JP2006265664A - Method for producing belt for continuously variable transmission - Google Patents

Method for producing belt for continuously variable transmission Download PDF

Info

Publication number
JP2006265664A
JP2006265664A JP2005087188A JP2005087188A JP2006265664A JP 2006265664 A JP2006265664 A JP 2006265664A JP 2005087188 A JP2005087188 A JP 2005087188A JP 2005087188 A JP2005087188 A JP 2005087188A JP 2006265664 A JP2006265664 A JP 2006265664A
Authority
JP
Japan
Prior art keywords
ring
less
shaped steel
steel sheet
nitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005087188A
Other languages
Japanese (ja)
Inventor
Seiichi Isozaki
誠一 磯崎
Kenichi Morimoto
憲一 森本
Hiroki Tomimura
宏紀 冨村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2005087188A priority Critical patent/JP2006265664A/en
Publication of JP2006265664A publication Critical patent/JP2006265664A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a belt for continuously variable transmission, having reasonable strength and fatigue characteristics with a producing process of a reduced processing load. <P>SOLUTION: In the method for producing the belt for non-stage transmission, a ringed steel sheet which has the chemical composition composed of, by mass, ≤0.15% C, ≤3.0% Si, ≤1.0% Mn, ≤0.06% P, ≤0.01% S, 0.05-7.0% Ni, 8.0-18.0% Cr, ≤0.10% N, 0-0.05% Ti, 0-3.0% Cu, 0-0.015% B and the balance Fe with inevitable impurities and has the metallic structure of 0-10 vol% retained austenitic phase, 0-50 vol% ferritic phase, and martensitic phase in a remaining matrix part, in the base material and the welded part, and forms as the ringed state with the welding, is subjected to a nitriding treatment at 300-600°C for 1-120min with one among a salt-bath nitriding method, a gas-sulfurizing nitriding method and a plasma nitriding method. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、溶接によりリング状にした無端金属ベルトからなる、無段変速機ベルトの製造法に関する。   The present invention relates to a method of manufacturing a continuously variable transmission belt comprising an endless metal belt ring-shaped by welding.

従来、無段変速機ベルトに用いる金属リング材としては18Niマルエージング鋼が使用されてきた。この材料は焼入れ状態でほぼマルテンサイト単相であり、時効処理によって硬度を上昇させ、さらに窒化処理で表面層を硬化させることで素材の耐摩耗性や疲労特性を付与することが可能である。しかし、18Niマルエージング鋼はCoを10%以上含有しているために非常に高価であり、リサイクル性にも問題がある。また、リング溶接時の熱履歴で硬度が上昇するので、そのままリング圧延に供すると板厚制御や周長制御が難しくなる。このため、リング溶接後に焼鈍工程を入れているのが現状であり、工程負荷も大きい。   Conventionally, 18Ni maraging steel has been used as a metal ring material used for a continuously variable transmission belt. This material is substantially martensite single phase in the quenched state, and can increase the hardness by aging treatment and further impart the wear resistance and fatigue characteristics of the material by hardening the surface layer by nitriding treatment. However, 18Ni maraging steel is very expensive because it contains 10% or more of Co, and there is a problem in recyclability. In addition, since the hardness increases due to the heat history during ring welding, it is difficult to control the plate thickness and the circumference when subjected to ring rolling as it is. For this reason, it is the present condition that the annealing process is put after ring welding, and the process load is also large.

下記特許文献1、2には、18Niマルエージング鋼よりもさらに疲労特性を向上させた無段変速機ベルト用材料として、準安定オーステナイト系ステンレス鋼を使用したものが記載されている。これは、リング圧延時に加工誘起マルテンサイトを生成させ、さらに時効窒化処理を施すことにより非常に高い疲労特性を実現したものである。   The following Patent Documents 1 and 2 describe a material using a metastable austenitic stainless steel as a continuously variable transmission belt material having improved fatigue characteristics as compared with 18Ni maraging steel. This realizes extremely high fatigue properties by generating work-induced martensite during ring rolling and further applying an aging nitriding treatment.

特開2000−63998号公報JP 2000-63998 A 特開2002−53936号公報JP 2002-53936 A

しかしながら、特許文献1、2の準安定オーステナイト系鋼は、溶体化処理後において基本的にオーステナイト単相組織であるから、十分な量の加工誘起マルテンサイトを確保するためにはリング圧延の工程に大きな負荷がかかる。特に溶接部はひずみの少ないオーステナイト単相組織となるため、母材部と溶接部とでほとんど差のない組織状態を得るにはリング圧延での負荷を増大させる必要がある。また、リング圧延後もオーステナイト相が多く存在するので窒化処理には長時間を要する。特許文献1によると時効窒化処理は20分以上必要であるとされるが、発明者らのその後の調査の結果、20分程度の短時間では必ずしも安定して窒化が達成されないことがわかった。   However, since the metastable austenitic steels of Patent Documents 1 and 2 are basically an austenite single-phase structure after solution treatment, in order to ensure a sufficient amount of work-induced martensite, the ring rolling process is performed. A heavy load is applied. In particular, since the welded portion has an austenite single-phase structure with less strain, it is necessary to increase the load in ring rolling in order to obtain a structure state with almost no difference between the base metal portion and the welded portion. In addition, since many austenite phases exist after ring rolling, a long time is required for the nitriding treatment. According to Patent Document 1, aging nitriding treatment is said to be required for 20 minutes or more. However, as a result of subsequent investigations by the inventors, it has been found that nitriding is not always stably achieved in a short time of about 20 minutes.

一方、昨今では無段変速機の設計技術の進歩等により、特許文献1、2の材料ほど高い疲労特性を必要としないリング材の用途も増えつつある。特許文献1、2の材料はコストおよび特性の面で必ずしも合理的とは言えない。
本発明は、Co等の特殊元素を添加することなくリサイクル性に優れた素材を用い、実施しやすく工程負荷の少ないプロセスで引張強さ1350N/mm2以上、疲れ限度650N/mm2以上の強度・疲労特性を安定して付与することのできる、コスト・性能バランスに優れた無段変速機ベルトの製造法を提供しようというものである。
On the other hand, due to advances in design technology for continuously variable transmissions, the use of ring materials that do not require as high fatigue characteristics as the materials of Patent Documents 1 and 2 is increasing. The materials of Patent Documents 1 and 2 are not necessarily reasonable in terms of cost and characteristics.
The present invention uses a material excellent in recyclability without adding a special element such as Co, and is easy to implement and has a tensile strength of 1350 N / mm 2 or more and a fatigue limit of 650 N / mm 2 or more in a process with low process load. The aim is to provide a method for producing a continuously variable transmission belt that can stably impart fatigue characteristics and has an excellent cost / performance balance.

発明者らの詳細な研究の結果、上記目的を達成するには、材料の金属組織を残留オーステナイト相が10体積%以下に低減されたマルテンサイト主体の組織状態とした上で、これを「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかの窒化処理に供することが極めて有効であることがわかった。そして、窒化処理前にこのような組織状態を得るには、リング圧延に供する素材として予め残留オーステナイト相が25体積%以下に低減された溶体化処理鋼板を用いること、およびリング圧延率を適切にコントロールすることが有効であることが明らかになった。   As a result of detailed studies by the inventors, in order to achieve the above-described object, the metal structure of the material is changed to a martensite-based structure state in which the retained austenite phase is reduced to 10% by volume or less, It has been found that it is extremely effective to use the nitriding treatment of any one of “bath nitriding method”, “gas nitrosulphurizing method” and “plasma nitriding method”. And in order to obtain such a structure before nitriding, use a solution-treated steel sheet in which the retained austenite phase is previously reduced to 25% by volume or less as a material to be subjected to ring rolling, and appropriately set the ring rolling rate. It became clear that control was effective.

