JPH0573815B2 - - Google Patents

Info

Publication number
JPH0573815B2
JPH0573815B2 JP61048174A JP4817486A JPH0573815B2 JP H0573815 B2 JPH0573815 B2 JP H0573815B2 JP 61048174 A JP61048174 A JP 61048174A JP 4817486 A JP4817486 A JP 4817486A JP H0573815 B2 JPH0573815 B2 JP H0573815B2
Authority
JP
Japan
Prior art keywords
alloy
phase
atomic
temperature
alloys
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61048174A
Other languages
Japanese (ja)
Other versions
JPS61217545A (en
Inventor
Jannu Bowa Furansowaazu
Jeraaru Remi Ryutsuku
Kureman Tere Jannmaruku
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of JPS61217545A publication Critical patent/JPS61217545A/en
Publication of JPH0573815B2 publication Critical patent/JPH0573815B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/52Alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はニツケルベースのマトリクスを有し、
炭素、ホウ素及びジルコニウムは故意に添加しな
い単結晶合金に係る。 この種の合金は例えば仏国特許公開第2557598
号又は欧州特許出願公開第0063511号によつて知
られている。 本発明の目的は、より高い固相線(solidus)
温度(1325℃を越える)を有すると共に固相線温
度とγ′相溶解度曲線(solvus)温度との間に熱処
理可能な間隔を保持するような、単結晶鋳造に適
した前述タイプ合金の新規なグループを提供する
ことにある。このような合金は更に、疲労強さ
(fatigue strength)に関して有利な機械的性質
を有し、そのため航空分野での使用、より特定的
にはタービンの入口案内ノズル羽根の製造に特に
適している。 前述の目的を達成可能な本発明は、下記の組成
(重量%) Cr 5〜7% Mo 1.5〜2.5% W 8.5〜12.5% Al 5〜7% Co 10%まで Ta及びNbからなる群より選択した少なくとも
1つの金属元素、ただし、Taは6.5%まで、Nb
は2%まで、 Ni 100%に対する残りを有し、 原子%の合計0.005Co+0.036Cr+0.052Mo+
0.066W+0.026Al+0.116Nb+0.049Ta(式1)が
1以下であり且つ原子%の合計Ta+W+Mo+
Nbが5.9から6.3の間であり、また固相線温度が
1325℃を越え、しかもチタンを含まない疲労強さ
に優れる単結晶合金か、または、これとほぼ同様
であるがCoを含有しない合金である。 本発明の合金を更に詳細に説明する。 本発明の重要な特徴は、固相線温度が1325℃を
越えることであるが、この特徴は、式1が1以下
であるという特徴と特に密接に関係している。つ
まり、固相線温度が1325℃を越えるようにするこ
とは、合金構成元素を下記に詳細に説明する特定
の含有率(重量%)とするだけでは不十分であ
り、式1が1以下であるという特徴を満たす必要
がある。これは、実験結果と、それに基ずく回帰
線によつて求めたものである。簡潔に説明する
と、ある合金の固相線温度Taは、Ta=To−Σai
ci(aiは係数、ciは原子%)で示され、しかも、本
発明が問題としている組成の合金の場合、Toが
1592であることを見出し、また各元素のaiは回帰
線により決定した上で、求める特性Ta≧1325℃
から、式を変形して、Σ(aici/1592−1325)≦1
を導き出した。これを簡潔に記載すると、Σkici
≦1となる。ここで、kiが本発明を規定する式1
での各係数に対応する。また、実験から、大量の
1次(primary)相の析出を回避するためには、
原子%の合計Ta+W+Mo+Nbは5.9〜6.3の間に
維持するのが好ましい。よつて、本発明では、こ
れも必須要件としている。 次に、本発明の合金の組成に関して説明する。 本発明が問題にしている種類の合金にタングス
テンを8.5〜12.5%の範囲で導入すると、γ′相
(Ni基合金の機械的強度の向上に寄与する相)が
安定化する。即ち、所望とする安定なγ′相の生成
に貢献する。 コバルトは、これが含まれると、合金の疲労強
さが特に優れる(後述の実施例、特に第5図に示
すデータを参照)。また、コバルトは、液相線及
び固相線の温度は変化させないが、γ′相の溶解度
曲線の温度を低下させるのに特に貢献する。した
がつて、コバルトはγ′相を溶化に戻すための窓
(window)を特に拡大する。そのため、熱処理
が特に容易となる。以上のような利益を得るため
コバルトの添加量は10%までとする。 クロムは、酸化抵抗性強化の目的等により添加
される。このためには、下限は5%であることを
要する。しかし、8%程度まで増量すると、液相
線、固相線及びγ′相溶解曲線の温度が低下し(第
1図参照)、1次相が出現し得る。これを確実に
さけるためクロムの含有量の上限は、7%とす
る。 γ′相(一般的には、Niと、AlやTiとから主に
形成される)生成用元素の、合金中での割合は、
(望ましくない作用である)合金の固相線温度低
下作用を避けるため、チタンを含ませず、アルミ
ニウムを5〜7%含めるほうが好ましい。この量
のアルミニウムの当該作用はチタンの作用より明
らかに小さく、有利であるからである。例えば、
前述の原子組成間の関係においては、チタンのこ
の作用を表わす係数は、アルミニウムのそれの約
3倍である。このような理由から本発明の合金は
チタンを含まない。 ニオブを含む場合には、このニオブも所望の安
定なγ′相生起に貢献する。ただし、そのために
は、2%までとする必要がある。 第2図は、タングステンの量を11重量%にした
ときのタンタル量と温度特性との関係を示すグラ
フである。他の元素(タングステン)を一定にし
ておいて、タンタルを加えると、液相線及び固相
線の温度が低下し、γ′相溶解度曲線の温度はほと
んど変化しない。 ニオブ(上記のように、安定なγ′相を生起させ
るのに貢献)に置換してタンタルを用いることが
できる。タンタルも、これと性質的に非常に近似
するニオブとほとんど同じ作用により、安定な
γ′相を生起させるのに貢献するからである。その
場合、固相線が15から20℃上昇する点で有利であ
る。しかし、タンタルの量が6.5重量%を越えた
ときには、固相線の温度が実質的に低下する傾向
となる。それを回避すべく、タンタル量は6.5重
量%までに維持する。 硬化用元素であるモリブデンを1.5〜2.5%含ま
