JPS63309392A - Filler material for tig welding for austenitic heat resistant alloy - Google Patents

Filler material for tig welding for austenitic heat resistant alloy

Info

Publication number
JPS63309392A
JPS63309392A JP14608587A JP14608587A JPS63309392A JP S63309392 A JPS63309392 A JP S63309392A JP 14608587 A JP14608587 A JP 14608587A JP 14608587 A JP14608587 A JP 14608587A JP S63309392 A JPS63309392 A JP S63309392A
Authority
JP
Japan
Prior art keywords
creep
zero
strength
creep rupture
filler material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14608587A
Other languages
Japanese (ja)
Other versions
JP2583238B2 (en
Inventor
Hideo Sakurai
英夫 櫻井
Tadao Ogawa
忠雄 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62146085A priority Critical patent/JP2583238B2/en
Publication of JPS63309392A publication Critical patent/JPS63309392A/en
Application granted granted Critical
Publication of JP2583238B2 publication Critical patent/JP2583238B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

PURPOSE:To improve creep characteristic, oxidizing resistance, ductility and crack resistance for weld part at high temp. by specifying composition of filler material at the time of welding to heat resistant alloy for using to boiler, etc., of thermal power station. CONSTITUTION:The composition of the filler material is made to 0.02-0.15wt.% C, 0.1-3.5% Si, 0.3-1.5% Mn, 18-35% Cr, 16-50% Ni, 0.5-3.0% Mo, 0.01-0.3% V, 0.01-0.5% Ti, 0.01-0.5% Nb, 0.003-0.01% B, <=0.04% P, <=0.005% S, 0.02-0.4% N and the balance Fe with inevitable impurities. In austenitic alloy, V and N are coexisted and Mo, Ti, Nb, V and B are added as complexing and by executing entering into solid solution, precipitation and stregthening of grain boundary of these elements to the weld metal, the creep rupture strength is improved. Therefore, the reliability of the weld joint can be remarkably improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は火力発電、原子力発電のボイラー等に使用され
るオーステナイト系耐熱合金を溶接する溶加材に関する
ものであり、さらに詳しくは高温におけるクリープ特性
、耐酸化性、靭性および耐割れ性にすぐれた溶接金属を
与えるTIG溶接用溶加材に係るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a filler material for welding austenitic heat-resistant alloys used in boilers for thermal power generation and nuclear power generation, and more specifically relates to a filler metal for welding heat-resistant austenitic alloys used in boilers for thermal power generation and nuclear power generation. The present invention relates to a filler metal for TIG welding that provides a weld metal with excellent properties, oxidation resistance, toughness, and crack resistance.

[従来の技術] 近年、火力発電所の大型化に伴い、ボイラーが高温、高
圧下で使用される傾向にある。高温、高圧化によって得
られるプラントの効率の上昇分は、例えば蒸気温度を現
状の538℃から650℃に高め、圧力を3500ps
igから5000psiHまで高めた場合、約7%であ
るといわれている。
[Prior Art] In recent years, as thermal power plants have become larger, boilers have tended to be used at higher temperatures and higher pressures. The increase in plant efficiency obtained by increasing the temperature and pressure is, for example, increasing the steam temperature from the current 538°C to 650°C and increasing the pressure to 3500 ps.
It is said that when increasing from ig to 5000 psiH, it is about 7%.

このような蒸気条件で使用できるボイラー用耐熱合金の
開発が進められている。
Development of heat-resistant alloys for boilers that can be used under such steam conditions is underway.

蒸気温度650℃の場合、ボイラーのメタル温度は72
0℃付近になるが、この使用温度に耐え’+ルfrt熱
材料!t 従来ノ5tlS347 、5US316.5
US310のオーステナイト鋼では不充分でさらに高強
度のものが必要となる。また従来のオーステナイトステ
ンレス鋼、例えば5tlS347や5LIS316では
常温の耐食性を中心に考えて開発されてきた。このよう
な観点から高温の使用に耐えつる成分的な検討を加えた
高温強度、高温耐食性、溶接性などの点において、ボイ
ラー用材料に必要な性能を具備する耐熱合金の開発研究
がかなり進められてきている。
If the steam temperature is 650℃, the boiler metal temperature is 72℃.
Although the temperature will be around 0℃, it is a thermal material that can withstand this usage temperature! t Conventional 5tlS347, 5US316.5
US310 austenitic steel is insufficient, and a material with even higher strength is required. Furthermore, conventional austenitic stainless steels such as 5TLS347 and 5LIS316 have been developed with a focus on corrosion resistance at room temperature. From this perspective, considerable progress has been made in research and development to develop heat-resistant alloys that have the performance necessary for boiler materials in terms of high-temperature strength, high-temperature corrosion resistance, weldability, etc., with the addition of component studies to withstand high-temperature use. It's coming.

