WO2013121794A1 - Soft-nitriding steel and soft-nitrided component using steel as material - Google Patents

Soft-nitriding steel and soft-nitrided component using steel as material Download PDF

Info

Publication number
WO2013121794A1
WO2013121794A1 PCT/JP2013/000838 JP2013000838W WO2013121794A1 WO 2013121794 A1 WO2013121794 A1 WO 2013121794A1 JP 2013000838 W JP2013000838 W JP 2013000838W WO 2013121794 A1 WO2013121794 A1 WO 2013121794A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
soft nitriding
soft
less
nitriding
Prior art date
Application number
PCT/JP2013/000838
Other languages
French (fr)
Japanese (ja)
Other versions
WO2013121794A8 (en
Inventor
岩本 隆
佳祐 安藤
冨田 邦和
大森 靖浩
清史 上井
三田尾 眞司
Original Assignee
Jfe条鋼株式会社
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe条鋼株式会社, Jfeスチール株式会社 filed Critical Jfe条鋼株式会社
Priority to US14/378,553 priority Critical patent/US20150020926A1/en
Priority to CN201380009412.5A priority patent/CN104114733A/en
Priority to EP13748467.1A priority patent/EP2816128B1/en
Priority to KR1020147024603A priority patent/KR20140129081A/en
Priority to JP2013532781A priority patent/JP5449626B1/en
Publication of WO2013121794A1 publication Critical patent/WO2013121794A1/en
Publication of WO2013121794A8 publication Critical patent/WO2013121794A8/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Definitions

  • Machine structural parts such as automobile gears are usually required to have excellent fatigue characteristics and are subjected to surface hardening treatment.
  • Carburizing treatment, induction hardening treatment and nitriding treatment are well known as surface hardening treatments.
  • Patent Documents 1 and 2 are improved in bending fatigue strength due to precipitation hardening of Cu or the like, but it is difficult to say that the workability is sufficiently secured.
  • Steel requires a relatively large amount of Cu, Ti, V, and Nb, and has a high production cost.
  • the steel for soft nitriding described in Patent Document 4 has a problem of high production cost because it contains a relatively large amount of Ti and Mo.
  • Mo 0.005 to 0.4%
  • Mo has the effect of finely depositing V and Nb precipitates to improve the strength of the soft nitriding material, and is an important element in the present invention. Mo is also effective for generating a bainite structure. Although 0.005% or more is added for strength improvement, it is an expensive element, and if it exceeds 0.4%, the component cost increases. Therefore, the amount of Mo added is within the range of 0.005 to 0.4%. More preferably, it is 0.01 to 0.3%. More preferably, it is 0.04 to 0.2%.
  • B is dissolved in steel.
  • B in steel is consumed for formation of BN, and when B exists in steel as BN, it does not contribute to improvement of hardenability. Therefore, when solid solution N is present in the steel, it is preferable to add more B than is consumed for the formation of BN.
  • the amount of B (% B) and the amount of N (% N in the steel) are preferably added. It is preferable that the relationship represented by the following formula (1) holds.
  • S1 is a steel bar manufacturing process as a raw material
  • S2 is a conveying process
  • S3 is a product (soft-nitriding part) finishing process.
  • the heating temperature during hot forging is in the range of 950 to 1250 ° C.
  • the forging finishing temperature is 800 ° C. or higher
  • the cooling rate after forging is higher than 0.5 ° C./sec so that no product is precipitated.
  • No. No. 14 has a low Nb outside the range of the present invention, so the amount of precipitates after the soft nitriding treatment is small, so that a sufficient core hardness cannot be obtained, and the fatigue strength is lower than that of the conventional material.

Abstract

The present invention can provide soft-nitriding steel which has a predefined component composition and, before soft nitriding, excellent machinability by having a structure in which the bainite area ratio prior to soft nitriding is greater than 50%, and after soft nitriding, strength/toughness equal to that of a carburized material of conventional steel, for example, SCr420 steel and provides more superior fatigue characteristics.