すなわち、本発明では、質量%で、C:0.15%以下、Si:3.0%以下、Mn:1.0%以下、P:0.06%以下、S:0.01%以下、Ni:0.05〜7.0%、Cr:8.0〜18.0%、N:0.10%以下、Ti:0〜0.05%、Cu:0〜3.0%、Mo:3.0%以下、B:0〜0.015%好ましくは0.001〜0.015%、残部Feおよび不可避的不純物からなる化学組成をもち、母材および溶接部とも、残留オーステナイト相:0〜10体積%、フェライト相:0〜50体積%、残部のマトリクスがマルテンサイト相の金属組織をもつ、溶接でリング状にしたリング状鋼板(無端金属ベルト)に対し、下記の「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかにより窒化処理を施す無段変速機ベルトの製造法が提供される。
〔塩浴窒化法〕NaCN、KCN、NaCNOおよびKCNOの1種以上を基本成分としNa2CO3およびK2CO3の1種以上を含む300〜600℃の溶融塩中に、当該リング状鋼板を1〜120分間浸漬する。
〔ガス浸硫窒化法〕アンモニアガスを基本成分としH2Sを混合した300〜600℃のガス雰囲気中に、当該リング状鋼板を1〜120分間曝す。
〔プラズマ窒化法〕窒素ガスを基本成分とする減圧ガス中で当該リング状鋼板と電極との間に生成させたプラズマによって、当該リング状鋼板を300〜600℃、1〜120分間加熱する。
この無段変速機ベルトにおいてはフェライト相が50体積%以下であることが好ましい。
That is, in the present invention, by mass%, C: 0.15% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.06% or less, S: 0.01% or less, Ni: 0.05-7.0%, Cr: 8.0-18.0%, N: 0.10% or less, Ti: 0-0.05%, Cu: 0-3.0%, Mo: 3.0% or less, B: 0 to 0.015%, preferably 0.001 to 0.015%, having a chemical composition comprising the balance Fe and unavoidable impurities. 10% by volume, ferrite phase: 0-50% by volume, ring-shaped steel sheet (endless metal belt) welded into a ring shape with the remaining matrix having a martensitic phase metal structure, the following “salt bath nitriding” Method of manufacturing a continuously variable transmission belt that is subjected to nitriding treatment by any one of “method”, “gas nitrosulphurizing method”, and “plasma nitriding method” Is provided.
[Salt bath nitriding method] In the molten steel at 300 to 600 ° C. containing at least one of NaCN, KCN, NaCNO and KCNO as a basic component and containing at least one of Na 2 CO 3 and K 2 CO 3 , the ring-shaped steel plate Is immersed for 1 to 120 minutes.
[Gas nitrosulphurizing method] The ring-shaped steel sheet is exposed for 1 to 120 minutes in a gas atmosphere of 300 to 600 ° C in which ammonia gas is a basic component and H 2 S is mixed.
[Plasma nitriding method] The ring-shaped steel sheet is heated at 300 to 600 ° C. for 1 to 120 minutes by plasma generated between the ring-shaped steel sheet and the electrode in a reduced pressure gas containing nitrogen gas as a basic component.
In the continuously variable transmission belt, the ferrite phase is preferably 50% by volume or less.

前記化学組成として、特に下記(1)式で定義されるD値が80以上となるように成分調整されているものが好適な対象となる。
D=−1667C−28Si−33Mn−61Ni−42Cr−1667N−30Cu−42Mo+1311 ……(1)
As the chemical composition, those whose components are adjusted so that the D value defined by the following formula (1) is 80 or more are particularly suitable.
D = -1667C-28Si-33Mn-61Ni-42Cr-1667N-30Cu-42Mo + 1311 (1)

ここで、Ti、Cu、MoおよびBは任意添加元素であり、その下限の0%は、製鋼工程で行われる通常の元素分析手法において測定限界以下の場合である。リング圧延とは、リング状の無端金属ベルトを2個のドラムあるいはプーリーに架けて張力を付与した状態で回動させながら圧延ロールで冷間圧延する圧延方法である。(1)式の元素記号の箇所には質量%で表された各元素の含有量の値が代入される。   Here, Ti, Cu, Mo, and B are arbitrarily added elements, and 0% of the lower limit thereof is a case that is below the measurement limit in a normal elemental analysis method performed in the steel making process. Ring rolling is a rolling method in which a ring-shaped endless metal belt is cold-rolled by a rolling roll while being rotated in a state where tension is applied to two drums or pulleys. The value of the content of each element expressed in mass% is substituted for the element symbol in formula (1).

より具体的な製造法として、前記の化学組成をもち、フェライト相が0〜50体積%、好ましくは残留オーステナイト相が0〜25体積%、残部のマトリクスがマルテンサイト相の金属組織をもつ溶体化処理された鋼板を、溶接してリング状にする工程、
圧延率3〜60%の範囲でリング圧延を行い、母材および溶接部とも、残留オーステナイト相を0〜10体積%に調整する工程、
必要に応じて、例えばバレル研磨、ショットピーニング処理、ショットブラスト処理等の表面に圧縮応力を付与する機械的表面処理を施す工程、
上記の「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかにより窒化処理を施す工程、
を有する無段変速機ベルトの製造法が提供される。
As a more specific production method, it has the above-mentioned chemical composition, the solution phase is 0 to 50% by volume, preferably the residual austenite phase is 0 to 25% by volume, and the remaining matrix has a martensitic phase metal structure. Welding the processed steel sheet into a ring,
Ring rolling in a rolling rate range of 3 to 60%, and adjusting the residual austenite phase to 0 to 10% by volume for both the base metal and the welded portion;
A step of applying a mechanical surface treatment for applying a compressive stress to the surface such as barrel polishing, shot peening treatment, shot blast treatment, etc., if necessary,
A step of performing nitriding treatment by any of the above-mentioned “salt bath nitriding method”, “gas nitrosulphur nitriding method”, and “plasma nitriding method”;
A method of manufacturing a continuously variable transmission belt having the following is provided.

本発明によれば、従来の18Niマルエージング鋼を用いた場合に比べリング圧延時に周長制御・板厚制御がし易く、かつ、得られた無段変速機ベルトはリサイクル性に優れる。また、準安定オーステナイト系ステンレス鋼を用いた場合に比べリング圧延や窒化処理の工程負荷を大幅に軽減でき、かつ、母材と溶接部で特性にほとんど差のない無段変速機ベルトが容易に製造できる。さらに本発明によれば、優れた強度・疲労特性を安定して付与することが可能である。したがって本発明は、コストと性能のバランスに優れた無段変速機ベルトを提供するものであり、無段変速機の普及に寄与しうるものである。   According to the present invention, as compared with the case of using conventional 18Ni maraging steel, circumferential length control and plate thickness control are easily performed during ring rolling, and the obtained continuously variable transmission belt is excellent in recyclability. Also, compared to the case of using metastable austenitic stainless steel, the process load of ring rolling and nitriding treatment can be greatly reduced, and a continuously variable transmission belt that has almost no difference in characteristics between the base metal and the welded part is easy. Can be manufactured. Furthermore, according to the present invention, excellent strength and fatigue characteristics can be stably imparted. Therefore, the present invention provides a continuously variable transmission belt excellent in balance between cost and performance, and can contribute to the spread of continuously variable transmissions.

本発明では、前述のように、残留オーステナイト相が10体積%以下であるマルテンサイト主体の組織状態とした上で窒化処理を施すことにより、最終的に引張強さ1350N/mm2以上、疲れ限度650N/mm2以上といった優れた強度・疲労特性を無段変速機ベルトに安定的に付与する。そのためには、鋼の化学組成および中間製品における金属組織を厳密に管理した製造プロセスが必要となる。以下、本発明を特定するための事項について説明する。 In the present invention, as described above, the tensile strength of 1350 N / mm 2 or more and the fatigue limit are finally obtained by applying a nitriding treatment after forming a martensite-based microstructure in which the residual austenite phase is 10% by volume or less. Excellent strength and fatigue characteristics of 650 N / mm 2 or more are stably imparted to the continuously variable transmission belt. For this purpose, a manufacturing process in which the chemical composition of steel and the metal structure of intermediate products are strictly controlled is required. Hereinafter, matters for specifying the present invention will be described.

〔化学組成〕
以下、成分元素の「%」は特に示さない限り「質量%」を意味する。
C:0.15%以下
Cはオーステナイト形成元素であり、マルテンサイト相の強化に極めて有効である。しかし、C含有量の増加に伴い溶体化処理後の冷却過程あるいは窒化処理時に粒界に析出するCr炭化物が増加し、耐粒界腐食性や疲労特性の低下要因となる。これは熱処理条件等の最適化によりある程度回避できるが、工業的な限界を考慮するとC含有量の上限は0.15%に制限される。C含有量の下限は特に制限されないが、0.005%以上とすることが好ましく、0.01%以上が更に好ましい。
[Chemical composition]
Hereinafter, “%” of the component elements means “% by mass” unless otherwise specified.
C: 0.15% or less C is an austenite-forming element and is extremely effective for strengthening the martensite phase. However, as the C content increases, Cr carbides precipitated at the grain boundaries during the cooling process after the solution treatment or during the nitriding process increase, which causes a decrease in intergranular corrosion resistance and fatigue characteristics. This can be avoided to some extent by optimizing the heat treatment conditions and the like, but considering the industrial limit, the upper limit of the C content is limited to 0.15%. The lower limit of the C content is not particularly limited, but is preferably 0.005% or more, and more preferably 0.01% or more.