せるのは、偏析のより生じやすいニツケルマトリ
クス内の強度を増加させるためである。 実施例 一例として、本発明の3種類の合金:N1、B、
Fを綿密に調べた。これら合金の組成を表1に示
す。この表では量を重量%と原子%(括弧内)と
で示した。これら本発明の合金の液相線、固相線
及びγ′相溶解曲線の温度を表2に示し、市販の単
結晶合金Mar M200、CMSX2、SRR99と比較し
た。 単結晶として形成された本発明の合金は、その
諸性質を最適化するに適した一連の熱処理にかけ
られる。 最初の熱処理はγ′相析出物を溶化することによ
る。この処理は固相線温度より低い1300℃から
1320℃の間の温度で1時間から3時間、例えば合
金N1の場合には、1300℃で1時間実施する。冷
却を空気焼き入れによつて行う。得られたγ′相析
出物の大きさは0.3μmである。 更に1100℃で3時間から10時間に及ぶ処理と、
850℃で15時間から25時間に及ぶ処理とを行なう
とγ′相が析出する(合金N1の全熱処理完了後に
得られるγ′析出物の大きさは0.4μmである)。 合金N1を900℃及び1000℃で少サイクル数疲労
(与えられる変形の総量で表わす)テストにかけ
た(第3a図及び第4図参照)。この合金は900℃
では、高温少サイクル数疲労及び熱疲労に関して
優れた性質を示すことで知られている柱状組織を
有するMARM200Hfと比べて5倍の耐久時間を
示した。第3b図は合計1.2%の変形を加えた時
の900℃での少サイクル数疲労の比較結果を示す
が、このグラフから明らかなように本発明の合金
N1は米国特許第4175964号の実施例3に該当する
商品名PD21で公知の別の合金に比べても優れて
いる。 これらのテストは処理済の、但し露出状態のテ
スト片に関して実施した。 最高温度1100℃のフレームゾーン内で熱疲労テ
ストを行なつた。第5図は本発明の合金N1、B、
Fと他の柱状組織合金(MARM200Hf、ルネ
(Ren´e)125)又は等方性組織合金(IN100)と
に関して得られた結果を示している。このグラフ
でも亀裂その他の欠陥がサイクル数1000以下では
発生しないという本発明の合金の優秀性が立証さ
れている。 第6図及び第7図は変形を加えて900℃及び
1000℃で行なつた少サイクル数疲労テストの結果
を示す。いずれの温度でも単結晶構造の
MarM200を参照合金として用いた。これらの曲
線は加えられた総合変形の関数としての破壊サイ
クル数を表わす。900℃では、本発明の合金グル
ープに近い組成を有するが本発明の合金ではない
合金N5もテストした。 合金 Ni Cr Mo W Ta Al N5 ベース 7.5 2 11 4 6 この合金に関して得られる特性は、本発明の合
金グループに属する類似の合金N1より劣る。 本出願人等が行なつたこれら一連のテストは、
本発明の合金グループが熱疲労と少サイクル数疲
労強さとに関して大幅に改善された性質を有し、
且つ固相線温度も所望通りより高いことを示して
いる。
The invention has a nickel-based matrix,
Pertains to single crystal alloys in which carbon, boron and zirconium are not intentionally added. This type of alloy is known, for example, from French Patent Publication No. 2557598.
European Patent Application No. 0063511. The aim of the invention is to achieve higher solidus
new alloys of the aforementioned type suitable for single-crystal casting, having a temperature (above 1325°C) and maintaining a heat-treatable interval between the solidus temperature and the γ′ phase solubility curve (solvus) temperature. It is about providing a group. Such alloys furthermore have advantageous mechanical properties with respect to fatigue strength and are therefore particularly suitable for use in the aeronautical field, and more particularly for the production of turbine inlet guide nozzle vanes. The present invention capable of achieving the above object has the following composition (wt%): Cr 5-7% Mo 1.5-2.5% W 8.5-12.5% Al 5-7% Co up to 10% Selected from the group consisting of Ta and Nb at least one metallic element, with Ta up to 6.5%, Nb
up to 2%, with the balance relative to 100% Ni, for a total of atomic % of 0.005Co+0.036Cr+0.052Mo+
0.066W+0.026Al+0.116Nb+0.049Ta (Formula 1) is 1 or less and the total atomic % Ta+W+Mo+
Nb is between 5.9 and 6.3, and the solidus temperature is
It is a single crystal alloy with excellent fatigue strength that exceeds 1325°C and does not contain titanium, or an alloy that is almost the same but does not contain Co. The alloy of the present invention will be explained in more detail. An important feature of the present invention is that the solidus temperature exceeds 1325°C, and this feature is particularly closely related to the feature that Equation 1 is less than or equal to 1. In other words, in order to make the solidus temperature exceed 1325℃, it is not enough to make the alloy constituent elements have a specific content (wt%) as explained in detail below; It is necessary to satisfy the characteristics of This was determined based on experimental results and a regression line based on the results. Briefly, the solidus temperature Ta of a certain alloy is Ta=To−Σa i
