JP2007077411A - Machine structural component having excellent fatigue strength and wear property, and method for producing the same - Google Patents

Machine structural component having excellent fatigue strength and wear property, and method for producing the same Download PDF

Info

Publication number
JP2007077411A
JP2007077411A JP2005262687A JP2005262687A JP2007077411A JP 2007077411 A JP2007077411 A JP 2007077411A JP 2005262687 A JP2005262687 A JP 2005262687A JP 2005262687 A JP2005262687 A JP 2005262687A JP 2007077411 A JP2007077411 A JP 2007077411A
Authority
JP
Japan
Prior art keywords
less
depth
steel
nitriding
induction hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005262687A
Other languages
Japanese (ja)
Inventor
Yasushi Hiraoka
泰 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2005262687A priority Critical patent/JP2007077411A/en
Publication of JP2007077411A publication Critical patent/JP2007077411A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a machine structural component made steel to form into a product by being subjected to surface treatment composed of nitriding treatment and the subsequent induction hardening, which has excellent bending fatigue strength and wear properties, particularly, has excellent pitting fatigue resistance and facial pressure strength. <P>SOLUTION: A steel having an alloy composition comprising, by weight, 0.1 to 0.6% C, 0.03 to 1.5% Si, 0.01 to 2.0% Mn, 0.005 to 0.025% S and 0.1 to 3.0% Cr, and the balance Fe is formed, and is subjected to nitriding treatment at ≥600°C, so as to form a nitrided layer in which the thickness of the produced compound layer is ≤5 μm, depth is ≥0.2 mm, and the concentration of nitrogen in the position of a 0.05 mm depth from the surface is 0.3 to 2.5 wt.%. Then, induction hardening is performed under the conditions where the part of the nitrided layer is austenitized. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、疲労強度および摩耗特性にすぐれた機械構造部品と、窒化および高周波焼入れを伴う、機械構造部品の製造方法に関する。 The present invention relates to a mechanical structural component having excellent fatigue strength and wear characteristics, and a method for manufacturing a mechanical structural component involving nitriding and induction hardening.

機械構造部品の機械的特性のうち、面圧強度、曲げ疲労強度、ねじり疲労強度など表面の性質が関係する特性を向上させることを目的として、部品の表面に対する硬化処理が、しばしば行なわれている。たとえば、C含有量を0.13〜0.23%という低い値に抑えた肌焼鋼に対して浸炭または浸炭窒化処理を施すことによって、耐摩耗性や疲労強度を高めた部品を得ることがよく行なわれており、そのほか、窒化処理(方法としてはタフトライド法、ガス軟窒化、イオン窒化などがある)や高周波焼入れも採用される。 Of the mechanical properties of mechanical structural parts, the surface of parts is often hardened for the purpose of improving properties related to surface properties such as surface pressure strength, bending fatigue strength, and torsional fatigue strength. . For example, by carburizing or carbonitriding a case-hardened steel whose C content is suppressed to a low value of 0.13 to 0.23%, it is possible to obtain a part with improved wear resistance and fatigue strength. In addition, nitriding treatment (including methods such as tuftride, gas soft nitriding, and ion nitriding) and induction hardening are also employed.

これらの表面処理法は、それぞれ一長一短があり、目的に応じて選択すべきであるが、ひとつの処理では所望の特性改善ができないことがある。たとえば、従来の窒化処理では、硬化層深さが浅いため、曲げ疲労強度が十分に高くならない。一方、高周波焼入れだけでは、表面硬さが低いし、焼戻し軟化抵抗も低いため、転動疲労強度が不足である。浸炭処理は高周波焼入れにより高い表面硬さを与えるが、焼戻し軟化抵抗が低いから、転動疲労強度に限界があるという点では、高周波焼入れと同様である。 Each of these surface treatment methods has merits and demerits, and should be selected according to the purpose. However, the desired characteristics may not be improved by one treatment. For example, in the conventional nitriding treatment, the bending fatigue strength is not sufficiently high because the hardened layer depth is shallow. On the other hand, only by induction hardening, the surface hardness is low and the temper softening resistance is also low, so that the rolling fatigue strength is insufficient. Although carburizing treatment gives high surface hardness by induction hardening, it is the same as induction hardening in that rolling fatigue strength is limited because of low resistance to temper softening.

そこで、二以上の表面処理を組み合わせて実施することが試みられている。一例を挙げれば、窒化処理の後に高周波焼入れを行なうという提案であって(特許文献1)、どちらか単独では達成できない硬化層の硬さと深さとが実現し、すぐれた機械的特性が得られる。しかし、この組み合わせにおいても、窒化後の化合物層が、高周波焼入れによって多量の残留オーステナイトを表層に生成させて、十分な機械的特性を発揮できないという問題がある。
特開平7−90364(特許3405468)
Therefore, an attempt has been made to combine two or more surface treatments. For example, the proposal is that induction hardening is performed after nitriding treatment (Patent Document 1), and the hardness and depth of the hardened layer that cannot be achieved by either of them are realized, and excellent mechanical properties are obtained. However, even in this combination, there is a problem that the compound layer after nitridation generates a large amount of retained austenite on the surface layer by induction hardening and cannot exhibit sufficient mechanical properties.
Japanese Patent Laid-Open No. 7-90364 (Patent 3405468)

