JPS61163238A - Heat and corrosion resistant alloy for turbine - Google Patents
Heat and corrosion resistant alloy for turbineInfo
- Publication number
- JPS61163238A JPS61163238A JP407585A JP407585A JPS61163238A JP S61163238 A JPS61163238 A JP S61163238A JP 407585 A JP407585 A JP 407585A JP 407585 A JP407585 A JP 407585A JP S61163238 A JPS61163238 A JP S61163238A
- Authority
- JP
- Japan
- Prior art keywords
- less
- alloy
- temperature
- heat
- turbine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910045601 alloy Inorganic materials 0.000 title claims abstract description 50
- 239000000956 alloy Substances 0.000 title claims abstract description 50
- 230000007797 corrosion Effects 0.000 title claims abstract description 48
- 238000005260 corrosion Methods 0.000 title claims abstract description 48
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 10
- 239000012535 impurity Substances 0.000 claims abstract description 10
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 10
- 229910052796 boron Inorganic materials 0.000 claims abstract description 8
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 8
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 8
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 7
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 7
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 4
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 3
- 229910052726 zirconium Inorganic materials 0.000 claims abstract 2
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims 4
- 239000000203 mixture Substances 0.000 abstract description 6
- 230000035882 stress Effects 0.000 description 19
- 238000005336 cracking Methods 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 239000011651 chromium Substances 0.000 description 16
- 238000004881 precipitation hardening Methods 0.000 description 11
- 238000001556 precipitation Methods 0.000 description 8
- 239000006104 solid solution Substances 0.000 description 8
- 238000005728 strengthening Methods 0.000 description 7
- 230000007774 longterm Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 229910000765 intermetallic Inorganic materials 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000005275 alloying Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005242 forging Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000032683 aging Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000010955 niobium Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- -1 Oa: 11% or less Inorganic materials 0.000 description 2
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910052789 astatine Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001814 effect on stress Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 229910003470 tongbaite Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 229910052845 zircon Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical class [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、耐熱性および耐食性に秀れたタービン用合金
に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an alloy for turbines having excellent heat resistance and corrosion resistance.
従来の技術
ガスタービンや蒸気タービンの動翼、静翼、ボルト、デ
ィスク、ロータなどの各種部材に用いられる比較的安価
な鍛造用耐熱耐食合金としては、表1に示した0r−N
i−Fθ 基析出硬化型合金がある。Conventional technology 0r-N shown in Table 1 is a relatively inexpensive heat-resistant and corrosion-resistant alloy for forging used in various parts such as moving blades, stationary blades, bolts, disks, and rotors of gas turbines and steam turbines.
There is an i-Fθ group precipitation hardening alloy.
骨間IIIa61−1tiJ”i6 U3)この表1に
示す析出硬化型合金は、Cr量が最高約16優に押えら
れており、耐酸化性、耐高温腐食性(硫化物腐食)、或
いは耐応力腐食割れ性が十分でない。Interosseous IIIa61-1tiJ”i6 U3) The precipitation hardening alloy shown in Table 1 has a maximum Cr content of approximately 16%, and has excellent oxidation resistance, high temperature corrosion resistance (sulfide corrosion), and stress resistance. Corrosion cracking resistance is insufficient.
近年、ガスタービンの高性能高効率化を図るため、燃焼
器出口ガス温度が高くなシ、それに伴なって、各種高温
部材のメタル温度も上昇し、また、省資源の観点から、
従来に増して硫化物を多く含有する粗悪燃料が用いられ
る場合が、多くなって来た。このためには、耐酸化性及
び耐高温腐食性がすぐれ、かつ、安価な耐熱合金が必要
になって来た。In recent years, in order to improve the performance and efficiency of gas turbines, the combustor outlet gas temperature has increased, and as a result, the metal temperature of various high-temperature components has also increased.
Increasingly, inferior fuel containing a large amount of sulfide is being used than ever before. For this purpose, an inexpensive heat-resistant alloy that has excellent oxidation resistance and high-temperature corrosion resistance has become necessary.
一方、近年蒸気タービンも高性能高効率化を図るため、
蒸気温度も上昇する傾向にあり、それに伴なって、メタ
ル温度も従来(一般には。On the other hand, in recent years, steam turbines have also improved in performance and efficiency.
Steam temperatures also tend to rise, and metal temperatures also tend to rise accordingly.
566℃)以上に上昇し、前記衣1に示した析出硬化型
合金が用いられる機会が多くなって来た。蒸気タービン
の高温部材は、最高メタル温度によ如材料選定が行なわ
れるが、同一部材内で温度分布があシ、同一部材内でも
、40℃〜400℃の比較的低温度で、かつ、湿分を含
む環境に長期曝される場合がある。このような環境下に
おいては、Fe基析出硬化型合金などのオーステナイト
系合金では、耐応力腐食割れ性のすぐれたものが必要に
なって来た。566° C.), and the precipitation hardening type alloy shown in Item 1 above is increasingly being used. Materials for high-temperature parts of steam turbines are selected based on the maximum metal temperature, but the temperature distribution within the same member is uneven, and even within the same member, the temperature is relatively low between 40℃ and 400℃ There may be long-term exposure to environments containing substances. Under such an environment, it has become necessary for austenitic alloys such as Fe-based precipitation hardening alloys to have excellent stress corrosion cracking resistance.