Description

軟窒化用鋼およびこの鋼を素材とする軟窒化部品Soft nitriding steel and soft nitriding parts made from this steel
 この発明は、軟窒化用鋼およびこの鋼を素材とする軟窒化部品、特に軟窒化後において疲労特性に優れ、自動車、建設機械用として好ましい軟窒化用鋼およびこの鋼を素材とする軟窒化部品に関するものである。 The present invention relates to a soft nitriding steel and a soft nitriding part made of this steel, in particular, a steel for soft nitriding which has excellent fatigue characteristics after soft nitriding and is preferable for automobiles and construction machines, and a soft nitriding part made of this steel It is about.
 自動車の歯車などの機械構造部品には、優れた疲労特性が要求され、表面硬化処理が施されるのが通例である。表面硬化処理として浸炭処理、高周波焼入処理および窒化処理が良く知られている。 Machine structural parts such as automobile gears are usually required to have excellent fatigue characteristics and are subjected to surface hardening treatment. Carburizing treatment, induction hardening treatment and nitriding treatment are well known as surface hardening treatments.
 浸炭処理は、高温のオーステナイト域においてCを浸入・拡散させるために、深い硬化深さが得られ、疲労強度の向上に有効である。 The carburizing treatment allows C to penetrate and diffuse in a high temperature austenite region, so that a deep hardening depth can be obtained and effective in improving fatigue strength.
 しかしながら、熱処理歪が発生することから、静粛性などの観点から厳しい寸法精度の要求される部品には、その適用が困難であった。 However, since heat treatment distortion occurs, it has been difficult to apply to parts that require strict dimensional accuracy from the viewpoint of quietness.
 高周波焼入処理は、高周波誘導加熱により表層部を焼入れする処理で、浸炭処理と同様に寸法精度に劣る。 The induction hardening process is a process in which the surface layer is quenched by induction heating, and is inferior in dimensional accuracy as in the carburizing process.
 窒化処理は、Ac1変態点以下の温度域で窒素を浸入・拡散させて表面硬さを高める処理であるが、処理時間が50~100時間と長く、また処理後に表層の脆い化合物層を除去する必要があった。 Nitriding is a treatment that increases the surface hardness by infiltrating and diffusing nitrogen in the temperature range below the Ac 1 transformation point, but the treatment time is as long as 50 to 100 hours, and the brittle compound layer on the surface layer is removed after the treatment. There was a need to do.
 そのため、窒化処理と同程度の処理温度で、窒化を短時間で処理する軟窒化処理が開発され、近年では機械構造用部品などを対象に広く普及している。軟窒化処理は、500~600℃の範囲内の温度域で、NとCを同時に浸入・拡散させて、表面を硬化するもので、従来の窒化処理と比較して半分以下の処理時間とすることが可能である。 For this reason, a soft nitriding treatment that develops nitriding in a short time at a treatment temperature similar to that of the nitriding treatment has been developed, and in recent years, it has been widely used for machine structural parts and the like. Soft nitriding is a process in which N and C are simultaneously infiltrated and diffused in the temperature range of 500 to 600 ° C. to harden the surface, and the processing time is less than half that of conventional nitriding. It is possible.
 しかしながら、浸炭処理では、焼入硬化により芯部硬度を上昇させることが可能であるのに対し、軟窒化処理では、鋼の変態点以下の温度で処理を行うため、芯部硬度が上昇せず、軟窒化処理材は、浸炭処理材と比較すると、疲労強度が劣る。 However, in the carburizing treatment, the core hardness can be increased by quench hardening, whereas in the nitrocarburizing treatment, the core hardness is not increased because the treatment is performed at a temperature below the transformation point of the steel. The nitrocarburized material is inferior in fatigue strength compared to the carburized material.
 軟窒化処理材の疲労強度を高めるため、通常、軟窒化前に焼入・焼戻し処理により、芯部硬度を上昇させることが行われるが、得られる疲労強度は、十分とは言い難く、また、製造コストが上昇し、機械加工性も低下する。 In order to increase the fatigue strength of the nitrocarburized material, the core hardness is usually increased by quenching and tempering before nitrocarburizing, but the obtained fatigue strength is hardly sufficient, Manufacturing costs increase and machinability also decreases.
 このような問題を解決するため、鋼の成分組成を、Ni、Al、Cr、Tiを含有する成分組成とし、軟窒化時に芯部は、Ni-Al、Ni-Ti系の金属間化合物あるいはCu化合物により時効硬化させ、表面は、窒化層中にCr、Al、Tiなどの窒化物や炭化物を析出硬化させることが提案されている(特許文献1、特許文献2)。 In order to solve such problems, the steel component composition is a component composition containing Ni, Al, Cr, Ti, and the core portion is Ni—Al, Ni—Ti intermetallic compound or Cu during soft nitriding. It has been proposed to age harden with a compound and to precipitate and harden nitrides and carbides such as Cr, Al, and Ti in the nitride layer (Patent Document 1 and Patent Document 2).
 特許文献3には、Cuを0.5~2%含有した鋼を、熱間鍛造で鍛伸後、空冷してCuを固溶したフェライト主体組織とし、580℃×120分の軟窒化処理中にCuを析出させ、更にTi、V、Nb炭窒化物の析出硬化も併用して、軟窒化処理後において優れた曲げ疲労特性を備えた鋼とすることが記載されている。特許文献4には、Ti-Mo炭化物、またそれらに更にNb、V、Wの一種または二種以上を含む炭化物を分散した軟窒化用鋼が開示されている。 In Patent Document 3, a steel containing 0.5 to 2% of Cu is forged by hot forging and then air-cooled to form a ferrite main structure in which Cu is solid-solved. Cu is further precipitated, and further, precipitation hardening of Ti, V, and Nb carbonitrides is used in combination to obtain a steel having excellent bending fatigue characteristics after soft nitriding. Patent Document 4 discloses a steel for soft nitriding in which Ti—Mo carbides and further carbides containing one or more of Nb, V, and W are dispersed.
特開平5-59488号公報JP-A-5-59488 特開平7-138701号公報JP-A-7-138701 特開2002-69572号公報JP 2002-69572 A 特開2010-163671号公報JP 2010-163671 A
 しかしながら、特許文献1、2に記載の軟窒化鋼は、Cuなどの析出硬化により、曲げ疲労強度は、向上するものの、加工性の確保が十分とは言い難く、特許文献3に記載の軟窒化鋼は、Cu、Ti、V、Nbを比較的多量に添加することが必要で、生産コストが高い。特許文献4に記載の軟窒化用鋼は、Ti、Moを比較的多量に含むため生産コストが高いという問題がある。 However, the nitrocarburized steels described in Patent Documents 1 and 2 are improved in bending fatigue strength due to precipitation hardening of Cu or the like, but it is difficult to say that the workability is sufficiently secured. Steel requires a relatively large amount of Cu, Ti, V, and Nb, and has a high production cost. The steel for soft nitriding described in Patent Document 4 has a problem of high production cost because it contains a relatively large amount of Ti and Mo.
 そこで、この発明は、軟窒化前は、硬さが低く機械加工性に優れる性質を有しつつ、軟窒化処理によって芯部硬さを高めることが可能で、かつ疲労特性に優れる軟窒化部品の製造が比較的安価に可能な軟窒化用鋼およびこの鋼を素材とする軟窒化部品を提供することを目的とする。 Accordingly, the present invention provides a soft nitrided part that has a property of low hardness and excellent machinability before soft nitriding, and can increase the core hardness by soft nitriding and has excellent fatigue characteristics. An object of the present invention is to provide a soft nitriding steel that can be manufactured at a relatively low cost and a soft nitriding component made of this steel.
 発明者らは、上記課題を解決するため、鋼の軟窒化後の疲労特性に及ぼす組織、組成の影響について鋭意検討を行った。この結果、鋼組成としてV、Nbを特定量含有させ、ベイナイト主体組織を軟窒化前組織とした鋼材に対して軟窒化処理を施し、その際の温度上昇を利用して、軟窒化される表層部以外の芯部組織中に微細な析出物を時効析出させることで芯部硬度を上昇させれば、軟窒化後に、優れた疲労特性が得られるといった知見を得た。 In order to solve the above problems, the inventors diligently studied the influence of the structure and composition on the fatigue properties of steel after soft nitriding. As a result, a steel layer containing a specific amount of V and Nb as a steel composition and having a bainite main structure as a pre-soft nitriding structure is subjected to soft nitriding treatment, and a surface layer that is soft nitrided using the temperature rise at that time It has been found that if the core hardness is increased by aging precipitation of fine precipitates in the core structure other than the part, excellent fatigue characteristics can be obtained after soft nitriding.
 この発明は、上記知見を基に、更に検討を加えてなされたもので、下記を特徴とする。
1.質量%で、C:0.01%以上0.10%未満、Si:1.0%以下、Mn:0.5~3.0%、Cr:0.30~3.0%、Mo:0.005~0.4%、V:0.02~0.5%、Nb:0.003~0.15%、Al:0.005~0.2%、S:0.06%以下、P:0.02%以下およびB:0.0003~0.01%を含み、残部:Fe及び不可避不純物からなり、軟窒化前において、ベイナイト面積率50%超えの組織を有する軟窒化用鋼。
2.軟窒化後において、ベイナイト相中にV、Nbを含む析出物が分散析出している前記1記載の軟窒化用鋼。
3.前記1または2に記載の軟窒化用鋼を素材とする軟窒化部品。
The present invention has been made on the basis of the above findings and further studied, and has the following features.
1. By mass%, C: 0.01% or more and less than 0.10%, Si: 1.0% or less, Mn: 0.5 to 3.0%, Cr: 0.30 to 3.0%, Mo: 0 0.005 to 0.4%, V: 0.02 to 0.5%, Nb: 0.003 to 0.15%, Al: 0.005 to 0.2%, S: 0.06% or less, P : Steel for soft nitriding comprising 0.02% or less and B: 0.0003 to 0.01%, balance: Fe and inevitable impurities, and having a structure with a bainite area ratio exceeding 50% before soft nitriding.
2. The steel for soft nitriding according to 1 above, wherein a precipitate containing V and Nb is dispersed and precipitated in the bainite phase after soft nitriding.