本発明の目的は、窒化処理に続いて高周波焼入れを行なうことからなる鋼製の機械構造部品の表面処理において、既知の技術の欠点を解消し、曲げ疲労強度および摩耗特性、とくに耐ピッティング疲労特性ないし面圧強度が、従来よりもすぐれた機械構造部品を提供すること、および、そのような機械構造部品の製造方法を提供することにある。 The object of the present invention is to eliminate the disadvantages of known techniques in the surface treatment of mechanical structural parts made of steel consisting of induction hardening following nitriding, and to solve bending fatigue strength and wear characteristics, in particular pitting fatigue resistance. The object is to provide a machine structural component having characteristics or surface pressure strength superior to those of the prior art, and to provide a method for producing such a machine structural component.

本発明の疲労強度および摩耗特性がすぐれた機械構造部品は、重量%で、C:0.1〜0.6%、Si:0.03〜1.5%、Mn:0.01〜2.0%、S:0.005〜0.025%およびCr:0.1〜3.0%を含有し、残部がFeおよび不可避な不純物からなる合金組成を有する鋼を、機械構造部品の形状に成形し、窒化処理および高周波焼入れを行なって得たものであって、化合物層の厚さが2μm以下、硬化深さが0.5mm以上、表面から深さ0.05mmの位置における硬さが800HV以上であり、表面から0.2mmの深さに至る層の残留オーステナイトが20体積%以下であることを特徴とする。 The mechanical structural parts having excellent fatigue strength and wear characteristics according to the present invention are C: 0.1-0.6%, Si: 0.03-1.5%, Mn: 0.01-2. Steel having an alloy composition containing 0%, S: 0.005 to 0.025% and Cr: 0.1 to 3.0% with the balance being Fe and inevitable impurities is formed into the shape of a mechanical structural component. It is obtained by molding, nitriding and induction hardening, and the compound layer thickness is 2 μm or less, the curing depth is 0.5 mm or more, and the hardness at the position of 0.05 mm from the surface is 800 HV. The above is characterized in that the retained austenite of the layer reaching a depth of 0.2 mm from the surface is 20% by volume or less.

本発明の機械構造部品は、窒化により生じた化合物層の厚さを5μm以下としたことにより、表面層に存在するNの量が制限され、その結果、高周波焼き入れ後に表面から0.2mmの深さに至る層の残留オーステナイトが20体積%以下の少量となって、表面から深さ0.05mmの位置における硬さが800HV以上と、高く保たれる。硬化深さが0.5mm以上と深く、深い位置まで高いN濃度が確保されているから、曲げ疲労強度が高く、面圧強度も高い。これらの作用があいまって、本発明の機械構造部品は、すぐれた疲労強度と摩耗特性を発揮する。 In the mechanical structural component of the present invention, the thickness of the compound layer generated by nitriding is set to 5 μm or less, so that the amount of N existing in the surface layer is limited. The amount of retained austenite in the layer reaching the depth becomes a small amount of 20% by volume or less, and the hardness at a depth of 0.05 mm from the surface is kept high at 800 HV or more. Since the hardening depth is as deep as 0.5 mm or more and a high N concentration is secured up to a deep position, the bending fatigue strength is high and the surface pressure strength is also high. Combined with these actions, the mechanical structural component of the present invention exhibits excellent fatigue strength and wear characteristics.

この機械構造部品は、材料として、上記した諸成分に加えて、重量%で、Al:0.02〜1.0%、V:0.05〜1.0%、Mo:0.05〜1.0%、Ti:0.005〜1.0%、Nb:0.1%以下およびZr:0.1%以下の1種または2種以上を含有する合金組成を有する鋼を使用して製造することができる。 In addition to the above-mentioned components, this mechanical structural part is made of, in weight percent, Al: 0.02-1.0%, V: 0.05-1.0%, Mo: 0.05-1 Manufactured using steel having an alloy composition containing one or more of 0.0%, Ti: 0.005 to 1.0%, Nb: 0.1% or less, and Zr: 0.1% or less can do.

