JPS6333549A - Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture - Google Patents

Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture

Info

Publication number
JPS6333549A
JPS6333549A JP61176655A JP17665586A JPS6333549A JP S6333549 A JPS6333549 A JP S6333549A JP 61176655 A JP61176655 A JP 61176655A JP 17665586 A JP17665586 A JP 17665586A JP S6333549 A JPS6333549 A JP S6333549A
Authority
JP
Japan
Prior art keywords
less
coal ash
austenitic steel
boiler
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61176655A
Other languages
Japanese (ja)
Inventor
Keisuke Hattori
服部 圭助
Kazuhiro Kanero
加根魯 和宏
Takashi Shiraishi
隆 白石
Yasuo Okubo
大久保 康雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP61176655A priority Critical patent/JPS6333549A/en
Publication of JPS6333549A publication Critical patent/JPS6333549A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain a steel tube for a boiler having superior resistance to corrosion by coal ash by subjecting an austenitic steel tube contg. specified amounts of Cr and Ni to soln. heat treatment, removing the surface layer of the tube and hardening the tube. CONSTITUTION:An austenitic steel tube for a boiler consisting of, by weight, 15-26% Cr, 10-35% Ni, one or more among <=0.15% C, <=2% Si, <=7% Mn, <=3% Mo, <=4.5% W, <=4% Cu, <=1% Ti, <=1% Nb, <=0.5% V, <=0.005% B, <=0.25% N and <=2% Al and the balance Fe with ordinary permitted impurities is manufactured. The tube is subjected to soln. heat treatment, the surface of the tube is removed by 2-15mum and the tube is hardened at 600 deg.C to form a hardened layer showing >=280 hardness Hv at 20mum depth from the surface and having >220 hardness Hv in the range from the surface to <=1mm depth.

Description

【発明の詳細な説明】 「発明の目的」 本発明は耐石炭灰腐食ボイラ用オーステナイト鋼管およ
びその製造法に係り、ボイラ用鋼管の石炭燃焼灰に対す
る耐食性を有効に向上せしめその耐用性を延長しようと
するものである。
[Detailed Description of the Invention] "Object of the Invention" The present invention relates to a coal ash corrosion-resistant austenitic steel pipe for a boiler and a method for manufacturing the same, and aims to effectively improve the corrosion resistance of the boiler steel pipe against coal combustion ash and extend its durability. That is.

産業上の利用分野 ボイラ用鋼管の耐石炭灰腐食性改善技術。Industrial applications Technology to improve coal ash corrosion resistance of boiler steel pipes.

従来の技術 石炭灰腐食環境において耐食性を持つボイラチューブの
開発は、例えば特開昭59−153858号においてC
r含有量の高い材料の開発、高Cr材料による被覆(二
重管)が発表され、また特公昭57−4706号におい
てはクロマイズド処理等の浸透処理が発表されている。
Conventional technology The development of boiler tubes that are resistant to corrosion in a coal ash corrosive environment has been developed, for example, by C.
Development of materials with high r content and coating with high Cr materials (double pipes) have been announced, and in Japanese Patent Publication No. 57-4706, penetration treatments such as chromized treatment have been announced.

これらの対策は、いずれも主として腐食環境を模擬した
実験室実験により決定されたものである。
All of these measures were mainly determined through laboratory experiments simulating a corrosive environment.

発明が解決しようとする問題点 しかし、これらの対策は、いずれも“極めて厳しい実験
室実験結果”より有効と判断されたものであるが、この
基準は必ずしも妥当なものではないと予想される。将来
わが国において予想される著しくは激しくない腐食環境
において、経済性も考慮した、有効で実現性のある対策
は、そのような状態のボイラがわが国に現存しないため
に不可能であるとしても、このような条件に即した鋼管
が好ましいものであることは言うまでもない。
Problems to be Solved by the Invention However, although all of these countermeasures were judged to be effective based on "extremely severe laboratory test results," it is expected that this standard is not necessarily valid. In the corrosive environment that is expected to occur in Japan in the future, effective and feasible countermeasures that take economic efficiency into consideration are impossible because boilers in such conditions do not currently exist in Japan. It goes without saying that steel pipes that meet these conditions are preferable.