c i (a i is a coefficient, c i is atomic %), and in the case of an alloy with the composition concerned by the present invention, To is
1592, and after determining the ai of each element using the regression line, the desired characteristic Ta≧1325℃
From this, we transform the formula to obtain Σ(a i c i /1592−1325)≦1
was derived. To state this concisely, Σk i c i
≦1. Here, k i is the formula 1 that defines the present invention
corresponds to each coefficient in . Also, from experiments, in order to avoid precipitation of a large amount of primary phase,
The sum of Ta+W+Mo+Nb in atomic % is preferably maintained between 5.9 and 6.3. Therefore, in the present invention, this is also an essential requirement. Next, the composition of the alloy of the present invention will be explained. Introducing tungsten in the range of 8.5 to 12.5% into alloys of the type concerned by the present invention stabilizes the γ' phase (a phase that contributes to improving the mechanical strength of Ni-based alloys). That is, it contributes to the production of the desired stable γ' phase. When cobalt is included, the fatigue strength of the alloy is particularly excellent (see the examples described below, especially the data shown in FIG. 5). Cobalt also contributes particularly to lowering the temperature of the solubility curve of the γ' phase, although it does not change the liquidus and solidus temperatures. Therefore, cobalt particularly widens the window for returning the γ' phase to solution. Therefore, heat treatment becomes particularly easy. In order to obtain the above benefits, the amount of cobalt added is limited to 10%. Chromium is added for the purpose of strengthening oxidation resistance. This requires a lower limit of 5%. However, when the amount is increased to about 8%, the temperatures of the liquidus line, solidus line, and γ' phase melting curve decrease (see FIG. 1), and a primary phase may appear. In order to reliably avoid this, the upper limit of the chromium content is set at 7%. The proportion of elements for forming the γ′ phase (generally formed mainly from Ni, Al and Ti) in the alloy is:
To avoid the effect of lowering the solidus temperature of the alloy (an undesirable effect), it is preferable to include no titanium and 5 to 7% aluminum. This is because the effect of this amount of aluminum is clearly smaller and more advantageous than that of titanium. for example,
In the relationship between the atomic compositions described above, the coefficient representing this effect for titanium is about three times that of aluminum. For these reasons, the alloy of the present invention does not contain titanium. When containing niobium, this niobium also contributes to the formation of the desired stable γ' phase. However, for this purpose, it is necessary to limit the amount to 2%. FIG. 2 is a graph showing the relationship between the amount of tantalum and temperature characteristics when the