本発明の、面圧強度および曲げ疲労強度がすぐれた機械構造部品の製造方法は、上述した基本的な合金組成の鋼、すなわち、重量%で、C:0.1〜0.6%、Si:0.03〜1.5%、Mn:0.01〜2.0%、S:0.005〜0.025%およびCr:0.1〜3.0%を含有し、残部がFeおよび不可避な不純物からなる合金組成を有する鋼を材料とするにしても、また、変更態様の合金組成を有する鋼、すなわち、上記の諸成分に加えてさらに、重量%で、Al:0.02〜1.0%、V:0.05〜1.0%、Mo:0.05〜1.0%、Ti:0.005〜1.0%、Nb:0.1%以下およびZr:0.1%以下の1種または2種以上を含有する合金組成を有する鋼を材料とするにしても、600℃以下の温度で窒化処理を施し、窒化により生成した化合物層の厚さが5μm以下、窒化層の深さが0.2mm以上、表面から深さ0.05mmの位置における窒素濃度が0.3〜2.5重量%の窒化層を形成し、ついで、窒化層部分がオーステナイト化する条件で高周波焼入れを行なうことを特徴とする。 The method of manufacturing a machine structural part having excellent surface pressure strength and bending fatigue strength according to the present invention is a steel having the above basic alloy composition, that is, by weight%, C: 0.1 to 0.6%, Si : 0.03-1.5%, Mn: 0.01-2.0%, S: 0.005-0.025% and Cr: 0.1-3.0%, with the balance being Fe and Even if the steel having an alloy composition composed of inevitable impurities is used as the material, the steel having a modified alloy composition, that is, in addition to the above-mentioned components, in addition, by weight%, Al: 0.02 1.0%, V: 0.05 to 1.0%, Mo: 0.05 to 1.0%, Ti: 0.005 to 1.0%, Nb: 0.1% or less, and Zr: 0.00. Even if the material is steel having an alloy composition containing 1% or less of 1% or less, nitriding treatment is performed at a temperature of 600 ° C or less. The thickness of the compound layer formed by nitriding is 5 μm or less, the depth of the nitrided layer is 0.2 mm or more, and the nitrogen concentration at a position 0.05 mm deep from the surface is 0.3 to 2.5 wt% A nitride layer is formed, and then induction hardening is performed under the condition that the nitride layer portion becomes austenite.

本発明において、機械構造部品の材料とする鋼の合金組成を上記のようにえらんだ理由は、つぎのとおりである。
C:0.1〜0.6%
Cは、部品に要求される強度を確保するための内部硬さを与える成分であり、この目的のために、0.1%以上の存在が必要である。他方、多量のCは、鍛造または圧延−溶体化処理後の硬さを過度に高めて加工性を低下させるため、0.6%の添加を上限とする。
In the present invention, the reason why the alloy composition of the steel used as the material of the machine structural component is selected as described above is as follows.
C: 0.1 to 0.6%
C is a component that gives an internal hardness to ensure the strength required for the part, and for this purpose, it is necessary to be present at 0.1% or more. On the other hand, a large amount of C excessively increases the hardness after forging or rolling-solution treatment and decreases workability, so the upper limit is 0.6%.

Si:0.03〜1.5%
Siは、鋼の溶製時に脱酸および脱硫剤として作用するとともに、焼戻し軟化抵抗を高めて、転動寿命を向上させる作用がある。この作用を得るためには、0.03%以上のSiを添加する必要がある。過大な量になると、加工性や靱性の低下を招くので、1.5%以下の添加に止める。
Si: 0.03-1.5%
Si acts as a deoxidizing and desulfurizing agent during the melting of steel, and has the effect of increasing the temper softening resistance and improving the rolling life. In order to obtain this effect, it is necessary to add 0.03% or more of Si. If the amount is too large, the workability and toughness are reduced, so the addition is limited to 1.5% or less.

Mn:0.01〜2.0%
Mnもまた、鋼の溶製時に脱酸および脱硫剤として作用するとともに、焼入れ性の向上に役立つ。このはたらきは、0.01%以上のMnの添加によって得られる。多量の添加は、靱性の低下を結果するので、2.0%を上限とする。
Mn: 0.01 to 2.0%
Mn also acts as a deoxidizing and desulfurizing agent during the melting of steel and helps to improve hardenability. This function can be obtained by adding 0.01% or more of Mn. A large amount of addition results in a decrease in toughness, so the upper limit is 2.0%.

S:0.005〜0.025%
Sは快削元素であって、機械加工時に被削性を高める点で有用な成分である。この効果は、0.005%以上の添加により得られるが、多量のSは鋼の熱間加工性や疲れ限度を低下させるので、0.025%以内の添加量をえらぶ。
S: 0.005-0.025%
S is a free-cutting element and is a useful component in terms of enhancing machinability during machining. This effect is obtained by addition of 0.005% or more, but a large amount of S lowers the hot workability and fatigue limit of steel, so an addition amount within 0.025% is selected.

Cr:0.1〜3.0%
Crは、窒化層の深さを深くし、その窒素含有量を高めるだけでなく、焼入れ性の向上にも役立つ。この効果を確保するために、0.1%以上を添加する。しかし、Crの含有量を高くすると、窒化特性が損なわれるので、3.0%を限度とする。
Cr: 0.1-3.0%
Cr not only increases the depth of the nitrided layer and increases its nitrogen content, but also helps improve hardenability. In order to ensure this effect, 0.1% or more is added. However, if the Cr content is increased, the nitriding properties are impaired, so the limit is 3.0%.