「発明の構成」 問題点を解決するための手段 1、 Cr: 15〜26wt%、Ni : 10〜3
5ivt%を基本成分とし、その他の合金元素として、
C: 0.15wt%以下、 5R=2御t%以下、M
n:7wt%以下、  Mo:3wt%以下、W : 
4.5 wt%t%以下Cu:4wt%以下、Ti:1
wt%以下、  Nb:1wt%以下、V : 0.5
 wt%t%以下B : 0.005 wt%t%以下
 : 0.25wt%以下、Al: 2wt%以下の何
れか1種または2種以上を含有する鉄鋼材料に通常含ま
れる不純物を許容したボイラ用オーステナイト系鋼管に
おいて、外表面近傍が外表面より20μmの位置でHv
280以上の硬度を示し、しかもHν220を超える硬
度を有する範囲を外表面より1龍以下とした加工層を有
する耐石炭灰腐食ボイラ用オーステナイト鋼管。
"Structure of the invention" Means for solving the problem 1, Cr: 15-26 wt%, Ni: 10-3
With 5ivt% as the basic component and other alloying elements,
C: 0.15wt% or less, 5R=2t% or less, M
n: 7wt% or less, Mo: 3wt% or less, W:
4.5 wt% or less Cu: 4wt% or less, Ti: 1
wt% or less, Nb: 1wt% or less, V: 0.5
A boiler that allows impurities normally contained in steel materials containing one or more of the following: wt%t% or less B: 0.005 wt%t% or less: 0.25wt% or less Al: 2wt% or less In austenitic steel pipes for industrial use, Hv near the outer surface is 20 μm from the outer surface.
An austenitic steel pipe for use in a coal ash corrosion-resistant boiler, which exhibits a hardness of 280 or more and has a worked layer in which the range of hardness exceeding Hv220 is 1 dragon or less from the outer surface.

2、 Cr: 15〜26wt%、Ni : 10〜3
5wt%を基本成分とし、その他の合金元素として、C
: 0.15wt%以下、 Si:2wt%以下、Mn
:7wt%以下、  Mo:3wt%以下、W : 4
.5 wt%t%以下Cu:4wt%以下、Ti:1w
t%以下、  Nb:1wt%以下、V :0.5 w
t%t%以下B : 0,005 wt%t%以下 :
 0,25wt%以下、Al: 2wt%以下の何れか
1種または2種以上を含有する鉄鋼材料に通常含まれる
不純物を許容したボイラ用オーステナイト系鋼管におい
て、溶体化処理後の表面を2〜15μm除去した後、6
00℃以下で硬化加工することを特徴とする耐石炭灰腐
食ボイラ用オーステナイト鋼管の製造法。
2. Cr: 15-26wt%, Ni: 10-3
5wt% as a basic component, and other alloying elements as C
: 0.15wt% or less, Si: 2wt% or less, Mn
: 7wt% or less, Mo: 3wt% or less, W: 4
.. 5 wt% or less Cu: 4wt% or less, Ti: 1w
t% or less, Nb: 1wt% or less, V: 0.5w
t% t% or less B: 0,005 wt% t% or less:
In austenitic steel pipes for boilers that allow impurities normally included in steel materials containing one or more of the following: 0.25 wt% or less, Al: 2 wt% or less, the surface after solution treatment is reduced to 2 to 15 μm. After removing 6
A method for manufacturing an austenitic steel pipe for a coal ash corrosion-resistant boiler, which is characterized by hardening at a temperature of 00°C or lower.

作用 Crが15wt%以上含有されることにより表面近傍の
加工による効果を適切に得しめる。又Niを10−t%
以上含有させることにより高温使用中に脆化層の著しい
析出を回避する。
By containing 15 wt% or more of functional Cr, the effect of processing near the surface can be appropriately obtained. Also, 10-t% Ni
By containing the above amount, significant precipitation of a brittle layer during high temperature use can be avoided.

Cを0.15wt%以下、Siを2wt%以下、Mnを
7wt%以下、Moが3wt%以下、Wが4.5 wt
%t%以下uが4wt%以下、Tiを1wt%以下、N
bを1wt%以下、■を0.5−t%以下、Bが0.0
05 wt%t%以下を0.25wt%以下、Alを2
wt%以下含有させて耐食性に大きな影響を与えること
がなく、又Crを26wt%以下、Niを35−t%以
下とすることと相俟って経済性を確保する。
C 0.15wt% or less, Si 2wt% or less, Mn 7wt% or less, Mo 3wt% or less, W 4.5wt
%t% or less U is 4wt% or less, Ti is 1wt% or less, N
b is 1wt% or less, ■ is 0.5-t% or less, B is 0.0
05 wt% t% or less 0.25wt% or less, Al 2
By containing Cr at 26 wt% or less and Ni at 35-t% or less, economical efficiency is ensured without significantly affecting corrosion resistance.