このような状況から耐酸化性、クリープ特性を含む高温
強度特性、靭性および耐割れ性にすぐれた溶接溶加材の
開発が必要となり、例えば特開昭59−66994号公
報に開示されている如く、Ni基耐熱合金に微量のBを
含有させることにより、クリープ特性上の欠陥のない溶
接金属が得られるようにしたNi基耐熱合金の溶接用溶
加材が提案されている。また特公昭61−25472号
公報では特定%のC,Ti、Zr、Cr、Mo等を含み
、残部Niからなるニッケル基耐熱材料のTIG溶接用
溶加材の技術を示しているが、いずれも前述のボイラー
用耐熱合金を対象とするものではな(、Niベースによ
るコスト面の問題と、クリープ強度や耐割れ性にすぐれ
るオーステナイト系耐熱合金用TIG溶接用溶加材を提
供するに至っていない。
Under these circumstances, it has become necessary to develop welding filler metals with excellent oxidation resistance, high-temperature strength properties including creep properties, toughness, and cracking resistance. , a filler material for welding a Ni-based heat-resistant alloy has been proposed in which a weld metal free of defects in creep characteristics can be obtained by containing a trace amount of B in the Ni-based heat-resistant alloy. Furthermore, Japanese Patent Publication No. 61-25472 discloses a technology for a TIG welding filler metal of a nickel-based heat-resistant material containing specific percentages of C, Ti, Zr, Cr, Mo, etc., and the balance being Ni. It is not intended for the aforementioned heat-resistant alloys for boilers (due to cost issues due to the Ni base, and we have not yet provided a filler metal for TIG welding for austenitic heat-resistant alloys that has excellent creep strength and cracking resistance). .

これらのことから高クリープ強度を有するTIG溶接用
溶加材の開発が望まれている。
For these reasons, it is desired to develop filler metals for TIG welding that have high creep strength.

[発明が解決しようとする問題点] 本発明はこのような事情にかんがみ、オーステナイト系
耐熱合金の溶接において、高いクリープ強度を有したT
IG溶接用溶加材を提供するものである。
[Problems to be Solved by the Invention] In view of the above circumstances, the present invention provides a method for welding austenitic heat-resistant alloys by using a T having a high creep strength.
The present invention provides a filler metal for IG welding.

[問題点を解決するための手段] 本発明の要旨とするところは、■重量パーセントでC:
 0.02〜0.15%、Si:0.1〜3.5%。
[Means for Solving the Problems] The gist of the present invention is: ■C in weight percent:
0.02-0.15%, Si: 0.1-3.5%.

Mn : 0.3〜1.5%、Cr:18〜30%、N
i:16〜50%、 Mo : 0.5〜3.0%、 
 V : 0.01〜0.3%。
Mn: 0.3-1.5%, Cr: 18-30%, N
i: 16-50%, Mo: 0.5-3.0%,
V: 0.01-0.3%.

Ti : 0.01〜0.5%、Nb:0.01〜0.
5%、B : 0.003〜0.01%、P : 0.
04%以下、S : 0.005%以下。
Ti: 0.01-0.5%, Nb: 0.01-0.
5%, B: 0.003-0.01%, P: 0.
0.04% or less, S: 0.005% or less.

N : 0.02〜0.4%を含有するもの、■さらに
■にWを0.1〜6.0%含有させたもので残部鉄およ
び不可避不純物からなることを特徴とするオーステナイ
ト系耐熱合金用TIG溶接用溶加材である。
An austenitic heat-resistant alloy characterized by containing 0.02 to 0.4% of N, and (1) further containing 0.1 to 6.0% of W, with the balance consisting of iron and inevitable impurities. It is a filler metal for TIG welding.

溶接金属のクリープ強度を高めるには(a)固溶体をつ
くることによる強化、(b)微細析出物をつくることに
よる強化、(c)粒界の強度を高めることが有効な手段
であり、これには本発明者らは鋭意研究の結果、オース
テナイト系合金ニV、Nを共存させることと、Mo、 
W、Ti、Nb。
Effective means to increase the creep strength of weld metal are (a) strengthening by creating a solid solution, (b) strengthening by creating fine precipitates, and (c) increasing the strength of grain boundaries. As a result of intensive research, the present inventors have found that by coexisting austenitic alloys V and N, Mo,
W, Ti, Nb.

V、 Bの複合添加が有効であることを見出した。基本
的には溶接金属にMo、Wを固溶させ、TI、Nb、 
Vによる炭化物、窒化物を微細に析出させ、Bによって
粒界強度を高めることがクリープ破断強度の向上に有効
である。
It has been found that the combined addition of V and B is effective. Basically, Mo and W are dissolved in the weld metal, and TI, Nb,
It is effective to finely precipitate carbides and nitrides with V and increase grain boundary strength with B to improve creep rupture strength.

耐高温腐食性の向上にはCrを高めることが有効である
がオーステナイトの安定度を下げることによるクリープ
強度の低下、或いは0相の生成による靭性、強度の低下
等の問題を生ずる。
Increasing Cr content is effective in improving high-temperature corrosion resistance, but this causes problems such as a decrease in creep strength due to lowering the stability of austenite, or a decrease in toughness and strength due to the formation of zero phase.

これを防ぐためにはCr量に見合う量のNiを含有させ
る必要がある。また本発明者らはこのような耐高温腐食
性にSiが極めて顕著なことを見出している。
In order to prevent this, it is necessary to contain Ni in an amount commensurate with the amount of Cr. The present inventors have also discovered that Si is extremely effective in such high-temperature corrosion resistance.

本発明はかかる知見に基いてなされたものであり、以下
に作用とともに本発明の詳細な説明する。
The present invention has been made based on this knowledge, and the present invention will be described in detail below along with its effects.