Si:3.0%以下
Siは通常、脱酸目的で添加されるが、マルテンサイト相を固溶強化し、特にリング圧延後の高強度化に寄与する。またひずみ時効により時効硬化能を向上させる効果も有する。しかし、Si含有量が多くなると高温割れを誘発し易く、製造上の問題を生じるとともに、フェライト相の含有率が高くなり却って強度低下を招くことになる。このためSi含有量は3.0%以下に制限される。
Si: 3.0% or less Si is usually added for the purpose of deoxidation, but strengthens the martensite phase by solid solution, and contributes to high strength especially after ring rolling. It also has the effect of improving age hardening ability by strain aging. However, when the Si content is increased, hot cracking is likely to be induced, causing manufacturing problems, and the ferrite phase content is increased, leading to a decrease in strength. For this reason, Si content is restrict | limited to 3.0% or less.

Mn:1.0%以下
Mnはオーステナイト生成元素であり、溶体化処理後のマルテンサイト相比を高めて強度向上に寄与する。しかし、多量のMn含有は溶体化処理後の残留オーステナイト量を多くし、強度低下の要因となる。また、Sと結合してMnSの形で析出し、疲労特性に悪影響を及ぼすことがある。このためMn含有量1.0%以下に制限される。特に好ましいMn含有量は0.2〜0.8%である。
Mn: 1.0% or less Mn is an austenite-forming element and contributes to strength improvement by increasing the martensite phase ratio after solution treatment. However, when a large amount of Mn is contained, the amount of retained austenite after solution treatment is increased, which causes a decrease in strength. Moreover, it may combine with S and precipitate in the form of MnS, which may adversely affect fatigue properties. For this reason, the Mn content is limited to 1.0% or less. A particularly preferable Mn content is 0.2 to 0.8%.

P:0.06%以下
Pは固溶強化能が大きい元素であるが、Ti等と結合してリン化物を形成し、高強度域における疲労特性を低下させることがある。したがってP含有量は低いほど望ましく、本発明では0.06%以下に制限される。
P: 0.06% or less P is an element having a large solid solution strengthening ability, but may combine with Ti or the like to form a phosphide and lower fatigue characteristics in a high strength region. Therefore, the lower the P content, the better. In the present invention, the P content is limited to 0.06% or less.

S:0.01%以下
Sは熱間圧延での耳切れ発生の面で好ましくない元素である。また、Mn、Ti等と結合して析出物を形成し、疲労特性に悪影響を及ぼす。したがってS含有量は低いほど望ましく、本発明では0.01%以下に制限される。
S: not more than 0.01% S is an element which is not preferable in terms of occurrence of edge breakage in hot rolling. Moreover, it couple | bonds with Mn, Ti, etc., forms a precipitate, and exerts a bad influence on a fatigue characteristic. Therefore, the lower the S content, the better. In the present invention, the S content is limited to 0.01% or less.

Ni:0.05〜7.0%
NiはMnと同様に溶体化処理後のマルテンサイト相比を高めて強度を向上させる作用を呈する。この作用を十分に発揮させるには0.05%以上のNi含有が望ましい。一方、多量のNi含有は溶体化処理後の残留オーステナイト量を増加させ、強度低下の要因となる。このためNi含有量は0.05〜7.0%に規定する。
Ni: 0.05-7.0%
Ni, like Mn, exhibits the effect of increasing the martensite phase ratio after solution treatment and improving the strength. In order to exhibit this effect sufficiently, it is desirable that Ni content is 0.05% or more. On the other hand, a large amount of Ni contained increases the amount of retained austenite after the solution treatment and causes a decrease in strength. For this reason, the Ni content is specified to be 0.05 to 7.0%.

Cr:8.0〜18.0%
Crは固溶強化に寄与するとともに、耐食性を付与する上で重要である。無段変速機の用途では少なくとも8.0%のCr含有量を確保することが望ましい。ステンレス鋼としての耐食性を得るには11.0%以上好ましくは13.0%以上のCr含有量を確保するとよい。しかし、Cr含有量が多すぎるとマルテンサイト主体の金属組織を得ることが難しくなり、無段変速機ベルトとしての十分な強度が確保できなくなる恐れがある。この弊害はCr含有量が18.0%を超えると顕著に現れるようになる。したがってCr含有量の上限は18.0%に規定する必要がある。
Cr: 8.0-18.0%
Cr contributes to solid solution strengthening and is important for imparting corrosion resistance. For continuously variable transmission applications, it is desirable to ensure a Cr content of at least 8.0%. In order to obtain corrosion resistance as stainless steel, a Cr content of 11.0% or more, preferably 13.0% or more is secured. However, if the Cr content is too large, it becomes difficult to obtain a metal structure mainly composed of martensite, and there is a possibility that sufficient strength as a continuously variable transmission belt cannot be secured. This harmful effect becomes noticeable when the Cr content exceeds 18.0%. Therefore, the upper limit of the Cr content needs to be specified to 18.0%.

N:0.10%以下
NはCと同様にオーステナイト形成元素であり、マルテンサイト相の強化に寄与する。ただし、Nを多量に含有すると溶体化処理後の残留オーステナイト量が多くなり強度低下の要因となる。また、Tiとの非金属介在物が生成し易くなり、疲労特性の低下を招く恐れがある。このためN含有量は0.10%以下に制限される。N含有量の好ましい範囲は0.005〜0.07%である。
N: 0.10% or less N, like C, is an austenite-forming element and contributes to strengthening of the martensite phase. However, if N is contained in a large amount, the amount of retained austenite after solution treatment increases, which causes a decrease in strength. In addition, non-metallic inclusions with Ti are likely to be generated, and the fatigue characteristics may be reduced. For this reason, the N content is limited to 0.10% or less. A preferable range of the N content is 0.005 to 0.07%.

Ti:0.05%以下
Tiは析出硬化作用を有するが、本発明ではTiによる前記作用を特に利用する必要はない。むしろ、Tiを含有させるとTi窒化物が多くなり、却って無段変速機ベルトの疲労特性を損なう場合があることがわかってきた。本発明では優れた疲労特性を安定して付与する観点から、Tiは無添加とするか、あるいは0.05%以下の含有量にとどめる。
Ti: 0.05% or less Ti has a precipitation hardening action, but in the present invention, it is not necessary to use the action of Ti. Rather, it has been found that when Ti is contained, Ti nitride increases, and the fatigue characteristics of the continuously variable transmission belt may be impaired. In the present invention, from the viewpoint of stably imparting excellent fatigue properties, Ti is not added or the content is limited to 0.05% or less.

Cu:3.0%以下
Cuは時効硬化に寄与する。0.5%以上のCu含有量とすることが効果的である。ただし、過剰のCu添加は熱間加工性の低下を招くので、Cuを添加する場合は3.0%以下の範囲で行う必要がある。
Cu: 3.0% or less Cu contributes to age hardening. It is effective to set the Cu content to 0.5% or more. However, excessive addition of Cu leads to a decrease in hot workability. Therefore, when adding Cu, it is necessary to carry out within a range of 3.0% or less.

Mo:3.0%以下
Moは時効処理時に炭化物を微細に分散させる効果を有するとともに、Cr含有量が多い場合にはステンレス鋼としての耐食性を高める効果がある。さらにMoには、高温で時効した場合にひずみの急激な解放を抑制する効果があり、時効を兼ねた窒化処理の高温・短時間化に寄与し得る。ただし、Moを多量に添加してもこれらの効果は飽和するとともに、原料コストの増大を招き合理的でない。したがって、Moを添加する場合は3.0%以下の範囲で行うことが望ましい。特に好ましいMoの含有量範囲は0.5〜2.0%である。
Mo: 3.0% or less Mo has an effect of finely dispersing carbide during aging treatment, and also has an effect of improving the corrosion resistance as stainless steel when the Cr content is large. Furthermore, Mo has an effect of suppressing rapid release of strain when aged at a high temperature, and can contribute to a high temperature and a short time of nitriding treatment also serving as aging. However, even if a large amount of Mo is added, these effects are saturated and the raw material cost increases, which is not rational. Therefore, when adding Mo, it is desirable to carry out in the range of 3.0% or less. A particularly preferable Mo content range is 0.5 to 2.0%.