このよりなFθ基耐熱合金の耐酸化性、耐高温腐食性、
或いは、耐応力腐食割れ性を向上させるには、Cr量を
多く含有させることが有効である。しかし、この種合金
では、Cr量を多量に含有させると、σ相などの金属間
化合物が高温度で長期使用すると析出し、クリープ強さ
やクリープ破断強さなどの高温強度や衝撃性質などのし
ん性が低下する。This Fθ-based heat-resistant alloy has excellent oxidation resistance, high-temperature corrosion resistance,
Alternatively, in order to improve stress corrosion cracking resistance, it is effective to contain a large amount of Cr. However, when this type of alloy contains a large amount of Cr, intermetallic compounds such as σ phase precipitate when used at high temperatures for a long period of time, resulting in poor high-temperature strength such as creep strength and creep rupture strength, and impact properties. Sexuality decreases.
発明が解決しようとする問題点
とのσ相の析出を防止するためにh、Fe基析出硬化型
の合金では、Ni量を多くすることが有効である。そし
て、本発明者らは、鋭意研究の結果、この種合金の高温
強度をもたらすγ′相(Nis (A4 Ti > )
の析出硬化作用、及びMo。In order to prevent precipitation of the σ phase, which is the problem to be solved by the present invention, it is effective to increase the amount of Ni in a Fe-based precipitation hardening alloy. As a result of intensive research, the present inventors discovered the γ' phase (Nis(A4Ti>)) which provides high-temperature strength of this type of alloy.
precipitation hardening effect of Mo.
w、 iib、 v zどの固溶体強化作用を妨げる
ことなく、耐酸化性、耐高温腐食性及び耐応力腐食割れ
性を十分向上させるのに有効なCr含有量及びCr量の
増加に伴ない、析出傾向が大きくなる有害な金属間化合
物σ相の析出防止に有効なN1含有量を見出し、本発明
に紋った。なお、本発明合金では、高価な元素であるM
o。With the increase in Cr content and Cr amount, which is effective for sufficiently improving oxidation resistance, high-temperature corrosion resistance, and stress corrosion cracking resistance, without hindering solid solution strengthening effects such as w, iib, v, and z, precipitation The present invention was based on the discovery of an N1 content that is effective in preventing the precipitation of the harmful intermetallic compound σ phase, which tends to increase. In addition, in the present invention alloy, M, which is an expensive element, is
o.
W、V、Nb、Coなどに数饅以内と極力少なくし、C
r、NiZど比較的安価な元素の添加により、性状改善
を図っている。W, V, Nb, Co, etc. should be kept as small as possible within a few pieces, and C
Properties are improved by adding relatively inexpensive elements such as r and NiZ.
問題点を解決するための手段
本発明は、重量係で、C:108%以下、81:1%以
下、Mn:1.5%以下、P:(103チ以下、S :
0.015チ以下、Ni:35〜48%、Cr =1
8〜28eIIj%Mo :0.5〜!L5qb1T1
:1〜3%、ムt :CL1〜1%、B : 0.0
01ンa O2%、Cu:0.25%以下倉含有し、残
りがFθと不可避不純物からなる組成を有することを特
徴とするタービン用耐熱耐食合金に関する。Means for Solving the Problems The present invention has the following features in terms of weight: C: 108% or less, 81: 1% or less, Mn: 1.5% or less, P: (103 cm or less, S:
0.015 cm or less, Ni: 35-48%, Cr = 1
8~28eIIj%Mo: 0.5~! L5qb1T1
: 1~3%, Mut: CL1~1%, B: 0.0
The present invention relates to a heat-resistant and corrosion-resistant alloy for a turbine, characterized in that it contains O2%, Cu: 0.25% or less, and the remainder consists of Fθ and unavoidable impurities.
さらに本発明は、上記組成に、希土類元素:0.1%以
下、Oa:0.1qb以下、Mg:0.1%以下を含有
させるか、あるいFi、co:2%以下、v : o、
sチ以下、N’b:1.5係以下、W:1%以下、Z
r:0.001〜α1%の1種又は2棟以上を含有させ
るタービン用耐熱耐食合金、またこの後者の組成に更に
希土類元素701%以下、Oa:11%以下、Mg:0
.1%以下の1種又は2種以上を含有するタービン用耐
熱耐食合金をも提案するものである。Furthermore, the present invention allows the above composition to contain rare earth elements: 0.1% or less, Oa: 0.1qb or less, Mg: 0.1% or less, or Fi, co: 2% or less, v: o ,
S chi or less, N'b: 1.5 or less, W: 1% or less, Z
A heat-resistant and corrosion-resistant alloy for turbines containing one or more of r: 0.001 to α1%, and the latter composition further includes 701% or less of rare earth elements, Oa: 11% or less, Mg: 0
.. The present invention also proposes a heat-resistant and corrosion-resistant alloy for turbines containing 1% or less of one or more kinds.
すなわち、本発明合金の特徴は、表IK示す従来のFθ
基析出硬化型゛合金の化学組成を基本に、Mo、 W、
V、 Mb、 Co ’lxどの高価な合金元
素の添加量をあまり増加させずに、Cr 及びN1
の比較的安価な合金元素を添加し、前述の性状(耐酸
化性、耐高温腐食性、耐応力腐食割れ性)を改善し、か
つ、高温強度とじん性を損なわず、鍛造性や轡械切削性
も、従来の!θ基析出硬化型合金と同程朋の析出硬化型
合金である。That is, the characteristics of the alloy of the present invention are that the conventional Fθ shown in Table IK
Based on the chemical composition of the precipitation hardening type alloy, Mo, W,
Cr and N1 without increasing the amount of expensive alloying elements such as V, Mb, and Co'lx.