本発明において、任意に添加する合金成分の意義と組成範囲の限定理由は、つぎのとおりである。
Al:0.02〜1.0%、V:0.05〜1.0%、Mo:0.05〜1.0%、Ti:0.005〜1.0%、Nb:0.1%以下およびZr:0.1%以下の1種または2種以上
これらの成分は、鋼の窒化特性に強い影響を及ぼすから、高周波焼き入れ後に必要な特性に応じて、1種または2種以上添加するとよい。上記のうちAlおよびTiは、部品表面の窒素濃度を高めるのに有効であり、また、高周波焼き入れ時に合金窒化物により結晶粒の成長を抑制して組織を微細にするから、機械的特性の向上に寄与する。この利益を得るためには、Alは0.02%、Tiは0.005%以上添加しなければならない。Vは、表面の窒素濃度を高めるだけでなく、深さ方向の窒素濃度を高めるにも役立つ。この効果は、0.05%以上のVの添加により得られる。MoおよびZrは、窒化層の深さを増すとともに、焼入れ性の向上にも役立つ。Zrは少量で有効であるが、Moは0.05%以上の添加で、効果が確実になる。Nbは、表面の窒素濃度を高めるとともに、AlおよびTiと同様に、高周波焼き入れ時の結晶粒微細化に貢献する。上記各元素は、いずれも添加量を増して行くと効果が飽和するので、飽和以前の、すなわち、Al,TiおよびVは1.0%以下、Moは2.0%以下、NbおよびZrは0.1%以下の添加量をえらぶ。
In the present invention, the meaning of the alloy component to be arbitrarily added and the reason for limiting the composition range are as follows.
Al: 0.02-1.0%, V: 0.05-1.0%, Mo: 0.05-1.0%, Ti: 0.005-1.0%, Nb: 0.1% 1 or 2 or more of Zr: 0.1% or less These components have a strong influence on the nitriding properties of steel. Therefore, one or more of them are added depending on the properties required after induction hardening. Good. Among the above, Al and Ti are effective in increasing the nitrogen concentration on the surface of the component, and also suppress the growth of crystal grains by the alloy nitride during high-frequency quenching and make the structure finer. Contributes to improvement. In order to obtain this benefit, 0.02% of Al and 0.005% or more of Ti must be added. V not only increases the nitrogen concentration on the surface, but also helps increase the nitrogen concentration in the depth direction. This effect is obtained by adding 0.05% or more of V. Mo and Zr increase the depth of the nitride layer and also help improve the hardenability. Zr is effective in a small amount, but Mo is effective when added in an amount of 0.05% or more. Nb increases the nitrogen concentration on the surface and contributes to the refinement of crystal grains during induction hardening, similar to Al and Ti. The effect of each of the above elements is saturated when the addition amount is increased. Therefore, before saturation, that is, Al, Ti and V are 1.0% or less, Mo is 2.0% or less, Nb and Zr are Select an addition amount of 0.1% or less.

本発明の機械構造部品の製造方法における特色は、窒化処理によって生成する化合物層の厚さを規制したことにある。化合物層は多量の窒素を含有するため、高周波焼入れ時に分解してオーステナイト(以下「γ」と記す)相が生成し、このγ相には多量の窒素が含まれているから、焼入れしても焼きが入らず、γ相が室温まで安定して存在するから、所望の表面特性をえることができない。化合物層の厚さが厚いほど、残留するγ相の量も多くなる。この表面に生成し残留するγ相の硬さは、高周波焼き入れにより得られる硬化層の硬さに比べれば低いため、機械的性質を高めることができない。 The feature of the method for manufacturing a mechanical structural component of the present invention is that the thickness of the compound layer generated by nitriding is regulated. Since the compound layer contains a large amount of nitrogen, it decomposes during induction quenching to produce an austenite (hereinafter referred to as “γ”) phase, and this γ phase contains a large amount of nitrogen. Since the baking does not occur and the γ phase exists stably up to room temperature, desired surface characteristics cannot be obtained. The thicker the compound layer, the greater the amount of remaining γ phase. Since the hardness of the γ phase generated and remaining on this surface is lower than the hardness of the hardened layer obtained by induction hardening, the mechanical properties cannot be enhanced.

このようなわけで、窒化処理によって生成する化合物の層の厚さを、ある限度以下に規制しなければならず、その限度が、前記のように5μmである。5μm以下であれば、高周波焼入れ時に生成するγ相の量はごく少なく、製品の機械的特性に実質的な影響を与えないことがわかった。窒化処理後の化合物層の厚さを規制するには、たとえばイオン窒化であれば、Nガスの混合比をコントロールすればよく、また、窒化の雰囲気によって化合物層が厚くなっても、ガスを止めて化合物層を薄くすることも可能であり、当業者に既知の技術に従って窒化処理を実施することにより、5μm以下の厚さの化合物層を形成することができる。 For this reason, the thickness of the compound layer produced by the nitriding treatment must be regulated below a certain limit, which is 5 μm as described above. If it is 5 μm or less, it has been found that the amount of γ phase generated during induction hardening is very small and does not substantially affect the mechanical properties of the product. In order to regulate the thickness of the compound layer after the nitriding treatment, for example, in the case of ion nitriding, the mixing ratio of N 2 gas may be controlled, and even if the compound layer becomes thick due to the nitriding atmosphere, The compound layer can be thinned by stopping, and a compound layer having a thickness of 5 μm or less can be formed by performing nitriding according to a technique known to those skilled in the art.