[作   用] 本発明の最大の特徴はオーステナイト合金にV、 Nを
共存させ、Mo、 W、Ti、Nb、 V、 Bを複合
添加することにより、溶接金属にこれら元素の固溶、析
出および粒界の強化を計ることによりクリープ破断強度
を高めることにある。
[Function] The greatest feature of the present invention is that V and N coexist in the austenite alloy, and by adding Mo, W, Ti, Nb, V, and B in combination, solid solution, precipitation, and precipitation of these elements are prevented in the weld metal. The aim is to increase creep rupture strength by strengthening grain boundaries.

次に各成分の限定理由について述べる。Next, the reasons for limiting each component will be described.

C、0,02〜0.15% Cは炭化物の形状や分布がクリープ破断強さや破断伸び
に大きな影響を与えるので、Cr、Mo。
C, 0.02-0.15% Since the shape and distribution of carbides in C has a great effect on creep rupture strength and elongation at break, Cr and Mo.

Ti、 B、Nbとクリープ特性に効果的な炭化物を形
成するのに必要な量を最小限添加する必要がある。一方
溶接高温割れを防止するためにはC量をできる限り下げ
る必要がある。以上の観点から Cの下限を0.02%
、上限を0.15%とした。
It is necessary to add Ti, B, and Nb in the minimum amount necessary to form a carbide that is effective for creep properties. On the other hand, in order to prevent welding hot cracking, it is necessary to reduce the amount of C as much as possible. From the above viewpoint, the lower limit of C is set to 0.02%.
, the upper limit was set at 0.15%.

Si : 0.1〜3.5% Siは次のような実験に基くものである。第1図は0.
05零C,1,OX Mn、 20X Cr、 259
gNi、 0.596Mo、 0.01e4V、 0.
05零Ti、 0.2X Nb、 0.005X B。
Si: 0.1-3.5% Si is based on the following experiment. Figure 1 shows 0.
05 Zero C, 1, OX Mn, 20X Cr, 259
gNi, 0.596Mo, 0.01e4V, 0.
05 zero Ti, 0.2X Nb, 0.005X B.

0.0296P、 0.002零S、 0.21 Nの
高N添加残部鉄および不可避不純物からなる溶加材(図
中口中)と、0.1X G、 1.Ok Mn、 21
X Cr、 25% Ni。
0.0296P, 0.002 zero S, 0.21N filler material consisting of high N addition balance iron and unavoidable impurities (inside the figure), 0.1X G, 1. Ok Mn, 21
X Cr, 25% Ni.

0.5零Mo、 0.01零V、 0.1零Ti、 0
.2零Nb、 0.004零B、 0.02零P、 0
.003* S、 0.05零Nの通常のN含有残部鉄
および不可避不純物からなる溶加材(図中0印)を用い
、2水準のN量の異なるものについてそれぞれSl量を
変化させ、これを1150℃X30分溶体化処理後、組
織を調べ、結晶粒の大きさとSi量との関係を示したも
のである。同図から判るようにSiを高くすると、結晶
粒が大きくなり、JIS規定による結晶粒度番号が低下
する。
0.5 zero Mo, 0.01 zero V, 0.1 zero Ti, 0
.. 2 zero Nb, 0.004 zero B, 0.02 zero P, 0
.. Using a filler metal (marked 0 in the figure) consisting of 0.05 S, 0.05 zero N of normal N-containing balance iron, and unavoidable impurities, the amount of Sl was varied for two levels of different amounts of N, and this After solution treatment at 1150° C. for 30 minutes, the structure was examined and the relationship between crystal grain size and Si content is shown. As can be seen from the figure, when the Si content is increased, the crystal grains become larger and the crystal grain size number according to JIS regulations decreases.

この傾向はN量が0.05%のもの(図中○印)より0
.2N(図中口中)のものの方が少ない。また結晶の大
きさも高N材の方が小さくSi増量による結晶粒の粗大
化をNが抑制していることが判る。さらに多数の材料に
ついて組織を調べた結果、この成分系の材料では結晶粒
度番号が5以下のものは粗大結晶粒が局部的に形成され
、混粒になる傾向の強いことが判った。さらにクリープ
破断試験の結果、このように混粒で大きさが不均一なも
のはクリープ破断強さが低下することが判った。
This tendency is more pronounced than when the N content is 0.05% (○ mark in the figure).
.. The number of 2N (inside the mouth in the figure) is smaller. It can also be seen that the crystal size is smaller in the high N material and that N suppresses the coarsening of crystal grains due to increased Si content. Furthermore, as a result of examining the structures of a large number of materials, it was found that in materials of this component system, those with a crystal grain size number of 5 or less have a strong tendency to form coarse crystal grains locally and become mixed grains. Furthermore, as a result of the creep rupture test, it was found that the creep rupture strength of such mixed grains and non-uniform sizes decreased.

第1図から混粒によるクリープ破断強さの低下をさける
ためには例えばN量0.2取溶加材の場合にはSi量を
1.i以下に抑える必要があることがわかる。
From FIG. 1, in order to avoid a decrease in creep rupture strength due to mixed grains, for example, in the case of a filler metal with an N content of 0.2, the Si content should be increased to 1. It can be seen that it is necessary to suppress the value to below i.