The addition of relatively inexpensive alloying elements improves the above-mentioned properties (oxidation resistance, high temperature corrosion resistance, stress corrosion cracking resistance), and also improves forgeability and machinability without impairing high temperature strength and toughness. The machinability is also the same as before! It is a precipitation hardening alloy that is comparable to the θ-based precipitation hardening alloy.
本発明の合金は、0.Si、M0.P、S。The alloy of the present invention has 0. Si, M0. P.S.
Ni、 Cr、 Mo、 Ti、 At、 B、
0ut−基本成分とし、残りに、Fθであるが、そ
の他、Sn。Ni, Cr, Mo, Ti, At, B,
0ut - the basic component, and the rest is Fθ, and the others are Sn.
As、 Sb、 Ag などの不可避不純物を含
んでもよい。また、上記基本成分の他に、希土類元素:
α1%以下、Oa:0.1%以下、Mg:[lI係係上
下含むもの、あるいは上記基本成分の他にOo:2%以
下、■:α5チ以下、Nb:1.5係以下、W: 1%
、Zr:l11001〜[N1チのうちの1種又1i2
棟以上含むもの、さらにこの後者の成分の他に、Y:0
.1%以下、Oa:0.1%以下、Mg:α1チ以下の
うちの1種又は2種以上含むものである。It may also contain inevitable impurities such as As, Sb, and Ag. In addition to the above basic ingredients, rare earth elements:
α1% or less, Oa: 0.1% or less, Mg: [I include upper and lower ratios, or in addition to the above basic components, Oo: 2% or less, ■: α5 or less, Nb: 1.5 or less, W : 1%
, Zr:l11001~[one of N1chi or 1i2
In addition to this latter component, Y:0
.. 1% or less, Oa: 0.1% or less, Mg: α1 or less.
以下に、本発明合金に係る各種元素につき説明する。Various elements related to the alloy of the present invention will be explained below.
o :cFi高温強度の改善に必要でめるが、0.O
8%を越えると、結晶粒界にクロム炭化物(MhsCg
型、MはCr、Mo、Wなど)が過剰に析出し、耐高温
腐食や耐応力腐食割れ性を阻害し、また、延性やじん性
も低下させるので、aOa以下とする。ただし、101
%未満では、その効果は少ないので、好ましくはα01
〜
0.08チである。o: Necessary for improving cFi high temperature strength, but 0. O
If it exceeds 8%, chromium carbide (MhsCg
(M is Cr, Mo, W, etc.) precipitates excessively and impairs high temperature corrosion resistance and stress corrosion cracking resistance, and also reduces ductility and toughness, so it is set to aOa or less. However, 101
If it is less than %, the effect is small, so it is preferable that α01
~0.08chi.
Ni:Ni は本合金の析出硬化相Ni3 (A4 T
i )(γ′相といわれる)全析出させるために必要で
あり、また、Cr量を18%以上含有させた場合、高温
強度やじん性を阻害する金属間化合物でめるσ相を生じ
やすくなるが、このσ相の析出を抑制させるためにtま
35チ以上必要である。また、N1は、Cr と共存の
下に、耐高温腐食性や耐応力腐食割れ性を改善させる。Ni: Ni is the precipitation hardening phase Ni3 (A4 T
i) Necessary for total precipitation (referred to as γ' phase), and if Cr content is 18% or more, σ phase, which is composed of intermetallic compounds that inhibit high-temperature strength and toughness, is likely to occur. However, in order to suppress the precipitation of this σ phase, t is required to be 35 or more. In addition, N1 improves high temperature corrosion resistance and stress corrosion cracking resistance in coexistence with Cr.
しかし、N1は48%を越えて含有させても、その効果
の顕著な向上は認められず、経済性も考慮して、35〜
48チとする。However, even if the N1 content exceeds 48%, no significant improvement in the effect was observed.
Let's say 48chi.
Cr:Crは、N1と共存の下に、多くなるほど。Cr: The more Cr coexists with N1, the more Cr increases.
耐高温腐食性や耐応力腐食割れ性を改善させ、その効果
は、18%以上から顕著になる。しかし、28%ケ越え
ると、熱間加工性(鍛造性)が悪くなり、また、^温で
長時間使用中に、金属間化合物でめるσ相が析出しゃす
くな9、高温強度、じん性及び延性が低下する。そこで
、Cr童は、18〜28チとする。It improves high-temperature corrosion resistance and stress corrosion cracking resistance, and the effect becomes noticeable from 18% or higher. However, if it exceeds 28%, hot workability (forgeability) deteriorates, and the σ phase formed by intermetallic compounds tends to precipitate during long-term use at ^ temperature9, high temperature strength, and toughness. and ductility decreases. Therefore, Cr children should be between 18 and 28 years old.
P :Pは不可避不純物として含まれてくるが、その含
有量が0.03%を越えると、応力腐食割れの感受性が
高くなるので、最高α03チとする。なお%P量は、低
いほど望ましい。P: P is contained as an unavoidable impurity, but if its content exceeds 0.03%, the susceptibility to stress corrosion cracking increases, so the maximum value is α03. Note that the lower the %P amount, the more desirable.
S :8は不可避不純物として含まれてくるが、一般に
、sI/′i熱間加工性を阻害し、0.015チを越え
ると、大型鍛造品や翼などの複雑な形状の鍛造品では、
鍛造が困難となるので、最高0.015%とする。なお
、B量は低いほど望ましい。S:8 is included as an unavoidable impurity, but it generally inhibits sI/'i hot workability, and if it exceeds 0.015 inch, it will not work in large forged products or forged products with complex shapes such as wings.
Since forging becomes difficult, the maximum content is 0.015%. Note that the lower the amount of B, the more desirable.