3. A nitrocarburized part made of the nitrocarburized steel according to 1 or 2 above.
 この発明によれば、軟窒化前は、被削性に優れ、軟窒化後は、従来鋼、例えば、SCr420鋼の浸炭材と同等の強度・靭性を有し、さらに優れた疲労特性を備えた軟窒化用鋼と、この鋼を素材とする軟窒化部品とを得ることができ、産業上極めて有用である。 According to the present invention, before soft nitriding, it has excellent machinability, and after nitrocarburizing, it has the same strength and toughness as a carburized material of conventional steel, for example, SCr420 steel, and further has excellent fatigue characteristics. A nitrocarburizing steel and a nitrocarburized component made of this steel can be obtained, which is extremely useful industrially.
この発明の軟窒化用鋼を用いて軟窒化部品を製造するための製造工程を示す概略図である。It is the schematic which shows the manufacturing process for manufacturing a soft nitriding component using the steel for soft nitriding of this invention.
 この発明に係る軟窒化用鋼のミクロ組織、成分組成および製造条件について、以下に説明する。 The microstructure, component composition and manufacturing conditions of the soft nitriding steel according to the present invention will be described below.
 1.ミクロ組織
 軟窒化前のミクロ組織をベイナイト面積率50%超えとし、かつ軟窒化後にベイナイト相中にV、Nb析出物を分散析出させた組織とする。軟窒化前の母相を、ベイナイト面積率50%超えのベイナイト主体組織とした場合、フェライト-パーライト組織の場合に比べて母相中へのV、Nb析出物の生成が著しく抑制される。その結果、軟窒化前にV、Nb析出物が析出して、鋼の硬さが上昇することを抑制することができ、通常軟窒化前に行われる切削加工性が改善される。さらに、これに軟窒化処理を施すと、表層部が窒化されると同時に、表層窒化部以外の芯部ベイナイト組織中には、V、Nb析出物が時効析出して、芯部硬さが上昇する。この結果、軟窒化後の疲労強度ならびに強度が顕著に向上する。
1. Microstructure The microstructure before soft nitriding is a bainite area ratio exceeding 50%, and a structure in which V and Nb precipitates are dispersed and precipitated in the bainite phase after soft nitriding. When the parent phase before soft nitriding is a bainite main structure with a bainite area ratio exceeding 50%, the formation of V and Nb precipitates in the parent phase is remarkably suppressed as compared with a ferrite-pearlite structure. As a result, it is possible to suppress the precipitation of V and Nb precipitates before soft nitriding and increase the hardness of the steel, and the machinability usually performed before soft nitriding is improved. Further, when soft nitriding is applied to this, the surface layer portion is nitrided, and at the same time, V and Nb precipitates are aged in the core bainite structure other than the surface nitrided portion, and the core hardness increases. To do. As a result, the fatigue strength and strength after soft nitriding are significantly improved.
 なお、この発明において、ベイナイト面積率50%超えの組織とは、断面組織観察(200倍の光学顕微鏡組織観察)でベイナイト組織(相)の面積率が50%を超えることである。好ましくは、ベイナイト組織の面積率が60%超え、さらに好ましくは、80%超えとする。また、ベイナイト組織中に析出するV、Nb析出物として、粒径:10nm未満の微細な析出物が分散していることが好ましい。さらにこの粒径:10nm未満のV、Nb析出物は、1μm当たり500個以上存在することが、十分に析出強化させる上で好ましい。 In the present invention, the structure having a bainite area ratio exceeding 50% means that the area ratio of the bainite structure (phase) exceeds 50% in cross-sectional structure observation (observation of a 200-fold optical microscope structure). Preferably, the area ratio of the bainite structure exceeds 60%, and more preferably exceeds 80%. Moreover, it is preferable that fine precipitates having a particle size of less than 10 nm are dispersed as V and Nb precipitates precipitated in the bainite structure. Further, it is preferable that 500 or more V and Nb precipitates having a particle size of less than 10 nm are present per 1 μm 2 for sufficient precipitation strengthening.
 2.成分組成
 この発明の軟窒化用鋼における成分組成の限定理由について説明する。以下、鋼成分の%は、何れも質量%である。
2. Component Composition The reasons for limiting the component composition in the soft nitriding steel of the present invention will be described. Hereinafter,% of the steel component is mass%.
C:0.01%以上、0.10%未満
 Cは、ベイナイト組織生成および強度確保のために添加する。C添加量が0.01%未満の場合、ベイナイト生成量が減少するとともに、V、Nb析出物量が減少して、強度確保が困難となる。一方、Cを0.10%以上添加すると、ベイナイト組織の硬さが増加して、機械加工性が低下する。従って、C添加量は、0.01%以上、0.10%未満の範囲内とする。より好ましくは、0.03%以上、0.10%未満である。
C: 0.01% or more and less than 0.10% C is added to form a bainite structure and ensure strength. When the amount of C added is less than 0.01%, the amount of bainite produced decreases, and the amounts of V and Nb precipitates decrease, making it difficult to ensure strength. On the other hand, when 0.10% or more of C is added, the hardness of the bainite structure increases and the machinability deteriorates. Therefore, the amount of C added is in the range of 0.01% or more and less than 0.10%. More preferably, it is 0.03% or more and less than 0.10%.
Si:1.0%以下
 Siは、脱酸ならびにベイナイト組織生成に有効なため添加するが、Si添加量が1.0%を超えると、フェライトおよびベイナイト組織の固溶硬化により、機械加工性および冷間加工性を劣化させる。従って、Si添加量は、1.0%以下とする。より好ましくは、0.5%以下である。さらに好ましくは、0.3%以下である。なお、Siを、脱酸に有効に寄与させるためには、Si添加量を0.01%以上とすることが好ましい。
Si: 1.0% or less Si is added because it is effective for deoxidation and bainite structure formation. When the Si addition amount exceeds 1.0%, the machinability and Deteriorates cold workability. Accordingly, the Si addition amount is set to 1.0% or less. More preferably, it is 0.5% or less. More preferably, it is 0.3% or less. In order to effectively contribute Si to deoxidation, the Si addition amount is preferably 0.01% or more.
Mn:0.5~3.0%
 Mnは、ベイナイト組織生成ならびに強度向上に有効なため添加する。Mn添加量が0.5%未満の場合、ベイナイト組織生成量が減少し、V、Nb析出物が生成するため、軟窒化前硬さが増加するとともに、軟窒化処理後のV、Nb析出物生成量が減少することになり、軟窒化後硬さが低下して強度確保が困難となる。一方、Mn添加量が3.0%を超えると、機械加工性および冷間加工性を劣化させる。従って、Mn添加量は、0.5~3.0%の範囲内とする。より好ましくは、0.5%以上、2.5%以下である。さらに好ましくは、0.6%以上、2.0%以下である。
Mn: 0.5 to 3.0%
Mn is added because it is effective for bainite structure formation and strength improvement. When the amount of Mn added is less than 0.5%, the amount of bainite structure formed decreases and V and Nb precipitates are generated, so the hardness before soft nitriding increases and the V and Nb precipitates after nitrocarburizing treatment. The amount produced will decrease, the hardness will decrease after soft nitriding, and it will be difficult to ensure strength. On the other hand, when the Mn addition amount exceeds 3.0%, the machinability and the cold workability are deteriorated. Therefore, the amount of Mn added is in the range of 0.5 to 3.0%. More preferably, it is 0.5% or more and 2.5% or less. More preferably, it is 0.6% or more and 2.0% or less.
Cr:0.30~3.0%
 Crは、ベイナイト組織の生成に有効なため添加する。Cr添加量が0.30%未満ではベイナイト組織生成量が減少し、V、Nb析出物が生成するため、軟窒化前硬さが増加するとともに、軟窒化処理後のV、Nb析出物生成量が減少することになり、軟窒化後硬さが低下して強度確保が困難となる。一方、Cr添加量が3.0%を超えると、機械加工性および冷間加工性を劣化させる。従って、Cr添加量は、0.30~3.0%の範囲内とする。より好ましくは、0.5%以上、2.0%以下である。さらに好ましくは、0.5%以上、1.5%以下である。
Cr: 0.30 to 3.0%
Cr is added because it is effective in forming a bainite structure. When the amount of Cr added is less than 0.30%, the amount of bainite structure formed decreases and V and Nb precipitates are generated. Therefore, the hardness before soft nitriding increases and the amount of V and Nb precipitates generated after nitrocarburizing treatment. As a result, the hardness decreases after soft nitriding, making it difficult to ensure strength. On the other hand, when the Cr addition amount exceeds 3.0%, the machinability and the cold workability are deteriorated. Therefore, the Cr addition amount is set in the range of 0.30 to 3.0%. More preferably, it is 0.5% or more and 2.0% or less. More preferably, it is 0.5% or more and 1.5% or less.
V:0.02~0.5%
 Vは、軟窒化時の温度上昇によりNbとともに微細析出物を形成して、芯部硬さを増加させ、強度を向上させる重要な元素である。V添加量が0.02%未満では、添加効果に乏しい。一方、V添加量が0.5%を超えると、析出物が粗大化するようになる。従って、V添加量は、0.02~0.5%の範囲内とする。より好ましくは、0.03%以上、0.3%以下である。さらに好ましくは、0.03%以上、0.25%以下である。
V: 0.02 to 0.5%
V is an important element that forms fine precipitates together with Nb due to the temperature rise during soft nitriding, increases the core hardness, and improves the strength. When the V addition amount is less than 0.02%, the effect of addition is poor. On the other hand, when the amount of V added exceeds 0.5%, the precipitate becomes coarse. Therefore, the V addition amount is set in the range of 0.02 to 0.5%. More preferably, it is 0.03% or more and 0.3% or less. More preferably, it is 0.03% or more and 0.25% or less.
Nb:0.003~0.15%