以上の観察結果からSl添加により粗粒化、混粒化が促
進されるのがNfiの増加によりこの傾向が抑制される
ことが判った。この粗粒化・混粒化を抑制するには、S
iと N量の割合いが重量%で特定の関係式N*と0.
01+ 0.I 5i96を満足する範囲にあること、
ざらにNは高温クリープ強さを高めるのに0.4!¥ま
では効果があることなどの実験結果から上述の式を用い
Siの上限を3.596とした。またSiは脱酸剤とし
て使用され、溶融金属の流動性を得るため、溶加材中含
有量を0.196以上にすることが必要であるのでSi
の下限を0.196とした。
From the above observation results, it was found that the addition of Sl promotes coarse grain formation and mixed grain formation, and that this tendency is suppressed by increasing Nfi. In order to suppress this coarsening and mixing of grains, S
The ratio of i and the amount of N is % by weight, and the specific relational expression N* and 0.
01+ 0. Must be within the range that satisfies I5i96,
Zarani N is 0.4 to increase high temperature creep strength! The upper limit of Si was set at 3.596 using the above formula based on experimental results showing that it is effective up to ¥. In addition, Si is used as a deoxidizing agent, and in order to obtain fluidity of the molten metal, it is necessary to keep the content in the filler metal at 0.196 or more.
The lower limit of is set to 0.196.

Mn: 0.3〜1.5% Mnは脱酸を十分行い、健全な溶接金属を得るために必
要で不純物として含有される S成分を固定し、溶接性
を向上させるので、0.3に以上は必要である。しかし
添加量が多過ぎると耐酸化性を損なうので上限を1.5
96とした。
Mn: 0.3 to 1.5% Mn sufficiently deoxidizes and fixes the S component, which is necessary to obtain a sound weld metal and is contained as an impurity, and improves weldability. The above is necessary. However, if the amount added is too large, the oxidation resistance will be impaired, so the upper limit should be set at 1.5.
It was set at 96.

Cr:1B 〜30% Crは高温クリープ強度、耐高温酸化性などを向上させ
るので、耐熱合金の溶加材にとっては心頭の元素である
。5US347と同等以上の耐高温酸化性が必要なので
、Criの下限を5lIS347OCr量と同量の10
とした。しかしCr量が多いと長時間加熱により0脆化
が起り易くなる。 Niを50零含有する合金鋼で25
 Cr−20Niオーステナイトステンレス!1isU
s310以上の0脆化特性を確保するためにCr量の上
限を30零とした。
Cr: 1B to 30% Cr improves high-temperature creep strength, high-temperature oxidation resistance, etc., so it is an essential element for filler metals for heat-resistant alloys. Since high-temperature oxidation resistance equivalent to or higher than 5US347 is required, the lower limit of Cri is set to 10
And so. However, if the amount of Cr is large, zero embrittlement is likely to occur due to long-term heating. 25 for alloy steel containing 50% Ni
Cr-20Ni austenite stainless steel! 1isU
In order to ensure zero embrittlement characteristics of s310 or higher, the upper limit of the Cr content was set to 30 zero.

Ni:16〜50% Niは鋼に10七以上添加すると体心立方構造の鋼を面
心立方構造の鋼に変えるので、安定した高温強度を確保
する上で欠かせない元素であるが、ボイラーなど高温で
長時間使用される高Cr系耐熱合金に起るσ脆化を抑制
するためには、16七以上添加する必要がある。しかし
Ni量が多くオーステナイトが安定になると、加工硬化
が起りやすく熱間加工性を劣化し伸線製造上から好まし
くない。またコスト面でもNi量が多くなると高価にな
る。以上の理由によりNi量の上限を5096とした。
Ni: 16-50% When Ni is added to steel at 10% or more, it changes the steel with a body-centered cubic structure into a steel with a face-centered cubic structure, so it is an essential element to ensure stable high-temperature strength. In order to suppress σ embrittlement that occurs in high Cr heat-resistant alloys that are used at high temperatures for long periods of time, it is necessary to add 167 or more. However, when the amount of Ni is large and the austenite becomes stable, work hardening tends to occur and hot workability deteriorates, which is not preferable from the viewpoint of wire drawing production. Also, in terms of cost, the larger the amount of Ni, the more expensive it becomes. For the above reasons, the upper limit of the Ni amount was set to 5096.

Mo:0.5〜3.0% Moは固溶体硬化作用や析出硬化作用によってクリープ
破断強さを高めるのに必要な元素であるが0.5零未満
では効果が少いので添加量の下限を0.5零とした。し
かしMoは偏析の傾向が強く、高温高圧下において偏析
部においてσ化を促進し局部的な割れや腐食を起こし易
くする場合がある。したがフて添加量の上限を3.0零
とした。
Mo: 0.5 to 3.0% Mo is an element necessary to increase creep rupture strength through solid solution hardening and precipitation hardening, but if it is less than 0.5, it will have little effect, so the lower limit of the amount added should be set. It was set to 0.5 zero. However, Mo has a strong tendency to segregate, and under high temperature and high pressure, it may promote sigma in the segregated parts, making it easy to cause local cracks and corrosion. Therefore, the upper limit of the amount added was set at 3.0 zero.

V : 0.01〜0.3に ■は高温クリープ中安定な析出物を形成し、クリープ破
断強さを高める。第2図はo、os96c。
V: 0.01 to 0.3 forms stable precipitates during high-temperature creep and increases creep rupture strength. Figure 2 is o, os96c.