Si:Slは脱酸作用があり、本発明合金を清浄にする
のに有効である。しかし、本発明合金では、真空溶解法
やエレクトロ・スラグ溶解法が採用される場合があり。Si:Sl has a deoxidizing effect and is effective in cleaning the alloy of the present invention. However, for the alloy of the present invention, a vacuum melting method or an electro-slag melting method may be employed.
必ずしも必要な元素ではない。また、Slにあまり多く
なると、高温強度や延性を低下させ、熱間加工性(鍛造
性〕も阻害するので、1%以下とする。 ・
Mn:Mnも、Slと同様に脱酸作用があシ、本発明合
金を清浄にするのに有効でろる。It is not necessarily a necessary element. Also, if too much of Sl is present, it will reduce high-temperature strength and ductility and inhibit hot workability (forgeability), so it should be kept at 1% or less. - Mn: Like Sl, Mn also has a deoxidizing effect. However, it is effective in cleaning the alloy of the present invention.
しかし、本発明合金では、真空溶解法やエレクトロ・ス
ラグ溶解法倉採用する場合があシ、必ずしも必要な元素
ではない。However, in the alloy of the present invention, a vacuum melting method or an electro-slag melting method may be employed, and it is not necessarily a necessary element.
また、Mnはろまシ多くなると、高温強度やじん性を低
下させ、熱間加工性(鍛造性)を阻害するが、耐応力腐
食割れ性にはほとんど影響しないので、1.5 %以下
とする。Furthermore, when Mn increases in amount, it lowers high-temperature strength and toughness and impedes hot workability (forgeability), but it has almost no effect on stress corrosion cracking resistance, so it should be kept at 1.5% or less.
Mo:Moは、固溶体強化元素として高温強度を改善す
るが、15%未満では、その効果は顕著ではない。一方
、多量に添加しても、その高温強度改善の効果の顕著な
向上は認められず、返って有害な金属間化合物であるσ
相の析出を助長させるので、その上限1ji5%とする
。Mo: Mo improves high temperature strength as a solid solution strengthening element, but the effect is not significant at less than 15%. On the other hand, even when added in large amounts, no significant improvement in the high-temperature strength improvement effect was observed, and instead σ was a harmful intermetallic compound.
Since it promotes phase precipitation, the upper limit is set to 1ji5%.
Ti:Ti は、本発明合金においては、高温強度を
向上させるために是非とも必要な析出相であるγ′相(
Ni、(A4 Tl) )を生成させるために必要であ
る。Ti量は、1チ未満では、高温強度の向上は十分で
なく、また、あまり多く添加すると、熱間加工性(鍛造
性)が著しく低下するので、その上限ft3%とする。Ti: Ti is a precipitated phase (γ' phase (
It is necessary to generate Ni, (A4 Tl) ). If the amount of Ti is less than 1 inch, the high temperature strength will not be improved sufficiently, and if too much is added, the hot workability (forgeability) will be significantly reduced, so the upper limit is set to 3% ft.
ht:htはγ′相()11n(A4 Ti) ]を
形成し、高温で長時間使用中におけるγ′相の粗大化傾
向を阻止する。すなわち、γ′相の安定性を向上させて
、高温長時間強度の向上に有効である。その効果は、c
L1優以上で顕著になるが、あま〕多く添加しても、そ
の効果の顕著な向上はなく、返って熱間加工性を阻害す
るので、その上限を1%とする。ht: ht forms a γ' phase ()11n(A4Ti)] and prevents the γ' phase from becoming coarse during long-term use at high temperatures. That is, it is effective in improving the stability of the γ' phase and improving the high-temperature long-term strength. The effect is c
It becomes noticeable at L1 or above, but even if a large amount is added, the effect will not be significantly improved and hot workability will be hindered, so the upper limit is set at 1%.
B :Btj:結晶粒界を強化し、高温強度(特に長
時間クリープ破断強さ)や延性(クリープ破断伸び)2
向上させる。その効果は、0.OO1%未満では十分で
なく、一方、あまり多く添加すると、熱間加工性を阻害
し、また、硼化物全形成して延性を低下させる。そこで
、Bの含有量は、0.001〜0.02%とする。B:Btj: Strengthens grain boundaries, improves high temperature strength (especially long-term creep rupture strength) and ductility (creep rupture elongation)2
Improve. The effect is 0. Less than 1% OO is not sufficient; on the other hand, if too much is added, hot workability is inhibited and borides are formed entirely, reducing ductility. Therefore, the content of B is set to 0.001 to 0.02%.
(!u:Cuは、本発明合金では不可避不純物として含
まれてくるが、0.25%を越えると、熱間加工性全阻
害するので、0.25係以下とする。(!u: Cu is contained as an unavoidable impurity in the alloy of the present invention, but if it exceeds 0.25%, hot workability will be completely inhibited, so it should be kept at a coefficient of 0.25 or less.
co:COは、本発明合金ではオーステナイト相の基地
を強化し、固溶体強化元素として有効であり、また、本
発明合金の溶体化処理において、γ′相の固溶を促進し
、溶体化処理後の時効処理において、γ′相の析出を助
長させるのに有効である。これらの効果は、本発明合金
では約2優で飽和する傾向があり、また、Coは高価な
元素であるため、経済性も考慮して、2%以下とする。co: CO strengthens the base of the austenite phase in the alloy of the present invention and is effective as a solid solution strengthening element, and also promotes solid solution of the γ' phase in the solution treatment of the alloy of the present invention. It is effective in promoting the precipitation of the γ' phase in the aging treatment. These effects tend to be saturated at about 2% in the alloy of the present invention, and since Co is an expensive element, it is set to 2% or less in consideration of economic efficiency.
v :vH固溶体強化元素として有効でめるが、めま
ヤ多く添加すると、延性、じん性及び熱間加工性を阻害
するので、α5俤以下とする。v: vH is effective as a solid solution strengthening element, but if too much is added, ductility, toughness, and hot workability are inhibited, so it is set to α5 or less.
