing niobium in the present invention, the alloy preparation procedure of Example 1 was carried out again to prepare a weldability test piece having a test piece size of 5 ml in a cast state. Prior to weldability testing, all specimens were placed in a vacuum for 20 minutes.
Heat treated at 00°F for 1 hour and cooled to 1200″F in 20 minutes.
The susceptibility to heat-affected zone elution cracking and molten zone solidification cracking was evaluated using the M!nf Varcstralnt) weldability test and the Mini Palestrain (M!nf Varcstralnt) weldability test. In the spot pale strain test, strain is applied to a gas tungsten arc spot weld immediately after the arc is extinguished to limit cracking to the heat shadow area. In the mini-pare restraint test,
Distortion occurs continuously during gas tungsten arc weld formation, and cracks are mainly formed in the previously solidified molten part. The total crack length is used as a quantitative measure of crack susceptibility.

第3表に示すように、スポットパレストレイント試験に
おいて0.25〜3%の範囲で増大する歪をかけて試験
した歪水車全体にわたってタンタル含有合金は最も低い
溶接熱影響部割れ感受性を示す。
As shown in Table 3, tantalum-containing alloys exhibit the lowest weld heat affected zone cracking susceptibility across strained water turbines tested under increasing strains ranging from 0.25 to 3% in the spot pale strain test.

第3表 0.29%    24      .4220.29
%    28      .493t.ta%   
 33      .G71l.16%    35 
     .7752.9%    42     1
.00112.9 %     48     1.1
08割れ ;1溶接箇所当りの割れの数 TCL:全割れ艮さ MCL:最大割れ艮さ 本発明を具体的な実施例および実施の態様と関連させて
説明したが、本発明が特許請求の範囲に示す技術的思想
とその範囲から逸脱することなく変更可能であることは
、当業者には理解されるであろう。
Table 3 0.29% 24. 4220.29
% 28. 493t. ta%
33. G71l. 16% 35
.. 7752.9% 42 1
.. 00112.9% 48 1.1
08 Cracks; Number of cracks per welding location TCL: Total crack size MCL: Maximum crack size Although the present invention has been described in connection with specific examples and modes of implementation, the present invention does not extend beyond the scope of the claims. It will be understood by those skilled in the art that modifications may be made without departing from the spirit and scope of the invention.

Claims (16)