窒化処理を600℃以上で行なうのは、表面から深さ0.05mmの位置における窒素濃度を0.2〜2.5重量%とするためである。この種の合金鋼においては、共析温度が600℃より高くなるため、多量のNを固溶させるためには、600℃以上の窒化温度を採用することが有利である。高温で窒化すると、生成した窒化物が粗大化するため、上記の固溶N量の増大とあいまって、表面から深さ0.05mmの位置におけるN濃度0.3〜2.5重量%という条件を達成するのが容易である。一方、600℃以上の高温で窒化を行なうと、通常行なわれる550℃程度の温度の窒化の場合よりも、化合物層のN濃度は低くなるため、高周波焼き入れによって分解し拡散するNの量も減少し、残留γ相の生成量が低く抑えられて、表面硬さが低下することが防げる。ただし、過度に高温で窒化することは、必要以上にNを芯部まで拡散させ、適切でない。通常、680℃までの処理温度を選択する。 The reason why the nitriding treatment is performed at 600 ° C. or more is to make the nitrogen concentration at a position of 0.05 mm depth from the surface 0.2 to 2.5 wt%. In this type of alloy steel, the eutectoid temperature is higher than 600 ° C., so it is advantageous to employ a nitriding temperature of 600 ° C. or higher in order to dissolve a large amount of N into a solid solution. When the nitriding is performed at a high temperature, the generated nitride becomes coarse. Therefore, in combination with the increase in the amount of dissolved N, the condition that the N concentration is 0.3 to 2.5% by weight at a depth of 0.05 mm from the surface. Is easy to achieve. On the other hand, when nitriding is performed at a high temperature of 600 ° C. or higher, the N concentration of the compound layer is lower than in the case of nitriding at a temperature of about 550 ° C., which is usually performed. It is possible to reduce the amount of residual γ phase generated, and to prevent the surface hardness from being lowered. However, nitriding at an excessively high temperature is not appropriate because N is diffused to the core more than necessary. Usually, a processing temperature up to 680 ° C. is selected.

窒化層の深さが0.2mm以上で、表面から深さ0.05mmの位置におけるN濃度が0.3〜2.5重量%という条件は、高周波焼き入れされた部分の硬さを十分高くする上で、満たすべきものである。それにより、本発明の機械部品は、曲げ疲労強度にすぐれるとともに、面圧強度も高く得られる。 The condition that the depth of the nitrided layer is 0.2 mm or more and the N concentration at the position of 0.05 mm from the surface is 0.3 to 2.5% by weight is that the hardness of the induction-hardened portion is sufficiently high. It must be fulfilled. As a result, the mechanical component of the present invention has excellent bending fatigue strength and high surface pressure strength.

表1に示す合金組成の鋼を、容量50kgの高周波誘導炉を用いて溶製した。インゴットを鍛造し、直径30mmおよび22mmの2種の棒鋼に鍛伸したものを、焼準し処理した。 Steels having the alloy compositions shown in Table 1 were melted using a high-frequency induction furnace having a capacity of 50 kg. The ingot was forged and forged into two types of steel bars having a diameter of 30 mm and 22 mm, and normalized.

表1 重量%、残部Fe

Figure 2007077411
Table 1% by weight, balance Fe
Figure 2007077411

焼準し処理をした鋼を機械加工し、ローラーピッティング試験片および回転曲げ疲労試験片を製作し、ガス軟窒化処理と、それに続く高周波焼入れとを行なった。深さ0.05mmの位置における硬さを測定し、残留γ相の量を調べた。それぞれの試験片を用いて、ローラーピッティング試験および小野式回転曲げ疲労試験を行なった。ガス軟窒化処理および高周波焼入れ処理の条件を表2に示し、軟窒化処理後の化合物層の厚さおよび窒化層の深さ、高周波焼入れ後の硬さおよび残留γ相の量、ローラーピッティング試験および回転曲げ疲労試験の結果を、表3に示す。 The normalized steel was machined to produce roller pitting test pieces and rotating bending fatigue test pieces, which were subjected to gas soft nitriding followed by induction hardening. The hardness at a depth of 0.05 mm was measured, and the amount of residual γ phase was examined. A roller pitting test and an Ono-type rotary bending fatigue test were performed using each test piece. The conditions of gas soft nitriding and induction hardening are shown in Table 2. The thickness of compound layer and depth of nitride after soft nitriding, hardness after induction hardening, amount of residual γ phase, roller pitting test Table 3 shows the results of the rotating bending fatigue test.