Nb:Nt)に、結晶粒を微細化させ、じん性向上に有
効でろり、また、γ′相の中にT1やムtと置換して入
り、γ′相の析出量を増加させ、更に、固溶体強化作用
があり、高温強度の向上に有効である。しかし、あまり
多量に添加すると、ニオブ炭化物(NbO)’i’形成
し、これは高温でも安定であるため、溶体化処理におい
ても、未固溶のまま残存し、却って、高温強度を阻害す
る場合があるので、1.5優以下とする。Nb: Nt), it is effective in improving the toughness by making the crystal grains finer, and it also enters the γ' phase replacing T1 and Mut, increasing the amount of precipitation of the γ' phase, and further , which has a solid solution strengthening effect and is effective in improving high-temperature strength. However, if too large a quantity is added, niobium carbide (NbO) 'i' is formed, which is stable even at high temperatures, and remains undissolved even in solution treatment, which may actually impede high-temperature strength. Therefore, the score should be 1.5 or less.
W :Wは、固溶体強化元素として高温強度を改善する
。しかし、Wはめまり多くすると、耐酸化性を阻害し、
また、WI/′i比重の大きな元素であるため、大型の
インゴット(鋳塊)では偏析し、材質の均一性を阻害し
、さらに、Wは高価な合金元素であるため、経済性も考
慮して、1%以下とする。W: W improves high temperature strength as a solid solution strengthening element. However, when W becomes too dense, it inhibits oxidation resistance,
In addition, since W is an element with a high specific gravity of WI/'i, it segregates in large ingots, impairing the uniformity of the material.Furthermore, since W is an expensive alloying element, economic efficiency must also be considered. 1% or less.
Zr:Zrt!結晶粒界を強化して、高温強度(特に、
長時間クリープ破断強さ)や延性(クリープ破断伸び)
を向上させる。Zr:Zrt! By strengthening grain boundaries, high-temperature strength (especially
long-term creep rupture strength) and ductility (creep rupture elongation)
improve.
その効果は、0.00196未満では十分でなく、ま之
、めます多く添加しても、そ□の効果は顕著ではなく、
却ってジルコン化合物(例えば、窒化ジルコン)などの
非金属介在物を生成して、延性を低下させるので、0.
OO1〜0.1チとする。The effect is not sufficient when it is less than 0.00196, and even if a large amount is added, the effect is not significant.
On the contrary, non-metallic inclusions such as zircon compounds (for example, zircon nitride) are generated and the ductility is reduced.
OO1 to 0.1ch.
Y等の希土類元素、Mg、Oa:これらの合金元素は、
さらに熱間加工性を改善させるので、厳しい条件の下で
、熱間加工が行なわれる場合には、必要に応じて添加さ
れるが、いずれも、0.1%li越えて添加させても、
熱間加工性に顕著な改善効果は認められず、却って熱間
加工性を阻害する場合さえ現われるので、その含有量を
、それぞft0.I係以下とする。Rare earth elements such as Y, Mg, Oa: These alloying elements are
Furthermore, since it improves hot workability, it is added as necessary when hot working is performed under severe conditions, but even if added in excess of 0.1% li,
Since no remarkable improvement effect on hot workability was observed, and on the contrary, there were cases where hot workability was even inhibited, the content was adjusted to ft0. Section I and below.
以下に、実施例を示す。Examples are shown below.
実施例
表2に示す化学組成をもつ溶湯を、真空高周波溶解炉を
用いて溶製し、直径約100mの鋳塊(インゴット)に
鋳造し、1150〜1070℃の温度範囲で熱間鍛造を
行ない、厚さ約35−1幅約601の棒材に鍛伸した。Example A molten metal having the chemical composition shown in Table 2 was melted using a vacuum high-frequency melting furnace, cast into an ingot with a diameter of about 100 m, and hot forged in a temperature range of 1150 to 1070°C. , and was forged into a bar with a thickness of about 35-1 and a width of about 601.
この熱間鍛造の際、熱間加工性を検討する目的で、鍛伸
中の棒材に割れの発生があるか否かを観察した。During this hot forging, for the purpose of examining hot workability, it was observed whether or not cracks occurred in the bar material during forging.
しかし、いずれの棒材にも問題になるような割れの発生
Fi認められず、熱間加工性は良好でめった。However, no problematic cracks were observed in any of the bars, and the hot workability was good.
これらの棒材に、次の熱処理を施した。These bars were subjected to the following heat treatment.
溶体化処理:温度1040℃、保持時間4h。Solution treatment: temperature 1040°C, holding time 4 hours.
冷却方法・・・油冷 時効処理 :温度745℃、保持時間20h。Cooling method: oil cooling Aging treatment: temperature 745°C, holding time 20 hours.
冷却方法・・・空冷
本発明合金は、時効硬化能を有し、高温強度をもたらす
ために、時効処理を施して使用するのが望ましい。Cooling method: The air-cooled alloy of the present invention has age hardenability and is preferably used after being subjected to an aging treatment in order to provide high-temperature strength.