0.5t Si、 1.Fd Mn、 2H(:r、 
10% Nl、 0.03零P。
0.5t Si, 1. Fd Mn, 2H(:r,
10% Nl, 0.03 zero P.

0.05七Mo、 0.002零Ti、 0.0005
零B、 0.004零S。
0.057 Mo, 0.002 zero Ti, 0.0005
Zero B, 0.004 zero S.

0.0211n Nを含有し残部鉄および不可避不純物
からなる溶加材でV量を変化させた溶接金属について、
 550℃、31kgf/mm2のクリープ条件でクリ
ープ破断した時のクリープ破断時間と V量との関係を
示したものである。同図から判るように Vを添加する
クリープ破断時間が長くなるが、0.鮪を超えて添加し
てもクリープ破断時間の増加は認められない。これはV
を含む析出物が熱的に安定で長時間にわたってクリープ
破断強さの強化に寄与するためで、N量が0.028X
の場合、 V量を0.3零を超えて添加すると析出物の
粗大化が起こり易く、クリープ破断強さを高める効果が
減退するだけでなく、粗大化した析出物によってクリー
プ破断強さが劣化する場合がある。またVは0.01零
より少いと、■を含む析出物が形成され難く、クリープ
破断強さを高める効果は少ない6以上の点を考慮してV
量の下限を0.05机上限を0.八とした。
Regarding weld metals containing 0.0211n N and varying the amount of V with filler metals consisting of iron and unavoidable impurities,
The graph shows the relationship between creep rupture time and V amount when creep rupture occurs under creep conditions of 550°C and 31 kgf/mm2. As can be seen from the figure, the creep rupture time becomes longer when V is added, but 0. No increase in creep rupture time was observed even when added in excess of tuna. This is V
This is because the precipitates containing N are thermally stable and contribute to strengthening the creep rupture strength over a long period of time.
In the case of , if the amount of V is added in excess of 0.3, the precipitates tend to become coarser, which not only reduces the effect of increasing the creep rupture strength, but also causes the creep rupture strength to deteriorate due to the coarser precipitates. There are cases where In addition, when V is less than 0.01, precipitates containing ■ are difficult to form, and the effect of increasing creep rupture strength is small.
The lower limit of quantity is 0.05 and the upper limit is 0. I made it eight.

Ti : 0.01〜0.5% Nb : 0.01〜0.5% TI、 Nbは炭窒化物形成元素でクリープ破断特性の
改善に効果があることは従来認められている。Ti、 
Nb量はそれぞれ0.01七より少ないと高温クリープ
破断強さに対して効果が少ない。また0、564を超す
と、炭・窒化物などの粗大化が起こり易くクリープ破断
強さを低下させる。以上の理由によりTiとNbの下限
をそれぞれO、Ol机上限をO8繋とした。
Ti: 0.01 to 0.5% Nb: 0.01 to 0.5% Ti and Nb are carbonitride forming elements and have been conventionally recognized to be effective in improving creep rupture characteristics. Ti,
If the amount of Nb is less than 0.017, it has little effect on high temperature creep rupture strength. If it exceeds 0.564, coarsening of carbon, nitrides, etc. tends to occur, reducing creep rupture strength. For the above reasons, the lower limits of Ti and Nb were set to O, respectively, and the upper limit of Ol was set to O8.

B: 0.003〜0.O1% Bはクリープ強さを高めるのに0.003に以上は必要
であるが添加量が多いと溶接性および延性が劣化するの
で添加量の上限をo、ot96とした。
B: 0.003-0. O1% B is necessary to increase the creep strength in an amount of 0.003 or more, but if the amount added is too large, weldability and ductility deteriorate, so the upper limit of the amount added was set to 0, ot96.

P:0.04%以下 Pは添加量が多いとクリープ中析出を促進しクリープ脆
化を促進させるので上限を0.04零とした。
P: 0.04% or less If P is added in a large amount, it promotes precipitation during creep and promotes creep embrittlement, so the upper limit was set at 0.04 zero.

S : 0.005%以下 Sも粒界に偏析しクリープ中粒界の脆化を促進させるの
で上限を0.005%Fとした。
S: 0.005% or less S also segregates at grain boundaries and promotes embrittlement of grain boundaries during creep, so the upper limit was set at 0.005% F.

N:0.02〜0.4% Nは高C「、高Ni系オーステナイト合金の高温クリー
プ強さを高めることが知られている。第3図は0.05
96C,0,5零Si、 1.0!k Mn、 0.0
294P。
N: 0.02-0.4% N is known to increase the high-temperature creep strength of high-C, high-Ni austenitic alloys.
96C, 0.5 Zero Si, 1.0! kMn, 0.0
294P.

0.002零S、25寓Ni、 20零Cr、 1.5
零Mo、0.2!k Nb。
0.002 Zero S, 25 Ni, 20 Zero Cr, 1.5
Zero Mo, 0.2! kNb.