B:0.015%以下
BはNと微細な析出物を形成して最終焼鈍時の結晶粒粗大化を抑制するとともに、熱間圧延温度域でのδフェライト相とオーステナイト相の粒界における結合力を高めて熱間加工性を改善する作用があり、特に熱延耳切れの防止に有効である。このような作用を十分に発揮させるためには0.001%以上のB添加が特に効果的である。しかし、過度の添加は低融点硼化物の形成を招き、逆に熱間加工性を劣化させる。このため、Bを添加する場合は0.015%以下の範囲で行う必要がある。
B: 0.015% or less B forms fine precipitates with N to suppress grain coarsening during final annealing, and bonds at the grain boundaries of δ ferrite phase and austenite phase in the hot rolling temperature range It has the effect of improving the hot workability by increasing the force, and is particularly effective in preventing hot-ear breakage. Addition of 0.001% or more of B is particularly effective for sufficiently exhibiting such an action. However, excessive addition leads to the formation of a low-melting boride and conversely deteriorates hot workability. For this reason, when adding B, it is necessary to carry out in the range of 0.015% or less.

その他、熱間加工性改善等の目的でCa、REM(希土類元素)、Y、Mgを含有させてもよい。この場合、無段変速機ベルトとして必要な疲労特性その他の材料特性を損なわないよう、それぞれ0.05%以下の含有量とすることが望ましい。   In addition, Ca, REM (rare earth element), Y, and Mg may be included for the purpose of improving hot workability. In this case, the content is preferably 0.05% or less so as not to impair the fatigue characteristics and other material characteristics required for the continuously variable transmission belt.

D値:80以上
さらに下記(1)式で定義されるD値が80以上になるように各成分元素の含有量を調整することが望ましい。
D=−1667C−28Si−33Mn−61Ni−42Cr−1667N−30Cu−42Mo+1311 ……(1)
D値は溶体化処理し水冷した鋼板(溶体化処理鋼板)における残留オーステナイト量と良い相関を有する指標である。本発明では後述のように、残留オーステナイト相が25体積%以下の溶体化処理鋼板を用意することが望ましい。D値が80以上となるように成分調整することで溶体化処理鋼板の残留オーステナイト量を25体積%以下にコントロールすることができる。
D value: 80 or more It is desirable to adjust the content of each component element so that the D value defined by the following formula (1) is 80 or more.
D = -1667C-28Si-33Mn-61Ni-42Cr-1667N-30Cu-42Mo + 1311 (1)
The D value is an index having a good correlation with the amount of retained austenite in a steel plate (solution treated steel plate) that has been solution treated and water cooled. In the present invention, as described later, it is desirable to prepare a solution-treated steel sheet having a residual austenite phase of 25% by volume or less. By adjusting the components so that the D value is 80 or more, the amount of retained austenite of the solution-treated steel sheet can be controlled to 25% by volume or less.

〔溶体化処理〕
上述の化学組成を有する鋼を通常の手法で溶製し、例えば「熱間圧延→中間焼鈍→冷間圧延」のプロセスを経たのち、溶体化処理を行って、後述のリング圧延に供するための素材鋼板を得る。その板厚は、最終製品である無段変速機ベルトの板厚とリング圧延率を考慮して決定される。溶体化処理は一般的な手法で実施でき、例えば「850〜1100℃×0〜60分保持→水冷」の条件で行うことができる。適切に成分調整された鋼を用いることにより溶体化処理鋼板の残留オーステナイト量を25体積%以下にコントロールすることができる。溶体化処理鋼板の段階で残留オーステナイト量が25体積%を超えて多くなっていると、後工程のリング圧延で所望の組織を得るのに多大な工程負荷を要するか、あるいは所望の組織を得ることが不可能となる。
[Solution treatment]
For melting the steel having the above-mentioned chemical composition by a normal method, for example, after passing through the process of “hot rolling → intermediate annealing → cold rolling”, it is subjected to solution treatment, and used for ring rolling described later. Get the material steel plate. The plate thickness is determined in consideration of the plate thickness of the continuously variable transmission belt, which is the final product, and the ring rolling rate. The solution treatment can be performed by a general method, for example, under the conditions of “850 to 1100 ° C. × 0 to 60 minutes holding → water cooling”. By using appropriately adjusted steel, the amount of retained austenite of the solution-treated steel sheet can be controlled to 25% by volume or less. If the amount of retained austenite exceeds 25% by volume at the stage of the solution-treated steel sheet, a great process load is required to obtain a desired structure in the subsequent ring rolling, or a desired structure is obtained. It becomes impossible.

一方、鋼板中にフェライト相が多いと強度不足が生じる。種々検討の結果、無段変速機ベルトとして1350N/mm2以上の引張強さを安定して得るには、当該ベルトにおいてフェライト量が50体積%以下になっていることが極めて有効である。フェライト量はリング圧延や窒化処理で実質的に変化しないので、溶体化処理鋼板の段階でフェライト量を50体積%以下としておくことが好ましい。すなわち、溶体化処理鋼板として、フェライト相:0〜50体積%、残留オーステナイト相:0〜25体積%、残部のマトリクスがマルテンサイト相の金属組織をもつものを用意することが好ましい。ここで、マトリクス(鋼素地)はフェライト相、オーステナイト相およびマルテンサイト相をいう。金属組織中にはマトリクス以外に析出物や介在物が含まれていて構わない。 On the other hand, when there are many ferrite phases in a steel plate, the strength is insufficient. As a result of various studies, in order to stably obtain a tensile strength of 1350 N / mm 2 or more as a continuously variable transmission belt, it is extremely effective that the ferrite content in the belt is 50 volume% or less. Since the amount of ferrite is not substantially changed by ring rolling or nitriding, it is preferable to keep the amount of ferrite at 50 volume% or less at the stage of the solution-treated steel sheet. That is, it is preferable to prepare a solution-treated steel sheet having a ferrite phase: 0 to 50% by volume, a retained austenite phase: 0 to 25% by volume, and the remaining matrix having a martensitic metal structure. Here, the matrix (steel substrate) refers to a ferrite phase, an austenite phase, and a martensite phase. The metal structure may contain precipitates and inclusions in addition to the matrix.

〔溶接〕
この溶体化処理鋼板を一定長さに切断し、長手方向の両端部同士を溶接で接合して無端金属ベルトにする。
〔welding〕
This solution-treated steel sheet is cut into a certain length, and both ends in the longitudinal direction are joined together by welding to form an endless metal belt.

〔リング圧延〕
次いで、無端金属ベルトにリング圧延を施す。すなわち、無端金属ベルトを2個のドラムあるいはプーリーに架けて張力を付与した状態で回動させながら圧延ロールで冷間圧延する。リング圧延では、i) 製品所定の板厚に調整すること、ii) 残留オーステナイト相が10体積%以下の金属組織に調整すること、iii) 圧延ひずみを付与して強度・疲労特性を向上させること、を主目的とする。
[Ring rolling]
Next, the endless metal belt is subjected to ring rolling. That is, the endless metal belt is cold-rolled with a rolling roll while being rotated in a state where tension is applied to two drums or pulleys. In ring rolling, i) to adjust the product to a predetermined sheet thickness, ii) to adjust the residual austenite phase to a metal structure of 10% by volume or less, iii) to impart rolling strain to improve strength and fatigue characteristics The main purpose.

本発明では、工程負荷を低減しながら優れた強度・疲労特性を安定して付与する上で、ii)の金属組織の調整が極めて重要である。後工程の窒化処理において安定して深い窒化層を形成するには、できるだけ残留オーステナイト相を低減しておく必要がある。すなわち、オーステナイト相はフェライト相やマルテンサイト相に比べNの拡散が遅い。残留オーステナイト相が多い状態で窒化処理に供するとNの拡散が遅いことに起因して表層が十分に窒化されず、窒化層の厚さ変動が大きくなることから、疲労特性のバラツキが生じやすい。種々検討の結果、このような窒化の不具合は、残留オーステナイト相を10体積%以下に低減したとき、顕著に改善されることが明らかになった。   In the present invention, the adjustment of the metal structure of ii) is extremely important for stably imparting excellent strength and fatigue characteristics while reducing the process load. In order to stably form a deep nitrided layer in the subsequent nitriding treatment, it is necessary to reduce the residual austenite phase as much as possible. That is, the austenite phase has a slower diffusion of N than the ferrite phase and martensite phase. When subjected to nitriding with a large amount of residual austenite phase, the surface layer is not sufficiently nitrided due to the slow diffusion of N, and the variation in the thickness of the nitrided layer increases, so that the fatigue characteristics tend to vary. As a result of various studies, it has been clarified that such a nitriding defect is remarkably improved when the residual austenite phase is reduced to 10% by volume or less.