次に、前記熱処理を施した棒材より、径6−0■、標点
距離50mの試験片を採取し、常温引張試験及びクリー
プ破断試験(温度593℃、応力4 q、 o kg/
■3、及び温度649℃、応力4 L Okg/w2の
2条件)を行ない、また、直径10■、長さ60waの
円筒状高温腐食試験片、及び第1図に示すような応力腐
食割れ試験片を採取し、それぞれ下記に示す試験条件で
高温腐食試験及びクリープ破断試験を行なった。Next, a test piece with a diameter of 6-0 mm and a gage length of 50 m was taken from the heat-treated bar, and subjected to a room temperature tensile test and a creep rupture test (temperature 593°C, stress 4 q, o kg/
(3) and a temperature of 649°C and a stress of 4 L Okg/w2), and a cylindrical high temperature corrosion test piece with a diameter of 10cm and a length of 60wa, and a stress corrosion cracking test as shown in Figure 1. A piece was taken and subjected to a high temperature corrosion test and a creep rupture test under the test conditions shown below.
なお、上記の高温腐食試験片の表面仕上げ粗度はJI[
3B 0031の仕上げ記号r V’;7VJに相当す
る。また、第1図(B)は第1図(A)を曲げた状態、
第1図(0)は第1図(E)を工nconelム1lo
y 600 (米国Inco 社の商品名76%Ni
−I S 5 % Cr −a ロ %pe−n
s % Mn −α 2 % 81
− El 0 8 %C)製のボル
ト1とナツト2で固定させた状態を示し、第1図(A)
〜(0)の寸法は下表の通)とした(すなわち、曲げ半
径6■のU型に曲げた試験片、略記号6F+、−U−B
ent)。In addition, the surface finish roughness of the above-mentioned high-temperature corrosion test piece is JI[
Finish code r V' of 3B 0031; corresponds to 7VJ. Also, Fig. 1(B) is a state in which Fig. 1(A) is bent,
Figure 1 (0) is an engineering diagram of Figure 1 (E).
y 600 (trade name of Inco, USA 76%Ni)
-I S 5 % Cr -a ro %pe-n
s% Mn-α2% 81
- Figure 1 (A) shows the state in which it is fixed with bolt 1 and nut 2 made of (El 0 8 % C)
The dimensions of ~ (0) are as shown in the table below) (i.e., a test piece bent into a U shape with a bending radius of 6 cm, abbreviations 6F+, -U-B
ent).
(単位ニー)
また、標点距離とは、引張試験片やクリープ破断試験片
の破断伸びを測定するため、予めその標点距離を決めて
おく伸び測定の基準長さをいう。伸びは次式で示される
。(Unit knee) In addition, the gauge length refers to a reference length for elongation measurement in which the gauge length is determined in advance in order to measure the elongation at break of a tensile test piece or a creep rupture test piece. Elongation is expressed by the following formula.
1゜
δ:破断伸び係
t:試験片の両破断片の中心点が直線上にあるように注
意してつなぎ合わせ、測
定した標点間の長さ■
to二標点距離叫
これらの試験結果は、表S〜表4に示す通シである。1゜δ: Elongation at break t: Length between gauge points measured by connecting the center points of both fractured pieces of the test specimen so that they are on a straight line. are the formulas shown in Tables S to Table 4.
〔高温腐食試験における腐食環境条件〕人工法: 15
% Na1Ei04−85 % V20B人工灰人工
法0岬/−1表面に塗布
温度 :850℃
時間 :24h
〔応力腐食割れ試験における環境条件]温 度: 3
60 ℃
雰囲気:脱気純水(固溶酸素: 5 ppb以下)圧
カニ175に9/国1 ・ 0
時 間:4,00.Oh
表 4 本発明合金及び比較合金の高温腐食試験及
び応力腐食割れ試験の結果
上記結果から明らかなように、本発明合金の常温強度(
引張強さ、耐力)及び高温強度(クリープ破断試験にお
ける破断時間で評価)は、比較合金のそれらと比較して
同等以上でラシ5また、延性(伸び、絞))も比較合金
のそれらと比較して、そん色#i認められない。一方、
高温腐食試験及び応力腐食割れ試験では、比較的・Cr
量の低いム合金では、比較合金(R)に比較してかな〕
すぐれている程度でるるか、B〜Q合金は比較合金(R
)に比較して、腐食減量が約猶でロシ、また、応力腐食
割れ試験では、き裂の発生は認められず、本発明合金は
、耐高温腐食性及び耐応力腐食性に一段とすぐれている
ことが認められた。[Corrosion environment conditions in high temperature corrosion test] Artificial method: 15
% Na1Ei04-85 % V20B artificial ash Artificial method 0 Misaki/-1 Application temperature: 850°C Time: 24 hours [Environmental conditions for stress corrosion cracking test] Temperature: 3
60 ℃ Atmosphere: Degassed pure water (solid solution oxygen: 5 ppb or less) Pressure
Crab 175 to 9/Country 1・0 Time: 4,00. Oh Table 4 Results of high-temperature corrosion tests and stress corrosion cracking tests for the alloys of the present invention and comparative alloys As is clear from the above results, the room temperature strength of the alloys of the present invention (
Tensile strength, yield strength) and high temperature strength (evaluated by rupture time in creep rupture test) are at least the same as those of comparative alloys. So, #i is not accepted. on the other hand,
In high temperature corrosion tests and stress corrosion cracking tests, relatively
In the case of low-volume alloys, compared to comparative alloys (R),
Are the B to Q alloys superior to the comparative alloy (R?
), the corrosion loss was about 100%, and no cracking was observed in the stress corrosion cracking test, indicating that the alloy of the present invention has even better high-temperature corrosion resistance and stress corrosion resistance. This was recognized.
