JPH022942B2 - - Google Patents

Info

Publication number
JPH022942B2
JPH022942B2 JP2250384A JP2250384A JPH022942B2 JP H022942 B2 JPH022942 B2 JP H022942B2 JP 2250384 A JP2250384 A JP 2250384A JP 2250384 A JP2250384 A JP 2250384A JP H022942 B2 JPH022942 B2 JP H022942B2
Authority
JP
Japan
Prior art keywords
creep rupture
strength
rupture strength
welding
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2250384A
Other languages
Japanese (ja)
Other versions
JPS60165344A (en
Inventor
Makoto Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2250384A priority Critical patent/JPS60165344A/en
Publication of JPS60165344A publication Critical patent/JPS60165344A/en
Publication of JPH022942B2 publication Critical patent/JPH022942B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石油化学工業において反応管等に使
用する耐熱鋳造合金、例えばエチレン製造用クラ
ツキングチユーブに用いる耐熱鋳造合金に関し、
更に詳述すれば高温クリープ破断強度が大きく、
耐浸炭性に優れ、しかも溶接性も良好な耐熱鋳造
合金に関する。 従来、上記クラツキングチユーブ等の材料とし
て、NiやCrを含む耐熱鋳鋼が用いられている。
例えば、ASTM HK40材(0.4C―25Cr―20Ni―
残Fe)やHP40材(0.4C―25Cr―35Ni―残Fe)、
又は0.4C―25Cr―35Ni―1.5W鋼が使用されてい
る。 このうち、HK40材は、700〜1000℃の温度範
囲で使用されるのが一般である。その理由は、鋳
造時にオーステナイト中へ固溶する素材中のC
が、高温加熱されるとCrと結合し、微細なカー
バイドとして分散析出し、更に長時間加熱保持さ
れると上記カーバイドは成長粗大化する結果、そ
の状態でのクリープ破断強度は、短時間側データ
から直線的に外挿した値より低下するからであ
る。 またHP40材は、HK40材に比し、Niの含有量
が15%多く、高温域での耐酸化性、強度又は組織
的安定性の面において優れている。しかし、長時
間、高温に加熱保持されると、HK40材と同様に
クリープ破断強度が低下するという傾向があるの
で、950〜1050℃の温度範囲にて常用される。 更に0.4C―25Cr―35Ni―1.5W鋼も、上記
HP40材と同等のクリープ破断特性を有してお
り、950〜1050℃の温度範囲にて常用される。こ
の材料はHP40材と異なつてWを含有しているの
で、このWの固溶強化効果によつて長時間、高温
に加熱保持された状態でのクリープ破断強度の低
下はHP40材よりも小さいが、その強度は十分な
ものではない。 また上述した如き耐熱鋳鋼は、いずれも1050〜
1100℃を越えた温度領域で耐浸炭性が劣るという
欠点も有している。 従つて石油化学工業において反応管等に使用さ
れる耐熱鋳造合金としては、高温領域におけるク
リープ破断強度が大きく、耐浸炭性に優れた材料
の開発が望まれている。 更に石油化学工業においてクラツキングチユー
ブ等の反応管を組み立てるべく連続配管する場合
には、TIG溶接、MIG溶接、被覆アーク溶接等
のアーク溶接が用いられるので、上記反応管等に
使用される耐熱鋳造合金としては良好な溶接性も
要求される。 本発明は、かかる要求を充足する耐熱鋳造合金
を開発した結果、得られたものであり、高温領域
におけるクリープ破断強度が大きく、耐浸炭性に
優れ、しかも溶接性も良好な耐熱鋳造合金を提供
することを目的とする。 本発明に係る高クリープ破断強度の耐浸炭性耐
熱鋳造合金は、C:0.3〜0.55%、Si:3.0%以下、
Mn:2.0%以下、P:0.03%以下、S:0.03%以
下、Cr:20.0〜30.0%、Ni:20.0〜40.0%、Mo:
0.5〜6.0%、W:0.3〜6.0%、Al:0.02〜0.6%、
B:0.0005〜0.01%を含有する上、Zr:0.02〜0.5
%及び/又はTi:0.02〜0.5%を含有し、残部が
実質的にFeである。 次に上記本発明鋳造合金の成分限定理由につい
て説明する。 C:0.3〜0.55% CはNbと結合して粒界に共晶カーバイドを生
成し、粒界破壊抵抗を高める結果、クリープ破断
強度を高める。このためには、特に950℃以上に
おける高クリープ破断強度を得るためには、少な
くとも0.3%を必要とする。一方、Cが0.55%を
越えるとクリープ破断強度向上への寄与は少なく
なる上、Crカーバイドの析出による脆化の方が
大きくなるので、その上限は0.55%とした。 Si:3.0%以下 溶解原材料から少量混入するSiは、溶鋼の流動
性を高めて鋳造性を向上させる上、脱酸効果を高
めるので有効な元素である。しかし、3.0%を越
えるとクリープ破断強度に悪影響を及ぼすので、
その上限を3.0%とした。 Mn:2.0%以下 Mnは溶湯の脱酸を行い、溶湯中の不純物元素
Sを固定して溶接時の高温割れを防止する元素と
して有効である。しかし、2.0%を越えて含有さ
せてその添加量の割には効果が小さいので、その
上限を2.0%とした。 P:0.03%以下 Pの含有量が0.03%を越えると、溶接時の高温
割れ感受性を著しく高めるため、その上限は0.03
%とした。 S:0.03%以下 SもPと同様、その含有量が0.03%を越える
と、溶接時の高温割れ感受性を著しく高めるた
め、その上限を0.03%とした。 Cr:20.0〜30.0% 使用下限温度:700℃の状態から材料に耐酸化
性、高温強度を与えるためには、Crを少なくと
も20.0%含有させる必要がある。更に20.0%を越
えて含有させる場合、その増加量と共に耐酸化性
及び高温強度が向上するが、30.0%を越えると、
低温域(900℃以下)において組織的に不安定と
なり、Crカーバイド析出による脆化が著しくな
るため、その上限は30.0%とした。 Ni:20.0〜40.0% NiはCr、Feと共にオーステナイト相を形成し、
オーステナイトを安定化させる元素である上、耐
酸化性を向上させ、高温強度を高める元素であ
る。700℃以上の温度領域において、上記耐酸化
性、高温強度を向上させるためには、Niは少な
くとも20.0%は必要である。Niを20.0%以上含有
させた場合、その含有量の増加に伴い、耐酸化
性、耐浸炭性は向上し、高温領域における組織
(特にカーバイドの凝集度合)を安定化させる。
しかし、40.0%を越えて含有させても高温強度に
対する顕著な効果がないため、その上限は40.0%
とした。 Mo:0.5〜6.0% Moはオーステナイト中に固溶し、固溶強化効