amount of tungsten is 11% by weight. When tantalum is added while keeping the other element (tungsten) constant, the liquidus and solidus temperatures decrease, and the temperature of the γ' phase solubility curve hardly changes. Tantalum can be used to replace niobium (which, as discussed above, contributes to the generation of a stable γ' phase). This is because tantalum also contributes to the generation of a stable γ' phase through almost the same action as niobium, which is very similar in properties. In that case, it is advantageous that the solidus line increases by 15 to 20°C. However, when the amount of tantalum exceeds 6.5% by weight, the solidus temperature tends to decrease substantially. In order to avoid this, the amount of tantalum is maintained at 6.5% by weight. The reason for including 1.5 to 2.5% of molybdenum, which is a hardening element, is to increase the strength within the nickel matrix, which is more prone to segregation. Examples As an example, three types of alloys of the present invention: N1, B,
F was examined closely. The compositions of these alloys are shown in Table 1. In this table, amounts are given in weight percent and atomic percent (in parentheses). The liquidus, solidus, and γ' phase melting curve temperatures of these alloys of the present invention are shown in Table 2 and compared with commercially available single crystal alloys Mar M200, CMSX2, and SRR99. The alloy of the invention, formed as a single crystal, is subjected to a series of suitable heat treatments to optimize its properties. The first heat treatment is by solubilizing the γ' phase precipitates. This process starts at 1300℃, which is below the solidus temperature.
It is carried out for 1 to 3 hours at a temperature of between 1320°C, for example in the case of alloy N1 at 1300°C for 1 hour. Cooling is done by air quenching. The size of the obtained γ' phase precipitate is 0.3 μm. Further treatment at 1100℃ for 3 to 10 hours,
After treatment at 850° C. for 15 to 25 hours, the γ′ phase precipitates (the size of the γ′ precipitates obtained after the complete heat treatment of alloy N1 is 0.4 μm). Alloy N1 was subjected to low cycle number fatigue (expressed as total amount of deformation imparted) tests at 900°C and 1000°C (see Figures 3a and 4). This alloy is 900℃
The durability was five times longer than that of MARM200Hf, which has a columnar structure and is known to exhibit excellent properties in terms of high-temperature, low-cycle fatigue and thermal fatigue. Figure 3b shows the comparative results of low cycle fatigue at 900°C when a total deformation of 1.2% is applied, and as is clear from this graph, it is clear that the alloy of the present invention
N1 is also superior to another alloy known under the trade designation PD21, which corresponds to Example 3 of US Pat. No. 4,175,964. These tests were performed on treated, but exposed test specimens. Thermal fatigue tests were conducted within the frame zone at a maximum temperature of 1100°C. Figure 5 shows alloys N1, B, and
Results obtained for F and other columnar textured alloys (MARM200Hf, Ren'e 125) or isotropic textured alloys (IN100) are shown. This graph also proves the superiority of the alloy of the present invention in that cracks and other defects do not occur after 1000 cycles or less. Figures 6 and 7 are modified to 900°C and