表2

Figure 2007077411
Table 2
Figure 2007077411

表3

Figure 2007077411
Table 3
Figure 2007077411

比較例No.1は、既知の軟窒化用鋼に高周波焼入れだけを施した場合のデータである。そこで、この鋼が示す特性を標準とし、実施例および他の比較例の特性を相対値で示した。本発明の実施例No.1〜16は、いずれも化合物層の厚さが5μm以下であって、ローラーピッティング試験および回転曲げ疲労試験の結果が、標準よりすぐれていることが明らかである。比較例に用いた鋼は、合金組成としては発明の範囲内にあるが、その後の処理において発明の範囲外になるものである。比較例No.2〜4は、同じ鋼において、窒化により生成した化合物層の厚さを変えたものであり、比較例No.5〜7は、それぞれ別の鋼において、化合物層の厚さをほぼ10μmに揃えたものである。これら比較例は、標準とした比較例No.1と比べれば同等またはそれ以上の成績を示すが、実施例は、比較例のすべてにまさっている。比較例No.8は窒化の温度が600℃に満たない場合、No.9は過度に高い温度で窒化した場合であって、所期の特性が得られないことを示している。
Comparative Example No. 1 is data in the case where only a known soft nitriding steel is subjected to induction hardening. Therefore, the characteristics of this steel were used as standards, and the characteristics of the examples and other comparative examples were shown as relative values. Example No. 5 of the present invention In each of Nos. 1 to 16, the thickness of the compound layer is 5 μm or less, and it is clear that the results of the roller pitting test and the rotating bending fatigue test are superior to the standard. The steel used in the comparative example is within the scope of the invention as an alloy composition, but is out of the scope of the invention in the subsequent processing. Comparative Examples Nos. 2 to 4 are the same steels with different thicknesses of the compound layers produced by nitriding, and Comparative Examples Nos. 5 to 7 are different steels with different compound layer thicknesses. The thickness is approximately 10 μm. These comparative examples show equivalent or better results compared to the standard comparative example No. 1, but the examples outperform all of the comparative examples. Comparative Example No. 8 indicates that the nitriding temperature is less than 600 ° C., and No. 9 indicates that the nitriding is performed at an excessively high temperature, and the desired characteristics cannot be obtained.

Claims (3)

重量%で、C:0.1〜0.6%、Si:0.03〜1.5%、Mn:0.01〜2.0%、S:0.005〜0.025%およびCr:0.1〜3.0%を含有し、残部がFeおよび不可避な不純物からなる合金組成を有する鋼を、機械構造部品の形状に成形し、窒化処理および高周波焼入れを行なって得た、化合物層の厚さが2μm以下、硬化深さが0.5mm以上、表面から深さ0.05mmの位置における硬さが800HV以上であり、表面から0.2mmの深さに至る層の残留オーステナイトが20体積%以下である、疲労強度および摩耗特性がすぐれた機械構造部品。 By weight, C: 0.1-0.6%, Si: 0.03-1.5%, Mn: 0.01-2.0%, S: 0.005-0.025% and Cr: A compound layer obtained by forming steel having an alloy composition containing 0.1 to 3.0% and the balance of Fe and inevitable impurities into the shape of a mechanical structural part, and performing nitriding treatment and induction hardening Has a thickness of 2 μm or less, a curing depth of 0.5 mm or more, a hardness at a position of 0.05 mm depth from the surface of 800 HV or more, and a residual austenite of a layer reaching a depth of 0.2 mm from the surface is 20 Mechanical structural parts with excellent fatigue strength and wear characteristics that are less than volume%. 鋼が、請求項1に規定した諸成分に加えて、重量%で、Al:0.02〜1.0%、V:0.05〜1.0%、Mo:0.05〜1.0%、Ti:0.005〜1.0%、Nb:0.1%以下およびZr:0.1%以下の1種または2種以上を含有する合金組成を有するものである請求項1の機械構造部品。 In addition to the components defined in claim 1, the steel is in weight percent, Al: 0.02-1.0%, V: 0.05-1.0%, Mo: 0.05-1.0. %, Ti: 0.005 to 1.0%, Nb: 0.1% or less, and Zr: 0.1% or less, having an alloy composition containing one or more kinds. Structural parts. 請求項1または2に記載の機械構造部品を製造する方法であって、重量%で、C:0.1〜0.6%、Si:0.03〜1.5%、Mn:0.01〜2.0%、S:0.005〜0.025%およびCr:0.1〜3.0%を含有し、残部がFeおよび不可避な不純物からなる合金組成を有する鋼、または、これにさらに、重量%で、Al:0.02〜1.0%、V:0.05〜1.0%、Mo:0.05〜1.0%、Ti:0.005〜1.0%、Nb:0.1%以下およびZr:0.1%以下の1種または2種以上を含有する合金組成を有する鋼を機械構造部品の形状に成形し、600℃以下の温度で窒化処理を施し、窒化により生成した化合物層の厚さが5μm以下、窒化層の深さが0.2mm以上、表面から深さ0.05mmの位置における窒素濃度が0.3〜2.5重量%の窒化層を形成し、ついで、窒化層部分がオーステナイト化する条件で高周波焼入れを行なうことを特徴とする製造方法。
It is a method of manufacturing the machine structural component of Claim 1 or 2, Comprising: By weight%, C: 0.1-0.6%, Si: 0.03-1.5%, Mn: 0.01 Steel having an alloy composition containing ~ 2.0%, S: 0.005 to 0.025% and Cr: 0.1 to 3.0%, the balance being Fe and inevitable impurities, or Furthermore, by weight, Al: 0.02-1.0%, V: 0.05-1.0%, Mo: 0.05-1.0%, Ti: 0.005-1.0%, A steel having an alloy composition containing one or more of Nb: 0.1% or less and Zr: 0.1% or less is formed into the shape of a machine structural part and subjected to nitriding at a temperature of 600 ° C. or less. The thickness of the compound layer formed by nitriding is 5 μm or less, the depth of the nitride layer is 0.2 mm or more, and the depth from the surface is 0.05 mm. Nitrogen concentration to form a nitrided layer of 0.3 to 2.5 wt%, then manufacturing method characterized by performing induction hardening under conditions nitride layer portion is austenitized.
JP2005262687A 2005-09-09 2005-09-09 Machine structural component having excellent fatigue strength and wear property, and method for producing the same Pending JP2007077411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005262687A JP2007077411A (en) 2005-09-09 2005-09-09 Machine structural component having excellent fatigue strength and wear property, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005262687A JP2007077411A (en) 2005-09-09 2005-09-09 Machine structural component having excellent fatigue strength and wear property, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2007077411A true JP2007077411A (en) 2007-03-29

