JP4059156B2 - Stainless steel for nuclear power - Google Patents
Stainless steel for nuclear power Download PDFInfo
- Publication number
- JP4059156B2 JP4059156B2 JP2003185581A JP2003185581A JP4059156B2 JP 4059156 B2 JP4059156 B2 JP 4059156B2 JP 2003185581 A JP2003185581 A JP 2003185581A JP 2003185581 A JP2003185581 A JP 2003185581A JP 4059156 B2 JP4059156 B2 JP 4059156B2
- Authority
- JP
- Japan
- Prior art keywords
- grain boundary
- steel
- corrosion resistance
- stainless steel
- twin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、原子力発電所で用いられるのに好適であり、その他に化学プラントにも用いられる、配管、構造材および構成部品に供される部材であって、耐食性、特に耐粒界腐食性に優れた原子力用ステンレス鋼に関するものである。
【0002】
【従来技術】
原子力発電所で使用される配管には、JISで規定するSUS316やSUS304等のオーステナイト系ステンレス鋼が用いられている。これらのステンレス鋼は、耐食性に優れているものの、原子力発電所での使用環境となる300℃近くの高温水中では、残留応力等による引張り応力の存在下で応力腐食割れを発生し、重大な損傷を発生する恐れがある。粒界腐食は粒界応力腐食割れの発生起点となりうるため、原子力発電所で用いられるステンレス鋼では、優れた耐粒界腐食性を確保することが安全性の観点から重要である。
【0003】
従来から、ステンレス鋼の粒界腐食を抑制する方法として、鋼の成分設計による手法の他に、製造技術による手法が採用されている。例えば、成分設計による手法として、CrやMoといった耐食性に有効な元素の含有量を最適化したり、C添加を低減してCr炭化物の粒界析出によるCr欠乏領域の生成を防止したり、または耐粒界腐食性に有害な元素であるPおよびSの含有量を低減する手法がある。
【0004】
最近では、鋼中の粒界構造に着目して、耐食性に有効な構造を有する粒界の比率を増やす方法が提案されている。例えば、特許文献1では、オーステナイトステンレス合金を対象として、冷間加工工程およびアニール工程を繰り返し制御することにより、特別粒界(対応粒界)部分を増加させ、強化された耐粒界腐食性を示すような熱機械的処理が行われている。この処理では対応粒界の比率を60%以上に増加させることで、耐粒界応力腐食割れ性を向上させるようにしている。
【0005】
ここで、対応粒界とは規則的な配列構造を有し、結晶粒界を挟んだ隣り合う結晶粒の片方を結晶軸の周りに回転したときに格子点の一部が隣の結晶粒の格子点と一致する粒界である。そして、粒界での構造の整合性がよく、粒界蓄積エネルギーが一般的な粒界に比べて小さく、共通する副格子を形成する原子数の割合の逆数をΣ値として、Σ値が29までを対応粒界としている。
【0006】
しかしながら、特許文献1が対象とする対応粒界には異なるΣ値の粒界が含まれることから、対象材料や腐食環境の違いによって、その腐食性に及ぼす影響が異なってくる。また、大きい構造物の場合には、冷間加工では加工硬化が著しくなり、成形が困難であることから、熱間加工で成形されるので、特許文献1の熱機械的処理は適応ができない。
【0007】
また、特許文献2および特許文献3では、耐応力腐食割れ性に優れたオーステナイト系ステンレス鋼を得るため、構成部材を単結晶にして、耐食性の劣る粒界を本質的になくす構造用ステンレス鋼が提案されている。しかし、提案されたステンレス鋼を得るには、単結晶を作製するために高価なプロセスが必要になると同時に、得られたステンレス鋼は十分な機械的特性を確保することが難しい。
【0008】
さらに、特許文献4では、双晶発生頻度(変形双晶の発生した結晶粒の割合)を70%以上の組織にして、耐水素脆化割れ性に優れた高Ni基合金を得る方法が提案されている。具体的には、ハステロイC−276合金に代表される高Ni基合金では、規則−不規則変態点(約600℃)未満での長時間時効によりNi2Cr型規則相への変態が起こると、わずかな歪量で双晶変形が誘発されるが、微細な変形双晶が導入されると、一般粒界での応力集中が緩和され、変形双晶の発生頻度が高いほど耐水素脆化性が高くなることに着目した提案である。
【0009】
ところが、特許文献4で開示されるのは、油井、化学工業および地熱発電環境等のような硫化水素、二酸化炭素および塩素イオンの1種または2種以上含有する250℃以下の低温の環境下で優れた耐水素脆化性を示す高Ni基合金であって、双晶を形成させることにより一般粒界の応力集中を緩和させ耐水素脆化性を向上させることを意図するものである。したがって、特許文献4では、双晶粒界自身の特性を利用したものではなく、双晶粒界の割合を双晶発生頻度、すなわち、変形双晶の発生した結晶粒の割合で捉えており、しかも、対象として、主に原子力発電所に用いられる配管、構造材および構成部品に使用される、耐粒界腐食性が要求されるステンレス鋼を意図するものではない。
【0010】
【特許文献1】
特許第2983289号公報(特許請求の範囲)
【特許文献2】
特許第2574927号公報
【特許文献3】
特許第2897694号公報
【特許文献4】
特開平7−3368号公報(特許請求の範囲)、段落(0011)〜(0015)
【0011】
【発明が解決しようとする課題】
本発明は、主に原子力発電所に用いられる配管、構造材および構成部品に使用される部材であって、その使用環境となる高温水中においても耐粒界腐食性に優れたステンレス鋼を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するため、鋼中の粒界構造と耐粒界腐食性の関係を調査した結果、双晶粒界比率と耐粒界腐食性に強い相関があることを見いだした。すなわち、双晶粒界は全粒界の中でも耐粒界腐食性に優れた粒界であると同時に、その発生頻度が高いので、鋼中の双晶粒界比率を増加することによって、優れた耐粒界腐食性を確保できることを明らかにした。
【0013】
前記の特許文献1では、対応粒界(特別粒界)の比率を60%以上に増加させることによって、耐粒界応力腐食割れ性を向上させている。しかし、対応粒界はΣ値が29以下のものを含んでいるため、双晶粒界(Σ=3)の他にも各種の粒界を含み、これらの粒界が耐食性に及ぼす作用を特定することができない。このため、単に鋼中の対応粒界比率を規定するだけでは、その鋼が有する耐粒界腐食性を明確にすることができない。
【0014】
図1は粒界腐食試験における対応粒界比率と腐食減量との関係を示す図であり、図2は同試験における双晶粒界比率と腐食減量との関係を示す図である。図1および図2において、供試したステンレス鋼はSUS316材であり、粒界腐食試験はJIS G0575に基づいている。
