JP2016056450A - Steel and component for soft nitriding and manufacturing method therefor - Google Patents

Steel and component for soft nitriding and manufacturing method therefor Download PDF

Info

Publication number
JP2016056450A
JP2016056450A JP2015175803A JP2015175803A JP2016056450A JP 2016056450 A JP2016056450 A JP 2016056450A JP 2015175803 A JP2015175803 A JP 2015175803A JP 2015175803 A JP2015175803 A JP 2015175803A JP 2016056450 A JP2016056450 A JP 2016056450A
Authority
JP
Japan
Prior art keywords
less
soft nitriding
steel
component
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175803A
Other languages
Japanese (ja)
Other versions
JP6225965B2 (en
Inventor
佳祐 安藤
Keisuke Ando
佳祐 安藤
福岡 和明
Kazuaki Fukuoka
和明 福岡
冨田 邦和
Kunikazu Tomita
邦和 冨田
長谷 和邦
Kazukuni Hase
和邦 長谷
岩本 隆
Takashi Iwamoto
岩本  隆
大森 靖浩
Yasuhiro Omori
靖浩 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
JFE Bars and Shapes Corp
Original Assignee
JFE Steel Corp
JFE Bars and Shapes Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, JFE Bars and Shapes Corp filed Critical JFE Steel Corp
Publication of JP2016056450A publication Critical patent/JP2016056450A/en
Application granted granted Critical
Publication of JP6225965B2 publication Critical patent/JP6225965B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a steel for soft nitriding having excellent machinability by suppressing hardening before a soft nitriding treatment, exhibiting excellent fatigue characteristic after the soft nitriding treatment and suitable for being applied to a machine construction components such as automobiles.SOLUTION: There is provided a structure having a composition containing, by mass%, C:0.10 to less than 0.20%, Si:1.0% or less, Mn:over 0.5 to 3.0%, Cu:0.10 to 1.0%, Ni:0.05 to 1.0%, Cr:0.3 to 3.0%, Mo:0.005 to 0.4%, V:0.02 to 0.5%, Nb:0.003 to 0.15%, Al:over 0.020 to 0.2%, N:0.0200% or less, P:0.02% or less and S:0.06% or less and the balance Fe with inevitable impurities and a structure having a bainite phase satisfying area ratio of over 50% based on a whole structure.SELECTED DRAWING: None

Description

本発明は、軟窒化用鋼およびその軟窒化用鋼から得られる部品、さらにはこれらの製造方法に関し、特に軟窒化処理後において疲労特性に優れ、自動車や建設機械用部品として好適な材料を提供しようとするものである。   The present invention relates to a steel for soft nitriding and parts obtained from the steel for soft nitriding, and further to a manufacturing method thereof, and particularly provides a material excellent in fatigue characteristics after soft nitriding and suitable as a part for automobiles and construction machinery. It is something to try.

自動車の歯車等の機械構造部品には優れた疲労特性が要求されるため、表面硬化処理が施されるのが通例である。表面硬化処理としては、浸炭処理や高周波焼入処理、窒化処理などが良く知られている。   Since mechanical structure parts such as automobile gears are required to have excellent fatigue characteristics, surface hardening treatment is usually performed. As the surface hardening treatment, carburizing treatment, induction hardening treatment, nitriding treatment and the like are well known.

これらのうち、浸炭処理は、高温のオーステナイト域においてCを浸入・拡散させることから、深い硬化深さが得られ、疲労強度の向上に有効である。しかしながら、浸炭処理により熱処理歪が発生するため、静粛性等の観点から厳しい寸法精度が要求される部品に対しては、その適用が困難であった。   Among these, the carburizing treatment allows C to penetrate and diffuse in a high temperature austenite region, so that a deep hardening depth is obtained and effective in improving fatigue strength. However, since heat treatment distortion occurs due to the carburizing treatment, it has been difficult to apply to parts that require strict dimensional accuracy from the viewpoint of quietness and the like.

また、高周波焼入処理は、高周波誘導加熱により表層部を焼入れする処理であるため、やはり熱処理歪みが発生し、浸炭処理と同様に寸法精度の面で問題があった。   In addition, since the induction hardening process is a process in which the surface layer portion is quenched by induction heating, heat treatment distortion is also generated, and there is a problem in terms of dimensional accuracy as in the carburizing process.