ただし、リング圧延率は3〜60%の範囲とする必要がある。3%未満ではベルト全周において均一な特性を得るのが困難である。60%を超えると過度の加工ひずみが導入され、疲労特性が急激に低下する。   However, the ring rolling rate needs to be in the range of 3 to 60%. If it is less than 3%, it is difficult to obtain uniform characteristics over the entire belt circumference. If it exceeds 60%, excessive working strain is introduced, and the fatigue characteristics are rapidly deteriorated.

本発明で規定する化学組成の鋼板であって、残留オーステナイト量が25体積%以下に調整されている溶体化処理鋼板を素材としたとき、3〜60%のリング圧延率の範囲で、母材および溶接部とも、残留オーステナイト相の量を10体積%以下にすることができる。残留オーステナイト相の一部または全部は、リング圧延によって加工誘起マルテンサイト相に変態し、残留オーステナイト相率を低下させることが可能になるのである。窒化処理に供する際の残留オーステナイト量は0%であっても構わない。溶体化処理鋼板の段階で既に残留オーステナイト量が0〜10体積%になっている場合は、リング圧延によりさらに残留オーステナイト量が低減するか、0%となるので問題ない。リング圧延後の好ましい金属組織は、母材および溶接部とも、残留オーステナイト相:0〜10体積%、フェライト相:0〜50体積%、残部のマトリクスがマルテンサイト相の組織である。   In the steel composition having the chemical composition defined in the present invention, when a solution-treated steel sheet in which the amount of retained austenite is adjusted to 25% by volume or less is used as a material, the base material is in a range of a ring rolling rate of 3 to 60%. In both the welded portion and the welded portion, the amount of retained austenite phase can be made 10% by volume or less. Part or all of the retained austenite phase is transformed into a work-induced martensite phase by ring rolling, and the retained austenite phase ratio can be reduced. The amount of retained austenite in the nitriding treatment may be 0%. When the amount of retained austenite is already 0 to 10% by volume at the stage of the solution-treated steel sheet, there is no problem because the amount of retained austenite is further reduced or 0% by ring rolling. The preferable metal structure after the ring rolling is a structure in which the base metal and the welded part have a retained austenite phase: 0 to 10% by volume, a ferrite phase: 0 to 50% by volume, and the remaining matrix is a martensite phase.

〔機械的表面処理〕
リング圧延後には、必要に応じてリング状鋼板の表面に圧縮応力を付与するための機械的表面処理を施すことができる。この処理を行うと最終製品における疲労特性を安定して向上させる上で一層有利となる。具体的な手段として、バレル研磨、ショットピーニング処理、ショットブラスト処理が挙げられる。これらは1種のみを採用してもよいし、2種以上を順次施す「複合処理」としてもよい。
[Mechanical surface treatment]
After the ring rolling, a mechanical surface treatment for applying a compressive stress to the surface of the ring-shaped steel sheet can be performed as necessary. This treatment is more advantageous in stably improving the fatigue characteristics of the final product. Specific means include barrel polishing, shot peening treatment, and shot blasting treatment. Only one of these may be adopted, or “composite processing” in which two or more of them are sequentially applied may be employed.

〔窒化処理〕
リング圧延あるいは更に機械的表面処理を経たリング状鋼板を300〜600℃の窒化環境下に1〜120分間曝すことにより窒化処理する。この条件で窒化処理を行うことで時効処理を兼ねることができ、疲労特性とともに強度の向上を図ることができる。
窒化環境としては、「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかの環境が使用できる。
〔Nitriding treatment〕
The ring-shaped steel plate that has undergone ring rolling or further mechanical surface treatment is subjected to nitriding treatment by exposing it to a nitriding environment of 300 to 600 ° C. for 1 to 120 minutes. By performing the nitriding treatment under these conditions, it can also serve as an aging treatment, and the strength can be improved together with the fatigue characteristics.
As the nitriding environment, any one of “salt bath nitriding method”, “gas nitrosulphur nitriding method”, and “plasma nitriding method” can be used.

塩浴窒化法の場合は、NaCN、KCN、NaCNOおよびKCNOの1種以上を基本成分とし、これにNa2CO3およびK2CO3の1種以上を添加した塩浴を使用する。Na2CO3およびK2CO3の1種以上の含有量は合計で2〜50質量%程度とすることが望ましい。この塩浴を300〜600℃に保持し、この中にリング状鋼板を1〜120分間浸漬する。 In the case of the salt bath nitriding method, a salt bath in which at least one of NaCN, KCN, NaCNO and KCNO is a basic component and at least one of Na 2 CO 3 and K 2 CO 3 is added thereto is used. The content of one or more of Na 2 CO 3 and K 2 CO 3 is desirably about 2 to 50% by mass in total. The salt bath is maintained at 300 to 600 ° C., and the ring-shaped steel plate is immersed in the salt bath for 1 to 120 minutes.

ガス浸硫窒化法の場合は、アンモニアガスを基本成分とするガスにH2Sが混合され、さらに必要に応じてCO2、N2を含む混合ガスが使用できる。この混合ガスを300〜600℃に保持し、そのガス雰囲気中にリング状鋼板を1〜120分間曝す。 In the case of the gas nitrosulphurizing method, H 2 S is mixed with a gas containing ammonia gas as a basic component, and a mixed gas containing CO 2 and N 2 can be used as necessary. This mixed gas is kept at 300 to 600 ° C., and the ring-shaped steel sheet is exposed to the gas atmosphere for 1 to 120 minutes.

プラズマ窒化法の場合は、窒素ガスを基本成分とし、必要に応じてH2を含む減圧ガス雰囲気中にリング状鋼板を設置し、当該リング状鋼板と電極との間に生成させたプラズマによって、当該リング状鋼板を300〜600℃、1〜120分間加熱する。また、プラズマを発生させる電極として金属製密閉容器の炉壁を利用することが効率的である。すなわち、リング状鋼板と炉壁の間に生成されたプラズマによってリング状鋼板を加熱するとよい。 In the case of the plasma nitriding method, nitrogen gas is a basic component, and if necessary, a ring-shaped steel plate is installed in a reduced-pressure gas atmosphere containing H 2, and by the plasma generated between the ring-shaped steel plate and the electrode, The said ring-shaped steel plate is heated at 300-600 degreeC for 1-120 minutes. It is also efficient to use the furnace wall of a metal hermetic container as an electrode for generating plasma. That is, the ring-shaped steel plate may be heated by plasma generated between the ring-shaped steel plate and the furnace wall.

これらいずれの窒化法においても、リング状鋼板を300〜600℃に加熱することが重要である。300℃未満ではNの拡散速度が遅く、十分な窒化深さが得られない。一方、600℃を超えるとマルテンサイトの焼戻しおよびリング圧延で付与したひずみの回復が起こるため、母材および溶接部の強度レベルが低下し、それに伴って無段変速機ベルトとしての十分な疲労特性が得られない。また、窒化処理時間については、いずれの窒化法でも1〜120分とすることが望ましい。この窒化処理に供するリング状鋼板はNの拡散が遅い残留オーステナイト量が0〜10体積%と少なく、残部のマトリクスはマルテンサイト相、あるいはマルテンサイト相とフェライト相からなるので、最長でも120分間の窒化処理で十分な窒化深さが得られる。ただし、1分未満だと十分な窒化深さを安定して得ることが難しい。通常、10〜100分程度の窒化処理時間を確保することが、製品品質の安定性および経済性の観点から好ましい。   In any of these nitriding methods, it is important to heat the ring-shaped steel plate to 300 to 600 ° C. If it is less than 300 ° C., the diffusion rate of N is slow, and a sufficient nitriding depth cannot be obtained. On the other hand, when the temperature exceeds 600 ° C., the strain applied by martensite tempering and ring rolling occurs, so that the strength level of the base material and the welded portion decreases, and accordingly, sufficient fatigue characteristics as a continuously variable transmission belt. Cannot be obtained. The nitriding time is preferably 1 to 120 minutes in any nitriding method. The ring-shaped steel sheet used for this nitriding treatment has a low amount of residual austenite with a slow N diffusion of 0 to 10% by volume, and the remaining matrix is composed of a martensite phase, or a martensite phase and a ferrite phase. A sufficient nitriding depth can be obtained by nitriding. However, if it is less than 1 minute, it is difficult to stably obtain a sufficient nitriding depth. Usually, it is preferable to secure a nitriding time of about 10 to 100 minutes from the viewpoint of product quality stability and economic efficiency.