0.196Ti、 0.005七B残部鉄および不可避
不純物からなる溶加材でN量を0.02kから0.4零
まで変えたものについて、750℃、 12kgf/m
m”のクリープ破断試験を行い、クリープ破断時間とN
量との関係を示したものである。 N量を増すとクリー
プ破断強さが次第に強くなるが、N量が0.396より
多くなるとクリープ破断強さの増加傾向は少なくなり、
0.4零を超えて添加してもクリープ破断強さを高める
効果は期待できないし、クリープ破断伸びも劣化する。
Filler metals consisting of 0.196Ti, 0.0057B balance iron and unavoidable impurities with N content varied from 0.02k to 0.40 were heated at 750℃ and 12kgf/m.
m” creep rupture test was conducted, and the creep rupture time and N
This shows the relationship with quantity. As the amount of N increases, the creep rupture strength gradually becomes stronger, but when the amount of N increases beyond 0.396, the tendency for creep rupture strength to increase decreases,
Even if it is added in excess of 0.4, no effect of increasing creep rupture strength can be expected, and creep rupture elongation also deteriorates.

またNは0.02に未満ではクリープ破断強さを高める
作用は期待できない。以上の理由により Nの上限を0
.4零、下限を0.02零とした。
Further, if N is less than 0.02, no effect of increasing creep rupture strength can be expected. For the above reasons, the upper limit of N is set to 0.
.. 4 zero, and the lower limit was set to 0.02 zero.

W:0.1〜6.0% さらに本発明においては、とくに高温長時間のクリープ
破断特性を向上させる目的で胃を添加することができる
。Wはλioとの複合添加で優れた高温特性を示すもの
であってその量はO,lX未満では効果がなく、また6
、0零を超すと耐酸化性に悪影響を及ぼすのでWの上限
を6.09g、下限を0.1零とした。
W: 0.1 to 6.0% Furthermore, in the present invention, stomach can be added especially for the purpose of improving creep rupture properties at high temperatures and long periods of time. W exhibits excellent high-temperature properties when added in combination with λio, and has no effect if the amount is less than O.
If it exceeds 0 zero, it will adversely affect the oxidation resistance, so the upper limit of W was set at 6.09 g, and the lower limit was set at 0.1 zero.

次に本発明溶加材の効果を実施例についてさらに具体的
に述べる。
Next, the effects of the filler metal of the present invention will be described in more detail with reference to Examples.

[実 施 例] 板厚205mに溶加材と同成分の溶解材を圧延し、第4
図に示すような開先(厚さT=20mm。
[Example] A melted material with the same composition as the filler material was rolled into a plate thickness of 205 m, and the fourth
Bevel as shown in the figure (thickness T = 20 mm.

開先角度θ冨20″″、ルートギャップL x 14m
m)を形成、第1表に示す成分組成のワイヤ径1.6φ
mmの溶加材、溶接電f!150〜220A、電圧8〜
11v、溶接速度6〜12cm/winの溶接条件でT
IG溶接を実施した。
Bevel angle θ depth 20″″, root gap L x 14m
m), wire diameter 1.6φ with the composition shown in Table 1.
Filler metal in mm, welding electric current f! 150~220A, voltage 8~
T under welding conditions of 11v, welding speed 6-12cm/win
IG welding was performed.

第4図中1は被溶接剤、2は裏当材を示す。In Fig. 4, 1 indicates the material to be welded, and 2 indicates the backing material.

同第1表に750℃、 12kgf/mm”の応力での
全溶接金属のクリープ破断時間、破断伸びを表わす。
Table 1 shows the creep rupture time and elongation at break of all weld metals at 750°C and a stress of 12 kgf/mm''.

第1表に示す溶加材のうち試料番号1から6までは比較
材料で1は5US347.2は5tlS304相当材、
3は25 Ni−20Crを基本成分としたものでW、
 V、TI、Nb、 Bを添加しないものである。試料
番号4,5.8はいずれもV、Ti、Nb、 B ノイ
ずれかが添加されていないNi−Cr系オーステナイト
溶加材である。試料番号7,8,9.10.11は特許
請求の範囲(1)に該当する本発明溶加材である。
Among the filler metals shown in Table 1, sample numbers 1 to 6 are comparative materials, 1 is 5US347.2 is 5tlS304 equivalent material,
3 has 25Ni-20Cr as the basic component W,
V, TI, Nb, and B are not added. Sample numbers 4 and 5.8 are both Ni-Cr based austenitic filler metals to which V, Ti, Nb, or B is not added. Sample numbers 7, 8, 9, 10, and 11 are filler metals of the present invention that fall under claim (1).

試料番号7.8はNを0.05零としVをそれぞれ0.
1.0.2!に添加したものである。■添加なしの試料
番号6に比べ、強さが増しかつクリープ破断伸びも増す
。試料番号9.lOはVを0.2396としNを0.1
21.0.231.0.4%添加したものでvが存在す
ると Nを添加し強さを高めても伸びの減少が少ない。
Sample number 7.8 has N of 0.05 zero and V of 0.0.
1.0.2! It was added to. ■Compared to sample No. 6 without additives, the strength is increased and the creep rupture elongation is also increased. Sample number 9. lO is V 0.2396 and N 0.1
21.0.231.If 0.4% is added and v is present, there is little decrease in elongation even if N is added to increase the strength.

また試料番号11はSiを1.0零にしたものであるが
Nを0.496g加することにより、SL増加による強
さの減少は抑制されている。
In addition, sample number 11 has Si reduced to 1.0, but by adding 0.496 g of N, the decrease in strength due to increase in SL is suppressed.