一方、窒化処理は、Ac1変態点以下の比較的低温度域で窒素を浸入・拡散させて表面硬さを高める処理であるため、上記したような熱処理歪みが発生するおそれはない。しかしながら、処理時間が50〜100時間と長く、また処理後に表層の脆い化合物層を除去する必要があるという問題があった。 On the other hand, the nitriding treatment is a treatment for increasing the surface hardness by infiltrating and diffusing nitrogen in a relatively low temperature range below the Ac 1 transformation point, and thus there is no possibility that the heat treatment distortion described above occurs. However, there is a problem that the processing time is as long as 50 to 100 hours, and it is necessary to remove the brittle compound layer on the surface layer after the processing.

そのため、窒化処理と同程度の処理温度で、処理時間を短くした、いわゆる軟窒化処理が開発され、近年では機械構造用部品などを対象に広く普及している。この軟窒化処理は、500〜600℃の温度域でNとCを同時に浸入・拡散させて、表面を硬化するもので、従来の窒化処理に比べて処理時間を半分以下にすることが可能である。   Therefore, a so-called soft nitriding process has been developed in which the processing time is shortened at the same processing temperature as that of the nitriding process, and in recent years, it has been widely used for machine structural parts and the like. This soft nitriding treatment hardens the surface by simultaneously infiltrating and diffusing N and C in the temperature range of 500-600 ° C, and the processing time can be reduced to less than half compared to conventional nitriding treatment. is there.

しかしながら、前述した浸炭処理では、焼入硬化により芯部硬度を上昇させることが可能であるのに対し、軟窒化処理は鋼の変態点以下の温度で処理を行うものであるため、芯部硬度が上昇せず、軟窒化処理材は浸炭処理材と比較すると、疲労強度が劣るという問題があった。
そこで、軟窒化処理材の疲労強度を高めるため、通常、軟窒化処理前に焼入・焼戻し処理を行い、芯部硬度を上昇させているが、得られる疲労強度は十分とは言い難く、また、製造コストが上昇し、さらに機械加工性の低下も避けられなかった。
However, in the carburizing process described above, the core hardness can be increased by quench hardening, whereas the soft nitriding process is performed at a temperature below the transformation point of the steel. The nitrocarburized material has a problem that the fatigue strength is inferior to the carburized material.
Therefore, in order to increase the fatigue strength of the nitrocarburized material, quenching and tempering treatment is usually performed before the nitrocarburizing treatment to increase the core hardness, but the obtained fatigue strength is hardly sufficient. Further, the manufacturing cost has increased, and further, the machinability has been inevitably lowered.

このような問題を解決するものとして、特許文献1には、鋼中に、NiやCu,Al、Cr、Tiなどを含有させることにより、軟窒化処理後に高い曲げ疲労強度を得ることを可能にした軟窒化用鋼が提案されている。
すなわち、この鋼は、軟窒化処理により、芯部についてはNi−Al、Ni−Ti系の金属間化合物あるいはCu化合物で時効硬化させる一方、表層部については窒化層中にCr、Al、Ti等の窒化物や炭化物を析出硬化させることで、曲げ疲労強度を向上させている。
As a solution to such a problem, Patent Document 1 allows high bending fatigue strength to be obtained after soft nitriding by including Ni, Cu, Al, Cr, Ti, or the like in steel. A steel for soft nitriding has been proposed.
In other words, this steel is age-hardened with Ni-Al, Ni-Ti intermetallic compound or Cu compound at the core by soft nitriding treatment, while Cr, Al, Ti, etc. in the nitrided layer at the surface layer Bending fatigue strength is improved by precipitation hardening of nitrides and carbides.

また、特許文献2には、Cuを0.5〜2%含有させた鋼を、熱間鍛造で鍛伸後、空冷して、Cuが固溶したフェライト主体の組織とし、580℃、120分の軟窒化処理中にCuを析出硬化させ、さらにTi、VおよびNb炭窒化物の析出硬化も併用することで、軟窒化処理後において優れた曲げ疲労特性が得られる軟窒化用鋼が提案されている。   In Patent Document 2, steel containing 0.5 to 2% of Cu is forged by hot forging, then air-cooled to obtain a ferrite-based structure in which Cu is solid-solved, and softened at 580 ° C. for 120 minutes. There has been proposed a soft nitriding steel that provides excellent bending fatigue properties after soft nitriding by precipitating and hardening Cu during nitriding, and also using precipitation hardening of Ti, V, and Nb carbonitrides. .

さらに、特許文献3には、Ti−Mo炭化物、またそれらにさらにNb、V、Wの一種または二種以上を含む炭化物を分散させた軟窒化用鋼が提案されている。   Further, Patent Document 3 proposes a steel for soft nitriding in which Ti—Mo carbides and carbides containing one or more of Nb, V, and W are further dispersed.