以上の製造法で作られる無段変速機ベルトは優れた強度および疲労特性を有する。なかでも板厚0.03〜0.5mm、幅3〜50mmであり、引張強さが1350N/mm2以上、疲れ限度が650N/mm2以上の合理的な特性を有する無段変速機ベルトがコストおよび性能バランスに優れたものとして提供できる。 The continuously variable transmission belt made by the above manufacturing method has excellent strength and fatigue characteristics. In particular, a continuously variable transmission belt having a rational characteristic with a plate thickness of 0.03 to 0.5 mm, a width of 3 to 50 mm, a tensile strength of 1350 N / mm 2 or more, and a fatigue limit of 650 N / mm 2 or more is provided. It can be provided as an excellent balance between cost and performance.

表1に示す組成の鋼を真空溶解炉で溶製し、鍛造、熱間圧延、中間焼鈍、冷間圧延を行い、1020℃で1分間保持したのち水冷する溶体化処理を施して、無端金属ベルトにするための素材鋼板(以下「溶体化処理鋼板」という)を製造した。溶体化処理鋼板の板厚はリング圧延後の板厚がいずれも0.18mmに揃うように、実施するリング圧延率に応じて設定した。各溶体化処理鋼板から幅20mmのベルトを切り出し、長手方向の両端部同士をTIG溶接にて接合して無端金属ベルトとした。これを2個のプーリーに架けて張力を付与した状態で回動させ、種々の圧延率でリング圧延を行って板厚0.18mmのリング状鋼板(以下「リング圧延鋼板」という)を得た。次いで、一部を除いて、バレル研磨、ショットブラスト処理およびショットピーニング処理の1種以上の機械的表面処理を施した。その後、80質量%NaCl、15質量%NaCNOおよび5質量%Na2CO3からなる塩浴中で種々の温度および時間で窒化処理を施した。表2に製造条件を示す。 Steel with the composition shown in Table 1 is melted in a vacuum melting furnace, forged, hot-rolled, intermediate-annealed, cold-rolled, held at 1020 ° C. for 1 minute, and then subjected to a solution treatment that is water-cooled to endless metal A raw steel plate (hereinafter referred to as “solution-treated steel plate”) for use as a belt was produced. The thickness of the solution-treated steel sheet was set according to the ring rolling rate to be carried out so that all the thicknesses after ring rolling were equal to 0.18 mm. A belt having a width of 20 mm was cut out from each solution-treated steel sheet, and both ends in the longitudinal direction were joined together by TIG welding to form an endless metal belt. This was put on two pulleys and rotated with tension applied, and ring rolling was performed at various rolling rates to obtain a ring-shaped steel plate (hereinafter referred to as “ring-rolled steel plate”) having a thickness of 0.18 mm. . Subsequently, except for some, one or more mechanical surface treatments of barrel polishing, shot blasting, and shot peening were performed. Thereafter, nitriding treatment was performed at various temperatures and times in a salt bath composed of 80% by mass NaCl, 15% by mass NaCNO and 5% by mass Na 2 CO 3 . Table 2 shows the manufacturing conditions.

Figure 2006265664
Figure 2006265664

Figure 2006265664
Figure 2006265664

窒化処理後の無端金属ベルトから試験片を切り出し、引張試験および疲労試験を行った。引張試験はJIS Z2201に規定の13B号試験片を用いてJIS Z2241に準じて行った。疲労試験は長さ100mm、幅8mmの平行部を有する試験片を用いて、回転数600rpm、応力比(最大応力/最小応力)=−1の条件で両振り曲げ疲労試験を行い、JIS Z2273に準じて疲れ限度を測定した。また、溶体化処理鋼板およびリング圧延鋼板について、X線回折および光学顕微鏡観察により残留オーステナイト量およびフェライト量を調べた。なお、残留オーステナイト相とフェライト相を除く残部のマトリクスはマルテンサイト相であった。表3に結果を示す。   A test piece was cut out from the endless metal belt after the nitriding treatment, and a tensile test and a fatigue test were performed. The tensile test was performed according to JIS Z2241 using a No. 13B test piece defined in JIS Z2201. In the fatigue test, using a test piece having a parallel part of 100 mm in length and 8 mm in width, a double-bending bending fatigue test was performed under the conditions of a rotational speed of 600 rpm and a stress ratio (maximum stress / minimum stress) = − 1. The fatigue limit was measured accordingly. Moreover, the amount of retained austenite and the amount of ferrite were investigated about the solution-treated steel plate and the ring-rolled steel plate by X-ray diffraction and optical microscope observation. The remaining matrix excluding the retained austenite phase and ferrite phase was a martensite phase. Table 3 shows the results.

Figure 2006265664
Figure 2006265664

表3から判るように、本発明例のものはリング圧延後に母材および溶接部ともに残留オーステナイト相が10体積%以下であり、窒化処理後の無端金属ベルト(無段変速機ベルトの製品に相当)において引張強さ1350N/mm2以上、疲れ限度650N/mm2以上の強度・疲労特性を余裕を持ってクリアした。特に、リング圧延率3〜60%、窒化処理温度300〜600℃、窒化処理時間10〜100分という、営業生産ラインで実施しやすく工程負荷の少ないプロセスで引張強さ1400N/mm2以上、疲れ限度700N/mm2以上という優れた強度・疲労特性が安定して得られることが確認された。 As can be seen from Table 3, the examples of the present invention had a residual austenite phase of 10% by volume or less in both the base metal and the welded portion after ring rolling, and were endless metal belts after nitriding (corresponding to products of continuously variable transmission belts) ), The strength and fatigue characteristics with a tensile strength of 1350 N / mm 2 or more and a fatigue limit of 650 N / mm 2 or more were cleared with a margin. In particular, a tensile strength of 1400 N / mm 2 or more, a process with a low process load, which is easy to implement in a commercial production line, with a ring rolling rate of 3 to 60%, a nitriding temperature of 300 to 600 ° C., and a nitriding time of 10 to 100 minutes, fatigue. It was confirmed that excellent strength / fatigue properties of 700 N / mm 2 or more were stably obtained.

これに対し、比較例Q1は窒化処理温度が高すぎたため強度・疲労特性に劣った。Q2は窒化処理温度が低すぎ、Q3は窒化処理時間が短すぎたためいずれも窒化が不十分となり、疲れ限度が低かった。Q4はリング圧延率が高すぎたため過度の圧延ひずみが付与され、疲れ限度が低かった。Q5は溶体化処理後の残留オーステナイト量が比較的多かったにもかかわらずリング圧延率が低すぎたためリング圧延で残留オーステナイト量を10体積%以下に調整することができず、その結果窒化が不十分となって疲労特性に劣った。Q6はD値が80未満と低い鋼を用いたものであり、溶体化処理後の残留オーステナイト量が25体積%を超えたことに起因してリング圧延後の残留オーステナイト量が10体積%を超え、結果的に窒化が不十分となって疲労特性に劣った。   On the other hand, Comparative Example Q1 was inferior in strength and fatigue characteristics because the nitriding temperature was too high. In Q2, the nitriding temperature was too low, and in Q3, the nitriding time was too short, so that nitriding was insufficient and the fatigue limit was low. Q4 had an excessively high rolling strain because the ring rolling rate was too high, and the fatigue limit was low. In Q5, although the amount of retained austenite after solution treatment was relatively large, the ring rolling rate was too low, so that the amount of retained austenite could not be adjusted to 10% by volume or less by ring rolling. Insufficient fatigue properties. Q6 is a steel having a low D value of less than 80. The amount of retained austenite after solution treatment exceeded 25% by volume, and the amount of retained austenite after ring rolling exceeded 10% by volume. As a result, nitriding was insufficient and the fatigue characteristics were inferior.