果がある。その効果は、Moが0.5%程度含有され
る状態から認められ、その含有量の増加と共に大
きくなる。しかし、その含有量が6.0%を越える
と硬化して低温域での延性が小さくなり、加工
性、溶接性も悪化する。従つてMoは約0.5〜6.0
%とした。 W:0.3〜6.0% Wはオーステナイト中に固溶し、固溶強化効果
がある。その効果は、Wが0.3%程度含有される
状態から認められ、その含有量の増加と共に大き
くなる。しかし、その含有量が6.0%を越えると
硬化して低温域での延性が小さくなり、加工性、
溶接性も悪化する。従つてWは0.3〜6.0%とし
た。 Al:0.02〜0.6% Alのクリープ破断強度向上に対する効果は小
さく、むしろAlが約0.6%を越えると室温におけ
る延性に対して悪影響を及ぼすので、Alの上限
は0.6%以下とした。一方、Alが0.02%以上含有
されると、高温に加熱された状態にて表面皮膜を
生成し、浸炭雰囲気中のCの拡散を防止するた
め、耐浸炭性が向上する。従つてその下限は0.02
%とした。 B:0.0005〜0.01% Bはオーステナイト中に生成する二次炭化物の
成長を抑制し、クリープ破断強度向上に寄与す
る。その効果は0.0005%から認められるが、0.01
%を越えると溶接性に悪影響を及ぼすので、
0.0005〜0.01%をBの許容範囲とした。 次にZrとTiについて述べる。Zrはその量と共
にクリープ破断強度が向上する。一方、Tiは再
加熱によつてオーステナイト中に生成するCrカ
ーバイドの成長粗大化を遅延させ、クリープ破断
強度を向上させる。いずれの元素も、0.02〜0.5
%含有されていると上記クリープ破断強度の向上
効果が認められる。従つて本発明に係る鋳造合金
は、Zr:0.02〜0.5%及び/又はTi:0.02〜0.5%
を含有させることとした。 以下、実施例によつて本発明を具体的に説明す
る。 高周波誘導溶解炉を用い、第1表に示す如き成
分組成を有する鋳鋼を各種溶製した。第1表中、
No.1〜No.3は本発明材に相当し、各種試験用素材
として溶製したものであり、またNo.4は本発明材
に相当するが、溶接用フイラーワイヤ調製用素材
として溶製したものである。更に第1表中、No.11
〜No.13は従来材に相当し、各試験用素材として溶
製したものであり、またNo.14は従来材に相当する
が、溶接用フイラーワイヤ調製用素材として溶製
したものである。 上記鋳鋼に遠心力鋳造を付して外径138mm×肉
厚23.5mm×長さ520mmの鋳鋼管を得、夫々から試
験片を調製し、クリープ破断強度試験及び耐浸炭
性試験を行つた。上記クリープ破断試験は、本発
明材と従来材とを比較すること、及び本発明材の
溶接性を検討するために溶接母材と溶接継手部と
を比較することの二つの目的の下に実施した。 なお、上記溶接性継手を得るための溶接法とし
ては、手動TIG溶接(下向き溶接)を用いた。即
ち、第1表のNo.3又はNo.13からなる母材に所定の
開先加工(開先角:20゜)を施し、該母材を突き
合わせた上、第1表のNo.4又はNo.14からなる材料
を切り出して伸展せしめたフイラーワイヤを用い
て所定の溶接条件(溶接電流:100〜150A、溶接
電圧:14〜18V、溶接速度5.5〜7.5m/分)にて
手動TIG溶接を行い、上記溶接継手を得た。 クリープ破断試験は、JIS Z2272の規定に基づ
いて行つた(試験温度:1038℃)。また耐浸炭性
試験としては、試片(直径12mm×長さ60mm)を固
定浸炭剤(デグサKG30)中に温度1100℃で300
時間保持した後、試片表面から0.25mmピツチで切
粉を採取して化学分析を行い、表面から1mmの位
置における炭素増量を求め、これによつて耐浸炭
性を評価する方法を用いた。 各試験結果を第1図(従来材のクリープ破断特
性)、第2図(本発明材のクリープ破断特性)、第
3図(本発明材溶接継手部のクリープ破断特性)、
第2表(耐浸炭性比較試験結果)に示す。なお、
第1図には従来材溶接継手部のクリープ破断特性
も併せて図示した。
The present invention relates to a heat-resistant cast alloy used for reaction tubes etc. in the petrochemical industry, for example, a heat-resistant cast alloy used for cracking tubes for ethylene production.
More specifically, it has a high high temperature creep rupture strength,
The present invention relates to a heat-resistant casting alloy that has excellent carburization resistance and good weldability. Conventionally, heat-resistant cast steel containing Ni and Cr has been used as a material for the cracking tube and the like.
For example, ASTM HK40 material (0.4C―25Cr―20Ni―
residual Fe) and HP40 material (0.4C-25Cr-35Ni-remaining Fe),
Or 0.4C-25Cr-35Ni-1.5W steel is used. Among these, HK40 material is generally used in a temperature range of 700 to 1000°C. The reason for this is that C in the material dissolves into austenite during casting.
When heated at high temperature, it combines with Cr and disperses and precipitates as fine carbides, and when heated for an even longer period of time, the carbides grow and become coarser, so the creep rupture strength in that state is based on the short-time side data. This is because it is lower than the value linearly extrapolated from . Additionally, HP40 material has a 15% higher Ni content than HK40 material, and is superior in terms of oxidation resistance, strength, and structural stability at high temperatures. However, if it is heated and held at high temperatures for a long period of time, its creep rupture strength tends to decrease like the HK40 material, so it is commonly used in the temperature range of 950 to 1050°C. Furthermore, 0.4C―25Cr―35Ni―1.5W steel is also available as above.