鋼管の表面に20μm以上をHv280以上とすること
により工業的容易に加工せしめ石炭灰腐食条件下での耐
用性を向上する。なお外表面から1■−まではHv22
0を超える硬度とすることにより鋼管の安定した高温特
性を確保し、外表面よりの加工を容易に行わせるゆ 実施例 本発明者等は、前記したような将来における著しく激し
くはない石炭灰腐食環境下において有効な耐食性のある
ボイラ用鋼管を探究し、研究を重ねて開発したものであ
って、即ち本発明は、オーステナイト系ボイラ用鋼管に
おいてその外表面近傍を加工し、ボイラでの使用中にC
rの拡散によりCr?5化被膜を形成させ、石炭灰に対
する耐食性を付与するものであるが、更に具体的に説明
すると以下の如くである。
By making the surface of the steel pipe 20 μm or more Hv280 or more, it can be industrially easily processed and its durability under coal ash corrosion conditions is improved. In addition, Hv22 from the outer surface to 1■-
By making the steel pipe have a hardness exceeding 0, stable high-temperature properties of the steel pipe can be ensured, and processing from the outer surface can be easily performed. The present invention was developed through repeated research and exploration of a steel tube for boilers that has corrosion resistance that is effective in the environment.In other words, the present invention involves processing the vicinity of the outer surface of an austenitic steel tube for boilers to improve corrosion resistance during use in a boiler. niC
Cr due to the diffusion of r? It forms a 5-oxide film and imparts corrosion resistance to coal ash, and a more specific explanation will be given below.

まず、加工前素管について説明すると、本発明の対象は
オーステナイト系鋼管に限定される。フェライト系鋼管
は高温部位では使用されないため著しい腐食は起こりに
くい。また、合金元素の限定理由についてwt%(以下
単に%という)によって説明すると以下の如くである。
First, to explain the raw pipe before processing, the object of the present invention is limited to austenitic steel pipes. Ferritic steel pipes are not used in high-temperature areas, so significant corrosion is unlikely to occur. Further, the reasons for limiting the alloying elements in terms of wt% (hereinafter simply referred to as %) are as follows.

まず、Cr量は、15〜26%に制限した。12%程度
のCr量の場合も加工の効果が確認されているが、現用
の実用耐熱鋼のCr量は15%以上であるためこれを下
限とした。また上限は26%としたが、Cr1lがこれ
以上の場合も有効であるが、Cr量が多くなると非加工
材でも十分な耐食性があり、その効果は小さくなる。ま
たオーステナイト相を安定化させるためには、Ni量を
著しく高くする必要があり、極めて高価なものとなる。
First, the amount of Cr was limited to 15 to 26%. The effect of processing has been confirmed even when the Cr content is about 12%, but since the Cr content of current practical heat-resistant steels is 15% or more, this was set as the lower limit. Although the upper limit was set at 26%, it is also effective when the Cr1l is higher than this, but as the amount of Cr increases, even unprocessed materials have sufficient corrosion resistance, and the effect becomes smaller. In addition, in order to stabilize the austenite phase, it is necessary to significantly increase the amount of Ni, resulting in an extremely expensive product.

Ni量は、Crやその他のフェライト形成元素の債に応
じて、溶体化処理状態で実質的にオーステナイト−相組
織となり、また高温での使用中に脆化相の著しい析出が
起こらないように下限値を定める。即ち、上限はその効
果が飽和する量であるが、Cr量 Mo+ Tit N
b等のフェライト形成元素の添加量、およびこれらを含
む脆化層の析出を考慮した場合も、35%程度であれば
十分であり、下限値は10%とした。
Depending on the content of Cr and other ferrite-forming elements, the amount of Ni should be set at a lower limit to ensure that the solution treatment results in a substantially austenitic phase structure and that significant precipitation of brittle phases does not occur during use at high temperatures. Define the value. That is, the upper limit is the amount at which the effect is saturated, but the amount of Cr Mo+ Tit N
Even when considering the addition amount of ferrite-forming elements such as b and the precipitation of an embrittled layer containing these, it is sufficient that the content is about 35%, and the lower limit was set at 10%.

C,Si、 Mnt Mo+ W、  Cu、 Ti、
 Nb、V、  B、  N。
C, Si, Mnt Mo+ W, Cu, Ti,
Nb, V, B, N.