【0015】
図1に示すように、対応粒界に内包される各種の粒界が耐食性に及ぼす作用にバラツキがあるため、耐粒界腐食性と対応粒界比率との相関性が低く、鋼中の対応粒界比率をパラメータとして、ステンレス鋼の耐粒界腐食性を評価するのは困難である。
【0016】
一方、図2に示すように、耐粒界腐食性と双晶粒界比率との相関性が高く、ステンレス鋼の耐粒界腐食性は双晶粒界比率で整理できる。すなわち、対応粒界中の双晶粒界以外の粒界は、耐粒界腐食性へ及ぼす影響は一定せず、耐粒界腐食性との相関性が低いことが分かる。しかも、双晶粒界比率が30%以上に増加すると、供試鋼の腐食減量が0.0006g/cm2以下と著しく改善される。
【0017】
換言すれば、耐粒界腐食性と双晶粒界比率との相関性が高く、双晶粒界比率をパラメータとすることによって、ステンレス鋼の耐粒界腐食性を適切に把握することができ、しかも、双晶粒界比率を30%以上に増加することによって、優れた耐粒界腐食性を得ることができる。
【0018】
また、前記の特許文献4で開示される高Ni基合金では、双晶発生頻度、すなわち、変形双晶の発生した結晶粒の割合を増加させて、硫化水素や二酸化炭素などを含む油井環境等での耐応力腐食割れ性や耐水素脆化割れ性を得ようとするものである。したがって、双晶粒界自身の特性を利用したものではないため、変形双晶の発生した結晶粒の割合でその特性を評価しようとするものである。
【0019】
一方、本発明においては耐粒界腐食性に優れた粒界構造として、双晶粒界自身の特性を利用するものであるから、全粒界中の双晶粒界比率として把握する必要がある。したがって、この双晶粒界比率(%)は、下記(a)式によって算出される。
【0020】
双晶粒界比率=(双晶粒界長さ)/(全粒界長さ)×100 ・・・(a)
さらに、本発明者らの検討によれば、上記(a)式で示される双晶粒界比率を更に増加させるには、粒界に偏析し易いPおよびSを低い組成範囲で制御するとともに、積層欠陥エネルギーを下げて双晶を生成させるのに有効なNを確保しつつ、前記Nと析出物を形成し易いCrを抑制するように成分設計することが必要になる。このような組成バランスを適用することにより、双晶粒界比率を30%以上に高めたステンレス鋼を得ることができる。
【0021】
本発明は、上記の検討結果および知見に基づいて完成されたものであり、下記(1)、(2)のステンレス鋼を要旨としている。
(1)質量%で、C:0.001〜0.10%、Si:0.1〜1.0%、Mn:0.1〜2.0%、Ni:8〜30%、Cr:15〜30%、N:0.001〜0.15%、P:0.05%以下、S:0.05%以下およびCa:0〜0.01%をを含み、かつ下記(1)式および(2)式を満足し、残部がFeおよび不純物からなり、結晶粒界における双晶粒界比率が30%以上であることを特徴とする原子力用ステンレス鋼である。
【0022】
0.1Mn+Ca≧10S ・・・ (1)
16N≧0.01Cr+30P+300S ・・・ (2)
(2)上記の原子力用ステンレス鋼では、さらに耐食性を向上させるため、Mo:0.05〜3.00%を含有させるのが望ましい。また、ステンレス鋼の強度向上を図るため、Ti:0.001〜1.0%、Nb:0.001〜1.0%、V:0.001〜1.0%およびZr:0.001〜1.0%のいずれか1種以上を含有させることができる。
【0023】
【発明の実施の形態】
本発明のステンレス鋼の化学組成および組織を上記の通り規定した理由を説明する。以下の化学組成の説明で、%は質量%を示す。
【0024】
C:0.001〜0.10%
Cは、強度を得るために有効な元素である。その効果を得るには、0.001%以上を含有させる必要がある。その含有量が0.01%未満であると、合金の強度が不十分となる。一方、含有量が0.10%を超えると、粒界に炭化物が生成し、耐粒界腐食性が低下する。したがって、C含有量は0.001〜0.10%とし、より望ましい上限は0.050%とする。
【0025】
Si:0.1〜1.0%
Siは、脱酸剤として有効な元素であり、この効果を得るには0.1%以上を含有させる必要がある。一方、1.0%を超えて含有させると、溶接性が悪化するとともに清浄度が低下する。このため、Si含有量は0.1〜1.0%とする。
【0026】
Mn:0.1〜2.0%
Mnは、不純物であるSをMnSとして固定し、双晶粒界比率を増加させて熱間加工性を確保するとともに、脱酸剤として有効な元素である。これらの効果を確保するため0.1%以上を含有させる必要がある。しかし、Mn含有量が2.0%を超えて過剰に含有させると、鋼の清浄度が低下する。したがって、Mn含有量は0.1〜2.0%とする。
【0027】
Ni:8〜30%
Niは、鋼が耐食性を確保するのに有効な元素である。Niがオーステナイト形成元素として前記の効果を発揮するには、8%以上含有させる必要がある。一方、過剰な含有は高価になるため、Ni含有量の上限は30%とする。
【0028】
Cr:15〜30%
Crは、鋼の耐食性を維持するために必要な元素である。その含有率が15%未満では要求される耐食性が確保できない。一方、その含有量が30%を超えると、熱間加工性が著しく悪化する。また、窒化物を形成し、双晶粒界を形成するために必要なNを固定する。したがって、Cr含有量を15〜30%とし、組成バランスを図る必要がある。
【0029】
N:0.001〜0.15%
Nは、積層欠陥エネルギーを低下させ、双晶粒界比率を増加させる作用がある。この作用を有効にするには、0.001%以上を含有させる必要である。一方、0.15%を超えて過剰に含有させると、窒化物を形成して鋼の耐食性を低下させる。このため、N含有量を0.001〜0.15%とし、組成バランスを図る必要がある。
【0030】
P、S:0.05%以下
PおよびSは、通常の製銑および製鋼工程において銑鉄やスクラップから不可避的に混入する不純物元素である。PまたはSの含有量が0.05%を超えると、粒界に偏析して耐粒界腐食性に悪影響を及ぼすので、これらの上限を0.05%とする。
【0031】
また、次に説明するように、PおよびSは、他元素との組成バランスを保ちつつ、低い組成範囲に制御することにより、双晶粒界比率を増加させて耐粒界腐食性を向上させることができる。
【0032】
本発明のステンレス鋼では、双晶粒界比率を増加させるには、粒界に偏析し易いPおよびSを低い範囲で制御するとともに、積層欠陥エネルギーを下げて双晶を生成させるのに有効なNを確保しつつ、前記Nと析出物を形成し易いCrを抑制する必要がある。
【0033】
このため、本発明のステンレス鋼では、上述した化学組成を満足すると同時に、下記(1)式および(2)式に示す組成バランスを満足する必要がある。
【0034】
具体的には、粒界に偏析するSを低減するため、Sを粒内に固定するMnまたはCaとのバランスが適正になるように(1)式を満足する必要がある。しかし、本発明においてCaは任意添加元素であり、Caが無添加である場合には、(1)式では0.1Mn≧10Sの組成バランスを図ることになる。
【0035】