発明の効果
以上のように、本発明合金は、常温強度及び高温強度は
従来の析出硬化型Fθ基耐熱合金のそれらに比較して、
同等或いは若干すぐれている程度であるが、高温腐食性
や応力腐食割れ性に一段とすぐれてお9、ガスタービン
や蒸気タービンの各種高温部材に適切な性能を有するも
のである。Effects of the Invention As described above, the alloy of the present invention has room temperature strength and high temperature strength compared to those of conventional precipitation hardening Fθ-based heat-resistant alloys.
Although it is comparable or slightly superior, it has even better high-temperature corrosion resistance and stress corrosion cracking resistance9, and has suitable performance for various high-temperature parts of gas turbines and steam turbines.
第1図は、実施例での応力腐食割れ試験に用いた試験片
形状及び試験片曲げ状況を示す。
復代理人 内 1) 明
復代理人 葦 原 亮 −
第1図
(A)FIG. 1 shows the shape of the test piece and the bending condition of the test piece used in the stress corrosion cracking test in the example. Sub-agents 1) Meiji agent Ryo Ashihara - Figure 1 (A)
Claims (4)
、Mn:1.5%以下、P:0.03%以下、S:0.
015%以下、Ni:35〜48%、Cr:18〜28
%、Mo:0.5〜3.5%、Ti:1〜3%、Al:
0.1〜1%、B:0.001〜0.02%、Cu:0
.25%以下を含有し、残りがFeと不可避不純物から
なる組成を有することを特徴とするタービン用耐熱耐食
合金。(1) In weight%, C: 0.08% or less, Si: 1% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.
015% or less, Ni: 35-48%, Cr: 18-28
%, Mo: 0.5-3.5%, Ti: 1-3%, Al:
0.1-1%, B: 0.001-0.02%, Cu: 0
.. 1. A heat-resistant and corrosion-resistant alloy for a turbine, characterized in that the alloy contains 25% or less of Fe, with the remainder consisting of Fe and unavoidable impurities.
、Mn:1.5%以下、P:0.03%以下、S:0.
015%以下、Ni:35〜48%、Cr:18〜28
%、Mo:0.5〜3.5%、Ti:1〜3%、Al:
0.1〜1%、B:0.001〜0.02%、Cu:0
.25%以下を含有し、さらに、Co:2%以下、V:
0.5%以下、Nb:1.5%以下、W:1%以下、Z
r:0.001〜0.1%の1種又は2種以上を含有し
、残りがFeと不可避不純物からなる組成を有すること
を特徴とするタービン用耐熱耐食合金。(2) In weight%, C: 0.08% or less, Si: 1% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.
015% or less, Ni: 35-48%, Cr: 18-28
%, Mo: 0.5-3.5%, Ti: 1-3%, Al:
0.1-1%, B: 0.001-0.02%, Cu: 0
.. Contains 25% or less, furthermore, Co: 2% or less, V:
0.5% or less, Nb: 1.5% or less, W: 1% or less, Z
A heat-resistant and corrosion-resistant alloy for a turbine, characterized in that it contains one or more of r: 0.001 to 0.1%, with the remainder consisting of Fe and unavoidable impurities.
、Mn:1.5%以下、P:0.03%以下、S:0.
015%以下、Ni:35〜48%、Cr:18〜28
%、Mo:0.5〜3.5%、Ti:1〜3%、Al:
0.1〜1%、B:0.001〜0.02%、Cu:0
.25%以下を含有し、さらに、希土類元素:0.1%
以下、Ca:0.1%以下、Mg:0.1%以下の1種
又は2種以上を含有し、残りがFeと不可避不純物から
なる組成を有することを特徴とするタービン用耐熱耐食
合金。(3) In weight%, C: 0.08% or less, Si: 1% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.
015% or less, Ni: 35-48%, Cr: 18-28
%, Mo: 0.5-3.5%, Ti: 1-3%, Al:
0.1-1%, B: 0.001-0.02%, Cu: 0
.. Contains 25% or less, and further contains rare earth elements: 0.1%
A heat-resistant and corrosion-resistant alloy for a turbine, characterized by containing one or more of the following: Ca: 0.1% or less, Mg: 0.1% or less, and the remainder consisting of Fe and unavoidable impurities.
、Mn:1.5%以下、P:0.03%以下、S:0.
015%以下、Ni:35〜48%、Cr:18〜28
%、Mo:0.5〜3.5%、Ti:1〜3%、Al:
0.1〜1%、B:0.001〜0.02%、Cu:0
.25%以下を含有し、Co:2.0%以下、V:0.
5%以下Nb:1.5%以下、W:1%以下、Zr:0
.001〜0.1%の1種又は2種以上を含有し、さら
に、希土類元素:0.1%以下、Ca:0.1%以下、
Mg:0.1%以下の1種又は2種以上を含有し、残り
がFeと不可避不純物からなる組成を有することを特徴
とするタービン用耐熱耐食合金。(4) In weight%, C: 0.08% or less, Si: 1% or less, Mn: 1.5% or less, P: 0.03% or less, S: 0.
015% or less, Ni: 35-48%, Cr: 18-28
%, Mo: 0.5-3.5%, Ti: 1-3%, Al:
0.1-1%, B: 0.001-0.02%, Cu: 0
.. Contains 25% or less, Co: 2.0% or less, V: 0.