A1等の合金元素は、通常耐熱鋼に含まれる上限値程度
添加される場合も耐食性に大きな影響は与えないので、
それぞれc<o、is%、Siく2%、 Mnく7%、
Moく3%、W<4.5%、Cu:<4%、Ti<1%
、Nbく1%、Vく0.5 %、  B<0.005%
、N<、0.25%、Aj!:<2%とした。
Alloying elements such as A1 do not have a large effect on corrosion resistance even when added to the upper limit of what is normally included in heat-resistant steel.
c<o, is%, Si 2%, Mn 7%, respectively.
Mo: 3%, W<4.5%, Cu:<4%, Ti<1%
, Nb 1%, V 0.5%, B<0.005%
,N<,0.25%,Aj! :<2%.

次に、加工方法について説明すると以下の如くである。Next, the processing method will be explained as follows.

即ち、鋼管は肉厚3〜150程度のボイラ用を対象とし
ており、外径は7011以下であって、管は通常溶体化
処理状態で使用されるが、本発明鋼管は、更に表面に冷
間加工を施す。最少加工層深さは数10μm程度で十分
であるが、使用中に形成されたCrの濃化した被覆が破
壊され、再生される場合も考慮する必要があり、ある程
度深い方が好ましい。一方、管の高温での機械的特性は
、低温加工により劣化する可能性があり、この面からは
一定限度以下にする必要がある。ボイラ用鋼管は通常1
1m程度肉厚を増加して製造されるため、これ以下に留
めることが好ましい。
That is, the steel pipe is intended for use in boilers with a wall thickness of about 3 to 150 mm, and the outer diameter is 7011 mm or less, and the pipe is usually used in a solution-treated state, but the steel pipe of the present invention has a cold-treated surface. Perform processing. A minimum processing layer depth of about several tens of micrometers is sufficient, but it is also necessary to take into consideration the case where the Cr-enriched coating formed during use is destroyed and regenerated, so a certain depth is preferable. On the other hand, the mechanical properties of the tube at high temperatures may deteriorate due to low-temperature processing, and from this point of view it is necessary to keep the mechanical properties below a certain limit. Steel pipes for boilers are usually 1
Since it is manufactured by increasing the wall thickness by about 1 m, it is preferable to keep it to less than this.

また、本鋼管に与える加工は外表面より与える。Additionally, the processing applied to this steel pipe is applied from the outside surface.

従って肉厚方向の加工度は、外表面はど高く、内部に向
かって低下する。加工度の把握は、表面より20μmの
位置の硬度を用いたが、これはCrの濃化被膜形成に働
く範囲はこの程度であることより定めた。また硬度計に
よる測定は、20μm以下では工業的に困難になること
より、この位置の値を目安にした。この位置のビッカー
ス硬度を280以上にすることにより、添付図面に示す
ように、スケール厚さは1/2になるためこの値を目安
とする。尚、図面はスケール厚さの比に対する硬度の影
響を示すものであって、ショット加工条件を変化させて
、種々の加工度を持った鋼管を作製して測定したもので
あって、Hv270〜280を境にスケールの厚さは大
巾に減少することが分かる。
Therefore, the degree of processing in the thickness direction is highest on the outer surface and decreases toward the inside. The degree of processing was determined by using the hardness at a position 20 μm from the surface, which was determined based on the fact that this is the range within which Cr concentrates to form a film. Furthermore, since measurement using a hardness meter is industrially difficult at a thickness of 20 μm or less, the value at this position was used as a guideline. By setting the Vickers hardness at this position to 280 or more, the scale thickness becomes 1/2 as shown in the attached drawing, so this value is used as a guide. The drawings show the influence of hardness on the ratio of scale thickness, and were measured by changing the shot processing conditions to produce steel pipes with various degrees of processing. It can be seen that the thickness of the scale decreases significantly after .

更に、表面より20μmの位置の硬度が同程度の場合も
、加工方法の差により耐食性は若干異なる。即ちグライ
ンダ加工は極めて有効であり、それはこの加工法が極表
層の加工度を大きく出来ること、また組成的に肉厚内部
とやや異なる表層部が削除されることが理由と考えられ
る。
Furthermore, even if the hardness at a position 20 μm from the surface is the same, the corrosion resistance will differ slightly depending on the processing method. That is, grinding is extremely effective, and this is thought to be because this processing method can increase the degree of processing of the extreme surface layer, and also because the surface layer, which has a slightly different composition from the inner part of the wall, is removed.