同時に、積層欠陥エネルギーを下げて双晶を生成させるのに有効なNを確保し、Nを固定するCr並びに双晶変形に悪影響を及ぼすPおよびSを適正な範囲に制御するように、(2)式に示す組成バランスを満足する必要がある。
【0036】
0.1Mn+Ca≧10S ・・・ (1)
16N≧0.01Cr+30P+300S ・・・ (2)
以上説明した含有成分は、本発明のステンレス鋼を構成する必須元素である。以上の元素の他に、本発明のステンレス鋼は更に下記の任意添加元素を含有することができる。
【0037】
Ca:0.0003〜0.01%
Caは添加しなくてもよい。Caは、Mnと同様にSを固定し、熱間加工性を向上させる効果があるが、その効果を得るには、0.0003%以上の含有が必要である。一方、0.01%を超えて過剰に含有させると清浄度が低下する。したがって、添加する場合には、Ca含有量を0.0003〜0.01%とし、組成バランスを図る必要がある。
【0038】
Mo:0.05〜3.0%
Moは、鋼の耐食性に有効な元素であり、必要に応じて添加する。添加する場合にはその効果を得るために、0.05%以上を含有させる必要がある。一方、3.0%を超えて含有してもその効果は飽和する。したがって、添加する場合には、Mo含有量を0.05〜3.0%とする。
【0039】
Ti、Nb、V、Zr:0.001〜1.0%
Ti、Nb、VおよびZrのいずれも炭化物を形成して、強度を向上させるのに有効な元素である。その効果を得るには、0.001%以上を含有させることが必要であるが、1.0%を超えて過剰に含有すると清浄度が低下する。したがって、添加する場合は、Nb、Ti、VおよびZrの含有量はそれぞれ0.001〜1.0%とする。
【0040】
本発明のステンレス鋼では、前記図2に示すように、優れた耐粒界腐食性を確保するため、結晶粒界における双晶粒界比率を30%以上にする必要がある。さらに、耐粒界腐食性と双晶粒界比率との相関性が高く、ステンレス鋼の耐粒界腐食性を適切に把握することができる。
【0041】
本発明で規定する双晶粒界比率は、前記(a)式で示される(双晶粒界長さ)/(全粒界長さ)の比率(%)として示される。双晶粒界長さおよび全粒界長さの算出方法は慣用される方法を用いればよく、例えば、供試サンプルの表面に電子線を入射して、電子線と結晶との相互作用で非弾性散乱による菊池パターンを形成させ、その菊池パターンを処理、解析する方法を採用することができる。
【0042】
なお、本発明のステンレス鋼では、双晶粒界比率をなるべく高くすれば耐粒界腐食性を向上できることから、双晶粒界比率の上限を定めない。
【0043】
本発明で規定した化学組成の鋼を熱間加工または冷間加工を施して必要な寸法に成形した後、再結晶温度以上で熱処理を施すと、双晶粒界比率が30%以上に増加し、耐粒界腐食性に優れたステンレス鋼を得ることができる。また、本発明のステンレス鋼を熱間加工を施して成形する場合は、加工度を小さくするか、または加熱温度を高くするのが望ましい。
【0044】
すなわち、加工後の鋼組織(ミクロ組織)は、再結晶の過程で熱間加工により再結晶の駆動力が与えられ、潜伏期で歪みの回復が起こり、最終的に再結晶が起こる。このとき、加工度を抑えて歪み量を小さくすると、小さい駆動力で再結晶を開始する。同様に、加熱温度が高いほど再結晶に要する時間が短くなるのでその間の変形量が小さくなり、小さい駆動力で再結晶を開始する。
【0045】
これらの条件下では、再結晶粒の生成過程は、元の結晶粒と全く異なる方位の結晶粒が生成する、新粒生成型ではなく、元の結晶粒がそのまま成長する歪み誘起型となる。歪み誘起型では、粒界の移動中に双晶が繰り返し形成されるので、双晶が形成され易くなる。
【0046】
【実施例】
本発明のステンレス鋼の効果を、実施例を基づいて説明する。表1に示す14種類の化学組成の鋼を真空溶解法で溶製した。表1中の組成バランスのうち(1)式値は0.1Mn+Ca−10S(質量%)を示しており、(2)式値は16N−0.01Cr−30P−300S(質量%)を示しており、いずれかが負(−)の値を示す場合には本発明で規定している組成バランスから外れていることを示す。
【0047】
【表1】
【0048】
溶製された鋼を供試鋼として、熱間加工および冷間加工を施した。そのときの条件を表2に示す。
【0049】
熱間加工として、鋼No.1、No.3およびNo.11の供試鋼については熱間鍛造を、鋼No.2、No.4〜10、No.12〜14の供試鋼については熱間鍛造に続いて熱間圧延を行った。このとき、熱間鍛造または熱間圧延は複数回に分けて行い、一回の加工ごとに供試鋼の方向を変えた。
【0050】
表2に示す熱間加工の加工度は、熱間鍛造のみを行った鋼については、熱間鍛造前後の供試鋼の厚みを基準として計算した加工度であり、熱間圧延も行った鋼については、熱間圧延前後の供試鋼の厚みを基準として計算した加工度である。なお、加工度は、加工前の供試鋼の厚みをTb、加工後の供試鋼の厚みをTaとしたとき、加工度=(Tb−Ta)/Tb×100(%)と定義される。
【0051】
また、表2に示す熱間加工の加熱温度は、熱間鍛造のみを行った鋼については、熱間鍛造前の加熱温度であり、熱間圧延も行った鋼については、熱間圧延前の加熱温度である。
【0052】
熱間加工後、引き続き鋼No.2、鋼No.7および鋼No.10の供試鋼については、加工度20%の冷間圧延を実施した。
【0053】
熱間加工後または熱間加工を施した供試綱については、冷間加工後は、大気雰囲気中において加熱温度1100℃で焼鈍処理を行い、その後水冷した。
【0054】
【表2】
【0055】
最終の焼鈍処理後、双晶粒界比率の測定および耐粒界腐食性の評価を行った。供試鋼の双晶粒界比率は、SEM−EBSP(Secondary Electron Microscopy-Electron Back Scattering Pattern)を用いて、供試鋼の熱間加工方向(例えば、圧延方向)または冷間加工方向(例えば、CR圧延方向)に平行な断面を150倍程度の倍率で観察して測定した。
【0056】
供試鋼の耐粒界腐食性の評価は、溶接熱影響部を模擬して650℃×2h空冷熱処理後、蓚酸エッチングを行い、腐食の程度が低い段状粒界の割合を光学顕微鏡を用いて測定し、その結果から粒界腐食性を評価した。腐食の程度が低い段状またはみぞが部分的な粒界の割合が60%以上の場合を○とし、同じ段状またはみぞが部分的な粒界の割合が40〜60%未満の場合を△とし、同じ段状またはみぞが部分的な粒界の割合が40%未満の場合を×と評価した。この結果を双晶粒界比率(%)とともに表3に示す。
【0057】
【表3】
【0058】
表3の結果から明らかなように、本発明鋼No.1〜8はいずれも双晶粒界比率が30%以上であり、優れた耐粒界腐食性を示した。特に、本発明鋼No.1〜5では、前記表2に示すように、熱間加工は低加工度、または高温に加熱し実施したので、双晶粒界比率を40%以上を確保でき、著しく優れた耐粒界腐食性を得ることができた。
【0059】
一方、比較鋼No.9〜14は、化学組成、前記(1)式および(2)式で示す組成バランスのいずれか1つ以上が本発明で規定する範囲から外れているため、双晶粒界比率を30%以上確保することができず、耐粒界腐食性も不良であった。
【0060】
【発明の効果】