特開平5−59488号公報JP-A-5-59488 特開2002−69572号公報JP 2002-69572 A 特開2010−163671号公報JP 2010-163671

しかしながら、特許文献1に記載の軟窒化鋼は、Ni−Al、Ni−Ti系の金属間化合物やCu等の析出硬化により曲げ疲労強度は向上するものの、加工性の確保が十分とは言い難かった。
また、特許文献2に記載の軟窒化用鋼は、Cu、Ti、V、Nbを比較的多量に添加する必要があるため、生産コストが高いという問題があった。
さらに、特許文献3に記載の軟窒化用鋼は、Ti、Moを比較的多量に含むため、やはり高コストであるという問題があった。
However, the soft nitrided steel described in Patent Document 1 is not sufficient to ensure workability, although the bending fatigue strength is improved by precipitation hardening of Ni—Al, Ni—Ti intermetallic compounds and Cu. It was.
Moreover, the steel for soft nitriding described in Patent Document 2 has a problem that the production cost is high because it is necessary to add a relatively large amount of Cu, Ti, V, and Nb.
Furthermore, since the steel for soft nitriding described in Patent Document 3 contains a relatively large amount of Ti and Mo, there is still a problem of high cost.

本発明は、上記の問題を有利に解決するもので、軟窒化処理前は硬化を抑制することで機械加工性が確保された比較的安価な軟窒化用鋼を、その製造方法とともに提供することを目的とする。
また、本発明は、機械加工後、軟窒化処理により芯部硬さを高め、もって疲労特性を向上させた部品を、その製造方法とともに提供することを目的とする。
The present invention advantageously solves the above-mentioned problems, and provides a relatively inexpensive nitrocarburizing steel, which is ensured in machinability by suppressing hardening before nitrocarburizing, together with its manufacturing method. With the goal.
Another object of the present invention is to provide, together with a manufacturing method thereof, a part having increased core hardness by soft nitriding after machining and improved fatigue characteristics.

さて、本発明者らは、上記の課題を解決するために、鋼の成分組成および組織の影響について鋭意検討を行った。
その結果、鋼の成分組成として、適量のCuを適量のNiと共に含有させると共に、VおよびNbを適正量含有させ、さらに鋼組織として面積率で50%超のベイナイト相とすることにより、Ti等の比較的高価な元素を含有させずとも、優れた機械加工性が得られ、また軟窒化処理後には、Cuの析出硬化に加え、芯部にVおよびNbを含む微細な析出物を分散析出させて芯部硬さを上昇させることにより、優れた疲労特性が得られるとの知見を得た。
本発明は、上記の知見に基づき、さらに検討を加えた末に完成されたものである。
Now, in order to solve the above-mentioned problems, the present inventors have intensively studied the influence of the steel component composition and the structure.
As a result, as a composition of steel, an appropriate amount of Cu is contained together with an appropriate amount of Ni, an appropriate amount of V and Nb is contained, and a steel structure is formed into a bainite phase having an area ratio of more than 50%. Excellent machinability can be obtained without containing relatively expensive elements, and after soft nitriding, fine precipitates containing V and Nb are dispersed and precipitated in addition to Cu precipitation hardening. It was found that excellent fatigue properties can be obtained by increasing the core hardness.
The present invention was completed after further studies based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.成分組成が、質量%で、C:0.10〜0.20%未満、Si:1.0%以下、Mn:0.5超〜3.0%、Cu:0.10〜1.0%、Ni:0.05〜1.0%、Cr:0.3〜3.0%、Mo:0.005〜0.4%、V:0.02〜0.5%、Nb:0.003〜0.15%、Al:0.020超〜0.2%、N:0.0200%以下、P:0.02%以下およびS:0.06%以下を含有し、残部はFeおよび不可避的不純物からなり、ベイナイト相が組織全体に対する面積率で50%超を満足する組織を有することを特徴とする軟窒化用鋼。
That is, the gist configuration of the present invention is as follows.
1. Component composition is mass%, C: 0.10 to less than 0.20%, Si: 1.0% or less, Mn: more than 0.5 to 3.0%, Cu: 0.10 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.3 to 3.0% , Mo: 0.005 to 0.4%, V: 0.02 to 0.5%, Nb: 0.003 to 0.15%, Al: more than 0.020 to 0.2%, N: 0.0200% or less, P: 0.02% or less, and S: 0.06% or less The balance is made of Fe and inevitable impurities, and the bainite phase has a structure satisfying an area ratio of more than 50% with respect to the entire structure.

2.前記1に記載の成分組成および組織からなる芯部と、該芯部の成分組成に対して窒素および炭素の含有量が高い成分組成からなる表層部とを有することを特徴とする部品。 2. A component comprising: a core portion composed of the component composition and structure described in 1 above; and a surface layer portion composed of a component composition having a high nitrogen and carbon content relative to the component composition of the core portion.