The results of a low cycle fatigue test conducted at 1000℃ are shown. Single crystal structure at any temperature
MarM200 was used as a reference alloy. These curves represent the number of failure cycles as a function of the total applied deformation. At 900° C., alloy N5, which has a composition close to the inventive alloy group but is not an inventive alloy, was also tested. Alloy Ni Cr Mo W Ta Al N5 Base 7.5 2 11 4 6 The properties obtained for this alloy are inferior to the similar alloy N1 belonging to the alloy group of the invention. A series of these tests conducted by the applicant et al.
The alloy group of the present invention has significantly improved properties with respect to thermal fatigue and low cycle number fatigue strength,
It also shows that the solidus temperature is higher than desired.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は液相線、固相線及びγ′相溶解度曲線の
温度(縦座標)に対するクロム量(横座標に重量
%で示す)の効果を示すグラフ、第2図はタンタ
ル量の効果を示す第1図と同様のグラフ、第3a
図は本発明の合金と2種類の市販合金、即ち柱状
組織のMarM200Hf及び単結晶構造のMarM200
とに関する900℃でのマンソン・コフイン
(Manson Coffin)の耐久曲線であつて、横座標
に破壊サイクル数Nfを示し、縦座標にこのサイ
クル数の関数として合計変形振幅(amplitude
of the total deformation)ΔεTを示すグラフ、
第3b図は本発明の合金と別の市販合金PD21と
に関して1.2%の合計変形量ΔεTで行つたテスト
の結果を表わし、横座標に破壊サイクル数Nfを
示す第3a図と同様のグラフ、第4図は温度を
1000℃にした場合の第3図と同様のグラフ、第5
図は熱疲労に関して本発明の合金と、3種類の市
販合金即ち等方性組織のIN100、柱状組織のルネ
125、及び柱状組織のMarM200Hfとの比較を表
わし、縦座標に疵入前のサイクル数を示すグラ
フ、第6図及び第7図は夫々900及び1000℃での
変形を加えた時の少サイクル数疲労に関して本発
明の合金と、本発明に近い合金と、市販の単結晶
構造合金MarM200との間の比較を表わし、付加
した合計変形量ΔεTを縦座標に示し、その関数
としての耐久時間Nfを横座標に示すグラフであ
る。
Figure 1 is a graph showing the effect of the amount of chromium (in weight percent on the abscissa) on the temperature (ordinate) of the liquidus, solidus and γ' phase solubility curves, and Figure 2 is a graph showing the effect of the amount of tantalum on the temperature (ordinate). Graph similar to Figure 1 shown, Figure 3a
The figure shows the alloy of the present invention and two commercially available alloys, namely MarM200Hf with a columnar structure and MarM200 with a single crystal structure.
Manson Coffin endurance curve at 900°C for
of the total deformation) ΔεT,
FIG. 3b shows the results of tests carried out on the alloy of the invention and another commercially available alloy PD21 at a total deformation ΔεT of 1.2%, a graph similar to FIG. Figure 4 shows the temperature
Graph similar to Figure 3 when the temperature is 1000℃, Figure 5
The figure shows thermal fatigue of the alloy of the present invention and three commercially available alloys: IN100 with isotropic structure and Rene with columnar structure.
125 and columnar structure with MarM200Hf, the ordinate shows the number of cycles before cracking. Figures 6 and 7 show the number of small cycles when deformed at 900 and 1000°C, respectively. A comparison is presented between the alloy of the invention, an alloy close to the invention, and the commercially available single-crystal structure alloy MarM200 with respect to fatigue, with the total applied deformation ΔεT shown on the ordinate and the endurance time Nf as a function of it. The graph is shown on the abscissa.