本発明のステンレス鋼によれば、鋼の化学組成を適切な範囲で制御するとともに、結晶粒界における双晶粒界比率が30%以上に規定することによって、耐粒界腐食性が優れたものとなる。これにより、本発明のステンレス鋼は、原子力発電所に用いられる配管、構造材およびボルト等の構成部品に最適な部材となる。
【図面の簡単な説明】
【図1】粒界腐食試験における対応粒界比率と腐食減量との関係を示す図である。
【図2】粒界腐食試験における双晶粒界比率と腐食減量との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention is suitable for use in a nuclear power plant, and is also a member used for piping, structural materials and components used in chemical plants, and has corrosion resistance, particularly intergranular corrosion resistance. It relates to an excellent nuclear stainless steel.
[0002]
[Prior art]
For piping used in nuclear power plants, austenitic stainless steel such as SUS316 or SUS304 specified by JIS is used. Although these stainless steels are excellent in corrosion resistance, stress corrosion cracking occurs in the presence of tensile stress due to residual stress, etc. in high-temperature water near 300 ° C, which is used in nuclear power plants, resulting in serious damage. May occur. Since intergranular corrosion can be the starting point of intergranular stress corrosion cracking, it is important from the viewpoint of safety to ensure excellent intergranular corrosion resistance in stainless steel used in nuclear power plants.
[0003]
Conventionally, as a method for suppressing intergranular corrosion of stainless steel, a method based on a manufacturing technique has been adopted in addition to a method based on a steel component design. For example, as a method based on component design, the content of elements effective for corrosion resistance such as Cr and Mo is optimized, the addition of C is reduced to prevent formation of Cr-deficient regions due to grain boundary precipitation of Cr carbide, or resistance There is a technique for reducing the content of P and S, which are elements harmful to intergranular corrosion.
[0004]
Recently, focusing on the grain boundary structure in steel, a method of increasing the ratio of grain boundaries having a structure effective for corrosion resistance has been proposed. For example, in Patent Document 1, for an austenitic stainless steel alloy, by specially controlling the cold working process and the annealing process, the number of special grain boundaries (corresponding grain boundaries) is increased, and enhanced intergranular corrosion resistance. A thermomechanical treatment is performed as shown. In this treatment, the grain boundary stress corrosion cracking resistance is improved by increasing the ratio of the corresponding grain boundary to 60% or more.
[0005]
Here, the corresponding grain boundary has a regular arrangement structure, and when one of the adjacent crystal grains sandwiching the crystal grain boundary is rotated around the crystal axis, a part of the lattice point is the adjacent crystal grain. A grain boundary that coincides with a lattice point. The structure consistency at the grain boundary is good, the grain boundary accumulated energy is smaller than that of a general grain boundary, and the reciprocal of the ratio of the number of atoms forming a common sublattice is a Σ value, and the Σ value is 29 The corresponding grain boundaries.