3.前記部品は、ベイナイト相中にVおよびNbを含む析出物が分散析出していることを特徴とする前記2記載の軟窒化部品。 3. 3. The soft nitriding component according to 2 above, wherein a precipitate containing V and Nb is dispersed and precipitated in the bainite phase.

4.質量%で、C:0.10〜0.20%未満、Si:1.0%以下、Mn:0.5超〜3.0%、Cu:0.10〜1.0%、Ni:0.05〜1.0%、Cr:0.3〜3.0%、Mo:0.005〜0.4%、V:0.02〜0.5%、Nb:0.003〜0.15%、Al:0.020超〜0.2%、N:0.0200%以下、P:0.02%以下およびS:0.06%以下を含有し、残部はFeおよび不可避的不純物からなる鋼材を、加熱温度:950〜1250℃、仕上温度:800℃以上の条件で熱間加工し、加工後、少なくとも700〜550℃の温度域について0.4℃/s超の速度で冷却することを特徴とする軟窒化用鋼の製造方法。 4). In mass%, C: 0.10 to less than 0.20%, Si: 1.0% or less, Mn: more than 0.5 to 3.0%, Cu: 0.10 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.3 to 3.0%, Mo: 0.005 -0.4%, V: 0.02-0.5%, Nb: 0.003-0.15%, Al: more than 0.020-0.2%, N: 0.0200% or less, P: 0.02% or less and S: 0.06% or less, the balance being Fe And steel material consisting of inevitable impurities is hot-worked under the conditions of heating temperature: 950-1250 ° C, finishing temperature: 800 ° C or higher, and after processing, at a rate of more than 0.4 ° C / s in the temperature range of at least 700-550 ° C A method for producing a soft nitriding steel, characterized by cooling at a temperature.

5.前記4に記載の製造方法にて得られた軟窒化用鋼を、所望の形状に仕上げたのち、処理温度:550〜700℃、処理時間:10分以上の条件で軟窒化処理を施すことを特徴とする部品の製造方法。 5. The soft nitriding steel obtained by the production method described in 4 above is finished into a desired shape, and then subjected to soft nitriding under conditions of processing temperature: 550 to 700 ° C. and processing time: 10 minutes or more. A method for producing a featured part.

本発明によれば、安価な成分系で、機械加工性に優れた軟窒化用鋼を得ることができ、また軟窒化処理後は、浸炭処理を施したJIS SCr420材と同等以上の疲労特性を有する部品を得ることができる。
そして、本発明に従い得られた部品は、自動車等の機械構造部品に適用して極めて有用である。
According to the present invention, it is possible to obtain a soft nitriding steel with an inexpensive component system and excellent machinability, and after nitrocarburizing treatment, fatigue characteristics equal to or higher than those of JIS SCr420 material subjected to carburizing treatment are obtained. It is possible to obtain parts having the
The parts obtained according to the present invention are extremely useful when applied to machine structural parts such as automobiles.

部品を製造する製造工程を示す図である。It is a figure which shows the manufacturing process which manufactures components.

以下、本発明を具体的に説明する。
まず、本発明において、成分組成を前記の範囲に限定した理由について説明する。なお、以下の成分組成を表す「%」は、特に断らない限り「質量%」を意味するものとする。
C: 0.10%以上0.20%未満
Cは、ベイナイト相の生成および強度確保のために添加する。しかしながら、含有量が0.10%未満の場合、十分な量のベイナイト相が得られない場合も生じ、また軟窒化処理後にVおよびNb析出物量が不足し、強度確保も困難となるため、0.10%以上添加する必要がある。一方、含有量が0.20%以上になると、生成したベイナイト相の硬さが増加し、機械加工性が低下するため、C量は0.10%以上0.20%未満の範囲とする。より好ましくは0.10%以上0.15%以下の範囲である。
Hereinafter, the present invention will be specifically described.
First, the reason why the component composition is limited to the above range in the present invention will be described. “%” Representing the following component composition means “mass%” unless otherwise specified.
C: 0.10% or more and less than 0.20% C is added to form a bainite phase and ensure strength. However, if the content is less than 0.10%, a sufficient amount of bainite phase may not be obtained, and the amount of V and Nb precipitates is insufficient after nitrocarburizing treatment, and it is difficult to ensure the strength. It is necessary to add. On the other hand, when the content is 0.20% or more, the hardness of the produced bainite phase is increased and the machinability is lowered, so the C content is in the range of 0.10% or more and less than 0.20%. More preferably, it is 0.10% or more and 0.15% or less of range.