加工温度は、素材の回復温度以下で行う必要があり、こ
の温度は加工度や材質により多少変化するが、オーステ
ナイト系鋼の場合は、600℃程度と考えてよい。
The processing temperature must be below the recovery temperature of the material, and this temperature varies somewhat depending on the degree of processing and the material, but in the case of austenitic steel, it can be considered to be about 600°C.

また、加工前の材料の表面状態の影響も重要である。シ
ョット加工等、研削を伴わない加工方法の場合、予め熱
処理時の表面層を除去した後、加工を加える方法が有効
である。この表面層の除去には、例えば強酸洗を行うこ
とも一方法であり、この場合の除去は2μmでは不十分
であって、また15μm以上は必要ではない。また無酸
化雰囲気で熱処理を行う等、表面近傍の組成変化の少な
い方法で溶体化処理後に加工を行うことも有効である。
In addition, the influence of the surface condition of the material before processing is also important. In the case of a processing method that does not involve grinding, such as shot processing, it is effective to remove the surface layer during heat treatment in advance and then apply processing. One method for removing this surface layer is, for example, strong pickling; in this case, removal of 2 .mu.m is insufficient, and 15 .mu.m or more is not necessary. It is also effective to perform processing after solution treatment using a method that causes less change in composition near the surface, such as heat treatment in a non-oxidizing atmosphere.

尚、グラインダ加工を行った後にショット加工を行い、
グラインダ加工の持つ欠点、例えば引張残留応力の除去
といった方法も採り得る。
In addition, shot processing is performed after grinder processing,
It is also possible to eliminate the disadvantages of grinding, such as removing tensile residual stress.

尚、これらの鋼管の高温特性に対して悪影響が顕ねれ始
める加工度は、硬度で示すとHv220であるためこれ
を超える範囲を外表面から1fi以下に制限する。
Note that the working degree at which an adverse effect begins to appear on the high-temperature characteristics of these steel pipes is Hv220 in terms of hardness, so the range exceeding this is limited to 1 fi or less from the outer surface.

以上説明したような本発明によるものの具体的な製造例
について説明すると以下の如くである。
A specific manufacturing example of the product according to the present invention as described above will be described below.

本発明により具体的に製品された鋼管についてその成分
組成、加工法、硬度分布および耐食性に関するスケール
厚さを示すと次表の如くであって、これらはいずれも実
際のボイラチューブを溶体化処理後に加工したものであ
る。
The composition, processing method, hardness distribution, and scale thickness related to corrosion resistance of the steel pipes specifically produced according to the present invention are shown in the following table. It is processed.

なお耐食性の確認は、これらの加工管を石炭燃焼雰囲気
に装入して行い、管は内部より空冷し、ボイラチューブ
の腐食状態を再現している。またスケールの厚さは、3
.5%Sを1000時間燃焼させた状態での値である。
Corrosion resistance was confirmed by inserting these processed tubes into a coal combustion atmosphere, and the tubes were air-cooled from the inside to reproduce the corroded state of boiler tubes. Also, the thickness of the scale is 3
.. This value is obtained when 5% S is burned for 1000 hours.

この間に20μmのスケールが発生すると10μmの腐
食になり、10万時間では1鶴になり、使用上問題とな
る可能性が大きい。本実験において10μm以下の場合
も、より不純物の多い石炭を燃焼させた場合は、この数
値は大幅に増加すると考えられる。
If a scale of 20 μm occurs during this time, it will result in corrosion of 10 μm, and after 100,000 hours it will become a single piece, which is likely to cause problems in use. Even in the case of 10 μm or less in this experiment, this value is thought to increase significantly if coal with more impurities is burned.

尚、表中では以下のように略記した。In addition, in the table, the abbreviations are as follows.