Family

ID=37938017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005262687A Pending JP2007077411A (en) 2005-09-09 2005-09-09 Machine structural component having excellent fatigue strength and wear property, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2007077411A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079253A (en) * 2007-09-26 2009-04-16 Nissan Motor Co Ltd Shaft and manufacturing method therefor
WO2010070958A1 (en) 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure
WO2010082685A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
JP2010280929A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
WO2011013362A1 (en) 2009-07-31 2011-02-03 日本パーカライジング株式会社 Steel member having nitrogen compound layer and process for producing same
WO2011047930A1 (en) * 2009-10-21 2011-04-28 Robert Bosch Gmbh Method for increasing the strength of components made of steel under cyclic load
CN102191453A (en) * 2010-03-08 2011-09-21 马建伟 Rice sieve, and composite heat treatment method for sieve sheet with long and round pores
WO2012056785A1 (en) 2010-10-27 2012-05-03 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
WO2014136307A1 (en) 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same
WO2014192117A1 (en) 2013-05-30 2014-12-04 新日鐵住金株式会社 Soft-nitrided induction-quenched steel component
JP2016204697A (en) * 2015-04-20 2016-12-08 新日鐵住金株式会社 Stock shape material of high frequency hardening component, high frequency hardening component and manufacturing method therefor
KR101734819B1 (en) 2009-08-24 2017-05-12 어플라이드 머티어리얼스, 인코포레이티드 In-situ deposition of battery active lithium materials by thermal spraying
JP2017110247A (en) * 2015-12-15 2017-06-22 新日鐵住金株式会社 Crank shaft and manufacturing method therefor
JP2017171951A (en) * 2016-03-18 2017-09-28 新日鐵住金株式会社 Steel component and production method thereof
JP2020033637A (en) * 2018-08-27 2020-03-05 Jfeスチール株式会社 Component and manufacturing method thereof
JP2020033636A (en) * 2018-08-27 2020-03-05 Jfeスチール株式会社 Component and manufacturing method therefor
JP2020105547A (en) * 2018-12-26 2020-07-09 大同特殊鋼株式会社 Structure member and method for manufacturing the same
EP3696289A1 (en) * 2016-10-13 2020-08-19 Caterpillar Inc. Nitrided track pin for track chain assembly of machine
CN115505844A (en) * 2022-09-22 2022-12-23 蒙阴金华机械有限公司 Die forging and soft nitriding method for mine car wheel