Si: 1.0%以下
Siは、脱酸だけでなく、ベイナイト相の生成に有効なため添加するが、1.0%を超えるとフェライトおよびベイナイト相に固溶し、その固溶硬化により、機械加工性および冷間加工性を劣化させるため、Si量は1.0%以下とする。好ましくは0.5%以下、より好ましくは0.3%以下である。
なお、Siを脱酸に有効に寄与させるためには、添加量を0.01%以上とすることが好ましい。
Si: 1.0% or less
Si is added because it is effective not only for deoxidation but also for the formation of a bainite phase. However, if it exceeds 1.0%, it dissolves in the ferrite and bainite phases, and its solid solution hardening improves the machinability and cold workability. In order to cause deterioration, the Si content is 1.0% or less. Preferably it is 0.5% or less, More preferably, it is 0.3% or less.
In order to effectively contribute Si to deoxidation, the addition amount is preferably set to 0.01% or more.

Mn:0.5%超3.0%以下
Mnは、ベイナイト相の生成ならびに強度向上に有効なため添加する。しかしながら、Mn量が0.5%以下の場合、ベイナイト相の生成量が少なくなり、軟窒化処理前にVおよびNb析出物が生成するため、軟窒化前の硬さが増加する。加えて、軟窒化処理後におけるVおよびNb析出物の絶対量が減少するため、軟窒化処理後の硬さが低下して強度確保が困難となる。従って、Mnは0.5%を超えて添加する。一方、3.0%を超えると機械加工性および冷間加工性を劣化させるので、Mn量は3.0%以下とする。好ましくは0.5%超2.5%以下、より好ましくは0.6%以上2.0%以下の範囲である。
Mn: More than 0.5% and less than 3.0%
Mn is added because it is effective in generating a bainite phase and improving the strength. However, when the amount of Mn is 0.5% or less, the amount of bainite phase generated is reduced, and V and Nb precipitates are generated before the soft nitriding treatment, so that the hardness before soft nitriding increases. In addition, since the absolute amounts of V and Nb precipitates after the soft nitriding process are reduced, the hardness after the soft nitriding process is lowered and it is difficult to ensure the strength. Therefore, Mn is added over 0.5%. On the other hand, if it exceeds 3.0%, the machinability and the cold workability deteriorate, so the Mn content should be 3.0% or less. Preferably it is more than 0.5% and 2.5% or less, more preferably in the range of 0.6% or more and 2.0% or less.

Cu:0.10〜1.0%
Cuは、軟窒化処理中に析出硬化によって軟窒化処理材の強度を向上させる有用元素であり、ベイナイト相の生成にも有効である。しかしながら、Cu量が0.10%未満では所望の効果が得難いので0.10%以上とする。一方、1.0%を超えると焼入れ性が過剰に上昇し、マルテンサイト生成量が多くなり被削性が劣化する。そのためCu量は0.10〜1.0%の範囲に限定する。好ましくは0.10〜0.50%の範囲である。
Cu: 0.10 to 1.0%
Cu is a useful element that improves the strength of the nitrocarburized material by precipitation hardening during the nitrocarburizing treatment, and is also effective for the generation of a bainite phase. However, if the Cu content is less than 0.10%, it is difficult to obtain a desired effect, so the content is made 0.10% or more. On the other hand, if it exceeds 1.0%, the hardenability increases excessively, the amount of martensite generated increases, and the machinability deteriorates. Therefore, the amount of Cu is limited to the range of 0.10 to 1.0%. Preferably it is 0.10 to 0.50% of range.

Ni: 0.05〜1.0%
Niは、Cuに起因した熱間脆性を抑制するために添加する。この効果を発揮させるためには、NiとCuの比(Ni/Cu)を0.5以上とすることが有効である。これは、Niを添加することでγ−Fe中のCuの固溶限が増大し、またCu濃化相の融点が高くなるため、酸化スケール/地鉄界面でのCuの出現を抑制できることによる。このような観点から、Ni量は0.05%以上とする。一方、1.0%を超えると硬度が上昇し、被削性に悪影響を及ぼすばかりでなく、コスト的にも不利となる。このためNi量は0.05〜1.0%の範囲に限定する。好ましくは0.05〜0.50%の範囲である。
Ni: 0.05-1.0%
Ni is added to suppress hot brittleness caused by Cu. In order to exert this effect, it is effective to set the ratio of Ni and Cu (Ni / Cu) to 0.5 or more. This is because the addition of Ni increases the solid solubility limit of Cu in γ-Fe, and the melting point of the Cu-concentrated phase increases, so that the appearance of Cu at the oxide scale / base metal interface can be suppressed. . From such a viewpoint, the Ni content is 0.05% or more. On the other hand, if it exceeds 1.0%, the hardness increases, which not only adversely affects the machinability but also is disadvantageous in terms of cost. For this reason, Ni content is limited to 0.05 to 1.0% of range. Preferably it is 0.05 to 0.50% of range.