【特許請求の範囲】[Claims] (1)約30重量%以上のニッケル、約8〜約16重量
%のタンタル、約30〜約150ppmのホウ素を含有
するとともに実質的にニオブを含有しないことを特徴と
するニッケル基合金。
(1) A nickel-based alloy containing about 30% by weight or more of nickel, about 8 to about 16% by weight of tantalum, about 30 to about 150 ppm of boron, and substantially no niobium.
(2)該合金の構成成分の残余が、クロム、鉄、コバル
ト、モリブデン、チタン、アルミニウム、タングステン
および炭素からなる群から選択した1種以上の元素から
なることを特徴とする請求項(1)に記載の合金。
(2) Claim (1) characterized in that the remainder of the constituent components of the alloy consists of one or more elements selected from the group consisting of chromium, iron, cobalt, molybdenum, titanium, aluminum, tungsten, and carbon. Alloys listed in .
(3)該合金がジルコニウムおよびハフニウムからなる
群から選択した1種以上の元素をさらに含有することを
特徴とする請求項(2)に記載の合金。
(3) The alloy according to claim (2), wherein the alloy further contains one or more elements selected from the group consisting of zirconium and hafnium.
(4)約8〜約16%のタンタル、約17〜約22%の
クロム、約25%以下の鉄、約16%以下のコバルト、
約2〜約6%のモリブデン、約1〜約5%のチタン、約
0.1〜約5%のアルミニウム、約30〜約150pp
mのホウ素、約0.01〜約0.1%の炭素および残部
のニッケルから本質的になるとともに鉄とコバルトの合
計量が約12%以上であることを特徴とするニッケル基
超合金。
(4) about 8 to about 16% tantalum, about 17 to about 22% chromium, about 25% or less iron, about 16% or less cobalt;
about 2 to about 6% molybdenum, about 1 to about 5% titanium, about 0.1 to about 5% aluminum, about 30 to about 150pp
1. A nickel-based superalloy consisting essentially of m boron, about 0.01% to about 0.1% carbon, and the balance nickel, with the total amount of iron and cobalt being about 12% or more.
(5)約8.5〜約10%のタンタル、約18〜約20
%のクロム、約17〜約19%の鉄、約2.5%〜約4
%のモリブデン、約0.75〜約2.5%のチタン、約
0.25〜約0.75%のアルミニウム、鋳造する場合
には約30〜約60ppm、鍛錬する場合には約80〜
約100ppmのホウ素、約0.03〜約0.05%の
炭素、および残部のニッケルから本質的になることを特
徴とするニッケル基超合金。
(5) about 8.5 to about 10% tantalum, about 18 to about 20
% chromium, about 17% to about 19% iron, about 2.5% to about 4%
% molybdenum, about 0.75% to about 2.5% titanium, about 0.25% to about 0.75% aluminum, about 30 to about 60 ppm when cast, about 80 to about 60 ppm when wrought.
A nickel-based superalloy characterized in that it consists essentially of about 100 ppm boron, about 0.03 to about 0.05% carbon, and the balance nickel.
(6)該合金が約9%のタンタル、約19%のクロム、
約18%の鉄、約3%のモリブデン、約1%のチタン、
約0.5%のアルミニウム、鋳造する場合には約30〜
約60ppm、鍛錬する場合には約80〜約100pp
mのホウ素、約0.05%の炭素、および残部のニッケ
ルから本質的になることを特徴とする請求項(5)に記
載の合金。
(6) the alloy is about 9% tantalum and about 19% chromium;
Approximately 18% iron, approximately 3% molybdenum, approximately 1% titanium,
Approximately 0.5% aluminum, approximately 30~ if cast
Approximately 60 ppm, approximately 80 to 100 ppm when training
An alloy according to claim 5, characterized in that it consists essentially of m boron, about 0.05% carbon and the balance nickel.
(7)約30〜約40%のニッケル、約30〜約40%
の鉄、約15〜約23%のコバルト、約8〜約16%の
タンタル、および約30〜約150ppmのホウ素から
本質的になることを特徴とするニッケル基超合金。
(7) About 30 to about 40% nickel, about 30 to about 40%
of iron, about 15 to about 23% cobalt, about 8 to about 16% tantalum, and about 30 to about 150 ppm boron.
(8)該合金が約35〜約38%のニッケル、約35〜
約38%の鉄、約17〜約20%のコバルト、約8〜約
10%のタンタル、および鋳造する場合には、約30〜
約60ppm、鍛錬する場合には、約80〜約100p
pmのホウ素から本質的になることを特徴とする請求項
(7)に記載の合金。
(8) the alloy is about 35% to about 38% nickel, about 35% to about 38% nickel;
about 38% iron, about 17 to about 20% cobalt, about 8 to about 10% tantalum, and if cast, about 30 to about
Approximately 60ppm, when training, approximately 80 to 100p