Claims (1)

【特許請求の範囲】 1 ニツケルベースのマトリクスを有し、炭素、
ホウ素およびジルコニウムは故意に添加されず、
下記の重量組成 Cr 5〜7% Mo 1.5〜2.5% W 8.5〜12.5% Al 5〜7% Co 10%まで Ta及びNbからなる群より選ばれた少なくとも
1つの金属成分、ただし、 Taは6.5%まで、Nbは2%まで Ni 100%に対する残り を有し、更に原子%の合計 0.005Co+0.036Cr+0.052Mo+0.066W+
0.026Al+0.116Nb+0.049Taが1以下であり且つ
原子%の合計Ta+W+Mo+Nbが5.9から6.3の間
であり、また固相線温度が1325℃を越え、しかも
チタンを含まない疲労強さに優れる単結晶合金。 2 下記の重量組成 Co 5% Cr 6% Mo 2% Al 6% W 11% Ta 4% Ni 残り を有する特許請求の範囲第1項に記載の合金。 3 下記の重量組成 Co 5% Cr 6% Mo 2% Al 6% W 9% Ta 6% Ni 残り を有する特許請求の範囲第1項に記載の合金。 4 ニツケルベースのマトリクスを有し、炭素、
ホウ素およびジルコニウムは故意に添加されず、
下記の重量組成 Cr 5〜7% Mo 1.5〜2.5% W 8.5〜12.5% Al 5〜7% Ta及びNbからなる群より選ばれた少なくとも
1つの金属成分、ただし、 Taは6.5%まで、Nbは2%まで Ni 100%に対する残り を有し、更に原子%の合計 0.036Cr+0.052Mo+0.066W+0.026Al+
0.116Nb+0.049Taが1以下であり且つ原子%の
合計Ta+W+Mo+Nbが5.9から6.3の間であり、
また固相線温度が1325℃を越え、しかもチタンを
含まない疲労強さに優れる単結晶合金。 5 下記の重量組成 Cr 6% Mo 2% Al 6% W 11% Nb 1.8% Ni 残り を有する特許請求の範囲第4項に記載の合金。
[Claims] 1. Having a nickel-based matrix, carbon,
Boron and zirconium are not intentionally added;
At least one metal component selected from the group consisting of Ta and Nb, provided that Ta is 6.5% up to 2%, Nb has a balance to 100% Ni, and further the sum of atomic % 0.005Co + 0.036Cr + 0.052Mo + 0.066W +
A single crystal alloy with excellent fatigue strength in which 0.026Al + 0.116Nb + 0.049Ta is less than 1, the total atomic % Ta + W + Mo + Nb is between 5.9 and 6.3, the solidus temperature exceeds 1325°C, and it does not contain titanium. . 2. The alloy according to claim 1, having the following weight composition: Co 5% Cr 6% Mo 2% Al 6% W 11% Ta 4% Ni. 3. The alloy according to claim 1, having the following weight composition: Co 5% Cr 6% Mo 2% Al 6% W 9% Ta 6% Ni. 4 Has a nickel-based matrix, carbon,
Boron and zirconium are not intentionally added;
The following weight composition: Cr 5-7% Mo 1.5-2.5% W 8.5-12.5% Al 5-7% At least one metal component selected from the group consisting of Ta and Nb, provided that Ta is up to 6.5% and Nb is up to 6.5%. Up to 2% Ni, with the balance relative to 100%, and further atomic% total 0.036Cr + 0.052Mo + 0.066W + 0.026Al +
0.116Nb + 0.049Ta is 1 or less, and the total atomic % Ta + W + Mo + Nb is between 5.9 and 6.3,
It is also a single-crystal alloy with a solidus temperature exceeding 1325°C and superior fatigue strength without containing titanium. 5. The alloy according to claim 4 having the following weight composition Cr 6% Mo 2% Al 6% W 11% Nb 1.8% Ni balance.
JP61048174A 1985-03-06 1986-03-05 Monocrystalline alloy having matrix of nickel base Granted JPS61217545A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8503267 1985-03-06
FR8503267A FR2578554B1 (en) 1985-03-06 1985-03-06 SINGLE CRYSTAL ALLOY WITH NICKEL-BASED MATRIX