Cr:0.3〜3.0%
Crは、ベイナイト相の生成に有効なため添加する。しかしながら、含有量が0.3%未満の場合、ベイナイト相の生成量が少なくなり、軟窒化処理前にVおよびNb析出物が生成するため、軟窒化前の硬さが増加する。加えて、軟窒化処理後におけるVおよびNb析出物の絶対量が減少するため、軟窒化処理後の硬さが低下して強度確保が困難となる。従って、Cr量は0.3%以上とする。一方、3.0%を超えると機械加工性および冷間加工性を劣化させるので、Cr量は3.0%以下とする。好ましくは0.5〜2.0%、より好ましくは0.5〜1.5%の範囲である。
Cr: 0.3-3.0%
Cr is added because it is effective for forming a bainite phase. However, when the content is less than 0.3%, the amount of bainite phase generated is reduced, and V and Nb precipitates are generated before the soft nitriding treatment, so that the hardness before soft nitriding increases. In addition, since the absolute amounts of V and Nb precipitates after the soft nitriding process are reduced, the hardness after the soft nitriding process is lowered and it is difficult to ensure the strength. Therefore, the Cr content is 0.3% or more. On the other hand, if it exceeds 3.0%, the machinability and the cold workability deteriorate, so the Cr content is 3.0% or less. Preferably it is 0.5 to 2.0%, more preferably 0.5 to 1.5%.

Mo: 0.005〜0.4%
Moは、VおよびNb析出物を微細に析出させ、軟窒化処理材の強度を向上させる効果があり、本発明において重要な元素である。またベイナイト相の生成にも有効である。ここに、強度向上のためには0.005%以上の添加を必要とするが、高価な元素であるため0.4%を超えて添加すると、成分コストの上昇を招く。このため、Mo量は0.005〜0.4%の範囲とする。好ましくは0.01〜0.3%、より好ましくは0.04〜0.2%の範囲である。
Mo: 0.005-0.4%
Mo has the effect of precipitating V and Nb precipitates finely and improving the strength of the nitrocarburized material, and is an important element in the present invention. It is also effective for the generation of bainite phase. Here, in order to improve strength, 0.005% or more of addition is required. However, since it is an expensive element, if it exceeds 0.4%, the component cost increases. For this reason, the amount of Mo is made 0.005 to 0.4% of range. Preferably it is 0.01 to 0.3%, More preferably, it is 0.04 to 0.2% of range.

V:0.02〜0.5%
Vは、軟窒化時の温度上昇により、Nbとともに微細析出物を形成して部品における芯部硬さ(以下、芯部硬さという)を増加させ、強度を向上させる重要な元素である。しかしながら、V量が0.02%未満では所望の効果が得難く、一方0.5%超では析出物が粗大化し、十分な強度向上効果が得られないため、V量は0.02〜0.5%の範囲とする。好ましくは0.03〜0.3%、より好ましくは0.03〜0.25%の範囲である。
V: 0.02-0.5%
V is an important element that improves the strength by forming fine precipitates together with Nb and increasing the core hardness (hereinafter referred to as core hardness) of the component due to the temperature rise during soft nitriding. However, if the amount of V is less than 0.02%, it is difficult to obtain a desired effect. On the other hand, if it exceeds 0.5%, precipitates are coarsened and a sufficient strength improvement effect cannot be obtained, so the amount of V is in the range of 0.02 to 0.5%. Preferably it is 0.03-0.3%, More preferably, it is 0.03-0.25% of range.

Nb:0.003〜0.15%
Nbは、軟窒化時の温度上昇により、Vとともに微細析出物を形成して芯部硬さを増加させるため、疲労強度向上に極めて有効である。しかしながら、Nb量が0.003%未満では所望の効果が得難く、一方0.15%を超えると析出物が粗大化し、十分な強度向上効果が得られないため、Nb量は0.003〜0.15%の範囲とする。好ましくは0.02〜0.12%の範囲である。
Nb: 0.003-0.15%
Nb is extremely effective in improving fatigue strength because fine precipitates are formed together with V to increase the core hardness due to temperature rise during soft nitriding. However, if the Nb content is less than 0.003%, it is difficult to obtain a desired effect. On the other hand, if it exceeds 0.15%, precipitates are coarsened and a sufficient strength improvement effect cannot be obtained, so the Nb content is in the range of 0.003 to 0.15%. . Preferably it is 0.02 to 0.12% of range.