[0006]
However, since the corresponding grain boundaries targeted by Patent Document 1 include grain boundaries having different Σ values, the influence on the corrosivity varies depending on the target material and the corrosive environment. In the case of a large structure, work hardening is remarkable in cold working, and molding is difficult. Therefore, since it is formed by hot working, the thermomechanical treatment in Patent Document 1 cannot be applied.
[0007]
Moreover, in Patent Document 2 and Patent Document 3, in order to obtain an austenitic stainless steel excellent in stress corrosion cracking resistance, a structural stainless steel that essentially eliminates grain boundaries having inferior corrosion resistance by using a single crystal as a constituent member is disclosed. Proposed. However, to obtain the proposed stainless steel, an expensive process is required to produce a single crystal, and at the same time, the obtained stainless steel is difficult to ensure sufficient mechanical properties.
[0008]
Furthermore, Patent Document 4 proposes a method for obtaining a high Ni-base alloy having excellent resistance to hydrogen embrittlement cracking by setting the twinning frequency (the ratio of crystal grains in which deformation twins are generated) to 70% or more. Has been. Specifically, in a high Ni-base alloy typified by Hastelloy C-276 alloy, when transformation to Ni 2 Cr type ordered phase occurs due to long-term aging below the order-disorder transformation point (about 600 ° C.). Twin deformation is induced by a small amount of strain, but when fine deformation twins are introduced, stress concentration at general grain boundaries is relaxed, and hydrogen embrittlement resistance increases as the frequency of deformation twins increases. It is a proposal that pays attention to the high nature.
[0009]
However, Patent Document 4 discloses a low-temperature environment of 250 ° C. or less containing one or more of hydrogen sulfide, carbon dioxide, and chlorine ions, such as oil wells, chemical industries, and geothermal power generation environments. It is a high Ni-base alloy exhibiting excellent hydrogen embrittlement resistance, and is intended to improve the hydrogen embrittlement resistance by relaxing the stress concentration at general grain boundaries by forming twins. Therefore, Patent Document 4 does not use the characteristics of the twin grain boundaries themselves, but captures the ratio of twin grain boundaries as the frequency of twin occurrence, that is, the ratio of crystal grains where deformation twins have occurred. Moreover, the object is not intended to be stainless steel, which is used mainly for piping, structural materials, and components used in nuclear power plants and requires intergranular corrosion resistance.
[0010]
[Patent Document 1]
Japanese Patent No. 2983289 (Claims)
[Patent Document 2]
Japanese Patent No. 2574927 [Patent Document 3]
Japanese Patent No. 2897694 [Patent Document 4]
JP-A-7-3368 (Claims), paragraphs (0011) to (0015)
[0011]
[Problems to be solved by the invention]
The present invention provides a stainless steel having excellent intergranular corrosion resistance even in high-temperature water that serves as a use environment thereof, which is a member mainly used for piping, structural materials and components used in nuclear power plants. It is for the purpose.
[0012]
[Means for Solving the Problems]
As a result of investigating the relationship between the grain boundary structure in steel and the intergranular corrosion resistance, the present inventors have found that there is a strong correlation between the twin grain boundary ratio and the intergranular corrosion resistance. I found. That is, the twin grain boundary is a grain boundary that is excellent in intergranular corrosion resistance among all grain boundaries, and at the same time, the frequency of occurrence is high, so it is excellent by increasing the twin grain boundary ratio in the steel. It was clarified that intergranular corrosion resistance can be secured.
[0013]
In Patent Document 1, the intergranular stress corrosion cracking resistance is improved by increasing the ratio of the corresponding grain boundary (special grain boundary) to 60% or more. However, since the corresponding grain boundaries include those with a Σ value of 29 or less, various grain boundaries are included in addition to the twin grain boundaries (Σ = 3), and the effects of these grain boundaries on corrosion resistance are specified. Can not do it. For this reason, it is not possible to clarify the intergranular corrosion resistance of the steel simply by defining the corresponding grain boundary ratio in the steel.
[0014]
FIG. 1 is a diagram showing the relationship between the corresponding grain boundary ratio and the corrosion weight loss in the intergranular corrosion test, and FIG. 2 is a diagram showing the relationship between the twin grain boundary ratio and the corrosion weight loss in the same test. 1 and 2, the tested stainless steel is SUS316 material, and the intergranular corrosion test is based on JIS G0575.
[0015]
As shown in FIG. 1, since various grain boundaries included in the corresponding grain boundaries have variations in the effect on corrosion resistance, the correlation between the intergranular corrosion resistance and the corresponding grain boundary ratio is low, and the correspondence in steel It is difficult to evaluate the intergranular corrosion resistance of stainless steel using the grain boundary ratio as a parameter.
[0016]
On the other hand, as shown in FIG. 2, there is a high correlation between the intergranular corrosion resistance and the twin grain boundary ratio, and the intergranular corrosion resistance of stainless steel can be organized by the twin grain boundary ratio. That is, it can be seen that grain boundaries other than twin grain boundaries in the corresponding grain boundaries have a constant influence on the intergranular corrosion resistance and have a low correlation with the intergranular corrosion resistance. Moreover, when the twin grain boundary ratio is increased to 30% or more, the corrosion weight loss of the test steel is remarkably improved to 0.0006 g / cm 2 or less.
[0017]
In other words, there is a high correlation between the intergranular corrosion resistance and the twin grain boundary ratio, and by using the twin grain boundary ratio as a parameter, the intergranular corrosion resistance of stainless steel can be properly grasped. Moreover, excellent intergranular corrosion resistance can be obtained by increasing the twin grain boundary ratio to 30% or more.
[0018]
Further, in the high Ni-based alloy disclosed in the above-mentioned Patent Document 4, the frequency of twinning, that is, the oil well environment containing hydrogen sulfide, carbon dioxide, etc. is increased by increasing the proportion of crystal grains in which deformation twins are generated. It is intended to obtain stress corrosion cracking resistance and hydrogen embrittlement cracking resistance. Therefore, since the characteristics of the twin grain boundaries themselves are not used, the characteristics are to be evaluated by the ratio of the crystal grains in which the deformation twins are generated.