試料番号12.13は特許請求の範囲(2)に該当する
ものである。試料番号12はW量を3零に高めたもので
Wを添加することによりクリープ強さは強くなる。試料
番号13はNi量を5096と高めたものである。Ni
を高くすることにより破断伸びの低下は抑制される。
Sample number 12.13 falls under claim (2). Sample No. 12 has an increased amount of W to 3 zero, and the addition of W increases the creep strength. Sample number 13 has a high Ni content of 5096. Ni
By increasing , the decrease in elongation at break is suppressed.

[発明の効果] 本発明溶加材は高温でのクリープ強度を著しく高めたも
のである。第1表に示したように溶接溶加材組成が本発
明の要件を満たすものは、本発明の要件を満たさないも
の(比較例)と較べて高温クリープ特性にすぐれている
ことは明らかである。各種発電ボイラーに使用されるオ
ーステナイト鋼をTIG溶接する場合に本発明に係る溶
加材を使用することにより溶接継手の信頼性を大幅に向
上させることができる。
[Effects of the Invention] The filler metal of the present invention has significantly increased creep strength at high temperatures. As shown in Table 1, it is clear that weld filler metal compositions that meet the requirements of the present invention have superior high-temperature creep properties compared to those that do not meet the requirements of the present invention (comparative examples). . By using the filler metal according to the present invention when TIG welding austenitic steel used in various power generation boilers, the reliability of welded joints can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSi量と結晶粒度の関係を示す図、第2図はク
リープ破断強さに及ぼすVの影響を示す図、第3図はク
リープ破断強さに及ぼすNの影響を示す図、第4図は実
施例に用いた溶接部の開先形状を示す断面図である。 1・・・被溶接材    2・・・裏当材第1図 81含有川(%)
Figure 1 shows the relationship between Si content and grain size, Figure 2 shows the effect of V on creep rupture strength, Figure 3 shows the effect of N on creep rupture strength, and Figure 3 shows the effect of N on creep rupture strength. FIG. 4 is a sectional view showing the groove shape of the welded portion used in the example. 1... Material to be welded 2... Backing material Fig. 1 81 content (%)

Claims (2)

【特許請求の範囲】[Claims] (1)重量(%)で C:0.02〜0.15% Si:0.1〜3.5% Mn:0.3〜1.5% Cr:18〜30% Ni:16〜50% Mo:0.5〜3.0% V:0.01〜0.3% Ti:0.01〜0.5% Nb:0.01〜0.5% B:0.003〜0.01% P:0.04%以下 S:0.005%以下 N:0.02〜0.4% を含有し、残部鉄および不可避不純物からなることを特
徴とするオーステナイト系耐熱合金用TIG溶接用溶加
材。
(1) By weight (%): C: 0.02-0.15% Si: 0.1-3.5% Mn: 0.3-1.5% Cr: 18-30% Ni: 16-50% Mo: 0.5-3.0% V: 0.01-0.3% Ti: 0.01-0.5% Nb: 0.01-0.5% B: 0.003-0.01% P: 0.04% or less S: 0.005% or less N: 0.02-0.4% A filler for TIG welding for austenitic heat-resistant alloys, characterized in that the balance consists of iron and inevitable impurities. Material.
(2)重量(%)で C:0.02〜0.15% Si:0.1〜3.5% Mn:0.3〜1.5% Cr:18〜30% Ni:16〜50% Mo:0.5〜3.0% W:0.1〜6.0% V:0.01〜0.3% Ti:0.01〜0.5% Nb:0.01〜0.5% B:0.003〜0.01% P:0.04%以下 S:0.005%以下 N:0.02〜0.4% を含有し、残部鉄および不可避不純物からなることを特
徴とするオーステナイト系耐熱合金用TIG溶接用溶加
材。
(2) By weight (%): C: 0.02-0.15% Si: 0.1-3.5% Mn: 0.3-1.5% Cr: 18-30% Ni: 16-50% Mo: 0.5-3.0% W: 0.1-6.0% V: 0.01-0.3% Ti: 0.01-0.5% Nb: 0.01-0.5% B: 0.003-0.01% P: 0.04% or less S: 0.005% or less N: 0.02-0.4%, with the balance consisting of iron and inevitable impurities. Filler metal for TIG welding for austenitic heat-resistant alloys.
JP62146085A 1987-06-11 1987-06-11 Filler metal for TIG welding for heat-resistant austenitic stainless steel alloys Expired - Lifetime JP2583238B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62146085A JP2583238B2 (en) 1987-06-11 1987-06-11 Filler metal for TIG welding for heat-resistant austenitic stainless steel alloys

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62146085A JP2583238B2 (en) 1987-06-11 1987-06-11 Filler metal for TIG welding for heat-resistant austenitic stainless steel alloys

Publications (2)

Publication Number Publication Date
JPS63309392A true JPS63309392A (en) 1988-12-16
JP2583238B2 JP2583238B2 (en) 1997-02-19

Family

ID=15399787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62146085A Expired - Lifetime JP2583238B2 (en) 1987-06-11 1987-06-11 Filler metal for TIG welding for heat-resistant austenitic stainless steel alloys

Country Status (1)