Al: 0.020%超0.2%以下
Alは、軟窒化処理後の表面硬さおよび有効硬化層深さの向上に有用な元素であるので、積極的に添加する。また、熱間鍛造時におけるオーステナイト粒成長を抑制することによって、組織を微細化し靭性を向上させる上でも有用な元素である。このような観点から、Alは0.020%を超えて含有させる。一方、0.2%を超えて含有させてもその効果は飽和し、むしろ成分コストの上昇を招く不利が生じるので、Al量は0.2%以下に限定する。好ましくは0.020%超0.1%以下の範囲、より好ましくは0.020%超0.04%以下の範囲である。
Al: more than 0.020% and less than 0.2%
Al is an element useful for improving the surface hardness and effective hardened layer depth after the soft nitriding treatment, so it is positively added. Moreover, it is an element useful also for refine | miniaturizing a structure | tissue and improving toughness by suppressing the austenite grain growth at the time of hot forging. From such a viewpoint, Al is contained exceeding 0.020%. On the other hand, even if the content exceeds 0.2%, the effect is saturated, and rather disadvantageous that causes an increase in the component cost occurs, so the Al content is limited to 0.2% or less. Preferably it is in the range of more than 0.020% and 0.1% or less, more preferably in the range of more than 0.020% and 0.04% or less.

N:0.0200%以下
Nは、鋼中で炭窒化物を形成し、軟窒化処理材の強度を向上させる有用元素である。従って、0.0050%以上含有させることが好ましい。しかしながら、含有量が0.0200%を超えると、形成する炭窒化物が粗大化して鋼材の靭性を低下させる。また、鋳片の表面割れが生じ、鋳片品質が低下する。このため、Nは0.0200%以下に限定する。
N: 0.0200% or less N is a useful element that forms carbonitrides in steel and improves the strength of the nitrocarburized material. Therefore, it is preferable to contain 0.0050% or more. However, if the content exceeds 0.0200%, the carbonitride to be formed becomes coarse and the toughness of the steel material is lowered. Moreover, the surface crack of a slab arises and slab quality falls. For this reason, N is limited to 0.0200% or less.

P:0.02%以下
Pは、オーステナイト粒界に偏析し、粒界強度を低下させることにより、強度、靭性を低下させる。従って、Pの含有は極力抑制することが望ましいが、0.02%までは許容される。なお、Pを0.001%未満とするには高いコストを要することから、工業的には0.001%まで低減すればよい。
P: 0.02% or less P is segregated at austenite grain boundaries and lowers the grain boundary strength, thereby lowering strength and toughness. Therefore, it is desirable to suppress the P content as much as possible, but 0.02% is allowed. In addition, since it requires high cost to make P less than 0.001%, it may be industrially reduced to 0.001%.

S:0.06%以下
Sは、鋼中でMnSを形成し、被削性を向上させる有用元素であるが、0.06%を超えて含有させると靭性を損なうため、0.06%以下に制限する。好ましくは0.04%以下である。
なお、Sによる被削性向上効果を発現させるためには、S量を0.002%以上とすること
が好ましい。
S: 0.06% or less S is a useful element that forms MnS in steel and improves the machinability, but if it exceeds 0.06%, the toughness is impaired, so it is limited to 0.06% or less. Preferably it is 0.04% or less.
In addition, in order to express the machinability improvement effect by S, it is preferable to make S amount 0.002% or more.

なお、本発明の鋼において、上記した成分以外は、Feおよび不可避不純物である。
不可避不純物のうち、特にTiは、V,Nbの析出強化に悪影響を及ぼして芯部硬さを低下させるので、極力含有させないようにする必要がある。好ましくは0.010%未満、より好
ましくは0.005%未満である。
In the steel of the present invention, other than the above-described components are Fe and inevitable impurities.
Among unavoidable impurities, Ti in particular has an adverse effect on the precipitation strengthening of V and Nb and lowers the core hardness. Therefore, it is necessary to prevent Ti from being contained as much as possible. Preferably it is less than 0.010%, more preferably less than 0.005%.