It has creep rupture properties equivalent to HP40 material and is commonly used in the temperature range of 950-1050℃. Unlike HP40 material, this material contains W, so due to the solid solution strengthening effect of W, the creep rupture strength decreases less than HP40 material when heated and held at high temperatures for a long time. , its strength is not sufficient. In addition, the heat-resistant cast steels mentioned above are all 1050~
It also has the disadvantage of poor carburization resistance at temperatures above 1100°C. Therefore, as a heat-resistant casting alloy used for reaction tubes and the like in the petrochemical industry, there is a desire to develop a material with high creep rupture strength in a high temperature range and excellent carburization resistance. Furthermore, in the petrochemical industry, arc welding such as TIG welding, MIG welding, and shielded arc welding is used when assembling reaction tubes such as cracking tubes in a continuous manner. Good weldability is also required as a cast alloy. The present invention was obtained as a result of developing a heat-resistant cast alloy that satisfies these requirements, and provides a heat-resistant cast alloy that has high creep rupture strength in high-temperature regions, excellent carburization resistance, and good weldability. The purpose is to The carburization-resistant heat-resistant casting alloy with high creep rupture strength according to the present invention has C: 0.3 to 0.55%, Si: 3.0% or less,
Mn: 2.0% or less, P: 0.03% or less, S: 0.03% or less, Cr: 20.0-30.0%, Ni: 20.0-40.0%, Mo:
0.5-6.0%, W: 0.3-6.0%, Al: 0.02-0.6%,
Contains B: 0.0005-0.01%, Zr: 0.02-0.5
% and/or Ti: 0.02 to 0.5%, and the remainder is substantially Fe. Next, the reasons for limiting the components of the cast alloy of the present invention will be explained. C: 0.3 to 0.55% C combines with Nb to produce eutectic carbide at grain boundaries, increasing grain boundary fracture resistance and increasing creep rupture strength. For this purpose, at least 0.3% is required to obtain high creep rupture strength, especially at temperatures above 950°C. On the other hand, if C exceeds 0.55%, its contribution to improving creep rupture strength will be reduced, and embrittlement due to Cr carbide precipitation will be greater, so the upper limit was set at 0.55%. Si: 3.0% or less Si, which is mixed in small amounts from molten raw materials, is an effective element because it increases the fluidity of molten steel, improves castability, and enhances the deoxidizing effect. However, if it exceeds 3.0%, it will have a negative effect on creep rupture strength.
The upper limit was set at 3.0%. Mn: 2.0% or less Mn is effective as an element that deoxidizes the molten metal, fixes the impurity element S in the molten metal, and prevents hot cracking during welding. However, if the content exceeds 2.0%, the effect is small compared to the amount added, so the upper limit was set at 2.0%. P: 0.03% or less If the P content exceeds 0.03%, the susceptibility to hot cracking during welding increases significantly, so the upper limit is 0.03%.