非加工二酸化雰囲気溶体化生通常酸洗 グラインダー二表面グラインダー加工、3Sショット:
ショツトブラスト加工(スチール、ガラスピーズ、サン
ド) 冷間伸管:軽伸管による表面加工 酸洗+シぢット二強酸洗(表面を10μm程度均一に除
去)+ショット加工 H2溶体化+ショット:水素雰囲気中溶体化処理+ショ
ット加工 「発明の効果」 以上説明したように本発明によるときは、表面冷間加工
鋼管は、Cr11が17〜18wt%の300シリーズ
系の場合においても、3.5%程度までのSを含む石炭
を使用するボイラの高温部位用鋼管として、プラントの
寿命である10万時間使用可能であり、またより高C「
の鋼管の場合は、更に低品位の石炭も使用可能であり、
経済的に好ましい耐食性を発揮し得るものであるから工
業上その効果の大きい発明である。
Unprocessed Dioxide atmosphere Solution conversion Normal pickling grinder Two surface grinder processing, 3S shot:
Shot blasting (steel, glass beads, sand) Cold drawn pipe: Surface processing with light drawn pipe pickling + Shit double strong pickling (removes the surface uniformly by about 10 μm) + shot processing H2 solution + shot: Solution treatment + shot processing in a hydrogen atmosphere "Effects of the invention" As explained above, according to the present invention, surface cold-worked steel pipes have 3.5 It can be used for 100,000 hours, which is the lifespan of the plant, as a steel pipe for the high-temperature parts of boilers that use coal containing up to 10% S.
In the case of steel pipes, even lower grade coal can be used.
This invention is industrially highly effective because it can exhibit economically preferable corrosion resistance.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明によるものの技術的内容を示すものであっ
て、ショット加工(冷間加工)材と溶体化処理材の石炭
灰腐食時におけるスケール厚さの比と管表面より20μ
mの位置における硬度との関係を示した図表である。
The drawings show the technical content of the present invention, and show the ratio of scale thickness of shot processed (cold worked) material and solution treated material during coal ash corrosion, and the difference of 20μ from the pipe surface.
It is a chart showing the relationship with hardness at the position of m.

Claims (1)

【特許請求の範囲】 1、Cr:15〜26wt%、Ni:10〜35wt%
を基本成分とし、その他の合金元素として、C:0.1
5wt%以下、Si:2wt%以下、Mn:7wt%以
下、Mo:3wt%以下、W:4.5wt%以下、Cu
:4wt%以下、Ti:1wt%以下、Nb:1wt%
以下、V:0.5wt%以下、B:0.005wt%以
下、N:0.25wt%以下、Al:2wt%以下の何
れか1種または2種以上を含有する鉄鋼材料に通常含ま
れる不純物を許容したボイラ用オーステナイト系鋼管に
おいて、外表面近傍が外表面より20μmの位置でHv
280以上の硬度を示し、しかもHv220を超える硬
度を有する範囲を外表面より1mm以下とした加工層を
有する耐石炭灰腐食ボイラ用オーステナイト鋼管。 2、Cr:15〜26wt%、Ni:10〜35wt%
を基本成分とし、その他の合金元素として、C:0.1
5wt%以下、Si:2wt%以下、Mn:7wt%以
下、Mo:3wt%以下、W:4.5wt%以下、Cu
:4wt%以下、Ti:1wt%以下、Nb:1wt%
以下、V:0.5wt%以下、B:0.005wt%以
下、N:0.25wt%以下、Al:2wt%以下の何
れか1種または2種以上を含有する鉄鋼材料に通常含ま
れる不純物を許容したボイラ用オーステナイト系鋼管に
おいて、溶体化処理後の表面を2〜15μm除去した後
、600℃以下で硬化加工することを特徴とする耐石炭
灰腐食ボイラ用オーステナイト鋼管の製造法。 3、溶体化処理を無酸化雰囲気で行う特許請求の範囲第
2項に記載の耐石炭灰腐食ボイラ用オーステナイト鋼管
の製造法。
[Claims] 1. Cr: 15 to 26 wt%, Ni: 10 to 35 wt%
as the basic component, and as other alloying elements, C: 0.1
5wt% or less, Si: 2wt% or less, Mn: 7wt% or less, Mo: 3wt% or less, W: 4.5wt% or less, Cu
: 4wt% or less, Ti: 1wt% or less, Nb: 1wt%
Impurities normally contained in steel materials containing one or more of the following: V: 0.5wt% or less, B: 0.005wt% or less, N: 0.25wt% or less, Al: 2wt% or less. In austenitic steel pipes for boilers that allow
An austenitic steel pipe for a coal ash corrosion resistant boiler, which exhibits a hardness of 280 or more and has a worked layer in which the range of hardness exceeding Hv220 is 1 mm or less from the outer surface. 2. Cr: 15-26 wt%, Ni: 10-35 wt%
as the basic component, and as other alloying elements, C: 0.1
5wt% or less, Si: 2wt% or less, Mn: 7wt% or less, Mo: 3wt% or less, W: 4.5wt% or less, Cu
: 4wt% or less, Ti: 1wt% or less, Nb: 1wt%
Impurities normally contained in steel materials containing one or more of the following: V: 0.5wt% or less, B: 0.005wt% or less, N: 0.25wt% or less, Al: 2wt% or less. A method for manufacturing a coal ash corrosion resistant austenitic steel pipe for boilers, which comprises removing 2 to 15 μm of the surface after solution treatment, and then hardening the pipe at 600° C. or lower. 3. The method for manufacturing an austenitic steel pipe for a coal ash corrosion-resistant boiler according to claim 2, wherein the solution treatment is performed in a non-oxidizing atmosphere.
JP61176655A 1986-07-29 1986-07-29 Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture Pending JPS6333549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61176655A JPS6333549A (en) 1986-07-29 1986-07-29 Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61176655A JPS6333549A (en) 1986-07-29 1986-07-29 Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture

Publications (1)

Publication Number Publication Date
JPS6333549A true JPS6333549A (en) 1988-02-13

Family

ID=16017375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61176655A Pending JPS6333549A (en) 1986-07-29 1986-07-29 Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture

Country Status (1)

Country Link
JP (1) JPS6333549A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156430A (en) * 1990-12-19 1992-10-20 Yoshida Kogyo K.K. Coupling device
EP0708184A1 (en) * 1993-05-13 1996-04-24 Nippon Steel Corporation High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
EP1342807A2 (en) * 2002-03-08 2003-09-10 Sumitomo Metal Industries, Ltd. Austenitic stainless steel tube and manufacturing method thereof
JP2004508465A (en) * 2000-09-12 2004-03-18 ノバ ケミカルズ(インターナショナル)ソシエテ アノニム Stainless steel matrix surface
EP2060641A1 (en) * 2006-08-23 2009-05-20 Nkktubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
CN101967611A (en) * 2010-11-05 2011-02-09 钢铁研究总院 High-toughness austenite boiler steel
DE202009017682U1 (en) * 2009-12-29 2011-05-12 Wvt Breiding Gmbh Austenitic steel alloy and wear protection for boiler tubes
WO2013073423A1 (en) * 2011-11-15 2013-05-23 新日鐵住金株式会社 Seamless austenite heat-resistant alloy tube
JP2014001436A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Austenitic heat-resistant steel pipe
WO2015109552A1 (en) * 2014-01-25 2015-07-30 吴津宁 Stainless steel seamless pipe
JP2017014576A (en) * 2015-07-01 2017-01-19 新日鐵住金株式会社 Austenitic heat resistant alloy and weldment structure
JP2017014575A (en) * 2015-07-01 2017-01-19 新日鐵住金株式会社 Austenitic heat resistant alloy and weldment structure
CN111566257A (en) * 2018-01-10 2020-08-21 日本制铁株式会社 Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material
CN111601913A (en) * 2018-01-10 2020-08-28 日本制铁株式会社 Austenitic heat-resistant alloy and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110660A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Boiler tube for plant including coal combustion
JPS591657A (en) * 1982-06-25 1984-01-07 Nippon Steel Corp Corrosion-and heat-resistant steel for boiler tube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58110660A (en) * 1981-12-25 1983-07-01 Hitachi Ltd Boiler tube for plant including coal combustion
JPS591657A (en) * 1982-06-25 1984-01-07 Nippon Steel Corp Corrosion-and heat-resistant steel for boiler tube