表1に示した鋼A1について、実施例1と同様のプロセスで幅20mmの無端金属ベルトを製造した。これを2個のプーリーに架けて張力を付与した状態で回動させ、圧延率46%でリング圧延を行って板厚0.18mmのリング状鋼板を得た。次いで、一部を除いて、バレル研磨、ショットブラスト処理およびショットピーニング処理の1種以上の機械的表面処理を施した。その後、表4に記載の種々の方法で480℃×60分の窒化処理を行った。窒化処理後の無端金属ベルトについて、実施例1と同様の方法で引張強さおよび疲れ限度を調べた。結果を表4に示す。なお、溶体化処理後、リング圧延後の残留オーステナイト量およびフェライト量は表3に記載のP1と同じである。   For steel A1 shown in Table 1, an endless metal belt having a width of 20 mm was produced by the same process as in Example 1. This was put on two pulleys and rotated in a state where tension was applied, and ring rolling was performed at a rolling rate of 46% to obtain a ring-shaped steel plate having a plate thickness of 0.18 mm. Subsequently, except for some, one or more mechanical surface treatments of barrel polishing, shot blasting, and shot peening were performed. Thereafter, nitriding treatment was performed at 480 ° C. for 60 minutes by various methods described in Table 4. With respect to the endless metal belt after nitriding, the tensile strength and fatigue limit were examined in the same manner as in Example 1. The results are shown in Table 4. The amount of retained austenite and the amount of ferrite after the solution treatment and after ring rolling are the same as P1 shown in Table 3.

Figure 2006265664
Figure 2006265664

表4から判るように、塩浴窒化法、ガス浸硫窒化法およびプラズマ窒化法のいずれを用いても、強度・疲労特性に優れた無段変速機ベルトを製造することが可能である。   As can be seen from Table 4, a continuously variable transmission belt having excellent strength and fatigue characteristics can be manufactured by using any of the salt bath nitriding method, gas nitrosulphurizing method and plasma nitriding method.

Claims (9)

質量%で、C:0.15%以下、Si:3.0%以下、Mn:1.0%以下、P:0.06%以下、S:0.01%以下、Ni:0.05〜7.0%、Cr:8.0〜18.0%、N:0.10%以下、Ti:0〜0.05%、Cu:0〜3.0%、Mo:3.0%以下、B:0〜0.015%、残部Feおよび不可避的不純物からなる化学組成をもち、母材および溶接部とも、残留オーステナイト相:0〜10体積%、フェライト相:0〜50体積%、残部のマトリクスがマルテンサイト相の金属組織をもつ、溶接でリング状にしたリング状鋼板に対し、下記の「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかにより窒化処理を施す無段変速機ベルトの製造法。
〔塩浴窒化法〕NaCN、KCN、NaCNOおよびKCNOの1種以上を基本成分としNa2CO3およびK2CO3の1種以上を含む300〜600℃の溶融塩中に、当該リング状鋼板を1〜120分間浸漬する。
〔ガス浸硫窒化法〕アンモニアガスを基本成分としH2Sを混合した300〜600℃のガス雰囲気中に、当該リング状鋼板を1〜120分間曝す。
〔プラズマ窒化法〕窒素ガスを基本成分とする減圧ガス中で当該リング状鋼板と電極との間に生成させたプラズマによって、当該リング状鋼板を300〜600℃、1〜120分間加熱する。
In mass%, C: 0.15% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.06% or less, S: 0.01% or less, Ni: 0.05- 7.0%, Cr: 8.0 to 18.0%, N: 0.10% or less, Ti: 0 to 0.05%, Cu: 0 to 3.0%, Mo: 3.0% or less, B: 0 to 0.015%, balance Fe and chemical composition consisting of unavoidable impurities, both base metal and weld zone, residual austenite phase: 0 to 10% by volume, ferrite phase: 0 to 50% by volume, balance Nitriding of a ring-shaped steel sheet with a matrix having a martensitic phase metallized by welding using one of the following "salt bath nitriding method", "gas nitrosulphurizing method", or "plasma nitriding method" A process for manufacturing a continuously variable transmission belt.
[Salt bath nitriding method] In the molten steel at 300 to 600 ° C. containing at least one of NaCN, KCN, NaCNO and KCNO as a basic component and containing at least one of Na 2 CO 3 and K 2 CO 3 , the ring-shaped steel plate Is immersed for 1 to 120 minutes.
[Gas nitrosulphurizing method] The ring-shaped steel sheet is exposed for 1 to 120 minutes in a gas atmosphere of 300 to 600 ° C in which ammonia gas is a basic component and H 2 S is mixed.
[Plasma nitriding method] The ring-shaped steel sheet is heated at 300 to 600 ° C. for 1 to 120 minutes by plasma generated between the ring-shaped steel sheet and the electrode in a reduced pressure gas containing nitrogen gas as a basic component.
前記リング状鋼板が、溶接でリング状にしたのち圧延率3〜60%の範囲で冷間圧延したものである請求項1に記載の無段変速機ベルトの製造法。   The method for manufacturing a continuously variable transmission belt according to claim 1, wherein the ring-shaped steel plate is formed into a ring shape by welding and then cold-rolled in a range of 3 to 60%. 前記リング状鋼板が、溶接でリング状にしたのち圧延率3〜60%の範囲で冷間圧延し、その後、表面に圧縮応力を付与する機械的表面処理を施したものである請求項1に記載の無段変速機ベルトの製造法。   2. The ring-shaped steel sheet according to claim 1, wherein the ring-shaped steel sheet is formed into a ring shape by welding and then cold-rolled in a rolling rate range of 3 to 60%, and thereafter subjected to mechanical surface treatment for imparting compressive stress to the surface. A process for producing the continuously variable transmission belt as described. 前記リング状鋼板が、溶接でリング状にしたのち圧延率3〜60%の範囲で冷間圧延し、その後、バレル研磨、ショットピーニング処理およびショットブラスト処理の1種以上を施したものである請求項1に記載の無段変速機ベルトの製造法。   The ring-shaped steel sheet is formed into a ring shape by welding and then cold-rolled in a rolling rate range of 3 to 60%, and then subjected to at least one of barrel polishing, shot peening treatment and shot blasting treatment. Item 12. A method for manufacturing a continuously variable transmission belt according to Item 1. 質量%で、C:0.15%以下、Si:3.0%以下、Mn:1.0%以下、P:0.06%以下、S:0.01%以下、Ni:0.05〜7.0%、Cr:8.0〜18.0%、N:0.10%以下、Ti:0〜0.05%、Cu:0〜3.0%、Mo:3.0%以下、B:0〜0.015%、残部Feおよび不可避的不純物からなる化学組成をもち、フェライト相が0〜50体積%である溶体化処理された鋼板を、溶接してリング状にする工程、
圧延率3〜60%の範囲でリング圧延を行い、母材および溶接部とも、残留オーステナイト相を0〜10体積%に調整する工程、
下記の「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかにより窒化処理を施す工程、
を有する無段変速機ベルトの製造法。
〔塩浴窒化法〕NaCN、KCN、NaCNOおよびKCNOの1種以上を基本成分としNa2CO3およびK2CO3の1種以上を含む300〜600℃の溶融塩中に、当該リング状鋼板を1〜120分間浸漬する。
〔ガス浸硫窒化法〕アンモニアガスを基本成分としH2Sを混合した300〜600℃のガス雰囲気中に、当該リング状鋼板を1〜120分間曝す。
〔プラズマ窒化法〕窒素ガスを基本成分とする減圧ガス中で当該リング状鋼板と電極との間に生成させたプラズマによって、当該リング状鋼板を300〜600℃、1〜120分間加熱する。
In mass%, C: 0.15% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.06% or less, S: 0.01% or less, Ni: 0.05- 7.0%, Cr: 8.0 to 18.0%, N: 0.10% or less, Ti: 0 to 0.05%, Cu: 0 to 3.0%, Mo: 3.0% or less, B: a step of welding a solution-treated steel plate having a chemical composition of 0 to 0.015%, the balance Fe and unavoidable impurities and having a ferrite phase of 0 to 50% by volume to form a ring,
Ring rolling in a rolling rate range of 3 to 60%, and adjusting the residual austenite phase to 0 to 10% by volume for both the base metal and the welded portion;
A step of performing nitriding treatment by any of the following "salt bath nitriding method", "gas nitrosulphur nitriding method", "plasma nitriding method",
Method for manufacturing continuously variable transmission belt having
[Salt bath nitriding method] In the molten steel at 300 to 600 ° C. containing at least one of NaCN, KCN, NaCNO and KCNO as a basic component and containing at least one of Na 2 CO 3 and K 2 CO 3 , the ring-shaped steel plate Is immersed for 1 to 120 minutes.
[Gas nitrosulphurizing method] The ring-shaped steel sheet is exposed for 1 to 120 minutes in a gas atmosphere of 300 to 600 ° C in which ammonia gas is a basic component and H 2 S is mixed.
[Plasma nitriding method] The ring-shaped steel sheet is heated at 300 to 600 ° C. for 1 to 120 minutes by plasma generated between the ring-shaped steel sheet and the electrode in a reduced pressure gas containing nitrogen gas as a basic component.
質量%で、C:0.15%以下、Si:3.0%以下、Mn:1.0%以下、P:0.06%以下、S:0.01%以下、Ni:0.05〜7.0%、Cr:8.0〜18.0%、N:0.10%以下、Ti:0〜0.05%、Cu:0〜3.0%、Mo:3.0%以下、B:0〜0.015%、残部Feおよび不可避的不純物からなる化学組成をもち、残留オーステナイト相:0〜25体積%、フェライト相:0〜50体積%、残部のマトリクスがマルテンサイト相の金属組織をもつ溶体化処理された鋼板を、溶接してリング状にする工程、
圧延率3〜60%の範囲でリング圧延を行い、母材および溶接部とも、残留オーステナイト相を0〜10体積%に調整する工程、
下記の「塩浴窒化法」、「ガス浸硫窒化法」、「プラズマ窒化法」のいずれかにより窒化処理を施す工程、
を有する無段変速機ベルトの製造法。
〔塩浴窒化法〕NaCN、KCN、NaCNOおよびKCNOの1種以上を基本成分としNa2CO3およびK2CO3の1種以上を含む300〜600℃の溶融塩中に、当該リング状鋼板を1〜120分間浸漬する。
〔ガス浸硫窒化法〕アンモニアガスを基本成分としH2Sを混合した300〜600℃のガス雰囲気中に、当該リング状鋼板を1〜120分間曝す。
〔プラズマ窒化法〕窒素ガスを基本成分とする減圧ガス中で当該リング状鋼板と電極との間に生成させたプラズマによって、当該リング状鋼板を300〜600℃、1〜120分間加熱する。
In mass%, C: 0.15% or less, Si: 3.0% or less, Mn: 1.0% or less, P: 0.06% or less, S: 0.01% or less, Ni: 0.05- 7.0%, Cr: 8.0 to 18.0%, N: 0.10% or less, Ti: 0 to 0.05%, Cu: 0 to 3.0%, Mo: 3.0% or less, B: a metal having a chemical composition consisting of 0 to 0.015%, the balance Fe and unavoidable impurities, residual austenite phase: 0 to 25% by volume, ferrite phase: 0 to 50% by volume, and the balance matrix being a martensite phase Welding a solution-treated steel sheet having a structure to form a ring;
Ring rolling in a rolling rate range of 3 to 60%, and adjusting the residual austenite phase to 0 to 10% by volume for both the base metal and the welded portion;
A step of performing nitriding treatment by any of the following "salt bath nitriding method", "gas nitrosulphur nitriding method", "plasma nitriding method",
Method for manufacturing continuously variable transmission belt having
[Salt bath nitriding method] In the molten steel at 300 to 600 ° C. containing at least one of NaCN, KCN, NaCNO and KCNO as a basic component and containing at least one of Na 2 CO 3 and K 2 CO 3 , the ring-shaped steel plate Is immersed for 1 to 120 minutes.
[Gas nitrosulphurizing method] The ring-shaped steel sheet is exposed for 1 to 120 minutes in a gas atmosphere of 300 to 600 ° C in which ammonia gas is a basic component and H 2 S is mixed.
[Plasma nitriding method] The ring-shaped steel sheet is heated at 300 to 600 ° C. for 1 to 120 minutes by plasma generated between the ring-shaped steel sheet and the electrode in a reduced pressure gas containing nitrogen gas as a basic component.
リング圧延と窒化処理の間に、
バレル研磨、ショットピーニング処理およびショットブラスト処理の1種以上を施す工程、
を有する請求項5または6に記載の無段変速機ベルトの製造法。
Between ring rolling and nitriding treatment,
A process of performing at least one of barrel polishing, shot peening and shot blasting;
A process for producing a continuously variable transmission belt according to claim 5 or 6.
前記化学組成において、B含有量が0.001〜0.015%である請求項1、5または6に記載の無段変速機ベルトの製造法。   The process for producing a continuously variable transmission belt according to claim 1, wherein the chemical composition has a B content of 0.001 to 0.015%. 前記化学組成が、下記(1)式で定義されるD値が80以上となるものである請求項1、5または6に記載の無段変速機ベルトの製造法。
D=−1667C−28Si−33Mn−61Ni−42Cr−1667N−30Cu−42Mo+1311 ……(1)
The method for manufacturing a continuously variable transmission belt according to claim 1, wherein the chemical composition has a D value defined by the following formula (1) of 80 or more.
D = -1667C-28Si-33Mn-61Ni-42Cr-1667N-30Cu-42Mo + 1311 (1)
JP2005087188A 2005-03-24 2005-03-24 Method for producing belt for continuously variable transmission Withdrawn JP2006265664A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005087188A JP2006265664A (en) 2005-03-24 2005-03-24 Method for producing belt for continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005087188A JP2006265664A (en) 2005-03-24 2005-03-24 Method for producing belt for continuously variable transmission