 Nbは、軟窒化時の温度上昇によりVとともに微細析出物を形成して、芯部硬さを増加させ、疲労強度を向上させる極めて有効な元素である。Nb添加量が0.003%未満では、添加効果に乏しい。一方、Nb添加量が0.15%を超えると、析出物が粗大化する。従って、Nb添加量は、0.003~0.15%の範囲内とする。より好ましくは、0.02%以上、0.12%以下である。
Nb: 0.003 to 0.15%
Nb is a very effective element that forms fine precipitates together with V due to temperature rise during soft nitriding, increases the core hardness, and improves fatigue strength. When the Nb addition amount is less than 0.003%, the effect of addition is poor. On the other hand, if the amount of Nb added exceeds 0.15%, the precipitate becomes coarse. Therefore, the amount of Nb added is set in the range of 0.003 to 0.15%. More preferably, it is 0.02% or more and 0.12% or less.
Mo:0.005~0.4%
 Moは、V、Nb析出物を微細に析出させて、軟窒化処理材の強度を向上させる効果があり、この発明において重要な元素である。また、Moは、ベイナイト組織生成にも有効である。強度向上のため0.005%以上添加するが、高価な元素のため、0.4%を超えて添加すると、成分コストの上昇を招く。従って、Mo添加量は、0.005~0.4%の範囲内とする。より好ましくは、0.01~0.3%である。さらに好ましくは、0.04~0.2%である。
Mo: 0.005 to 0.4%
Mo has the effect of finely depositing V and Nb precipitates to improve the strength of the soft nitriding material, and is an important element in the present invention. Mo is also effective for generating a bainite structure. Although 0.005% or more is added for strength improvement, it is an expensive element, and if it exceeds 0.4%, the component cost increases. Therefore, the amount of Mo added is within the range of 0.005 to 0.4%. More preferably, it is 0.01 to 0.3%. More preferably, it is 0.04 to 0.2%.
Al:0.005~0.2%
 Alは、軟窒化後の表面硬さおよび有効硬化層深さ向上に有効な元素であり、積極的に添加する。また、熱間鍛造時におけるオーステナイト粒成長を抑制することにより組織を微細化して、靭性を向上させる上でも有用な元素であるので、0.005%以上添加する。一方、0.2%を超えて含有させてもその効果は飽和し、むしろ成分コストの上昇を招く不利を生ずる。従って、Al添加量は、0.005~0.2%の範囲内とする。好ましくは、0.020%超、0.1%以下である。さらに好ましくは、0.020%超、0.040%以下である。
Al: 0.005 to 0.2%
Al is an element effective for improving the surface hardness and the effective hardened layer depth after soft nitriding, and is positively added. Moreover, since it is an element useful also for refine | miniaturizing a structure | tissue by suppressing the austenite grain growth at the time of hot forging and improving toughness, 0.005% or more is added. On the other hand, even if the content exceeds 0.2%, the effect is saturated, and a disadvantage that causes an increase in the component cost is caused. Therefore, the amount of Al added is within the range of 0.005 to 0.2%. Preferably, it is more than 0.020% and 0.1% or less. More preferably, it is more than 0.020% and 0.040% or less.
S:0.06%以下
 Sは、鋼中でMnSを形成し、被削性を向上させる有用元素であるが、0.06%を超えて含有させると靭性を損なう。従って、S添加量は、0.06%以下とする。好ましくは、0.04%以下である。なお、Sによる被削性向上の効果を発現させるためには、S添加量を0.002%以上とすることが好ましい。
S: 0.06% or less S is a useful element that forms MnS in steel and improves the machinability, but if it exceeds 0.06%, it impairs toughness. Therefore, the S addition amount is set to 0.06% or less. Preferably, it is 0.04% or less. In order to express the effect of improving machinability due to S, the amount of S added is preferably 0.002% or more.
P:0.02%以下
 Pは、オーステナイト粒界に偏析し、粒界強度を低下させることにより強度、靭性を低下させる。従って、P含有量は、極力低下することが望ましいが、0.02%までは許容される。従って、P含有量は、0.02%以下とする。なお、Pを0.001%未満とすることは高いコストを要することから、工業的には0.001%まで低減すればよい。
P: 0.02% or less P segregates at austenite grain boundaries and lowers the grain boundary strength, thereby lowering strength and toughness. Therefore, it is desirable that the P content is reduced as much as possible, but 0.02% is acceptable. Therefore, the P content is 0.02% or less. In addition, since it will require high cost to make P less than 0.001%, it should just reduce to 0.001% industrially.
B:0.0003~0.01%
 Bは、ベイナイト組織の生成を促進する効果を有する。B添加量が0.0003%に満たないと添加効果に乏しい。一方、Bを、0.01%を超えて添加しても効果が飽和して、成分コストの上昇を招く。従って、B添加量は、0.0003~0.01%の範囲内とする。より好ましくは、0.0010%以上、0.01%以下とする。
B: 0.0003 to 0.01%
B has an effect of promoting the formation of a bainite structure. If the amount of addition of B is less than 0.0003%, the effect of addition is poor. On the other hand, even if B is added in excess of 0.01%, the effect is saturated and the component cost is increased. Therefore, the B addition amount is set in the range of 0.0003 to 0.01%. More preferably, it is 0.0010% or more and 0.01% or less.
 なお、ベイナイト組織生成促進効果を得るためには、Bが鋼中に固溶していることが好ましい。しかし、鋼中に固溶Nが存在する場合には、鋼中のBは、BNの形成に消費され、BがBNとして鋼中に存在する場合には、焼入性の向上に寄与しない。従って、鋼中に固溶Nが存在する場合には、Bは、BNの形成に消費される以上の量を添加することが好ましく、鋼中のB量(%B)とN量(%N)との間に下記(1)式で示される関係が成り立つことが好ましい。 In addition, in order to obtain the bainite structure formation promotion effect, it is preferable that B is dissolved in steel. However, when solid solution N exists in steel, B in steel is consumed for formation of BN, and when B exists in steel as BN, it does not contribute to improvement of hardenability. Therefore, when solid solution N is present in the steel, it is preferable to add more B than is consumed for the formation of BN. The amount of B (% B) and the amount of N (% N in the steel) are preferably added. It is preferable that the relationship represented by the following formula (1) holds.
                  記
 %B≧%N/14×10.8+0.0003 ---(1)
% B ≧% N / 14 × 10.8 + 0.0003 --- (1)
 この発明の軟窒化用鋼では、鍛造後や軟窒化処理材の被削性を向上させる場合、Pb≦0.2%、Bi≦0.02%のうちから選んだ一種以上を添加することができる。なお、これらの元素の含有量や添加の有無により、この発明の効果が損なわれることはない。 In the steel for soft nitriding of the present invention, when improving the machinability of the nitrocarburized material after forging, it is possible to add one or more selected from Pb ≦ 0.2% and Bi ≦ 0.02%. it can. The effects of the present invention are not impaired by the content of these elements and the presence or absence of addition.
 また、この発明の軟窒化用鋼では、上記添加元素以外の残部は、Fe及び不可避不純物であるが、特にTiは、V、Nbの析出強化に悪影響を及ぼすだけでなく、芯部硬さを低下させるので、極力含有させないようにする。好ましくは、0.010%未満、さらに好ましくは、0.005%未満とする。 Further, in the steel for soft nitriding of the present invention, the balance other than the above additive elements is Fe and inevitable impurities. In particular, Ti not only adversely affects the precipitation strengthening of V and Nb, but also increases the core hardness. Since it will be reduced, try not to contain as much as possible. Preferably, it is less than 0.010%, more preferably less than 0.005%.
 3.製造条件
 図1は、この発明の軟窒化用鋼を用いて、軟窒化部品を製造する製造工程を示す概略図である。
3. Manufacturing Conditions FIG. 1 is a schematic view showing a manufacturing process for manufacturing a soft nitrided part using the soft nitriding steel of the present invention.
 図1において、S1は、素材となる棒鋼製造工程、S2は、搬送工程、S3は、製品(軟窒化部品)仕上げ工程を示す。 In FIG. 1, S1 is a steel bar manufacturing process as a raw material, S2 is a conveying process, and S3 is a product (soft-nitriding part) finishing process.
 すなわち、棒鋼製造工程(S1)で、鋼塊を熱間圧延して棒鋼とし、品質検査後、出荷される。そして、出荷後、搬送(S2)された棒鋼は、製品(軟窒化部品)仕上げ工程(S3)で、上記棒鋼を所定の寸法に切断し、熱間鍛造あるいは冷間鍛造を行い、必要に応じてドリル穿孔や旋削などの切削加工で所望の形状とした後、軟窒化処理を行い製品とする。 That is, in the steel bar manufacturing process (S1), the steel ingot is hot-rolled into a steel bar and shipped after quality inspection. After the shipment, the conveyed (S2) steel bar is cut into a predetermined size in the product (soft-nitriding part) finishing step (S3), and hot forging or cold forging is performed. After making the desired shape by cutting such as drilling or turning, soft nitriding is performed to obtain a product.
 また、熱間圧延材をそのまま旋削やドリル穿孔などの切削加工で所望の形状に仕上げ、その後、軟窒化処理を行い製品とすることもある。なお、熱間鍛造の場合、熱間鍛造後に冷間矯正を行ってもよい。また、最終製品にペンキやメッキなどの皮膜処理がなされる場合もある。以下に、望ましい製造条件について説明する。 Moreover, the hot rolled material may be finished as it is by cutting such as turning or drilling, and then subjected to soft nitriding to obtain a product. In the case of hot forging, cold straightening may be performed after hot forging. In addition, the final product may be subjected to a coating treatment such as paint or plating. Hereinafter, desirable manufacturing conditions will be described.
 圧延加熱温度
 圧延加熱温度は、950~1250℃の範囲内とすることが望ましい。この発明の軟窒化用鋼は、圧延材(熱間鍛造部品の素材となる棒鋼)に微細析出物が析出することによって鍛造性が損なわれることのないように、溶解時から残存する炭化物を熱間圧延時に固溶させるからである。
Rolling heating temperature The rolling heating temperature is preferably in the range of 950 to 1250 ° C. The steel for soft nitriding of the present invention heats the remaining carbide from the time of melting so that the forgeability is not impaired by the precipitation of fine precipitates on the rolled material (the bar steel used as the material of the hot forged part). This is because they are dissolved at the time of hot rolling.