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5156430A (en) * 1990-12-19 1992-10-20 Yoshida Kogyo K.K. Coupling device
EP0708184A1 (en) * 1993-05-13 1996-04-24 Nippon Steel Corporation High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
EP0708184A4 (en) * 1993-05-13 1996-07-03 Nippon Steel Corp High-strength austenitic heat-resisting steel with excellent weldability and good high-temperature corrosion resistance
JP2004508465A (en) * 2000-09-12 2004-03-18 ノバ ケミカルズ(インターナショナル)ソシエテ アノニム Stainless steel matrix surface
EP1342807A2 (en) * 2002-03-08 2003-09-10 Sumitomo Metal Industries, Ltd. Austenitic stainless steel tube and manufacturing method thereof
EP1342807A3 (en) * 2002-03-08 2004-01-28 Sumitomo Metal Industries, Ltd. Austenitic stainless steel tube and manufacturing method thereof
US7014720B2 (en) 2002-03-08 2006-03-21 Sumitomo Metal Industries, Ltd. Austenitic stainless steel tube excellent in steam oxidation resistance and a manufacturing method thereof
EP2060641A4 (en) * 2006-08-23 2013-03-20 Nkktubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
JP5108771B2 (en) * 2006-08-23 2012-12-26 エヌケーケーシームレス鋼管株式会社 Austenitic stainless steel pipe for boilers with excellent high-temperature steam oxidation resistance
EP2060641A1 (en) * 2006-08-23 2009-05-20 Nkktubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
DE202009017682U1 (en) * 2009-12-29 2011-05-12 Wvt Breiding Gmbh Austenitic steel alloy and wear protection for boiler tubes
DE102010056350A1 (en) 2009-12-29 2011-12-15 Wvt Breiding Gmbh Austenitic steel alloy, useful in a wear protection system for a boiler tube, which is useful in waste incinerators, power plants and sugar refineries, comprises nickel, chromium, niobium, carbon, silicon and manganese
CN101967611A (en) * 2010-11-05 2011-02-09 钢铁研究总院 High-toughness austenite boiler steel
WO2013073423A1 (en) * 2011-11-15 2013-05-23 新日鐵住金株式会社 Seamless austenite heat-resistant alloy tube
JP2013104109A (en) * 2011-11-15 2013-05-30 Nippon Steel & Sumitomo Metal Corp Seamless austenite heat-resistant alloy tube
JP2014001436A (en) * 2012-06-20 2014-01-09 Nippon Steel & Sumitomo Metal Austenitic heat-resistant steel pipe
WO2015109552A1 (en) * 2014-01-25 2015-07-30 吴津宁 Stainless steel seamless pipe
JP2017014576A (en) * 2015-07-01 2017-01-19 新日鐵住金株式会社 Austenitic heat resistant alloy and weldment structure
JP2017014575A (en) * 2015-07-01 2017-01-19 新日鐵住金株式会社 Austenitic heat resistant alloy and weldment structure
CN111566257A (en) * 2018-01-10 2020-08-21 日本制铁株式会社 Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material
CN111601913A (en) * 2018-01-10 2020-08-28 日本制铁株式会社 Austenitic heat-resistant alloy and method for producing same
EP3739081A4 (en) * 2018-01-10 2021-07-14 Nippon Steel Corporation Austenitic heat-resistant alloy and method for producing same
EP3739080A4 (en) * 2018-01-10 2021-07-14 Nippon Steel Corporation Austenitic heat-resistant alloy, method for producing same, and austenitic heat-resistant alloy material
CN111601913B (en) * 2018-01-10 2022-03-04 日本制铁株式会社 Austenitic heat-resistant alloy and method for producing same

Similar Documents

Publication Publication Date Title
RU2307876C2 (en) High-strength martensite stainless steel with high corrosionproofness against gaseous carbon dioxide and high resistance against corrosion cracking under stress in hydrogen sulfide atmosphere
JPS6333549A (en) Austenitic steel tube for boiler having resistance to corrosion by coal ash and its manufacture
CN101892430B (en) High corrosion resistance precipitation hardened Martensite Stainless Steel
KR102442836B1 (en) Ferritic stainless steel with excellent salt and corrosion resistance
WO2018003823A1 (en) Austenitic stainless steel
JPH101755A (en) Martensitic stainless steel excellent in corrosion resistance and sulfide stress corrosion cracking resistance and its production
JP2019218582A (en) Mechanical component
JP6340870B2 (en) Austenitic stainless steel
JPH09241746A (en) Production of high strength duplex stainless steel tube
US4820486A (en) Low alloy steel having good stress corrosion cracking resistance
JPS60174859A (en) Martensitic stainless steel for pipe for oil well
JPH01246343A (en) Stainless steel
US4278465A (en) Corrosion-resistant alloys
JP2015200008A (en) austenitic stainless steel
JP4059156B2 (en) Stainless steel for nuclear power
JPS5916948A (en) Soft-nitriding steel
JP3201081B2 (en) Stainless steel for oil well and production method thereof
WO2002044435A1 (en) Steel for carburization and carburized gear
JPH0454736B2 (en)
JPS5940220B2 (en) Low alloy steel with excellent sulfide corrosion cracking resistance
JPS61551A (en) Heat resistant alloy having superior corrosion resistance in highly oxidizing and sulfurizing corrosive atmosphere
JP2015189990A (en) Austenitic stainless steel for exhaust gas flow passage member excellent in corrosion resistance, particularly having improved sensitization property
JP4290260B2 (en) Highly corrosion resistant austenitic stainless steel for waste heat incineration plant boiler heat transfer tubes
JPS5818967B2 (en) Manufacturing method for line pipe steel with excellent resistance to hydrogen-induced cracking
WO2024096114A1 (en) Austenitic stainless steel sheet, method for producing same, and component