%. S: 0.03% or less Similar to P, S content exceeding 0.03% significantly increases the susceptibility to hot cracking during welding, so the upper limit was set at 0.03%. Cr: 20.0 to 30.0% Minimum operating temperature: In order to give the material oxidation resistance and high-temperature strength from a state of 700°C, it is necessary to contain at least 20.0% Cr. Furthermore, when the content exceeds 20.0%, the oxidation resistance and high temperature strength improve as the amount increases, but when the content exceeds 30.0%,
The upper limit was set at 30.0% because it becomes structurally unstable in the low temperature range (below 900°C) and embrittlement due to Cr carbide precipitation becomes significant. Ni: 20.0-40.0% Ni forms an austenite phase together with Cr and Fe,
It is an element that stabilizes austenite, improves oxidation resistance, and increases high-temperature strength. In order to improve the above-mentioned oxidation resistance and high-temperature strength in a temperature range of 700°C or higher, at least 20.0% of Ni is required. When Ni is contained at 20.0% or more, the oxidation resistance and carburization resistance improve as the content increases, and the structure (particularly the degree of carbide aggregation) is stabilized in high-temperature regions.
However, since there is no significant effect on high temperature strength even if the content exceeds 40.0%, the upper limit is 40.0%.
And so. Mo: 0.5 to 6.0% Mo dissolves in solid solution in austenite and has a solid solution strengthening effect. This effect is recognized from a state where Mo is contained at about 0.5%, and increases as the content increases. However, if its content exceeds 6.0%, it hardens, resulting in decreased ductility at low temperatures and poor workability and weldability. Therefore, Mo is approximately 0.5 to 6.0
%. W: 0.3 to 6.0% W is dissolved in austenite and has a solid solution strengthening effect. This effect is recognized from a state where W is contained in an amount of about 0.3%, and increases as the content increases. However, if its content exceeds 6.0%, it will harden and its ductility at low temperatures will decrease, resulting in poor workability and
Weldability also deteriorates. Therefore, W was set at 0.3 to 6.0%. Al: 0.02-0.6% The effect of Al on improving creep rupture strength is small, and if Al exceeds about 0.6%, it has a negative effect on ductility at room temperature, so the upper limit of Al was set to 0.6% or less. On the other hand, when Al is contained in an amount of 0.02% or more, a surface film is formed when heated to a high temperature to prevent diffusion of C in the carburizing atmosphere, thereby improving carburization resistance. Therefore, the lower limit is 0.02
%. B: 0.0005 to 0.01% B suppresses the growth of secondary carbides generated in austenite and contributes to improving creep rupture strength. The effect is recognized from 0.0005%, but 0.01%
If it exceeds %, it will have a negative effect on weldability.