 すなわち、圧延加熱温度を950℃未満とした場合、溶解時から残存する炭化物が固溶しづらくなる。一方、1250℃を超えると、結晶粒が粗大化して鍛造性が悪化しやすくなる。従って、圧延加熱温度は、950℃~1250℃の範囲内とすることが望ましい。 That is, when the rolling heating temperature is less than 950 ° C., the remaining carbides are difficult to be dissolved from the time of dissolution. On the other hand, if it exceeds 1250 ° C., the crystal grains become coarse and the forgeability tends to deteriorate. Accordingly, it is desirable that the rolling heating temperature be in the range of 950 ° C. to 1250 ° C.
 圧延仕上げ温度
 圧延仕上げ温度は、800℃以上とすることが望ましい。圧延仕上げ温度が800℃未満では、フェライト組織が生成するため、次工程として、特に、冷間鍛造あるいは切削加工後に軟窒化を施す場合、軟窒化後に母相を面積率で50%超えのベイナイト組織を得るのに不利だからである。また、圧延仕上げ温度が800℃未満では、圧延荷重が高く、圧延材の真円度が劣化するからである。従って、圧延仕上げ温度は、800℃以上とすることが望ましい。
Rolling finishing temperature The rolling finishing temperature is desirably 800 ° C or higher. When the rolling finish temperature is less than 800 ° C., a ferrite structure is generated. Therefore, as a next step, particularly when soft nitriding is performed after cold forging or cutting, a bainite structure in which the parent phase exceeds 50% in area ratio after soft nitriding. Because it is disadvantageous to get. Further, when the rolling finishing temperature is less than 800 ° C., the rolling load is high and the roundness of the rolled material is deteriorated. Therefore, the rolling finishing temperature is desirably 800 ° C. or higher.
 冷却速度
 鍛造前に微細析出物が析出して、鍛造性を損なわないよう、圧延後の冷却速度を規定することが望ましい。微細析出物の析出温度範囲の700~550℃を、微細析出物が得られる限界冷却速度(0.5℃/sec)超えで冷却することが望ましい。
Cooling rate It is desirable to regulate the cooling rate after rolling so that fine precipitates are deposited before forging and the forgeability is not impaired. It is desirable to cool the precipitation temperature range of 700 to 550 ° C. of the fine precipitate at a rate exceeding the critical cooling rate (0.5 ° C./sec) at which the fine precipitate is obtained.
 軟窒化処理(析出処理)
 得られた棒鋼を素材とし、鍛造後、切削加工などにより部品形状とする。その後、軟窒化処理を行う。軟窒化処理は、V、Nbを含む微細析出物を析出させるように、軟窒化処理温度を550~700℃の範囲内とし、処理時間を10分以上とすることが望ましい。550℃未満では、十分な量の析出物が得られず、一方、700℃超えでは、オーステナイト域となって軟窒化が困難となるからである。なお、より望ましくは550~630℃の範囲である。また、処理時間を10分以上とするのは、十分な量のV、Nb析出物が得られるからである。
Soft nitriding treatment (precipitation treatment)
The obtained steel bar is used as a raw material, and after forging, it is made into a part shape by cutting or the like. Thereafter, soft nitriding is performed. In the soft nitriding treatment, it is desirable that the soft nitriding temperature is in the range of 550 to 700 ° C. and the treatment time is 10 minutes or more so that fine precipitates containing V and Nb are precipitated. When the temperature is lower than 550 ° C., a sufficient amount of precipitates cannot be obtained. On the other hand, when the temperature is higher than 700 ° C., it becomes an austenite region and soft nitriding becomes difficult. More desirably, the temperature is in the range of 550 to 630 ° C. The reason for setting the treatment time to 10 minutes or more is that a sufficient amount of V and Nb precipitates can be obtained.
 なお、熱間鍛造を用いた場合、軟窒化後、母相を面積率で50%超えのベイナイト組織とするため、ならびに、熱間鍛造後の冷間矯正や切削加工性の観点から、微細析出物が析出しないように、熱間鍛造時の加熱温度を950~1250℃の範囲内、鍛造仕上げ温度を800℃以上および鍛造後の冷却速度を0.5℃/sec超えで行うことが望ましい。 In addition, when hot forging is used, in order to make the parent phase a bainite structure with an area ratio exceeding 50% after soft nitriding, and from the viewpoint of cold straightening and machinability after hot forging, fine precipitation It is desirable that the heating temperature during hot forging is in the range of 950 to 1250 ° C., the forging finishing temperature is 800 ° C. or higher, and the cooling rate after forging is higher than 0.5 ° C./sec so that no product is precipitated.
 次に、この発明を実施例により、さらに説明する。 Next, the present invention will be further described with reference to examples.
 表1に示す組成の鋼(鋼No.1~17)を150kg真空溶解炉にて溶製し、圧延を1150℃加熱、970℃仕上げで行い、その後、冷却速度を0.9℃/secとして室温まで冷却し、50mmφの棒鋼を調製した。No.17は、従来材JIS SCr420である。なお、表1中の全鋼について、Pは積極的に添加してはいない。よって、表1中のP含有量は、不可避不純物として混入している値を示している。また、Tiについては、表1中の鋼No.14および鋼No.15については添加したものであるが、鋼No.1~13および鋼No.16~17については積極的に添加しているわけではない。よって、表1中、鋼No.1~13および鋼No.16~17のTi含有量は、いずれも不可避不純物として混入している値を示している。 Steels having the compositions shown in Table 1 (steel Nos. 1 to 17) were melted in a 150 kg vacuum melting furnace, rolled at 1150 ° C. and finished at 970 ° C., and then the cooling rate was 0.9 ° C./sec. After cooling to room temperature, a 50 mmφ steel bar was prepared. No. 17 is a conventional material JIS SCr420. In addition, about all the steels in Table 1, P is not positively added. Therefore, the P content in Table 1 indicates a value mixed as an inevitable impurity. For Ti, steel No. 1 in Table 1 was used. 14 and steel no. No. 15 was added. 1 to 13 and steel no. 16 to 17 are not actively added. Therefore, in Table 1, steel No. 1 to 13 and steel no. The Ti contents of 16 to 17 all show values mixed as inevitable impurities.
 これらの素材をさらに、1200℃に加熱後、1100℃にて熱間鍛造を行い、30mmφとし、冷却速度:0.8℃/secおよび一部、比較のために冷却速度:0.1℃/secで室温まで冷却した。 These materials are further heated to 1200 ° C. and hot forged at 1100 ° C. to 30 mmφ. Cooling rate: 0.8 ° C./sec and partly, cooling rate: 0.1 ° C. / It cooled to room temperature in sec.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記素材について、組織観察、硬度測定および被削性を調査した。組織観察は、断面を光学顕微鏡で観察し、芯部組織を同定するとともに、芯部にベイナイト相が存在したものについては、芯部のベイナイト相の面積分率を求めた。また、被削性は、ドリル切削試験により評価した。具体的には、熱間鍛造材を20mm厚に切断したものを試験材として、JIS高速度工具鋼SKH51の6mmφのストレートドリルで、送り:0.15mm/rev、回転数:795rpmの条件とし、1断面当たり5箇所の貫通穴を開け、ドリルが切削不能になるまでの総穴数で評価した。 The above materials were examined for structure observation, hardness measurement and machinability. In the structure observation, the cross section was observed with an optical microscope, the core structure was identified, and the area fraction of the bainite phase in the core was determined for those having a bainite phase in the core. The machinability was evaluated by a drill cutting test. Specifically, a hot forged material cut to a thickness of 20 mm was used as a test material, a JIS high-speed tool steel SKH51 6 mmφ straight drill, feed: 0.15 mm / rev, rotation speed: 795 rpm, Five through holes were made per cross section, and the total number of holes until the drill became uncut was evaluated.
 また、硬度測定は、芯部の硬度を、ビッカース硬度計を用い、試験荷重:100gとして調査した。 Further, the hardness measurement was conducted by examining the hardness of the core using a Vickers hardness tester with a test load of 100 g.
 鋼No.1~16は、熱間鍛造材にさらにガス軟窒化処理を施し、鋼No.17は、熱間鍛造材にガス浸炭処理を施した。ガス軟窒化処理は、NH3:N2:CO2=50:45:5の雰囲気で570~620℃に加熱し、3.5時間保持して行った。ガス浸炭処理は、930℃×3h浸炭後、850℃×40min保持したのち油冷を行うという条件で実施し、さらに170℃×1hの焼もどしを行った。 Steel No. Nos. 1 to 16 were obtained by subjecting the hot forged material to gas soft nitriding, In No. 17, the hot forging was subjected to gas carburizing treatment. The gas soft nitriding treatment was performed by heating to 570 to 620 ° C. in an atmosphere of NH 3 : N 2 : CO 2 = 50: 45: 5 and holding for 3.5 hours. The gas carburizing treatment was carried out under the condition that after 930 ° C. × 3 h carburizing, holding at 850 ° C. × 40 min, and then oil cooling, and further tempering at 170 ° C. × 1 h.
 これらの熱処理材について、組織観察、硬度測定、析出物の観察、衝撃特性調査および疲労特性調査を行った。 These heat-treated materials were subjected to structure observation, hardness measurement, precipitate observation, impact property investigation, and fatigue property investigation.
 組織観察は、断面を光学顕微鏡で観察し、芯部組織を同定するとともに、芯部にベイナイト相が存在したものについては、ベイナイト相の面積分率を求めた。 In the structure observation, the cross-section was observed with an optical microscope to identify the core structure, and the area fraction of the bainite phase was determined for those having a bainite phase in the core.