Publications (1)

Publication Number Publication Date
JP2006265664A true JP2006265664A (en) 2006-10-05

Family

ID=37201926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005087188A Withdrawn JP2006265664A (en) 2005-03-24 2005-03-24 Method for producing belt for continuously variable transmission

Country Status (1)

Country Link
JP (1) JP2006265664A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514930A (en) * 2006-12-28 2010-05-06 ポスコ Method for improving the surface properties of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells
WO2018001097A1 (en) * 2016-06-30 2018-01-04 郑州永通特钢有限公司 Sorbite stainless steel
KR101918892B1 (en) * 2018-03-16 2018-11-14 충 회 김 Material and method for manufacturing metal nitriding heat treatment material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514930A (en) * 2006-12-28 2010-05-06 ポスコ Method for improving the surface properties of stainless steel for bipolar plates of polymer electrolyte membrane fuel cells
US9103041B2 (en) 2006-12-28 2015-08-11 Posco Method for improving surface properties of the stainless steels for bipolar plate of polymer electrolyte membrane fuel cell
WO2018001097A1 (en) * 2016-06-30 2018-01-04 郑州永通特钢有限公司 Sorbite stainless steel
KR101918892B1 (en) * 2018-03-16 2018-11-14 충 회 김 Material and method for manufacturing metal nitriding heat treatment material

Similar Documents

Publication Publication Date Title
JP5251868B2 (en) Carbonitriding induction-hardened steel parts with excellent surface pressure fatigue strength at high temperatures and methods for producing the same
JP5530763B2 (en) Carburized steel parts with excellent low cycle bending fatigue strength
JP5099276B1 (en) Gas carburized steel parts having excellent surface fatigue strength, steel for gas carburizing, and method for producing gas carburized steel parts
WO2011111269A1 (en) Carburized steel component having excellent low-cycle bending fatigue strength
JP5812048B2 (en) High carbon hot rolled steel sheet excellent in hardenability and workability and method for producing the same
JP4728883B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
WO2014104113A1 (en) Steel for carburizing
JP2007177317A (en) Steel for machine structure having excellent strength, ductility, toughness and abrasion resistance, its production method and metal belt using the same
KR102464899B1 (en) Precipitation hardening steel and its manufacture
JP5505263B2 (en) Carburized and hardened steel and carburized parts with excellent low cycle fatigue properties
JP4784217B2 (en) Continuously variable transmission belt, stainless steel plate for the belt, and manufacturing method thereof
JP5558887B2 (en) Manufacturing method of high strength parts using Ti and B added steels with excellent low cycle fatigue strength
JP3421265B2 (en) Metastable austenitic stainless steel sheet for continuously variable transmission belt and method of manufacturing the same
JP7152832B2 (en) machine parts
JP2003113449A (en) High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor
JP2013028860A (en) Steel material made of carburizing steel having excellent torsion-fatigue characteristics
JP2012072462A (en) Carbonitride steel component with high pitching resistance
JP2005097682A (en) Steel, steel sheet and stock belt for continuously variable transmission belt, continuously variable transmission belt, and production method therefor
WO2015133470A1 (en) Age hardening non-heat treated bainitic steel
JP5146063B2 (en) High strength steel with excellent internal fatigue damage resistance and method for producing the same
JP2007246941A (en) Component for high facial pressure and its production method
JP2006265664A (en) Method for producing belt for continuously variable transmission
JP4488228B2 (en) Induction hardening steel
JP2009191322A (en) Case-hardened steel superior in grain-coarsening resistance for use in carburized parts
JP4757831B2 (en) Induction hardening part and manufacturing method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080603