The allowable range for B was 0.0005 to 0.01%. Next, let's talk about Zr and Ti. Creep rupture strength increases with the amount of Zr. On the other hand, Ti retards the growth and coarsening of Cr carbide generated in austenite by reheating and improves creep rupture strength. All elements are 0.02 to 0.5
%, the effect of improving the creep rupture strength is recognized. Therefore, the cast alloy according to the present invention contains Zr: 0.02 to 0.5% and/or Ti: 0.02 to 0.5%.
It was decided to contain. Hereinafter, the present invention will be specifically explained with reference to Examples. Various cast steels having the compositions shown in Table 1 were melted using a high frequency induction melting furnace. In Table 1,
No. 1 to No. 3 correspond to the invention materials, which were melted as materials for various tests, and No. 4 corresponds to the invention materials, but were melt-manufactured as materials for preparing filler wire for welding. This is what I did. Furthermore, No. 11 in Table 1
- No. 13 corresponds to conventional materials, and were melted as materials for each test, and No. 14 corresponds to conventional materials, but were melted as materials for preparing filler wire for welding. The above cast steel was subjected to centrifugal casting to obtain a cast steel pipe with an outer diameter of 138 mm, a wall thickness of 23.5 mm, and a length of 520 mm. Test pieces were prepared from each tube and subjected to a creep rupture strength test and a carburization resistance test. The above creep rupture test was carried out for two purposes: to compare the inventive material with conventional materials, and to compare the weld base metal and welded joint in order to examine the weldability of the inventive material. did. Note that manual TIG welding (downward welding) was used as the welding method to obtain the above-mentioned weldable joint. That is, the base material made of No. 3 or No. 13 in Table 1 is subjected to a predetermined beveling process (bevel angle: 20°), the base materials are butted together, and then the base material made of No. 4 or No. 13 in Table 1 is Manual TIG welding using filler wire cut out and stretched from No. 14 material under specified welding conditions (welding current: 100 to 150 A, welding voltage: 14 to 18 V, welding speed 5.5 to 7.5 m/min) The above welded joint was obtained. The creep rupture test was conducted based on the provisions of JIS Z2272 (test temperature: 1038°C). In addition, as a carburization resistance test, a specimen (diameter 12 mm x length 60 mm) was placed in a fixed carburizing agent (Degussa KG30) at a temperature of 1100℃ for 300 minutes.
After holding for a period of time, chips were collected at 0.25 mm intervals from the specimen surface and chemically analyzed to determine the increase in carbon content at a position 1 mm from the surface, thereby evaluating the carburization resistance. The test results are shown in Figure 1 (creep rupture characteristics of conventional material), Figure 2 (creep rupture characteristics of the invention material), Figure 3 (creep rupture characteristics of the welded joint of the invention material),
It is shown in Table 2 (carburization resistance comparison test results). In addition,
Figure 1 also shows the creep rupture characteristics of a conventional welded joint.