 軟窒化材ならびに浸炭材の硬度測定は、芯部硬さおよび表面硬さについての測定を行った。表面硬さは、表面から0.02mmの位置で測定を行い、有効硬化層深さは、HV400となる表面からの深さと定義して測定した。また、軟窒化材ならびに浸炭材の芯部から、透過型電子顕微鏡観察用の試料を、ツインジェット法を用いた電解研磨法により作成し、得られた試料について、加速電圧を200kVとした透過型電子顕微鏡を用いて析出物の観察を行なった。さらに、観察される析出物の組成をエネルギー分散型X線分光装置(EDX)により求めた。 The hardness of the soft nitriding material and the carburized material was measured for the core hardness and the surface hardness. The surface hardness was measured at a position of 0.02 mm from the surface, and the effective hardened layer depth was defined as the depth from the surface to be HV400. Moreover, a transmission electron microscope observation sample was prepared from the core portion of the soft nitriding material and the carburized material by an electrolytic polishing method using a twin jet method, and the obtained sample was a transmission type with an acceleration voltage of 200 kV. The precipitate was observed using an electron microscope. Furthermore, the composition of the observed precipitate was determined by an energy dispersive X-ray spectrometer (EDX).
 衝撃特性の評価は、シャルピー衝撃試験により行い、衝撃値(J/cm)を求めた。試験片は切り欠き付き試験片(R:10mm、深さ:2mm)を用いた。なお、この切り欠き付き試験片は、熱間鍛造材より採取し、採取した試験片に対して上述した軟窒化処理あるいは浸炭処理を施した後、シャルピー衝撃試験に供した。
 また、疲労特性評価は、小野式回転曲げ疲労試験により行い、疲労限を求めた。試験片としては、切欠き付き試験片(ノッチR:1.0mm、ノッチ径:8mm、応力集中係数:1.8)を用いた。この試験片を熱間鍛造材より採取し、上述した軟窒化処理あるいは浸炭処理を施した後、試験に供した。
The impact characteristics were evaluated by a Charpy impact test, and the impact value (J / cm 2 ) was obtained. As the test piece, a notched test piece (R: 10 mm, depth: 2 mm) was used. The notched test piece was sampled from a hot forged material, and subjected to the Charpy impact test after subjecting the sampled test piece to the soft nitriding treatment or carburizing treatment described above.
Fatigue property evaluation was performed by an Ono-type rotary bending fatigue test to determine the fatigue limit. A test piece with a notch (notch R: 1.0 mm, notch diameter: 8 mm, stress concentration factor: 1.8) was used as the test piece. This test piece was taken from the hot forging material and subjected to the soft nitriding treatment or carburizing treatment described above, and then subjected to the test.
 表2に試験結果を示す。No.1~6が発明例、No.7~17が比較例、No.18がJIS SCr420鋼による従来例である。 Table 2 shows the test results. No. 1 to 6 are invention examples, Nos. 7 to 17 are comparative examples. 18 is a conventional example of JIS SCr420 steel.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から明らかなように、No.1~6の軟窒化処理材は、従来例(No.18)を浸炭焼入・焼もどし処理したものより、疲労強度が優れている。No.1~6の軟窒化処理前素材(熱間鍛造材)のドリル切削加工性については、従来材と実用上同等レベル以上である。さらに、透過型電子顕微鏡観察およびEDXによる析出物組成の調査の結果、No.1~6の軟窒化処理材には、ベイナイト相中にV、Nbを含む粒径:10nm未満の微細な析出物が1μm当り500個以上で分散析出していることが確認できた。この結果から、本発明に従う軟窒化処理材は、上記微細な析出物による析出強化により、高い疲労強度を示したものと考えられる。 As can be seen from Table 2, no. The nitrocarburized materials 1 to 6 have better fatigue strength than those obtained by carburizing and tempering the conventional example (No. 18). No. The drill cutting workability of materials 1 to 6 before soft nitriding (hot forged material) is practically equivalent to or higher than that of conventional materials. Further, as a result of the observation of the precipitate composition by transmission electron microscope observation and EDX, No. In the nitrocarburized materials 1 to 6, it was confirmed that 500 or more fine precipitates having a particle size of less than 10 nm containing V and Nb in the bainite phase were dispersed per 1 μm 2 . From this result, it is considered that the nitrocarburized material according to the present invention exhibited high fatigue strength by precipitation strengthening due to the fine precipitates.
 これに対して、比較例No.7~17は、化学組成あるいは得られたミクロ組織が本発明範囲外であるので、疲労強度あるいはドリル加工性に劣る。 In contrast, Comparative Example No. Nos. 7 to 17 are inferior in fatigue strength or drillability because the chemical composition or the obtained microstructure is outside the scope of the present invention.
 特に、No.7は、熱間鍛造後の冷却速度が遅いために、発明例に比べて疲労強度が低い。ここに、No.7では、透過型電子顕微鏡観察の結果、粒径:10nm未満の微細な析出物の分散析出が観察されずに、粒径:10nmを大きく超える粗大な析出物が観察された。この結果から、このように生成した析出物が粗大であることが疲労強度が低くなった原因と考えられる。すなわち、熱間鍛造後の冷却速度が遅く、所期したベイナイト組織が得られないと、粗大な析出物が軟窒化前に生成してしまい、軟窒化処理後の微細析出物の生成量が少なくなるため、結果的に析出強化が不足してしまうと考えられる。 In particular, No. No. 7 has a lower fatigue strength than the inventive examples because the cooling rate after hot forging is slow. Here, no. In No. 7, as a result of observation with a transmission electron microscope, dispersion of fine precipitates having a particle size of less than 10 nm was not observed, but coarse precipitates having a particle size greatly exceeding 10 nm were observed. From this result, it is considered that the precipitate formed in this way is coarse, which is a cause of low fatigue strength. That is, if the cooling rate after hot forging is slow and the desired bainite structure cannot be obtained, coarse precipitates are generated before soft nitriding, and the amount of fine precipitates generated after soft nitriding is small. Therefore, it is considered that precipitation strengthening is insufficient as a result.
 No.8は、C量が本発明範囲外で高いため、ベイナイト組織の硬さが増加し、ドリル加工性が低下している。 No. In No. 8, since the amount of C is high outside the range of the present invention, the hardness of the bainite structure is increased and the drill workability is reduced.
 No.9は、Si、Mn量が本発明範囲外で高いため熱間鍛造材の硬度が高く、ドリル加工性が従来材の約1/5まで低下している。 No. In No. 9, the amount of Si and Mn is high outside the scope of the present invention, so that the hot forged material has high hardness, and the drillability is reduced to about 1/5 of the conventional material.
 No.10は、Mn量が本発明範囲外で低く、軟窒化前(熱間鍛造後)にフェライト-パーライト組織が生成してベイナイト組織の面積率が低くなり、組織中にV、Nb析出物が析出したため、軟窒化前の硬さが増加し、ドリル加工性が低下している。 No. No. 10, the amount of Mn is low outside the range of the present invention, the ferrite-pearlite structure is formed before soft nitriding (after hot forging), and the area ratio of the bainite structure is lowered, and V and Nb precipitates are precipitated in the structure. Therefore, the hardness before soft nitriding is increased and the drill workability is reduced.
 No.11は、Cr量が本発明範囲外で低いため、軟窒化前(熱間鍛造後)にフェライト-パーライト組織が生成してベイナイト組織の面積率が低くなり、組織中にV、Nb析出物が析出したため、軟窒化前の硬さが増加し、ドリル加工性が低下している。 No. No. 11, since the Cr content is low outside the scope of the present invention, a ferrite-pearlite structure is formed before soft nitriding (after hot forging), and the area ratio of the bainite structure is reduced, and V and Nb precipitates are present in the structure. Since it precipitated, the hardness before soft nitriding increased and drill workability fell.
 No.12は、Mo量が本発明範囲外で低いため、軟窒化処理後の微細析出物量が少なく、十分な芯部硬さが得られなかったため、従来例より疲労強度が低くなっている。 No. No. 12, since the amount of Mo is low outside the scope of the present invention, the amount of fine precipitates after soft nitriding is small, and sufficient core hardness cannot be obtained, so the fatigue strength is lower than in the conventional example.
 No.13はV、Nbが本発明範囲外で低いため、軟窒化処理後の析出物量が少なく、十分な芯部硬さが得られなかったため、従来材より疲労強度が低くなっている。 No. In No. 13, V and Nb are low outside the scope of the present invention, so that the amount of precipitates after soft nitriding is small and sufficient core hardness cannot be obtained, so the fatigue strength is lower than that of the conventional material.
 No.14は、Nbが本発明範囲外で低いため、軟窒化処理後の析出物量が少なく、そのため、十分な芯部硬さが得られず、従来材より疲労強度が低くなっている。 No. No. 14 has a low Nb outside the range of the present invention, so the amount of precipitates after the soft nitriding treatment is small, so that a sufficient core hardness cannot be obtained, and the fatigue strength is lower than that of the conventional material.
 No.15およびNo.16は、Tiを添加したため、軟窒化処理後のV、Nbを含む析出物の析出量が少なく、そのため、十分な芯部硬さが得られずに、従来材より疲労強度が低い。さらに、衝撃値も低い値を示している。 No. 15 and no. In No. 16, since Ti was added, the amount of precipitates containing V and Nb after soft nitriding was small, so that sufficient core hardness could not be obtained, and the fatigue strength was lower than that of conventional materials. Furthermore, the impact value also shows a low value.
 No.17はAlが本発明範囲外で低いため、軟窒化処理後の表面硬さおよび有効硬化層深さが低かったため、従来材より疲労強度が低くなっている。 No. Since Al is low outside the range of the present invention, the surface hardness and effective hardened layer depth after soft nitriding were low, so that the fatigue strength is lower than that of the conventional material.