Country Link
JP (1) JP2583238B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136793A (en) * 1993-11-16 1995-05-30 Sumitomo Metal Ind Ltd Welding material for high-cr high-n austenite steel
JP2001107197A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic alloy welded joint excellent in weld crack resistance
JP2001107196A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
EP1471158A1 (en) * 2003-04-25 2004-10-27 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
CN106475705A (en) * 2015-08-27 2017-03-08 株式会社神户制钢所 Ni based alloy welding metal
JP2017202495A (en) * 2016-05-09 2017-11-16 新日鐵住金株式会社 Weld material for austenitic heat-resistant steel
JP2017202494A (en) * 2016-05-09 2017-11-16 新日鐵住金株式会社 Austenitic heat-resistant steel weld metal and weld joint having the same
CN108788516A (en) * 2018-07-02 2018-11-13 北京金威焊材有限公司 The Ni-based flux-cored wire of Ni-Cr-Mo tungsten system
CN113478118A (en) * 2021-05-25 2021-10-08 江苏新恒基特种装备股份有限公司 Nickel-chromium-iron heat-resistant alloy argon arc welding wire for additive manufacturing and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857852A (en) * 1971-11-24 1973-08-14
JPS58125396A (en) * 1982-01-22 1983-07-26 Hitachi Ltd Austenitic welded structure
JPS58196192A (en) * 1982-05-10 1983-11-15 Hitachi Ltd Welded austenitic structure for high temperature service
JPS5966994A (en) * 1982-10-06 1984-04-16 Nippon Uerudeingurotsuto Kk Filler metal for welding of nickel-base heat resistant alloy
JPS59127991A (en) * 1983-01-12 1984-07-23 Kawasaki Steel Corp Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857852A (en) * 1971-11-24 1973-08-14
JPS58125396A (en) * 1982-01-22 1983-07-26 Hitachi Ltd Austenitic welded structure
JPS58196192A (en) * 1982-05-10 1983-11-15 Hitachi Ltd Welded austenitic structure for high temperature service
JPS5966994A (en) * 1982-10-06 1984-04-16 Nippon Uerudeingurotsuto Kk Filler metal for welding of nickel-base heat resistant alloy
JPS59127991A (en) * 1983-01-12 1984-07-23 Kawasaki Steel Corp Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136793A (en) * 1993-11-16 1995-05-30 Sumitomo Metal Ind Ltd Welding material for high-cr high-n austenite steel
JP2001107197A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic alloy welded joint excellent in weld crack resistance
JP2001107196A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material
EP1471158A1 (en) * 2003-04-25 2004-10-27 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
US6918968B2 (en) 2003-04-25 2005-07-19 Sumitomo Metal Industries, Ltd. Austenitic stainless steel
CN106475705A (en) * 2015-08-27 2017-03-08 株式会社神户制钢所 Ni based alloy welding metal
JP2017202495A (en) * 2016-05-09 2017-11-16 新日鐵住金株式会社 Weld material for austenitic heat-resistant steel
JP2017202494A (en) * 2016-05-09 2017-11-16 新日鐵住金株式会社 Austenitic heat-resistant steel weld metal and weld joint having the same
CN108788516A (en) * 2018-07-02 2018-11-13 北京金威焊材有限公司 The Ni-based flux-cored wire of Ni-Cr-Mo tungsten system
CN113478118A (en) * 2021-05-25 2021-10-08 江苏新恒基特种装备股份有限公司 Nickel-chromium-iron heat-resistant alloy argon arc welding wire for additive manufacturing and preparation method

Also Published As

Publication number Publication date
JP2583238B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
JP4697357B1 (en) Austenitic heat-resistant alloy
JP4780189B2 (en) Austenitic heat-resistant alloy
JP5236651B2 (en) Low thermal expansion Ni-base superalloy for boiler excellent in high temperature strength, boiler component using the same, and method for manufacturing boiler component
WO2010013565A1 (en) Welding material for ni-based alloy
JP5838933B2 (en) Austenitic heat resistant steel
JPWO2019098034A1 (en) Austenitic heat-resistant steel Welded metal, welded joints, austenitic heat-resistant steel welding materials, and methods for manufacturing welded joints
JP3850764B2 (en) Welding wire for high Cr ferritic heat resistant steel
JPH0123544B2 (en)
JPS63309392A (en) Filler material for tig welding for austenitic heat resistant alloy
JP5899806B2 (en) Austenitic heat-resistant alloy with excellent liquefaction resistance in HAZ
JPH04147948A (en) Rotary shaft for high temperature steam turbine
JPS6123749A (en) Austenitic stainless steel having high strength at high temperature
JP6795038B2 (en) Austenitic heat-resistant alloy and welded joints using it
JP6122319B2 (en) Dissimilar material joint
JP6756147B2 (en) Welding material for austenitic heat resistant steel
JPH0454737B2 (en)
JP4523696B2 (en) TIG welding material for austenitic heat resistant steel with excellent high temperature strength
JPH0543986A (en) High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone
JPH01215490A (en) Welding wire for cr-mo low alloy steel
WO2020170928A1 (en) Welding material for high-cr ferritic heat-resistant steels
JPH07238349A (en) Heat resistant steel
JP2594265B2 (en) TIG welding wire for 9Cr-Mo steel
JP2002069588A (en) Ferritic heat-resisting steel
JPS63183155A (en) High-strength austenitic heat-resisting alloy
JP7502041B2 (en) Welding materials for high Cr ferritic heat-resistant steel