[0019]
On the other hand, in the present invention, as the grain boundary structure having excellent intergranular corrosion resistance, the characteristics of the twin grain boundaries themselves are used. Therefore, it is necessary to grasp the twin grain boundary ratio in all the grain boundaries. . Therefore, the twin grain boundary ratio (%) is calculated by the following equation (a).
[0020]
Twin grain boundary ratio = (twin grain boundary length) / (total grain boundary length) × 100 (a)
Furthermore, according to the study by the present inventors, in order to further increase the twin grain boundary ratio represented by the above formula (a), while controlling P and S that are easily segregated at the grain boundary in a low composition range, It is necessary to design the components so as to suppress N which is easy to form precipitates with N while securing N effective for lowering the stacking fault energy and generating twins. By applying such a composition balance, a stainless steel having a twin grain boundary ratio increased to 30% or more can be obtained.
[0021]
The present invention has been completed based on the above examination results and knowledge, and the gist of the following (1) and (2) stainless steels.
(1) By mass%, C: 0.001 to 0.10%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, Ni: 8 to 30%, Cr: 15 -30%, N: 0.001-0.15%, P: 0.05% or less, S: 0.05% or less and Ca: 0-0.01%, and the following formula (1) and A nuclear stainless steel characterized by satisfying the formula (2), the balance being Fe and impurities, and a twin grain boundary ratio at a grain boundary being 30% or more.
[0022]
0.1Mn + Ca ≧ 10S (1)
16N ≧ 0.01Cr + 30P + 300S (2)
(2) In the above stainless steel for nuclear power, it is desirable to contain Mo: 0.05 to 3.00% in order to further improve the corrosion resistance. Further, in order to improve the strength of stainless steel, Ti: 0.001 to 1.0%, Nb: 0.001 to 1.0%, V: 0.001 to 1.0% and Zr: 0.001 Any one or more of 1.0% can be contained.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The reason for defining the chemical composition and structure of the stainless steel of the present invention as described above will be described. In the following description of chemical composition,% indicates mass%.
[0024]
C: 0.001 to 0.10%
C is an element effective for obtaining strength. In order to acquire the effect, it is necessary to contain 0.001% or more. If the content is less than 0.01%, the strength of the alloy becomes insufficient. On the other hand, if the content exceeds 0.10%, carbides are generated at the grain boundaries, and the intergranular corrosion resistance decreases. Therefore, the C content is 0.001 to 0.10%, and the more desirable upper limit is 0.050%.
[0025]
Si: 0.1 to 1.0%
Si is an element effective as a deoxidizer, and to obtain this effect, it is necessary to contain 0.1% or more. On the other hand, if the content exceeds 1.0%, weldability deteriorates and cleanliness decreases. For this reason, Si content shall be 0.1-1.0%.
[0026]
Mn: 0.1 to 2.0%
Mn is an element effective as a deoxidizer while fixing the impurity S as MnS to increase the twin grain boundary ratio to ensure hot workability. In order to ensure these effects, it is necessary to contain 0.1% or more. However, if the Mn content exceeds 2.0% and is contained excessively, the cleanliness of the steel decreases. Therefore, the Mn content is 0.1 to 2.0%.
[0027]
Ni: 8-30%
Ni is an element effective for ensuring corrosion resistance of steel. In order for Ni to exhibit the above effect as an austenite forming element, it is necessary to contain 8% or more. On the other hand, excessive content becomes expensive, so the upper limit of Ni content is 30%.
[0028]
Cr: 15-30%
Cr is an element necessary for maintaining the corrosion resistance of steel. If the content is less than 15%, the required corrosion resistance cannot be ensured. On the other hand, when the content exceeds 30%, the hot workability is remarkably deteriorated. Further, nitrides are formed, and N necessary for forming twin grain boundaries is fixed. Therefore, it is necessary to make the Cr content 15 to 30% and to balance the composition.
[0029]
N: 0.001 to 0.15%
N acts to lower the stacking fault energy and increase the twin grain boundary ratio. In order to make this action effective, it is necessary to contain 0.001% or more. On the other hand, when it exceeds 0.15% and contains excessively, nitride will be formed and the corrosion resistance of steel will be reduced. For this reason, it is necessary to make N content 0.001-0.15% and to aim at a composition balance.
[0030]
P, S: 0.05% or less P and S are impurity elements that are inevitably mixed from pig iron and scrap in normal iron making and steel making processes. If the content of P or S exceeds 0.05%, it segregates at the grain boundaries and adversely affects the intergranular corrosion resistance, so the upper limit is made 0.05%.
[0031]
Further, as will be described below, P and S increase the twin boundary ratio and improve the intergranular corrosion resistance by controlling to a low composition range while maintaining the composition balance with other elements. be able to.
[0032]
In the stainless steel of the present invention, in order to increase the twin grain boundary ratio, it is effective to control P and S, which are easily segregated at the grain boundary, in a low range, and to generate twins by lowering the stacking fault energy. While securing N, it is necessary to suppress Cr that tends to form precipitates with N.
[0033]
For this reason, in the stainless steel of this invention, it is necessary to satisfy the composition balance shown to following formula (1) and (2) simultaneously with satisfying the chemical composition mentioned above.
[0034]
Specifically, in order to reduce S that segregates at the grain boundaries, it is necessary to satisfy formula (1) so that the balance with Mn or Ca that fixes S in the grains is appropriate. However, in the present invention, Ca is an optional additive element. When Ca is not added, the composition balance of 0.1Mn ≧ 10S is achieved in the formula (1).
[0035]
At the same time, in order to secure N effective for generating twins by lowering the stacking fault energy, and to control Cr fixing N and P and S adversely affecting twin deformation to an appropriate range (2 It is necessary to satisfy the composition balance shown in the formula.
[0036]
0.1Mn + Ca ≧ 10S (1)
16N ≧ 0.01Cr + 30P + 300S (2)
The components described above are essential elements constituting the stainless steel of the present invention. In addition to the above elements, the stainless steel of the present invention can further contain the following optional additive elements.
[0037]
Ca: 0.0003 to 0.01%
Ca need not be added. Ca has the effect of fixing S and improving the hot workability in the same manner as Mn. However, to obtain the effect, Ca must be contained in an amount of 0.0003% or more. On the other hand, if the content exceeds 0.01%, the cleanliness decreases. Therefore, when adding, it is necessary to make Ca content 0.0003-0.01% and to aim at a composition balance.