【表】【table】

【表】【table】

【表】 該試験結果より、従来材の長時間側のクリープ
破断強度は短時間側データから直線的に外挿した
値より低下している(第1図参照)にも拘らず、
本発明材の長時間側のクリープ破断強度は従来材
のように低下していない(第2図参照)ことが分
かる。また従来材の溶接継手部は母材に比して約
10%の強度低下を示しているが(第1図参照)、
本発明材の溶接継手部は母材と同等の強度を有し
ており、本発明材の溶接性が良好なことが分かつ
た。更に耐浸炭性に関しても本発明材は、表面か
ら1mmの位置における炭素増量が、従来材に比し
て50%以下となつており(第2表参照)、大幅に
耐浸炭性が改良されていることが分かつた。 以上詳述したように、本発明の耐熱鋳造合金は
従来のNiやCrを含む耐熱鋳鋼等に比し、高温領
域におけるクリープ破断強度が大きく、耐浸炭性
に優れ、しかも溶接性も良好な材料であるので、
石油化学工業において用いられるクラツキングチ
ユーブの材料として最適であるほか、リフオーマ
ーチユーブ、チユーブサポート等の材料として使
用することができる。また各種鉄鋼関連設備部
材、例えばハースローラ、ラジアントチユーブ、
熱処理用トレイ等の材料としても極めて有用であ
る。
[Table] The test results show that although the long-term creep rupture strength of the conventional material is lower than the value linearly extrapolated from the short-term data (see Figure 1),
It can be seen that the long-term creep rupture strength of the material of the present invention does not decrease as much as the conventional material (see Fig. 2). In addition, the welded joints of conventional materials are approximately
Although it shows a 10% decrease in strength (see Figure 1),
The welded joint of the material of the present invention had a strength equivalent to that of the base metal, indicating that the material of the present invention had good weldability. Furthermore, in terms of carburization resistance, the carbon content of the present invention material at a position 1 mm from the surface is less than 50% compared to conventional materials (see Table 2), and the carburization resistance has been significantly improved. I found out that there was. As detailed above, the heat-resistant cast alloy of the present invention has higher creep rupture strength in high-temperature regions than conventional heat-resistant cast steels containing Ni and Cr, has excellent carburization resistance, and is a material with good weldability. So,
It is ideal as a material for cracking tubes used in the petrochemical industry, and can also be used as a material for reflow march tubes, tube supports, etc. In addition, various steel-related equipment parts, such as hearth rollers, radiant tubes,
It is also extremely useful as a material for heat treatment trays, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来材のクリープ破断特性を示すグラ
フ、第2図は本発明材のクリープ破断特性を示す
グラフ、第3図は本発明材の溶接継手部のクリー
プ破断特性を母材と比較して示したグラフであ
る。
Fig. 1 is a graph showing the creep rupture properties of the conventional material, Fig. 2 is a graph showing the creep rupture properties of the inventive material, and Fig. 3 is a graph showing the creep rupture properties of the welded joint of the inventive material compared to the base metal. This is a graph shown.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.3〜0.55%、Si:3.0%以下、Mn:2.0
%以下、P:0.03%以下、S:0.03%以下、Cr:
20.0〜30.0%、Ni:20.0〜40.0%、Mo:0.5〜6.0
%、W:0.3〜6.0%、Al:0.02〜0.6%、B:
0.0005〜0.01%を含有する上、Zr:0.02〜0.5%及
び/又はTi:0.02〜0.5%を含有し、残部が実質
的にFeである高クリープ破断強度の耐浸炭性耐
熱鋳造合金。
1 C: 0.3-0.55%, Si: 3.0% or less, Mn: 2.0
% or less, P: 0.03% or less, S: 0.03% or less, Cr:
20.0~30.0%, Ni: 20.0~40.0%, Mo: 0.5~6.0
%, W: 0.3-6.0%, Al: 0.02-0.6%, B:
A carburizing-resistant, heat-resistant casting alloy with high creep rupture strength, containing Zr: 0.02-0.5% and/or Ti: 0.02-0.5%, the balance being substantially Fe.
JP2250384A 1984-02-08 1984-02-08 Heat resistant cast alloy having high creep breaking strength and carburizing resistance Granted JPS60165344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2250384A JPS60165344A (en) 1984-02-08 1984-02-08 Heat resistant cast alloy having high creep breaking strength and carburizing resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2250384A JPS60165344A (en) 1984-02-08 1984-02-08 Heat resistant cast alloy having high creep breaking strength and carburizing resistance