An alloy according to claim 7, characterized in that it consists essentially of pm boron.
(9)該合金が約36〜約37%のニッケル、約36〜
約37%の鉄、約17〜約19%のコバルト、約8.5
〜約9.5%のタンタル、および鋳造する場合には、約
30〜約60ppm、鍛錬する場合には、約80〜約1
00ppmのホウ素から本質的になることを特徴とする
請求項(8)に記載の合金。
(9) the alloy is about 36% to about 37% nickel;
About 37% iron, about 17 to about 19% cobalt, about 8.5
~9.5% tantalum, and about 30 to about 60 ppm if cast, and about 80 to about 1 ppm if wrought.
An alloy according to claim 8, characterized in that it consists essentially of 00 ppm boron.
(10)ニオブ含有ニッケル基超合金に含まれる実質的
にすべてのニオブを原子対原子に則りタンタルにより置
換することによりニオブ含有ニッケル基超合金の高温強
度特性を向上する方法。
(10) A method for improving the high-temperature strength properties of a niobium-containing nickel-base superalloy by replacing substantially all of the niobium contained in the niobium-containing nickel-base superalloy with tantalum on an atom-to-atom basis.
(11)該合金が約30重量%以上のニッケル、約8〜
約16重量%のタンタル、並びにクロム、鉄、コバルト
、モリブデン、チタン、アルミニウム、タングステン、
ホウ素および炭素からなる群から選択した1種以上の元
素を含むことを特徴とする請求項(10)に記載の方法
(11) The alloy contains about 30% by weight or more of nickel, about 8 to
Approximately 16% by weight of tantalum, as well as chromium, iron, cobalt, molybdenum, titanium, aluminum, tungsten,
The method according to claim 10, characterized in that it contains one or more elements selected from the group consisting of boron and carbon.
(12)該合金がジルコニウムおよびハフニウムからな
る群から選択した1種以上の元素をさらに含有すること
を特徴とする請求項(11)に記載の方法。
(12) The method according to claim 11, wherein the alloy further contains one or more elements selected from the group consisting of zirconium and hafnium.
(13)該合金が約2000°Fで約1時間熱処理され
、続いて約2050°Fにおいて約12〜約15ksi
の圧力で約3〜約5時間熱間静水圧処理され、次に約1
925°Fで約4時間加熱され、さらに約1600°F
で約2時間加熱されていることを特徴とする請求項(1
1)に記載の合金。
(13) The alloy is heat treated at about 2000°F for about 1 hour, followed by about 12 to about 15 ksi at about 2050°F.
hot isostatically treated for about 3 to about 5 hours at a pressure of about 1
Heated at 925°F for about 4 hours, then heated to about 1600°F
Claim (1) characterized in that the method is heated for about 2 hours at
The alloy described in 1).
(14)該合金がさらに約1350°Fで約8時間熱処
理されていることを特徴とする請求項(13)に記載の
方法。
14. The method of claim 13, wherein the alloy is further heat treated at about 1350 degrees Fahrenheit for about 8 hours.
(15)タンタルを含有するとともに実質的にニオブを
含有しないニッケル基超合金の熱処理方法において、該
超合金を約2000°Fで約1時間加熱する工程と、続
いて約2050°Fにおいて約12〜約15ksiの圧
力で約3〜約5時間熱間静水圧処理する工程と、次に約
1925°Fで約4時間加熱する工程と、さらに約16
00°Fで約2時間加熱する工程を含む熱処理方法。
(15) A method of heat treating a nickel-base superalloy containing tantalum and substantially free of niobium, comprising the steps of heating the superalloy at about 2000°F for about 1 hour, followed by heating the superalloy at about 2050°F for about 12 hours. hot isostatically treating at a pressure of ~15 ksi for about 3 to about 5 hours, followed by heating at about 1925° F. for about 4 hours, and a further step of about 16
A method of heat treatment comprising heating at 00°F for about 2 hours.
(16)該合金をさらに約1350°Fにおいて約8時
間熱処理する工程を含む請求項(15)に記載の方法。
16. The method of claim 15, further comprising the step of heat treating said alloy at about 1350<0>F for about 8 hours.
JP2093260A 1989-04-10 1990-04-10 Super alloy containing tantalum Pending JPH0317243A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33535389A 1989-04-10 1989-04-10
US335,353 1989-04-10