[0038]
Mo: 0.05-3.0%
Mo is an element effective for the corrosion resistance of steel, and is added as necessary. When added, in order to obtain the effect, it is necessary to contain 0.05% or more. On the other hand, the effect is saturated even if it contains exceeding 3.0%. Therefore, when added, the Mo content is set to 0.05 to 3.0%.
[0039]
Ti, Nb, V, Zr: 0.001 to 1.0%
Ti, Nb, V, and Zr are all effective elements for forming carbides and improving the strength. In order to acquire the effect, it is necessary to contain 0.001% or more, but when it exceeds 1.0% and it contains excessively, a cleanliness will fall. Therefore, when adding, content of Nb, Ti, V, and Zr shall be 0.001-1.0%, respectively.
[0040]
In the stainless steel of the present invention, as shown in FIG. 2, in order to ensure excellent intergranular corrosion resistance, it is necessary to set the twin grain boundary ratio at the grain boundaries to 30% or more. Furthermore, there is a high correlation between the intergranular corrosion resistance and the twin grain boundary ratio, and the intergranular corrosion resistance of stainless steel can be properly grasped.
[0041]
The twin grain boundary ratio defined in the present invention is shown as a ratio (%) of (twin grain boundary length) / (total grain boundary length) represented by the above formula (a). The twin grain boundary length and the total grain boundary length may be calculated by a commonly used method. For example, an electron beam is incident on the surface of the sample to be tested, and the interaction between the electron beam and the crystal is not used. A method of forming a Kikuchi pattern by elastic scattering and processing and analyzing the Kikuchi pattern can be employed.
[0042]
In the stainless steel of the present invention, if the twin grain boundary ratio is made as high as possible, the intergranular corrosion resistance can be improved, so the upper limit of the twin grain boundary ratio is not defined.
[0043]
When steel having the chemical composition defined in the present invention is hot-worked or cold-worked and formed into the required dimensions and then heat-treated at a recrystallization temperature or higher, the twin grain boundary ratio increases to 30% or higher. Stainless steel having excellent intergranular corrosion resistance can be obtained. In addition, when the stainless steel of the present invention is formed by hot working, it is desirable to reduce the degree of processing or increase the heating temperature.
[0044]
That is, the steel structure (microstructure) after processing is given a driving force for recrystallization by hot working in the process of recrystallization, recovery of strain occurs in the latent period, and finally recrystallization occurs. At this time, when the degree of processing is suppressed and the amount of strain is reduced, recrystallization is started with a small driving force. Similarly, the higher the heating temperature, the shorter the time required for recrystallization, so the amount of deformation during that time becomes smaller and recrystallization starts with a small driving force.
[0045]
Under these conditions, the recrystallized grain formation process is not a new grain generation type in which crystal grains having a completely different orientation from the original crystal grain are generated, but a strain-induced type in which the original crystal grain grows as it is. In the strain-induced type, twins are formed repeatedly during the movement of grain boundaries, so twins are easily formed.
[0046]
【Example】
The effect of the stainless steel of the present invention will be described based on examples. Steels having 14 kinds of chemical compositions shown in Table 1 were melted by a vacuum melting method. Among the compositional balances in Table 1, the formula value (1) indicates 0.1 Mn + Ca-10S (mass%), and the formula (2) value indicates 16N-0.01Cr-30P-300S (mass%). When either of them shows a negative (-) value, it indicates that it is out of the composition balance defined in the present invention.
[0047]
[Table 1]
[0048]
Hot working and cold working were performed using the melted steel as test steel. Table 2 shows the conditions at that time.
[0049]
As hot working, steel no. 1, no. 3 and no. For the test steel No. 11, hot forging was performed. 2, no. 4-10, no. About 12-14 test steel, hot rolling was performed following hot forging. At this time, hot forging or hot rolling was performed in a plurality of times, and the direction of the test steel was changed for each processing.
[0050]
The degree of hot working shown in Table 2 is the degree of work calculated based on the thickness of the test steel before and after hot forging for steel that was only hot forged, and steel that was also hot rolled. Is the degree of work calculated based on the thickness of the test steel before and after hot rolling. The workability is defined as workability = (Tb−Ta) / Tb × 100 (%), where Tb is the thickness of the test steel before processing and Ta is the thickness of the test steel after processing. .
[0051]
Moreover, the heating temperature of the hot working shown in Table 2 is the heating temperature before hot forging for the steel subjected only to hot forging, and the steel before hot rolling for the steel subjected to hot rolling. Heating temperature.
[0052]
After the hot working, the steel no. 2, Steel No. 7 and steel no. For the 10 test steels, cold rolling with a workability of 20% was performed.
[0053]
About the test rope which performed hot processing after hot processing, after cold processing, it annealed at the heating temperature of 1100 degreeC in air | atmosphere atmosphere, and was then water-cooled.
[0054]
[Table 2]
[0055]
After the final annealing treatment, twin grain boundary ratios were measured and intergranular corrosion resistance was evaluated. The twin grain boundary ratio of the test steel is determined using the SEM-EBSP (Secondary Electron Microscopy-Electron Back Scattering Pattern), the hot working direction (for example, rolling direction) or the cold working direction (for example, The cross section parallel to the (CR rolling direction) was observed and measured at a magnification of about 150 times.
[0056]
Evaluation of intergranular corrosion resistance of the test steel was performed by simulating a weld heat-affected zone and performing oxalic acid etching after air cooling heat treatment at 650 ° C. for 2 hours, and using an optical microscope to determine the proportion of stepped grain boundaries with a low degree of corrosion. The intergranular corrosivity was evaluated from the results. A case where the degree of corrosion is a step or groove having a partial grain boundary ratio of 60% or more is evaluated as ◯, and a case where the same step or groove has a partial grain boundary ratio of 40 to less than 60%. And the case where the same step or groove had a partial grain boundary ratio of less than 40% was evaluated as x. The results are shown in Table 3 together with the twin grain boundary ratio (%).