Publications (2)

Publication Number Publication Date
JPS60165344A JPS60165344A (en) 1985-08-28
JPH022942B2 true JPH022942B2 (en) 1990-01-19

Family

ID=12084545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2250384A Granted JPS60165344A (en) 1984-02-08 1984-02-08 Heat resistant cast alloy having high creep breaking strength and carburizing resistance

Country Status (1)

Country Link
JP (1) JPS60165344A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01152238A (en) * 1987-12-10 1989-06-14 Kubota Ltd Heat-resistant alloy having excellent carburizing resistance
JPH01152245A (en) * 1987-12-10 1989-06-14 Kubota Ltd Heat-resistant alloy having excellent carburizing resistance
JPH03111537A (en) * 1989-09-26 1991-05-13 Kubota Corp Heat-resistant alloy excellent in carburization resistance

Also Published As

Publication number Publication date
JPS60165344A (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JPH09267190A (en) Welding wire for high crome ferrite wire
JP3329261B2 (en) Welding materials and welded joints for high temperature high strength steel
JPS6344814B2 (en)
JPH02267240A (en) Heat-resistant alloy
JP2021049570A (en) Austenitic stainless steel weld joint
JP2021049572A (en) Austenitic stainless steel weld joint
JPH022942B2 (en)
JPS63309392A (en) Filler material for tig welding for austenitic heat resistant alloy
JPS634897B2 (en)
US3970447A (en) Ferritic steel welding material
JPH0232345B2 (en)
JPH022943B2 (en)
JPH0796390A (en) Wire for welding 9cr-1mo steel
JPH0232346B2 (en) KOKURIIPUHADANKYODOTOTAISHINTANSEIOJUSURUTAINETSUCHUZOGOKIN
JPS5854169B2 (en) Heat-resistant cast steel with improved weldability
JPS60165342A (en) Heat resistant cast alloy having high creep breaking strength and carburizing resistance
JP7360032B2 (en) Austenitic heat resistant steel welded joints
JPS6046353A (en) Heat resistant steel
JPH05195138A (en) Heat resistant alloy having excellent carburization resistance and high creep rupture strength under conditions of high temperature and low stress
JPS6034628B2 (en) Heat-resistant alloy for centrifugal casting pipes
JP2928904B2 (en) Welding material for high strength and high corrosion resistant ferritic steel
JPH051355A (en) Heat resistant cast steel improved in creep fracture strength
JPS634898B2 (en)
JPH03240930A (en) Heat-resistant alloy excellent in carburizing resistance and weldability
JP2021049571A (en) Austenitic stainless steel weld joint