Claims (3)

  1.  質量%で、
      C:0.01%以上0.10%未満、
     Si:1.0%以下、
     Mn:0.5~3.0%、
     Cr:0.30~3.0%、
     Mo:0.005~0.4%、
      V:0.02~0.5%、
     Nb:0.003~0.15%、
     Al:0.005~0.2%、
      S:0.06%以下、
      P:0.02%以下および
      B:0.0003~0.01%を含み、
     残部:Fe及び不可避不純物からなり、軟窒化前において、ベイナイト面積率50%超えの組織を有する軟窒化用鋼。
    % By mass
    C: 0.01% or more and less than 0.10%,
    Si: 1.0% or less,
    Mn: 0.5 to 3.0%,
    Cr: 0.30 to 3.0%,
    Mo: 0.005 to 0.4%,
    V: 0.02 to 0.5%,
    Nb: 0.003 to 0.15%,
    Al: 0.005 to 0.2%,
    S: 0.06% or less,
    P: 0.02% or less and B: 0.0003-0.01%,
    Remaining: Steel for soft nitriding consisting of Fe and inevitable impurities and having a structure with a bainite area ratio exceeding 50% before soft nitriding.
  2.  軟窒化後において、ベイナイト相中にV、Nbを含む析出物が分散析出している請求項1記載の軟窒化用鋼。 The steel for soft nitriding according to claim 1, wherein precipitates containing V and Nb are dispersed and precipitated in the bainite phase after soft nitriding.
  3.  請求項1または2に記載の軟窒化用鋼を素材とする軟窒化部品。 Soft nitriding parts made of the soft nitriding steel according to claim 1 or 2.
PCT/JP2013/000838 2012-02-15 2013-02-15 Soft-nitriding steel and soft-nitrided component using steel as material WO2013121794A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/378,553 US20150020926A1 (en) 2012-02-15 2013-02-15 Steel for nitrocarburizing and nitrocarburized component using the steel as material
CN201380009412.5A CN104114733A (en) 2012-02-15 2013-02-15 Soft-nitriding steel and soft-nitrided component using steel as material
EP13748467.1A EP2816128B1 (en) 2012-02-15 2013-02-15 Soft-nitriding steel and soft-nitrided component using steel as material
KR1020147024603A KR20140129081A (en) 2012-02-15 2013-02-15 Steel for nitrocarburizing and nitrocarburized component using the steel as material
JP2013532781A JP5449626B1 (en) 2012-02-15 2013-02-15 Soft nitriding steel and soft nitriding parts made from this steel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012031031 2012-02-15
JP2012-031031 2012-02-15

Publications (2)

Publication Number Publication Date
WO2013121794A1 true WO2013121794A1 (en) 2013-08-22
WO2013121794A8 WO2013121794A8 (en) 2014-07-17

Family

ID=48983924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000838 WO2013121794A1 (en) 2012-02-15 2013-02-15 Soft-nitriding steel and soft-nitrided component using steel as material

Country Status (7)

Country Link
US (1) US20150020926A1 (en)
EP (1) EP2816128B1 (en)
JP (1) JP5449626B1 (en)
KR (1) KR20140129081A (en)
CN (1) CN104114733A (en)
MY (1) MY177826A (en)
WO (1) WO2013121794A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104975160A (en) * 2015-06-18 2015-10-14 柳州科尔特锻造机械有限公司 Thermal treatment method for driving and driven bevel gears
JP2016056451A (en) * 2014-09-05 2016-04-21 Jfeスチール株式会社 Steel and component for soft nitriding and manufacturing method therefor
JP2016056450A (en) * 2014-09-05 2016-04-21 Jfeスチール株式会社 Steel and component for soft nitriding and manufacturing method therefor
WO2016152167A1 (en) * 2015-03-24 2016-09-29 Jfeスチール株式会社 Steel for soft nitriding, components, and method for manufacturing same
US20170096719A1 (en) * 2014-03-18 2017-04-06 Innomaq 21, Sociedad Limitada Extremely high conductivity low cost steel
JP2018003076A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Steel for soft nitriding and components, and manufacturing method therefor
WO2018101451A1 (en) * 2016-11-30 2018-06-07 Jfeスチール株式会社 Steel for soft nitriding, and component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5767594B2 (en) * 2012-02-15 2015-08-19 Jfe条鋼株式会社 Steel for nitriding and nitriding member using the same
EP2835130A1 (en) * 2013-08-05 2015-02-11 Polichem SA Composition for skin anti-ageing treatment
US11625844B2 (en) * 2020-05-11 2023-04-11 The Boeing Company Rapid effective case depth measurement of a metal component using physical surface conditioning
WO2024003593A1 (en) * 2022-06-28 2024-01-04 Arcelormittal Forged part of steel and a method of manufacturing thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559488A (en) 1978-07-07 1980-01-23 Matsushita Electric Ind Co Ltd Method of making semiconductor device
JPH07138701A (en) 1993-11-15 1995-05-30 Kobe Steel Ltd Steel for nitriding
JPH08134585A (en) * 1994-11-04 1996-05-28 Nippon Steel Corp Ferritic heat resistant steel, excellent in high temperature strength and oxidation resistance, and its production
JP2002069572A (en) 2000-08-29 2002-03-08 Nippon Steel Corp Soft-nitriding steel having excellent bending fatigue strength
JP2006193827A (en) * 2004-12-15 2006-07-27 Sumitomo Metal Ind Ltd Steel for soft-nitriding and method for producing soft-nitrided component
JP2007146232A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Method for producing soft-nitrided machine part made of steel
JP2010163671A (en) 2009-01-19 2010-07-29 Jfe Bars & Shapes Corp Steel for soft nitriding
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3507258B2 (en) * 1996-11-15 2004-03-15 新日本製鐵株式会社 590 MPa class rolled section steel and method for producing the same
JPH10237583A (en) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd High tensile strength steel and its production
CN1085258C (en) * 1997-07-28 2002-05-22 埃克森美孚上游研究公司 Ultra-high strength, weldable steels with excellent ultra-low temperature toughness
TNSN99233A1 (en) * 1998-12-19 2001-12-31 Exxon Production Research Co HIGH STRENGTH STEELS WITH EXCELLENT CRYOGENIC TEMPERATURE TENACITY
JP3518515B2 (en) * 2000-03-30 2004-04-12 住友金属工業株式会社 Low / medium Cr heat resistant steel
EP1167561A3 (en) * 2000-06-28 2009-03-04 Mitsubishi Steel Muroran Inc. Carburizing and carbonitriding steel
JP4418391B2 (en) * 2005-03-30 2010-02-17 新日本製鐵株式会社 High tensile strength steel sheet having yield strength of 650 MPa or more with small acoustic anisotropy and method for producing the same
JP2007197776A (en) * 2006-01-27 2007-08-09 Jfe Steel Kk High-strength steel material superior in delayed fracture resistance and fatigue-crack propagation resistance, and manufacturing method therefor
JP4645461B2 (en) * 2006-01-27 2011-03-09 Jfeスチール株式会社 High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
CN102089452A (en) * 2009-05-15 2011-06-08 新日本制铁株式会社 Steel for nitrocarburizing and nitrocarburized parts
JP5528082B2 (en) * 2009-12-11 2014-06-25 Jfe条鋼株式会社 Soft nitriding gear

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559488A (en) 1978-07-07 1980-01-23 Matsushita Electric Ind Co Ltd Method of making semiconductor device
JPH07138701A (en) 1993-11-15 1995-05-30 Kobe Steel Ltd Steel for nitriding
JPH08134585A (en) * 1994-11-04 1996-05-28 Nippon Steel Corp Ferritic heat resistant steel, excellent in high temperature strength and oxidation resistance, and its production
JP2002069572A (en) 2000-08-29 2002-03-08 Nippon Steel Corp Soft-nitriding steel having excellent bending fatigue strength
JP2006193827A (en) * 2004-12-15 2006-07-27 Sumitomo Metal Ind Ltd Steel for soft-nitriding and method for producing soft-nitrided component
JP2007146232A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Method for producing soft-nitrided machine part made of steel
JP2010163671A (en) 2009-01-19 2010-07-29 Jfe Bars & Shapes Corp Steel for soft nitriding
JP2011231375A (en) * 2010-04-28 2011-11-17 Sumitomo Metal Ind Ltd Hot-working steel for case hardening

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816128A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170096719A1 (en) * 2014-03-18 2017-04-06 Innomaq 21, Sociedad Limitada Extremely high conductivity low cost steel
US11421290B2 (en) * 2014-03-18 2022-08-23 Innomaq 21, Sociedad Limitada Extremely high conductivity low cost steel
JP2016056451A (en) * 2014-09-05 2016-04-21 Jfeスチール株式会社 Steel and component for soft nitriding and manufacturing method therefor
JP2016056450A (en) * 2014-09-05 2016-04-21 Jfeスチール株式会社 Steel and component for soft nitriding and manufacturing method therefor
JPWO2016152167A1 (en) * 2015-03-24 2017-04-27 Jfeスチール株式会社 Soft nitriding steel and parts and methods for producing them
JP6098769B2 (en) * 2015-03-24 2017-03-22 Jfeスチール株式会社 Soft nitriding steel and parts and methods for producing them
WO2016152167A1 (en) * 2015-03-24 2016-09-29 Jfeスチール株式会社 Steel for soft nitriding, components, and method for manufacturing same
US11959177B2 (en) 2015-03-24 2024-04-16 Jfe Steel Corporation Steel for nitrocarburizing and nitrocarburized component, and methods of producing same
CN104975160A (en) * 2015-06-18 2015-10-14 柳州科尔特锻造机械有限公司 Thermal treatment method for driving and driven bevel gears
JP2018003076A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Steel for soft nitriding and components, and manufacturing method therefor
WO2018101451A1 (en) * 2016-11-30 2018-06-07 Jfeスチール株式会社 Steel for soft nitriding, and component
JPWO2018101451A1 (en) * 2016-11-30 2019-02-28 Jfeスチール株式会社 Soft nitriding steel and parts
JP2019218633A (en) * 2016-11-30 2019-12-26 Jfeスチール株式会社 Steel for soft nitriding and article
US11242593B2 (en) 2016-11-30 2022-02-08 Jfe Steel Corporation Steel for nitrocarburizing, and component

Also Published As

Publication number Publication date
EP2816128A4 (en) 2015-05-20
JP5449626B1 (en) 2014-03-19
CN104114733A (en) 2014-10-22
JPWO2013121794A1 (en) 2015-05-11
WO2013121794A8 (en) 2014-07-17
EP2816128B1 (en) 2019-02-06
EP2816128A1 (en) 2014-12-24
MY177826A (en) 2020-09-23
US20150020926A1 (en) 2015-01-22
KR20140129081A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP5449626B1 (en) Soft nitriding steel and soft nitriding parts made from this steel
JP5567747B2 (en) Soft nitriding steel, soft nitriding component and manufacturing method thereof
JP5427418B2 (en) Steel for soft nitriding
JP6737387B2 (en) Soft nitriding steel and parts
US11959177B2 (en) Steel for nitrocarburizing and nitrocarburized component, and methods of producing same
JP5767594B2 (en) Steel for nitriding and nitriding member using the same
JP5528082B2 (en) Soft nitriding gear
JP6225965B2 (en) Soft nitriding steel and parts, and methods for producing them
JP2010189697A (en) Crankshaft and method for producing the same
JP2006348321A (en) Steel for nitriding treatment
JP6431456B2 (en) Soft nitriding steel and parts, and methods for producing them
JP6721141B1 (en) Steel for soft nitriding, soft nitriding component, and manufacturing method thereof
JP6477614B2 (en) Steel for soft nitriding and parts and method for manufacturing them
WO2022224849A1 (en) Steel material for carbonitriding and carbonitrided steel material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013532781

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13748467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013748467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14378553

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147024603

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: IDP00201405497

Country of ref document: ID