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079253A (en) * 2007-09-26 2009-04-16 Nissan Motor Co Ltd Shaft and manufacturing method therefor
WO2010070958A1 (en) 2008-12-19 2010-06-24 新日本製鐵株式会社 Hardfacing steel for machine structure, and steel component for machine structure
US9156231B2 (en) 2008-12-19 2015-10-13 Nippon Steel & Sumitomo Metal Corporation Steel for machine structure use for surface hardening and steel part for machine structure use
US8802005B2 (en) 2009-01-16 2014-08-12 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
WO2010082685A1 (en) 2009-01-16 2010-07-22 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and component for machine structural use
US9777343B2 (en) 2009-01-16 2017-10-03 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
US20110274578A1 (en) * 2009-01-16 2011-11-10 Atsushi Mizuno Steel for surface hardening for machine structural use and part for machine structural use
EP2388351B1 (en) * 2009-01-16 2019-04-17 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use, and component for machine structural use
US20140251507A1 (en) * 2009-01-16 2014-09-11 Nippon Steel & Sumitomo Metal Corporation Steel for surface hardening for machine structural use and part for machine structural use
JP2010280929A (en) * 2009-06-02 2010-12-16 Sumitomo Metal Ind Ltd Steel material to be used for application subjected to nitriding treatment and induction hardening treatment
WO2011013362A1 (en) 2009-07-31 2011-02-03 日本パーカライジング株式会社 Steel member having nitrogen compound layer and process for producing same
KR101734819B1 (en) 2009-08-24 2017-05-12 어플라이드 머티어리얼스, 인코포레이티드 In-situ deposition of battery active lithium materials by thermal spraying
CN102666906A (en) * 2009-10-21 2012-09-12 罗伯特·博世有限公司 Method for increasing the strength of components made of steel under cyclic load
WO2011047930A1 (en) * 2009-10-21 2011-04-28 Robert Bosch Gmbh Method for increasing the strength of components made of steel under cyclic load
CN102191453A (en) * 2010-03-08 2011-09-21 马建伟 Rice sieve, and composite heat treatment method for sieve sheet with long and round pores
WO2012056785A1 (en) 2010-10-27 2012-05-03 新日本製鐵株式会社 Steel for surface hardening for machine structural use, and steel component for machine structural use and process for producing same
CN105026602A (en) * 2013-03-08 2015-11-04 新日铁住金株式会社 Semi-finished material for induction hardened component and method for producing same
KR101773274B1 (en) * 2013-03-08 2017-08-31 신닛테츠스미킨 카부시키카이샤 Semi-finished material for induction hardened component and method for producing same
JP5994924B2 (en) * 2013-03-08 2016-09-21 新日鐵住金株式会社 Shaped material of induction-hardened parts and method for manufacturing the same
EP2966189A4 (en) * 2013-03-08 2016-11-30 Nippon Steel & Sumitomo Metal Corp Semi-finished material for induction hardened component and method for producing same
WO2014136307A1 (en) 2013-03-08 2014-09-12 新日鐵住金株式会社 Semi-finished material for induction hardened component and method for producing same
US10072314B2 (en) 2013-03-08 2018-09-11 Nippon Steel & Sumitomo Metal Corporation Roughly shaped material for induction hardened components and method for producing same
WO2014192117A1 (en) 2013-05-30 2014-12-04 新日鐵住金株式会社 Soft-nitrided induction-quenched steel component
JP5958652B2 (en) * 2013-05-30 2016-08-02 新日鐵住金株式会社 Soft nitrided induction hardened steel parts with excellent surface fatigue strength
KR20150109480A (en) 2013-05-30 2015-10-01 신닛테츠스미킨 카부시키카이샤 Soft-nitrided induction-quenched steel component
US10151010B2 (en) 2013-05-30 2018-12-11 Nippon Steel & Sumitomo Metal Corporation Soft nitrided induction hardened steel part
JP2016204697A (en) * 2015-04-20 2016-12-08 新日鐵住金株式会社 Stock shape material of high frequency hardening component, high frequency hardening component and manufacturing method therefor
JP2017110247A (en) * 2015-12-15 2017-06-22 新日鐵住金株式会社 Crank shaft and manufacturing method therefor
JP2017171951A (en) * 2016-03-18 2017-09-28 新日鐵住金株式会社 Steel component and production method thereof
EP3696289A1 (en) * 2016-10-13 2020-08-19 Caterpillar Inc. Nitrided track pin for track chain assembly of machine
JP2020033637A (en) * 2018-08-27 2020-03-05 Jfeスチール株式会社 Component and manufacturing method thereof
JP2020033636A (en) * 2018-08-27 2020-03-05 Jfeスチール株式会社 Component and manufacturing method therefor
JP2020105547A (en) * 2018-12-26 2020-07-09 大同特殊鋼株式会社 Structure member and method for manufacturing the same
JP7261385B2 (en) 2018-12-26 2023-04-20 大同特殊鋼株式会社 Structural member and manufacturing method thereof
CN115505844A (en) * 2022-09-22 2022-12-23 蒙阴金华机械有限公司 Die forging and soft nitriding method for mine car wheel

Similar Documents

Publication Publication Date Title
JP2007077411A (en) Machine structural component having excellent fatigue strength and wear property, and method for producing the same
JP5135561B2 (en) Nitriding steel and nitriding parts
WO2012077705A1 (en) Gas-carburized steel component with excellent surface fatigue strength, gas-carburizing steel material, and process for producing gas-carburized steel component
KR101726251B1 (en) Steel for nitrocarburizing and nitrocarburized component, and methods for producing said steel for nitrocarburizing and said nitrocarburized component
WO2013121794A1 (en) Soft-nitriding steel and soft-nitrided component using steel as material
JP2006307273A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability and in which softening can be obviated, and method for producing the same
JP4451808B2 (en) Rolled steel bar for case hardening with excellent fatigue characteristics and grain coarsening resistance and its manufacturing method
JP2001073072A (en) Carbo-nitrided parts excellent in pitching resistance
JP4737601B2 (en) High temperature nitriding steel
JP4962695B2 (en) Steel for soft nitriding and method for producing soft nitriding component
JP4847681B2 (en) Ti-containing case-hardened steel
JP2005325398A (en) High-strength gear and manufacturing method therefor
JP2012077333A (en) Nitriding steel excellent in machinability, and nitrided part
JPH08104971A (en) Production of bearing part
JPH07188895A (en) Manufacture of parts for machine structure use
JPH0488148A (en) High strength gear steel capable of rapid carburization and high strength gear
JPS5916948A (en) Soft-nitriding steel
JP3340016B2 (en) Structural steel for soft nitriding
JP2021167451A (en) Case hardened steel, and high strength member and method for manufacturing the same
JP6477614B2 (en) Steel for soft nitriding and parts and method for manufacturing them
EP3252182B1 (en) Case hardening steel
JP4821582B2 (en) Steel for vacuum carburized gear
JP2813917B2 (en) High fatigue strength structural steel
JP7196707B2 (en) Forged member for nitriding and its manufacturing method, and surface hardened forged member and its manufacturing method
JPH108199A (en) Case hardening steel excellent in carburizing hardenability