Publications (2)

Publication Number Publication Date
JPS61217545A JPS61217545A (en) 1986-09-27
JPH0573815B2 true JPH0573815B2 (en) 1993-10-15

Family

ID=9316905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61048174A Granted JPS61217545A (en) 1985-03-06 1986-03-05 Monocrystalline alloy having matrix of nickel base

Country Status (5)

Country Link
US (1) US4818306A (en)
EP (1) EP0194925B1 (en)
JP (1) JPS61217545A (en)
DE (1) DE3661426D1 (en)
FR (1) FR2578554B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2235697B (en) * 1986-12-30 1991-08-14 Gen Electric Improved and property-balanced nickel-base superalloys for producing single crystal articles.
AU630623B2 (en) * 1988-10-03 1992-11-05 General Electric Company An improved article and alloy therefor
US5173255A (en) * 1988-10-03 1992-12-22 General Electric Company Cast columnar grain hollow nickel base alloy articles and alloy and heat treatment for making
JP2905473B1 (en) 1998-03-02 1999-06-14 科学技術庁金属材料技術研究所長 Method for producing Ni-based directionally solidified alloy
FR3117507B1 (en) * 2020-12-16 2024-02-16 Safran Aircraft Engines METHOD FOR MANUFACTURING A MONOCRYSTAL SUPERALLOY PART

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363212A (en) * 1976-11-17 1978-06-06 United Technologies Corp Nickellbased superalloy product and method of making some

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1087051A (en) * 1963-04-26 1967-10-11 Int Nickel Ltd Nickel-chromium alloys
FR88743E (en) * 1964-08-19 1967-06-02
US3567526A (en) * 1968-05-01 1971-03-02 United Aircraft Corp Limitation of carbon in single crystal or columnar-grained nickel base superalloys
GB2071695A (en) * 1980-03-13 1981-09-23 Rolls Royce An alloy suitable for making single-crystal castings and a casting made thereof
FR2503188A1 (en) * 1981-04-03 1982-10-08 Onera (Off Nat Aerospatiale) MONOCRYSTALLINE SUPERALLIAGE WITH MATRIX MATRIX BASED ON NICKEL, PROCESS FOR IMPROVING WORKPIECES IN THIS SUPERALLIATION AND PARTS OBTAINED THEREBY
IL65897A0 (en) * 1981-10-02 1982-08-31 Gen Electric Single crystal nickel-base superalloy,article and method for making
FR2557598B1 (en) * 1983-12-29 1986-11-28 Armines SINGLE CRYSTAL ALLOY WITH NICKEL-BASED MATRIX

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5363212A (en) * 1976-11-17 1978-06-06 United Technologies Corp Nickellbased superalloy product and method of making some

Also Published As

Publication number Publication date
FR2578554B1 (en) 1987-05-22
US4818306A (en) 1989-04-04
FR2578554A1 (en) 1986-09-12
DE3661426D1 (en) 1989-01-19
JPS61217545A (en) 1986-09-27
EP0194925B1 (en) 1988-12-14
EP0194925A1 (en) 1986-09-17

Similar Documents

Publication Publication Date Title
JP5696995B2 (en) Heat resistant superalloy
US5154884A (en) Single crystal nickel-base superalloy article and method for making
JP3805396B2 (en) Reverse distribution nickel base superalloy single crystal product
RU2289637C2 (en) Nickel base alloy
US3615376A (en) Cast nickel base alloy
US4853044A (en) Alloy suitable for making single crystal castings
DE3023576A1 (en) HEAT-TREATED SINGLE-CRYSTAL SUPER ALLOY ITEM AND METHOD FOR PRODUCING THE SAME
JPWO2006059805A1 (en) Heat resistant superalloy
JPH0297634A (en) Ni base superalloy and its manufacture
EP0076360A2 (en) Single crystal nickel-base superalloy, article and method for making
JPH0561337B2 (en)
JPH09157779A (en) Low thermal expansion nickel base superalloy and its production
TWI248975B (en) Nickel-base superalloy for high temperature, high strain application
US5338379A (en) Tantalum-containing superalloys
JPH0261018A (en) Fatique and crack-resistant nickel base superalloy
JP3233362B2 (en) Fatigue crack resistant nickel-base superalloys and products formed therefrom
US4597809A (en) High strength hot corrosion resistant single crystals containing tantalum carbide
KR20040011383A (en) Nickel-base alloy
JPH0573815B2 (en)
JPH0456099B2 (en)
JPS6125773B2 (en)
JP2552351B2 (en) Single crystal Ni-based super heat resistant alloy
EP0561179A2 (en) Gas turbine blade alloy
JP3794999B2 (en) Nickel-base alloy, nickel-base alloy heat treatment method, and nuclear component using nickel-base alloy
JPH0317243A (en) Super alloy containing tantalum