Publications (1)

Publication Number Publication Date
JPH0317243A true JPH0317243A (en) 1991-01-25

Family

ID=23311419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2093260A Pending JPH0317243A (en) 1989-04-10 1990-04-10 Super alloy containing tantalum

Country Status (9)

Country Link
JP (1) JPH0317243A (en)
CN (1) CN1046944A (en)
AU (1) AU624463B2 (en)
CA (1) CA2010147A1 (en)
DE (1) DE4011129A1 (en)
FR (1) FR2646171A1 (en)
GB (1) GB2230274B (en)
IL (1) IL93341A0 (en)
IT (1) IT1240749B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188901A (en) * 1996-06-03 2007-07-26 Sony Corp Power plug, electric apparatus having power plug, and method of manufacturing power plug

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8226886B2 (en) * 2009-08-31 2012-07-24 General Electric Company Nickel-based superalloys and articles
CN106041105A (en) * 2016-05-25 2016-10-26 安徽省春谷3D打印智能装备产业技术研究院有限公司 High-strength cobalt-tantalum-molybdenum alloy medical 3D-printing metal powder and preparation method thereof
EP3257956B2 (en) * 2016-06-13 2022-02-16 General Electric Technology GmbH Ni-base superalloy composition and method for slm processing such ni-base superalloy composition
CN106435324A (en) * 2016-10-31 2017-02-22 张家港沙工科技服务有限公司 Low-resistance composite tube used for mechanical equipment
CN114892042B (en) * 2022-04-20 2022-12-13 嘉兴鸷锐新材料科技有限公司 High-temperature-resistant iron-nickel alloy and preparation method and application thereof
CN117431432B (en) * 2023-12-20 2024-03-12 北京北冶功能材料有限公司 Nickel-based high-temperature alloy foil with good long-term oxidation performance and preparation method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1011785A (en) * 1963-11-12 1965-12-01 Bristol Siddeley Engines Ltd Nickel-base alloys
GB1052561A (en) * 1964-07-10
GB1260982A (en) * 1970-06-08 1972-01-19 Trw Inc Improvements in or relating to nickel base alloys
GB1381859A (en) * 1971-05-26 1975-01-29 Nat Res Dev Trinickel aluminide base alloys
DE2311998C3 (en) * 1973-03-10 1978-04-06 Thyssen Industrie Ag, 4300 Essen Use of a nickel alloy for components with high creep strength
GB1409628A (en) * 1973-06-26 1975-10-08 Avco Corp Nickel base alloy containing hafnium
IT1070255B (en) * 1975-10-22 1985-03-29 Cabot Corp IRON-BASED WELDING WIRE..CHROME..NOBEL AND NICKEL AND WELDING OBTAINED WITH SUCH WIRE
US4662951A (en) * 1983-12-27 1987-05-05 United Technologies Corporation Pre-HIP heat treatment of superalloy castings
US4719080A (en) * 1985-06-10 1988-01-12 United Technologies Corporation Advanced high strength single crystal superalloy compositions
IL80227A (en) * 1985-11-01 1990-01-18 United Technologies Corp High strength single crystal superalloys
CA1315572C (en) * 1986-05-13 1993-04-06 Xuan Nguyen-Dinh Phase stable single crystal materials
GB2191505B (en) * 1986-06-09 1991-02-13 Gen Electric Dispersion strengthened single crystal alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007188901A (en) * 1996-06-03 2007-07-26 Sony Corp Power plug, electric apparatus having power plug, and method of manufacturing power plug

Also Published As

Publication number Publication date
IL93341A0 (en) 1990-11-29
GB2230274B (en) 1993-10-06
CN1046944A (en) 1990-11-14
AU624463B2 (en) 1992-06-11
IT9019977A0 (en) 1990-04-10
IT9019977A1 (en) 1991-10-10
DE4011129A1 (en) 1990-10-11
FR2646171A1 (en) 1990-10-26
CA2010147A1 (en) 1990-10-10
AU4765290A (en) 1990-10-11
GB9001431D0 (en) 1990-03-21
GB2230274A (en) 1990-10-17
IT1240749B (en) 1993-12-17

Similar Documents

Publication Publication Date Title
JP5270123B2 (en) Nitride reinforced cobalt-chromium-iron-nickel alloy
US6860948B1 (en) Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
KR970008165B1 (en) Duplex stainless steel with high manganese
EP2430204B1 (en) Nickel based alloy useful for valve seat inserts
EP2479302B1 (en) Ni-based heat resistant alloy, gas turbine component and gas turbine
JPH01104738A (en) Nickel base alloy
CA1066922A (en) Heat-resistant allow for welded structures
JPS6156304B2 (en)
US5338379A (en) Tantalum-containing superalloys
JP2013502511A (en) Nickel superalloys and parts made from nickel superalloys
JPH086164B2 (en) Method for enhancing crevice and pitting corrosion resistance of nickel-base alloys
JPH0411614B2 (en)
US5283032A (en) Controlled thermal expansion alloy and article made therefrom
JPH06145854A (en) Alumina nickel single crystal alloy composition and its preparation
JPH0317243A (en) Super alloy containing tantalum
Barker et al. Effect of Alloying Additions on the Microstructure, Corrosion Resistance and Mechanical Properties of Nickel–Silicon Alloys
KR100264709B1 (en) Corrosion resistant nickel base alloy having high resistance to stress corrosion cracking
JPS61163238A (en) Heat and corrosion resistant alloy for turbine
JPH03134144A (en) Nickel-base alloy member and its manufacture
US5207846A (en) Tantalum-containing superalloys
JPS6134497B2 (en)
JPH0676638B2 (en) High strength Ni-Cr alloy with excellent corrosion resistance and heat resistance
JPH0573815B2 (en)
JP3840762B2 (en) Heat resistant steel with excellent cold workability
JPS6353234A (en) Structural member having heat resistance and high strength