[0057]
[Table 3]
[0058]
As is apparent from the results in Table 3, the present steel No. All of Nos. 1 to 8 had a twin grain boundary ratio of 30% or more, and exhibited excellent intergranular corrosion resistance. In particular, the inventive steel No. In Nos. 1 to 5, as shown in Table 2, since hot working was performed by heating to a low degree of processing or high temperature, the twin grain boundary ratio could be ensured to be 40% or more, and remarkably excellent intergranular corrosion resistance. I was able to get sex.
[0059]
On the other hand, Comparative Steel No. Nos. 9 to 14 have a chemical grain composition, and any one or more of the compositional balances represented by the above formulas (1) and (2) are out of the range defined in the present invention. The intergranular corrosion resistance was poor.
[0060]
【The invention's effect】
According to the stainless steel of the present invention, the chemical composition of the steel is controlled within an appropriate range, and the intergranular grain ratio in the grain boundary is regulated to 30% or more, so that the intergranular corrosion resistance is excellent. It becomes. As a result, the stainless steel of the present invention is an optimal member for components such as pipes, structural materials and bolts used in nuclear power plants.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a corresponding grain boundary ratio and corrosion weight loss in a grain boundary corrosion test.
FIG. 2 is a graph showing the relationship between twin grain boundary ratio and corrosion weight loss in a grain boundary corrosion test.
Claims (3)
0.1Mn+Ca≧10S ・・・ (1)
16N≧0.01Cr+30P+300S ・・・ (2)In mass%, C: 0.001 to 0.10%, Si: 0.1 to 1.0%, Mn: 0.1 to 2.0%, Ni: 8 to 30%, Cr: 15 to 30% N: 0.001 to 0.15%, P: 0.05% or less, S: 0.05% or less, and Ca: 0 to 0.01%, and the following formulas (1) and (2) And the balance is Fe and impurities, and the twin grain boundary ratio at the grain boundaries is 30% or more.
0.1Mn + Ca ≧ 10S (1)
16N ≧ 0.01Cr + 30P + 300S (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003185581A JP4059156B2 (en) | 2003-06-27 | 2003-06-27 | Stainless steel for nuclear power |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003185581A JP4059156B2 (en) | 2003-06-27 | 2003-06-27 | Stainless steel for nuclear power |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005015896A JP2005015896A (en) | 2005-01-20 |
JP4059156B2 true JP4059156B2 (en) | 2008-03-12 |
Family
ID=34184992
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003185581A Expired - Fee Related JP4059156B2 (en) | 2003-06-27 | 2003-06-27 | Stainless steel for nuclear power |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4059156B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5215855B2 (en) * | 2006-08-23 | 2013-06-19 | 独立行政法人科学技術振興機構 | Fe-based alloy and manufacturing method thereof |
EP2112237B1 (en) | 2008-04-21 | 2017-09-13 | Secretary, Department Of Atomic Energy | Development of a very high resistance to sensitization in austenitic stainless steel through special heat treatment resulting in grain boundary microstructural modification |
KR20110128924A (en) | 2009-03-27 | 2011-11-30 | 수미도모 메탈 인더스트리즈, 리미티드 | Austenitic stainless steel |
PL3441494T3 (en) | 2016-03-23 | 2022-01-17 | Nippon Steel Stainless Steel Corporation | Austenitic stainless steel sheet for exhaust component having excellent heat resistance and workability, turbocharger component, and method for producing austenitic stainless steel sheet for exhaust component |
KR102249965B1 (en) | 2019-05-28 | 2021-05-11 | 주식회사 포스코 | Austenitic stainless steel having excellent corrosion resistance of weld |
CN111876690B (en) * | 2020-08-06 | 2021-10-29 | 江苏银环精密钢管有限公司 | Alloy movable guide pipe for sodium-cooled fast reactor control rod driving mechanism and manufacturing method |
-
2003
- 2003-06-27 JP JP2003185581A patent/JP4059156B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2005015896A (en) | 2005-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6819700B2 (en) | Ni-based heat-resistant alloy member and its manufacturing method | |
US6478897B1 (en) | Heat-resistant alloy wire | |
US7101446B2 (en) | Austenitic stainless steel | |
JP5462281B2 (en) | Stainless austenitic low Ni steel alloy | |
US20120237388A1 (en) | Austenitic stainless steel sheet and a method for its manufacture | |
JP5257560B1 (en) | Stainless steel and manufacturing method thereof | |
US9243306B2 (en) | Ferritic stainless steel sheet excellent in oxidation resistance | |
KR20050044557A (en) | Super-austenitic stainless steel | |
WO2011155296A1 (en) | Austenitic stainless steel tube having excellent steam oxidation resistance, and method for producing same | |
JP2019002053A (en) | Ferritic stainless steel sheet, steel tube, ferritic stainless member for exhaust system component, and manufacturing method of ferritic stainless steel sheet | |
JP2011190468A (en) | Ferritic stainless steel sheet superior in heat resistance, and method for manufacturing the same | |
JP3976003B2 (en) | Nickel-based alloy and method for producing the same | |
TW201718903A (en) | Ferrite-based stainless steel | |
WO2012121390A1 (en) | Material for nuclear power device, heat transfer tube for steam generator, steam generator, and nuclear power plant | |
JP4059156B2 (en) | Stainless steel for nuclear power | |
JP4327030B2 (en) | Low Ni austenitic stainless steel with excellent overhanging and rust resistance | |
JPH06322489A (en) | Steel tube for boiler excellent in steam oxidation resistance | |
CN1078628C (en) | Austenitic stainless steel and use of steel | |
JP7013301B2 (en) | Al-containing ferritic stainless steel with excellent secondary workability and high-temperature oxidation resistance | |
JP4062188B2 (en) | Stainless steel for nuclear power and manufacturing method thereof | |
JP7445125B2 (en) | Austenitic stainless steel pipe | |
JP7402325B2 (en) | Chrome steel sheet with excellent high-temperature oxidation resistance and high-temperature strength, and its manufacturing method | |
JP7131332B2 (en) | Austenitic heat-resistant alloys and parts of austenitic heat-resistant alloys | |
JPH0114991B2 (en) | ||
JP3827986B2 (en) | Stainless steel flexible pipe or duct pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050720 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071210 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101228 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111228 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121228 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131228 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |