JPS5916948A - Soft-nitriding steel - Google Patents

Soft-nitriding steel

Info

Publication number
JPS5916948A
JPS5916948A JP12303282A JP12303282A JPS5916948A JP S5916948 A JPS5916948 A JP S5916948A JP 12303282 A JP12303282 A JP 12303282A JP 12303282 A JP12303282 A JP 12303282A JP S5916948 A JPS5916948 A JP S5916948A
Authority
JP
Japan
Prior art keywords
soft
steel
hardness
fatigue strength
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12303282A
Other languages
Japanese (ja)
Inventor
Susumu Kanbara
神原 進
Yasuo Otani
大谷 泰夫
Fukukazu Nakazato
中里 福和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP12303282A priority Critical patent/JPS5916948A/en
Publication of JPS5916948A publication Critical patent/JPS5916948A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To obtain the soft-nitriding steel esp. excellent in the toughness of its core part after being soft-nitrided and the ductility of a face hardened layer and having sufficient fatigue strength, by making the steel contain the predetermined ratio of each of C, Si, Mn, Cr, V, soluble Al and N. CONSTITUTION:The soft-nitriding steel comprising, by wt%, 0.15-0.50% C, Si <=1.20%, 0.60-1.30% Mn, Cr <0.20%, 0.05-0.20% V, soluble Al <=0.10%, 0.006- 0.020% N and the balance Fe and inevitable impurities. In said composition, the addition amounts of Cr and Al are remarkably limited below the levels of conventional soft-nitriding steel, to obtain proper face hardness (Hv 500-600) and to remarkably improve the ductility of a face-hardened layer at the same time. The reduction of hardness depth caused by limiting the addition amount of Cr is sufficiently compensated by adding a relatively large amount of V which exhibits the effect to improve fatigue strength, too.

Description

【発明の詳細な説明】 本発明は軟窒化用鋼、特に軟望化処理後の芯部の靭性が
優れ、かつ表面硬化層の延性も優れ、疲労強度も十分な
軟窒化用鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel for soft nitriding, and particularly to a steel for soft nitriding which has excellent core toughness after softening treatment, excellent ductility of a hardened surface layer, and sufficient fatigue strength.

軟窒化処理は、A、変態点以下、一般に570℃程度の
温度で、例えばンアン系化合物の塩浴、RXガス(吸熱
型変性ガス)またはNX がス(発熱型変性ガス)等に
よシ被処理物を処理して、窒素と共に一部の炭素を鋼中
に侵入させ、表層部を硬化させる表面硬化法の1種であ
る。
Soft-nitriding treatment is carried out at a temperature below the transformation point, generally around 570°C, for example, using a salt bath of a nitrogen compound, RX gas (endothermic modified gas) or NX gas (exothermic modified gas), etc. This is a type of surface hardening method in which a treated material is treated to allow some carbon to enter the steel along with nitrogen to harden the surface layer.

この方法は浸炭−焼入法の如く被処理物に大きな歪を生
じさせることがなく、また窒化法の如く長時間を要する
こともないので、機械部品等の量産に適した方法である
が、これに適する鋼種としての軟窒化用鋼の開発は未だ
十分でなく、短時間の軟窒化処理で所望の特性が得られ
るものはこれまでみられなかった。
This method is suitable for mass production of mechanical parts, etc., because it does not cause large distortions in the workpiece like the carburizing-quenching method, nor does it require a long time like the nitriding method. Steel for soft nitriding as a steel type suitable for this purpose has not yet been sufficiently developed, and so far no steel has been found that can obtain the desired properties with short-time soft nitriding treatment.

例えば、従来多用されている軟窒化用鋼としてはJIS
−3CM435 (0,35C−0,75Mn−1,1
Cr−0,2Mo)やSACM 645 (0,45C
−0,45i−1,5Cr −0,2Mo −1,OA
7)がある。また、Cr系肌焼鋼にVを添加した軟窒化
用鋼も2;3提案されており、外国規格(Al5I 6
118)もある。
For example, JIS steel for soft nitriding, which is commonly used
-3CM435 (0,35C-0,75Mn-1,1
Cr-0,2Mo) and SACM 645 (0,45C
-0,45i-1,5Cr -0,2Mo -1,OA
7). In addition, nitrocarburizing steels made by adding V to Cr-based case hardening steels have been proposed, and foreign standards (Al5I6
118) is also available.

軟窒化処理は低温処理であるために、熱処理歪は浸炭−
焼入法などに比べて非常に少ないものの、これを完全に
なくすことは不可能であシ、特に非対称形の被処理材で
はかなりの歪が生ずる。このため、被処理材には、通常
、軟窒化処理後に若干の塑性変形を伴う冷間矯正加工を
施すが、前記の従来鋼にこれを施すと、表面に微細なり
ラックが生じる。これは、従来鋼にハロ。2%以上のC
rが添加されており、特にSACM 645などにはさ
らに多量のA7=が添加されているため、最表面層にC
r窒化物やA、を窒化物を含む非常に硬くて脆い化合物
層が生成し、耐摩耗性は向上するものの、表面層の延性
の劣化が甚しくなるためである。
Because nitrocarburizing is a low-temperature process, the heat treatment strain is similar to that of carburizing.
Although the amount of distortion is very small compared to hardening methods, it is impossible to completely eliminate this distortion, and considerable distortion occurs especially in asymmetrically shaped processed materials. For this reason, the material to be treated is usually subjected to a cold straightening process that involves slight plastic deformation after the nitrocarburizing treatment, but when this process is applied to the conventional steel described above, fine racks are produced on the surface. This is a halo to conventional steel. 2% or more C
r is added, and especially in SACM 645, a large amount of A7= is added, so C is added to the outermost layer.
This is because a very hard and brittle compound layer containing r-nitride or A nitride is generated, and although the wear resistance is improved, the ductility of the surface layer is seriously deteriorated.

これに対して、Crを含有しない炭素鋼に軟窒化処理を
施せば、冷間矯正加工時のクラックは生じにくくなるも
のの、表面硬さく表面下0.025111fflの地点
でのビッカース硬さ)がHv450以下にしかならない
ため、目的とする耐摩耗性および疲労強度の向上はあま
勺期待できなかった。
On the other hand, if soft nitriding is applied to carbon steel that does not contain Cr, cracks are less likely to occur during cold straightening, but the surface hardness increases and the Vickers hardness (at a point 0.025111ffl below the surface) is Hv450. Since the results were only as follows, the desired improvements in wear resistance and fatigue strength could not be expected.

また、CrやAtを多量に添加した上記のSACM 6
45の場合、上述した矯正加工時のクラック発生の問題
のほかに、軟窒化処理後に表面部から芯部への硬さ勾配
が急激になシすぎ、高負荷下に使用される歯車やベアリ
ングなどでは表面硬化部と芯部の境界付近からの剥離現
象が起きやすく、疲労強If。
In addition, the above-mentioned SACM 6 containing a large amount of Cr and At
In the case of No. 45, in addition to the above-mentioned problem of cracks occurring during straightening, the hardness gradient from the surface to the core becomes too steep after the soft nitriding treatment, causing problems such as gears and bearings used under high loads. In this case, peeling phenomenon easily occurs near the boundary between the hardened surface part and the core part, and the fatigue strength If.

耐ピツチング性あるいは耐スポーリング性の点でも問題
があった。この急激な硬さ勾配は、表面硬さがCrおよ
びAtの高含有によシHv800〜1100と非常に高
くなるのに対して、有効硬化深さくビッカース硬さHv
 = 400に対応する表面からの距離)は高々帆15
冒程度と小さいことによる。
There were also problems in pitting resistance or spalling resistance. This sharp hardness gradient is due to the fact that the surface hardness becomes extremely high (Hv800-1100) due to the high content of Cr and At, while the effective hardening depth and Vickers hardness Hv
= distance from the surface corresponding to 400) is at most 15
Depends on the degree of blasphemy and smallness.

よって、本発明の目的は、耐摩耗性、疲労強度および耐
ピツチング性にすぐれていると共に、硬化層の延性が向
上し、軟窒化処理後の冷間矯正加工時にクラックが発生
しにくい軟窒化用鋼を提供することである。
Therefore, the object of the present invention is to provide a soft-nitriding material that has excellent wear resistance, fatigue strength, and pitting resistance, has improved ductility of the hardened layer, and is less prone to cracking during cold straightening after soft-nitriding treatment. It is to provide steel.

本発明者らは、上記の目的で軟窒化用鋼の研究を続けた
結果、CrおよびkLの添加量を従来の軟窒化用鋼にお
ける水準よシ大幅に制限すると、適度の表面硬さく H
v 500〜600)が得られると同時に、硬化表面層
の延性は著しく向上するとの知見を得た。これは、Cr
およびMが軟窒化処理中に表面層に微細なCr炭窒化物
およびAt窒化物を析出させるため表面層の著しい硬さ
向上をもたらす一方で、最表層にはCr窒化物やM窒化
物を含む非常に脆い化合物層が生成して、硬化表面層の
延性を甚しく劣化させるため、これらの元素の量の制限
が上記の結果を生むものと考えられる。一方、Cr添加
量の制限により生ずる硬化深さの減少は、硬化深さを大
きくするのに有効なVを0.05%より多量に添加する
ことによυ十分に補え、疲労強度向上にも十分有効であ
ることも判明した。■炭♀化物は最表面層よシ少し内部
に入った部位に多く析出するため、■添加によル硬化表
面層の延性をf’iとんど劣化させずに、大きな硬化深
さを得ることができる。これにより、表面からの硬さ勾
配が緩やかになり、疲労強度、耐ピツチング性も改善さ
れる。
As a result of continuing research on steel for soft nitriding for the above purpose, the present inventors found that by significantly limiting the amount of Cr and kL added compared to the level of conventional steel for soft nitriding, a suitable surface hardness can be achieved.
It was found that the ductility of the hardened surface layer was significantly improved at the same time as the hardened surface layer was obtained. This is Cr
and M precipitates fine Cr carbonitrides and At nitrides in the surface layer during the soft-nitriding process, resulting in a significant improvement in the hardness of the surface layer, while the outermost layer contains Cr nitrides and M nitrides. It is believed that limiting the amount of these elements produces the above results because a very brittle compound layer is formed, severely degrading the ductility of the hardened surface layer. On the other hand, the decrease in hardening depth caused by limiting the amount of Cr added can be sufficiently compensated for by adding more than 0.05% V, which is effective in increasing the hardening depth, and can also improve fatigue strength. It was also found to be sufficiently effective. ■Carbide precipitates in large quantities in the outermost layer and in areas a little deeper into the interior; therefore, by adding carbide, a large hardening depth can be obtained without deteriorating the ductility of the hardened surface layer. be able to. As a result, the hardness gradient from the surface becomes gentler, and fatigue strength and pitting resistance are also improved.

また、特に高い疲労強度が要求される場合には、Bまた
はMoを添加することによって焼入性を篩め、軟窒化処
理前の加工(熱間圧延、熱間鍛造)あるいは熱処理(焼
ならしなど)後の組織を微細パーライトあるいはベイナ
イトにし、芯部硬さを高めることによって、疲労強度の
一層の向上を図れることも見出された。
In addition, when particularly high fatigue strength is required, the hardenability can be improved by adding B or Mo, and the processing (hot rolling, hot forging) or heat treatment (normalizing) before nitrocarburizing can be performed. It has also been found that fatigue strength can be further improved by making the subsequent structure into fine pearlite or bainite and increasing the core hardness.

さらに、軟窒化処理前に切削を施す場合には、切削性向
上釦有効なs 、 pbまたはCaを添加するのが好ま
しい。
Furthermore, when cutting is performed before soft-nitriding treatment, it is preferable to add s, pb, or Ca, which are effective in improving machinability.

ここに、本発明は、 C: (1,15〜0.50% 、     Si :
 1.20%以下。
Here, the present invention includes C: (1.15 to 0.50%, Si:
1.20% or less.

Mn:0.60−1.30%、     Cr:0.2
0%未満。
Mn: 0.60-1.30%, Cr: 0.2
Less than 0%.

V : 0.05〜0.20%、     sol、A
t: 0.10%以下。
V: 0.05-0.20%, sol, A
t: 0.10% or less.

N : 0.(X)6〜0.020%。N: 0. (X) 6-0.020%.

さらに、必要によシ、B : 0.0005−0.00
50チおよび]VIo:0.05〜0.25%の1種も
しくは2種、ならびに/またはS : 0.04〜0.
13矛、Pb: 0.03〜0.35 %およびCa:
 0.0010〜0.0100  %のうちの1種もし
くは2種以上を含有し、 残部Feと不可避的不純物からなる軟窒化用鋼にある。
Furthermore, if necessary, B: 0.0005-0.00
50 CH and] VIo: 0.05-0.25% of one or two kinds, and/or S: 0.04-0.
13 pieces, Pb: 0.03-0.35% and Ca:
The steel for soft nitriding contains one or more of 0.0010 to 0.0100%, with the balance being Fe and unavoidable impurities.

本発明に係る鋼の組成を上述の範囲内に限定した理由に
ついて次に説明する。
The reason why the composition of the steel according to the present invention is limited within the above range will be explained next.

C: Cは強度確保のだめの基本成分であり、芯部強度
確保のためには最低0.15%必要である。
C: C is a basic component for ensuring strength, and a minimum content of 0.15% is required to ensure core strength.

しかし、0.50%を越えると芯部の延性、靭性が低下
し、切削性、冷間加工性が低下すると共に、軟窒化後の
表面硬さ、硬化深さが急激に減少し始める。したがって
、本発明におけるC量は下限を0.15チ、上限を帆5
0チとした。
However, if it exceeds 0.50%, the ductility and toughness of the core decrease, machinability and cold workability decrease, and the surface hardness and hardening depth after nitrocarburizing begin to decrease rapidly. Therefore, the lower limit of the amount of C in the present invention is 0.15 cm, and the upper limit is 5 cm.
It was set to 0.

Sl : Stは通常脱酸剤として添加されるが、固溶
強化および焼戻し軟化抵抗の向上にも有効で、結果とし
て軟窒化処理後の芯部硬さを高める。したがって、添加
量は多いほどよいが、1.20%を越えると軟窒化特性
の劣化が始まる。特に表面硬さの低下が著しくなるとと
もに、冷間加工性や溶接性にも害を及ぼすので、上限を
1.20%とした。
Sl: St is usually added as a deoxidizing agent, but it is also effective in improving solid solution strengthening and temper softening resistance, and as a result increases the core hardness after soft nitriding treatment. Therefore, the higher the amount added, the better, but if it exceeds 1.20%, the soft-nitriding properties begin to deteriorate. In particular, since the decrease in surface hardness becomes significant and also harms cold workability and weldability, the upper limit was set at 1.20%.

Mn : Mxiは製鋼時の脱酸剤として不可欠である
と共に、芯部の強度・靭性の向上にも有効であって、軟
窒化処理品の性能確保のために最低。、6゜チは必要で
ある。しかし、1.30%を越えると切削性が著しぐ低
下し始めるので、下限を0.60%、上限を1.30%
とした。
Mn: Mxi is essential as a deoxidizing agent during steel manufacturing, and is also effective in improving the strength and toughness of the core, and is the minimum required to ensure the performance of soft-nitrided products. , 6° is necessary. However, if it exceeds 1.30%, the machinability begins to deteriorate significantly, so the lower limit is set at 0.60% and the upper limit is set at 1.30%.
And so.

Cr : Crは軟窒化による侵入Nと結合して表面硬
さを高め、かつ硬化深さを大きくする極めて有効な元素
である。したがって、耐摩耗性と疲労強度を向上させる
には多値に添加することが望ましいが、0.20 %以
上では表面硬化層の延性が急激に劣化し始める。そのた
め、軟窒化処理時に発生した熱処理歪を除去するために
通常行なわれる冷間矯正加工時に、加工に伴う弾性変形
および塑性変形によって表面にクラックが発生しやすく
なる8以上の理由からCr量は0,20%未満とした。
Cr: Cr is an extremely effective element that combines with N intruded by nitrocarburizing to increase surface hardness and hardening depth. Therefore, in order to improve wear resistance and fatigue strength, it is desirable to add multiple amounts of Ni, but if it exceeds 0.20%, the ductility of the hardened surface layer begins to deteriorate rapidly. Therefore, during cold straightening, which is usually performed to remove the heat treatment strain generated during nitrocarburizing, cracks are likely to occur on the surface due to elastic deformation and plastic deformation associated with processing. , less than 20%.

V: vは軟窒化による侵入Nおよび侵入Cと結合して
微細なバナジウム炭屋化物を析出することによ勺、表面
硬さおよび表面深さを向上させる。
V: V combines with the intruded N and C introduced by nitrocarburizing to precipitate fine vanadium carbides, thereby improving surface hardness, surface hardness, and surface depth.

特に、VはCrに比して、表面硬さの上昇に対する寄与
は比較的小さく、硬化深さの増加に対する寄与が大きい
ため、疲労強度の向上効果が大きい割シには、硬化表面
層の延性の低下は小さい。この効果を十分に発揮させ、
疲労強度の向上を期待するには帆05チ以上の量のVが
必要である。しかし、0.20%を越えて添加しても、
効果はそれ以上向上しないだけでなく、硬化表面層の延
性も劣化しはじめるので、Viは0.05チ以上、0.
20チ以下とした。
In particular, compared to Cr, V has a relatively small contribution to increasing the surface hardness and a large contribution to increasing the hardening depth. The decrease in is small. Make full use of this effect,
To expect an improvement in fatigue strength, an amount of V greater than 05 cm is required. However, even if added in excess of 0.20%,
Not only does the effect not improve any further, but the ductility of the hardened surface layer also begins to deteriorate, so if Vi is 0.05 inch or more, 0.
It was set to 20 inches or less.

sol、At: ALもCrと同様に侵入Nと結合して
表面硬さを高めるのに有効な元素である。特に■との複
合添加ではVとAtの交互作用が生じ、有効硬化深さを
増大させる効果が助長される。すなわち、Atによる適
度な表面硬さ向上作用と、■による硬化深さ向上作用が
重畳し、硬化深さがよシ一層増加する。しかし、0.1
0%を越えると、硬化深さはむしろ低下しはじめると共
に、硬化表面層の延性も急激に劣化し、矯正加工時に表
面にクラックが生じやすくなるので、上限を0.10 
%とした。
sol, At: Like Cr, AL is also an element effective in bonding with intruding N to increase surface hardness. In particular, when added in combination with (2), an interaction between V and At occurs, promoting the effect of increasing the effective hardening depth. That is, the moderate surface hardness improving effect of At and the hardening depth improving effect of (2) are superimposed, and the hardening depth is further increased. However, 0.1
If it exceeds 0%, the hardening depth will actually begin to decrease, and the ductility of the hardened surface layer will also rapidly deteriorate, making it easier for cracks to occur on the surface during straightening, so the upper limit should be set at 0.10%.
%.

N: Nは結晶粒度を微細化させ、それにょシ芯部の靭
性を向上させる。このためには0.006チ以上必要で
あるが、0.020%を越えると、芯部におけるV窒化
物の生成が顕著になシ、逆に芯部の靭性が劣化しはじめ
るので、下限を0.006チ、上限を0.020%とし
た。
N: N refines the grain size and improves the toughness of the core. For this purpose, 0.006% or more is required, but if it exceeds 0.020%, the formation of V nitride in the core will become noticeable, and the toughness of the core will begin to deteriorate, so the lower limit should be set. 0.006%, with an upper limit of 0.020%.

B: Bを微量添加すると焼入性が向上するため、軟窒
化処理前の加工(熱間圧延、熱間鍛造)あるいは熱処理
(焼ならし等)後の硬さが犬きく。
B: Adding a small amount of B improves hardenability, so the hardness increases after processing (hot rolling, hot forging) or heat treatment (normalizing, etc.) before soft-nitriding.

なる。したがって、これに軟♀化処理を施すと、結果と
して芯部硬さが向上するので、疲労強度が向上する。そ
のため、Bの節介は特に高い疲労強度が要求される場合
に有効である。Bを添加する場合、上記の向上を得るに
は少なくとも0.0005チの量が必要であるが、0.
0050チを越えるとその効果が飽和しはじめるので、
下限を0.0005%、上限を0.0050%とした。
Become. Therefore, when this is subjected to a softening treatment, the core hardness is improved as a result, and the fatigue strength is improved. Therefore, the joint B is effective when particularly high fatigue strength is required. When B is added, an amount of at least 0.0005 h is required to obtain the above improvement, but an amount of 0.0005 h is required to obtain the above improvement.
When it exceeds 0050chi, the effect begins to saturate, so
The lower limit was set to 0.0005%, and the upper limit was set to 0.0050%.

Mo : MoもBと同様に焼入性を向上させ、軟窒化
処理前の熱間加工あるいは熱処理後の硬さを太きくし、
疲労強度の一層の向上に有効である。このためには、庵
を添加する場合、少なくとも0.05チの量は必要であ
るが、0.25 ′%を越えて添加すると焼入性が上が
シすぎて切削性が劣化すると共に、経済的にも不利であ
るので、下限を0.05%、上限を帆25%とした。
Mo: Like B, Mo also improves hardenability, increases the hardness after hot working or heat treatment before soft nitriding treatment,
This is effective in further improving fatigue strength. For this purpose, when adding Iori, it is necessary to add at least 0.05%, but if it is added in excess of 0.25'%, the hardenability will be too high and the machinability will deteriorate. Since it is economically disadvantageous, the lower limit was set at 0.05% and the upper limit was set at 25%.

なお、BとMo はともに表面硬さに対しては11とん
ど影響しない。また、疲労強度の要求水準が特に高くな
い場合には、BとMOを添加しなくてもよい。
Note that both B and Mo have little effect on surface hardness. Further, if the required level of fatigue strength is not particularly high, B and MO may not be added.

S、Pb、Ca :  これらの成分は、軟窒化処理前
に切削孕施す場合の切削性向上に有効である。軟窒化処
理前に深穴穿孔、重切削、高速切削などが施される場合
には、切削性が要求される度合いに応じて、これらの元
素の1種又は2種以上を含有させることができる。これ
らの元素は硬化特性に対しては影響を及ぼさない。
S, Pb, Ca: These components are effective in improving machinability when performing cutting before nitrocarburizing. When deep hole drilling, heavy cutting, high-speed cutting, etc. are performed before soft-nitriding treatment, one or more of these elements can be included depending on the degree of machinability required. . These elements have no effect on the hardening properties.

構造用鋼の切削性を高めるのに必要最少限の添加量は、
S : 0.04%、Pb: 0.03%、Ca : 
0.0010チである。またSは0.13%、Pbは0
.35%を越えると強度・靭性の低下が甚しくなり、一
方Caは溶製上0.0100%を越えて添加するのは困
難であるので、Sについては下限を帆04チ、上限を0
.13%、pbについては下限′ff:0.03%、上
限を0.35%、Caについては下限をo、o o i
 o%、上限をo、o i o o%とじた。
The minimum amount added to improve the machinability of structural steel is:
S: 0.04%, Pb: 0.03%, Ca:
It is 0.0010chi. Also, S is 0.13% and Pb is 0.
.. If it exceeds 35%, the strength and toughness will be seriously reduced.On the other hand, it is difficult to add more than 0.0100% of Ca in the melting process, so for S, the lower limit is 04 and the upper limit is 0.
.. 13%, for pb, lower limit 'ff: 0.03%, upper limit is 0.35%, for Ca, lower limit is o, o o i
o%, the upper limit was set to o, o i o o%.

次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.

実施例 第1表に示す組成を有する鋼を高周波溶解炉により大気
溶解し、鋼塊にしたのち、1250’Cに加熱し、直径
30mの丸棒に熱間鍛造し、鍛造ままの材料およびさら
に950 ’Cで1時間の焼ならしをした材料のそれぞ
れ−について直径25fIIII×厚さ19覇の円板状
試験片を作成した。また、焼ならし拐についてのみ、直
径25■×長さ300+m++の丸棒状静画げ試験片も
作成した。
Examples Steel having the composition shown in Table 1 is melted in the atmosphere in a high-frequency melting furnace to form a steel ingot, heated to 1250'C, hot forged into a round bar with a diameter of 30 m, and the as-forged material and further For each of the materials normalized at 950'C for 1 hour, a disk-shaped test piece with a diameter of 25 cm and a thickness of 19 cm was prepared. In addition, for normalizing only, a round rod-shaped static image test piece with a diameter of 25 mm and a length of 300 m++ was also prepared.

これら一連の試験片に対し、アンモニアガス+f、tX
ガス(1:1)の混合ガス中において570°Cで4時
間のがス軟窒[ヒ処理を施した。この軟窒化処理後、円
板状試験片の表面硬さく表面から0.025(転)の位
16′でのビッカース硬さHvノおよび硬化深さくビッ
カース硬さHv=400に対応する表面からの距離)を
測定した。また、丸棒状試験片に対してt」、第1図に
示すような静曲げ試験を行ない、硬化表面にクラックが
生じた時のたわみ−4をツ111定した。これらの結果
を第1表に併記する。
For these series of test pieces, ammonia gas +f, tX
The specimens were subjected to a nitrocarburizing treatment at 570° C. for 4 hours in a mixed gas (1:1). After this nitrocarburizing treatment, the surface hardness of the disc-shaped test piece was increased from the surface corresponding to the Vickers hardness Hv at the 16' position of 0.025 (turn) and the hardening depth to the Vickers hardness Hv = 400. distance) was measured. Further, a static bending test as shown in FIG. 1 was carried out on the round bar-shaped test piece, and the deflection -4 when a crack appeared on the hardened surface was determined. These results are also listed in Table 1.

鋼種N[L 1〜16は本発明に係る鋼であり、鋼種N
α17−19はCr 含有量の点で、鋼種N120゜2
1は■含有量の点で、また鋼種間22はsol、Atの
点でそれぞれ本発明の範囲外である比較鋼であシ、残少
の鋼種m23,24および25はそれぞれJIS−8C
M 435. JIS−8ACM 645およびJIS
−840Cに相当する従来鋼である。
Steel type N [L 1 to 16 are steels according to the present invention, steel type N
α17-19 is steel type N120°2 in terms of Cr content.
1 is comparative steel in terms of content, 22 is a comparison steel that is outside the scope of the present invention in terms of sol and At, and the remaining steel types m23, 24 and 25 are JIS-8C.
M435. JIS-8ACM 645 and JIS
It is a conventional steel equivalent to -840C.

第1表の結果かられかるように、本発明鋼はいずれも表
面硬さがHv 500〜600の範囲内と適度であシ、
しかも硬化深さは0.20w以上と大きい。また、静曲
げ試験によるクラック発生時のたわみ量はいずれも3.
4 tnn以上である。
As can be seen from the results in Table 1, all of the steels of the present invention have moderate surface hardness within the range of Hv 500 to 600.
Moreover, the hardening depth is as large as 0.20W or more. In addition, the amount of deflection when a crack occurs in a static bending test is 3.
4 tnn or more.

これに対して、比較鋼のN[117〜19および21゜
22については硬化深さは十分であるが、表面硬さが高
すぎ、そのためにクラック発生時のたわみ量が2.1m
以下と非常に小さくなっている。また、鋼種間20およ
び23〜25については、いずれも硬化深さが0.18
w以下と小さい上に、Nα25は表面硬さがHv442
〜445と不十分であり、逆にm24は表面硬さが■v
990〜995と高すぎてクラック発生時のたわみ量が
0.2m+と極端に小さい。
On the other hand, the comparative steels N[117-19 and 21°22 have sufficient hardening depth, but the surface hardness is too high, and the amount of deflection when cracking occurs is 2.1 m.
It is very small as shown below. In addition, for steel types 20 and 23 to 25, the hardening depth is 0.18.
In addition to being small at less than w, Nα25 has a surface hardness of Hv442.
~445, which is insufficient, and conversely, the surface hardness of m24 is ■v
990 to 995, which is too high, and the amount of deflection when a crack occurs is extremely small, at 0.2 m+.

第2図は、Cr含有量以外は実質的に同一組成とみなせ
る鋼種t1α4.3,19.18.17の焼ならし材に
ついての軟窒化、処理後の靜曲げ試験の結果(表面クラ
ック発生時のたわみ量)をCr含有量に対してグロット
したグラフである8このグラフから明らかなように、C
r含有量が0.2%を越えると、たわみ量は急激に低下
しはじめる。すなわち、硬化層の延性が急激に小さくな
る。
Figure 2 shows the results of a soft bending test after soft nitriding and treatment for normalized steel types t1α4.3, 19.18.17, which can be considered to have substantially the same composition except for the Cr content (when surface cracks occur). This is a graph plotting the amount of deflection) against the Cr content8.As is clear from this graph,
When the r content exceeds 0.2%, the amount of deflection begins to decrease rapidly. That is, the ductility of the hardened layer decreases rapidly.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、静曲げ試験の要領を模式的に示す図;および
第2図は、靜曲げ試験におけるクラック発生時のたわみ
量とCr 含有量との関係金示すグラフである。
FIG. 1 is a diagram schematically showing the procedure of the static bending test; and FIG. 2 is a graph showing the relationship between the amount of deflection at the time of crack generation and the Cr content in the static bending test.

Claims (1)

【特許請求の範囲】 (1)  C: 0.15〜0.50%、   Si:
1.20%以下。 Mn : 0.60〜1.30%、   Cr : 0
.20%未満。 V : 0.05〜0.20%、    sol、AA
 : 0.10 %以下。 N : (1,006〜0.020%。 残部Fe  と不可避的不純物からなる軟窒化用鋼。 f21  c : 0.15〜0.50%、    S
i:1.20%以下。 Mn : 0.60〜1.30%、    Cr:0.
20%未満。 V : 0.05〜0.20%、   sol、At:
 0−10%以下。 N : 0.006〜0.020%。 さらにB : 0.0005〜0.0050%およびM
O:Q、05〜0.25%の1種・ま二たは2種を含有
し、残部Feと不可避的不純物からなる軟窒化用鋼。 (3)  C: 0.15〜0.50%、   Si:
1.20%以下。 Mn : 0.60〜1.30%、   Cr:0.2
0%未満。 V : 0.05NO,20% 、    sol、A
t: 0.10%以下参N : 0.006〜0.02
0チ。 さらにS : 0.04〜0.13%、Pb:0.03
〜0.35%およびCa : 0.0010〜0.01
00%のうちの1種または2種以上を含有し、残部Fe
と不可避的不純物からなる軟窒化用鋼。 <4)  C:0.15〜0.50チ、   Sl:1
.20%以下。 Mn : 0.60〜1.30%、   Cr:0.2
0%未満。 V : 0.05〜0.20%、    sol、At
: 0.10%以下。 N : 0.006〜0.020%。 さらにB:0.0005〜0.0050%およびMO=
0.05〜0.25%の1種または2種と、S二0.0
4〜0.13%、Pb:0.03〜0.35%およびC
a : 0.0010−0.0100%のうちの1種ま
たは2種以上とを含有し、 残部Feと不可避的不純物からなる軟窒化用鋼。
[Claims] (1) C: 0.15 to 0.50%, Si:
1.20% or less. Mn: 0.60-1.30%, Cr: 0
.. Less than 20%. V: 0.05-0.20%, sol, AA
: 0.10% or less. N: (1,006~0.020%. Steel for soft nitriding consisting of the balance Fe and inevitable impurities. f21c: 0.15~0.50%, S
i: 1.20% or less. Mn: 0.60-1.30%, Cr: 0.
Less than 20%. V: 0.05-0.20%, sol, At:
0-10% or less. N: 0.006-0.020%. Furthermore, B: 0.0005-0.0050% and M
O: A steel for soft nitriding containing 05 to 0.25% of one, two, or two of Q, and the balance being Fe and unavoidable impurities. (3) C: 0.15-0.50%, Si:
1.20% or less. Mn: 0.60-1.30%, Cr: 0.2
Less than 0%. V: 0.05NO, 20%, sol, A
T: 0.10% or less N: 0.006 to 0.02
0chi. Furthermore, S: 0.04-0.13%, Pb: 0.03
~0.35% and Ca: 0.0010-0.01
00%, and the remainder is Fe.
and unavoidable impurities. <4) C: 0.15-0.50chi, Sl: 1
.. Less than 20%. Mn: 0.60-1.30%, Cr: 0.2
Less than 0%. V: 0.05-0.20%, sol, At
: 0.10% or less. N: 0.006-0.020%. Furthermore, B: 0.0005-0.0050% and MO=
0.05-0.25% of one or two types and S20.0
4-0.13%, Pb: 0.03-0.35% and C
a: A steel for soft nitriding containing one or more of 0.0010-0.0100%, with the balance being Fe and unavoidable impurities.
JP12303282A 1982-07-16 1982-07-16 Soft-nitriding steel Pending JPS5916948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12303282A JPS5916948A (en) 1982-07-16 1982-07-16 Soft-nitriding steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12303282A JPS5916948A (en) 1982-07-16 1982-07-16 Soft-nitriding steel

Publications (1)

Publication Number Publication Date
JPS5916948A true JPS5916948A (en) 1984-01-28

Family

ID=14850522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12303282A Pending JPS5916948A (en) 1982-07-16 1982-07-16 Soft-nitriding steel

Country Status (1)

Country Link
JP (1) JPS5916948A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170543A (en) * 1985-01-23 1986-08-01 Sumitomo Metal Ind Ltd Wear resisting steel for nitriding
JPS6425949A (en) * 1987-07-21 1989-01-27 Daido Steel Co Ltd Low alloy tufftriding steel
US4915900A (en) * 1987-10-15 1990-04-10 Aichi Steel Works, Ltd. Free-cutting steel having high fatigue strength
US4930909A (en) * 1988-07-11 1990-06-05 Nippon Seiko Kabushiki Kaisha Rolling bearing
US5695576A (en) * 1995-01-31 1997-12-09 Creusot Loire Industrie (S.A.) High ductility steel, manufacturing process and use
US6083455A (en) * 1998-01-05 2000-07-04 Sumitomo Metal Industries, Ltd. Steels, steel products for nitriding, nitrided steel parts
EP3348664A4 (en) * 2015-09-08 2019-01-23 Nippon Steel & Sumitomo Metal Corporation Nitrided steel component and manufacturing method thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170543A (en) * 1985-01-23 1986-08-01 Sumitomo Metal Ind Ltd Wear resisting steel for nitriding
JPH0471987B2 (en) * 1985-01-23 1992-11-17 Sumitomo Metal Ind
JPS6425949A (en) * 1987-07-21 1989-01-27 Daido Steel Co Ltd Low alloy tufftriding steel
US4915900A (en) * 1987-10-15 1990-04-10 Aichi Steel Works, Ltd. Free-cutting steel having high fatigue strength
US4930909A (en) * 1988-07-11 1990-06-05 Nippon Seiko Kabushiki Kaisha Rolling bearing
US5695576A (en) * 1995-01-31 1997-12-09 Creusot Loire Industrie (S.A.) High ductility steel, manufacturing process and use
US6083455A (en) * 1998-01-05 2000-07-04 Sumitomo Metal Industries, Ltd. Steels, steel products for nitriding, nitrided steel parts
EP3348664A4 (en) * 2015-09-08 2019-01-23 Nippon Steel & Sumitomo Metal Corporation Nitrided steel component and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP2007077411A (en) Machine structural component having excellent fatigue strength and wear property, and method for producing the same
JP7252761B2 (en) Precipitation hardening steel and its manufacture
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
JP2579640B2 (en) Manufacturing method of high fatigue strength case hardened product
JP4737601B2 (en) High temperature nitriding steel
JPH0421757A (en) High surface pressure gear
JPS5916948A (en) Soft-nitriding steel
JPS5916949A (en) Soft-nitriding steel
JPH07286257A (en) Production of nitriding steel member excellent in cold forgeability and fatigue strength
JPH0447023B2 (en)
JPS61217553A (en) Case hardening boron steel producing small strain by heat treatment
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JP2006265664A (en) Method for producing belt for continuously variable transmission
JP2600174B2 (en) Low alloy nitrocarburized steel
JPH0227408B2 (en)
JP2813917B2 (en) High fatigue strength structural steel
JP3398552B2 (en) High-strength austenitic stainless steel sheet for flapper valve with excellent fatigue properties and method for producing the same
JPH10183296A (en) Steel material for induction hardening, and its production
JP2611241B2 (en) Low alloy nitrocarburized steel
KR900007446B1 (en) Method for producing a high tensile steel having a good properties of strength resistant abraison resistant carrosion
JPS627243B2 (en)
JPS6131184B2 (en)
JPS626614B2 (en)
JP2001081531A (en) High strength steel for nitriding excellent in settling resistance and impact fatigue resistance