5% or less Nb: 1.5% or less, W: 1% or less, Zr: 0
.. 001 to 0.1%, and further contains rare earth elements: 0.1% or less, Ca: 0.1% or less,
A heat-resistant and corrosion-resistant alloy for a turbine, characterized in that it contains one or more types of Mg: 0.1% or less, with the remainder consisting of Fe and unavoidable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP407585A JPS61163238A (en) | 1985-01-16 | 1985-01-16 | Heat and corrosion resistant alloy for turbine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP407585A JPS61163238A (en) | 1985-01-16 | 1985-01-16 | Heat and corrosion resistant alloy for turbine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61163238A true JPS61163238A (en) | 1986-07-23 |
Family
ID=11574683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP407585A Pending JPS61163238A (en) | 1985-01-16 | 1985-01-16 | Heat and corrosion resistant alloy for turbine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61163238A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6396251A (en) * | 1986-10-14 | 1988-04-27 | Mitsubishi Heavy Ind Ltd | Heat resistant alloy for high temperature steam turbine |
JPS63174798A (en) * | 1987-01-14 | 1988-07-19 | Toyota Motor Corp | Corrosion resistant alloy for build-up welding |
JPH01100239A (en) * | 1987-10-13 | 1989-04-18 | Daido Steel Co Ltd | High hardness corrosion-resistant alloy |
JPH0570898A (en) * | 1991-09-17 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | Material with high temperature corrosion resistance for heat exchanger |
JP2005060826A (en) * | 2003-07-30 | 2005-03-10 | Toshiba Corp | Steam turbine power generating unit |
JP2008088525A (en) * | 2006-10-04 | 2008-04-17 | Toshiba Corp | Turbine rotor and steam turbine |
WO2015197751A1 (en) * | 2014-06-27 | 2015-12-30 | Nuovo Pignone Srl | Component of a turbomachine, turbomachine and process for making the same |
RU2765806C1 (en) * | 2021-07-26 | 2022-02-03 | Сергей Васильевич Афанасьев | Heat resistant alloy |
-
1985
- 1985-01-16 JP JP407585A patent/JPS61163238A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6396251A (en) * | 1986-10-14 | 1988-04-27 | Mitsubishi Heavy Ind Ltd | Heat resistant alloy for high temperature steam turbine |
JPS63174798A (en) * | 1987-01-14 | 1988-07-19 | Toyota Motor Corp | Corrosion resistant alloy for build-up welding |
US5082625A (en) * | 1987-01-14 | 1992-01-21 | Toyota Jidosha Kabushiki Kaisha | Corrosion-resistant alloy for build-up welding |
JPH01100239A (en) * | 1987-10-13 | 1989-04-18 | Daido Steel Co Ltd | High hardness corrosion-resistant alloy |
JPH0570898A (en) * | 1991-09-17 | 1993-03-23 | Mitsubishi Heavy Ind Ltd | Material with high temperature corrosion resistance for heat exchanger |
JP2005060826A (en) * | 2003-07-30 | 2005-03-10 | Toshiba Corp | Steam turbine power generating unit |
US7850424B2 (en) | 2003-07-30 | 2010-12-14 | Kabushiki Kaisha Toshiba | Steam turbine power plant |
JP2008088525A (en) * | 2006-10-04 | 2008-04-17 | Toshiba Corp | Turbine rotor and steam turbine |
WO2015197751A1 (en) * | 2014-06-27 | 2015-12-30 | Nuovo Pignone Srl | Component of a turbomachine, turbomachine and process for making the same |
CN106715008A (en) * | 2014-06-27 | 2017-05-24 | 诺沃皮尼奥内股份有限公司 | Component of a turbomachine, turbomachine and method for producing a turbomachine |
RU2765806C1 (en) * | 2021-07-26 | 2022-02-03 | Сергей Васильевич Афанасьев | Heat resistant alloy |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR970008165B1 (en) | High Manganese Mixed Stainless Steel | |
US7507306B2 (en) | Precipitation-strengthened nickel-iron-chromium alloy and process therefor | |
US20150050182A1 (en) | Nickel-chromium-aluminum alloy having good processability, creep resistance and corrosion resistance | |
JPH07216511A (en) | High chromium austenitic heat resistant alloy with excellent high temperature strength | |
EP0074603B1 (en) | Gas turbine nozzle having superior thermal fatigue resistance | |
JP2000256770A (en) | LOW THERMAL EXPANSION Ni BASE SUPERALLOY | |
EP0544836A1 (en) | Controlled thermal expansion alloy and article made therefrom. | |
JPS61163238A (en) | Heat and corrosion resistant alloy for turbine | |
JP6795038B2 (en) | Austenitic heat-resistant alloy and welded joints using it | |
JP2000328198A (en) | Austenitic stainless steel with excellent hot workability | |
US4194909A (en) | Forgeable nickel-base super alloy | |
JPH09268337A (en) | Forged high corrosion resistant superalloy alloy | |
JPH07331390A (en) | High chrome austenitic heat resistant alloy | |
US2891858A (en) | Single phase austenitic alloy steel | |
JP3424314B2 (en) | Heat resistant steel | |
US5725691A (en) | Nickel aluminide alloy suitable for structural applications | |
JPH1096038A (en) | High Cr austenitic heat-resistant alloy | |
JPH0770681A (en) | High chrome austenitic heat resistant alloy | |
JP2970432B2 (en) | High temperature stainless steel and its manufacturing method | |
JP2000256803A (en) | Austenitic stainless steel with excellent high-temperature strength and ductility | |
US4165997A (en) | Intermediate temperature service alloy | |
JPH05179378A (en) | Ni-based alloy with excellent room temperature and high temperature strength | |
JP2001158943A (en) | Heat resistant bolt | |
JP6825514B2 (en) | Austenitic heat resistant alloy member | |
JPH11106860A (en) | Ferritic heat resistant steel excellent in creep characteristic in heat-affected zone |