次に、本発明における軟窒化用鋼の鋼組織を前記の範囲に限定した理由を説明する。
ベイナイト相:組織全体に対する面積率で50%超
本発明では、ベイナイト相を組織全体に対する面積率で50%超とすることが、極めて重要である。
本発明は、軟窒化処理後に表層窒化部以外の芯部にはVおよびNb析出物を分散析出させ、これによって芯部硬度を上昇させ、軟窒化処理後の疲労強度を向上させようとするものである。
ここで、軟窒化処理前にVおよびNb析出物が存在していると、通常、軟窒化処理前に行われる切削加工時の被削性の観点からは不利である。この点、ベイナイト変態過程では、フェライト−パーライト変態過程に比べ、母相中にVおよびNb析出物が生成し難い。
従って、本発明の軟窒化用鋼の鋼組織、すなわち軟窒化処理前の鋼組織はベイナイト相を主体とする。具体的には、ベイナイト相を組織全体に対する面積率で50%超とする。好ましくは60%超、より好ましくは80%超である。また100%であってもよい。
なお、ベイナイト相以外の組織としては、フェライト相やパーライト相等が考えられるが、これらの組織は少ないほど好ましいのは言うまでもない。
Next, the reason why the steel structure of the soft nitriding steel in the present invention is limited to the above range will be described.
Bainitic phase: More than 50% in area ratio with respect to the entire structure In the present invention, it is extremely important that the bainite phase has an area ratio with respect to the entire structure exceeding 50%.
In the present invention, V and Nb precipitates are dispersed and deposited on the core portion other than the surface nitriding portion after the soft nitriding treatment, thereby increasing the core hardness and improving the fatigue strength after the soft nitriding treatment. It is.
Here, if V and Nb precipitates exist before the soft nitriding treatment, it is disadvantageous from the viewpoint of machinability at the time of cutting performed before the soft nitriding treatment. In this regard, in the bainite transformation process, V and Nb precipitates are less likely to be generated in the parent phase than in the ferrite-pearlite transformation process.
Therefore, the steel structure of the nitrocarburizing steel of the present invention, that is, the steel structure before the nitronitriding treatment is mainly composed of a bainite phase. Specifically, the bainite phase is more than 50% in terms of the area ratio with respect to the entire structure. Preferably it is more than 60%, more preferably more than 80%. It may be 100%.
In addition, as a structure other than the bainite phase, a ferrite phase, a pearlite phase, or the like can be considered, but it goes without saying that the smaller the structure, the better.

ここに、各相の面積率は、次のようにして求めることができる。すなわち、得られた軟窒化用鋼から試験片を採取し、圧延方向に平行な垂直断面(L断面)について、研磨後ナイタールで腐食し、光学顕微鏡または走査型電子顕微鏡(SEM)を用い、断面組織観察(200倍の光学顕微鏡組織観察)により相の種類を同定し、各相の面積率を求める。   Here, the area ratio of each phase can be determined as follows. That is, a test piece was taken from the obtained soft nitriding steel, and a vertical cross section (L cross section) parallel to the rolling direction was corroded with nital after polishing, and the cross section was obtained using an optical microscope or a scanning electron microscope (SEM). The type of phase is identified by tissue observation (200 times optical microscope structure observation), and the area ratio of each phase is obtained.

また、本発明の部品では、本発明の軟窒化用鋼に軟窒化処理を施して、ベイナイト相中に(Nb,V)(C,N)等のVおよびNbを含む析出物を分散析出させる。
この理由は、表層軟窒化部以外の芯部組織中にVおよびNbを含む析出物を分散析出させることで、芯部硬さが上昇し、軟窒化処理後の疲労強度が顕著に向上するからである。
ここに、ベイナイト相中のVおよびNbを含む析出物の粒径は10nm未満とし、単位面積1μm2当たり500個以上分散析出させることが、軟窒化処理後の析出強化に寄与させる上で好ましい。なお、析出物の粒径の測定限界、すなわち測定できる最小の粒径は1nmである。
なお、軟窒化処理を施して得られる部品は、表層部(芯部以外の部分)は、芯部の成分組成に対して炭素および窒素の含有量が高い成分組成となる。
Further, in the component of the present invention, the soft nitriding steel of the present invention is subjected to soft nitriding treatment to disperse precipitates containing V and Nb such as (Nb, V) (C, N) in the bainite phase. .
The reason for this is that the core portion hardness increases and the fatigue strength after the soft nitriding treatment is remarkably improved by dispersing and precipitating the precipitate containing V and Nb in the core structure other than the surface soft nitriding portion. It is.
Here, the particle size of the precipitate containing V and Nb in the bainite phase is preferably less than 10 nm, and it is preferable to disperse and deposit 500 or more per unit area of 1 μm 2 in order to contribute to precipitation strengthening after the soft nitriding treatment. The measurement limit of the particle size of the precipitate, that is, the minimum measurable particle size is 1 nm.
In addition, as for the part obtained by performing a soft nitriding process, the surface layer part (parts other than a core part) becomes a component composition with high content of carbon and nitrogen with respect to the component composition of a core part.

次に、本発明の軟窒化用鋼および部品の製造工程について説明する。
図1に、本発明に係る軟窒化用鋼(棒鋼)を用いて軟窒化部品を製造する代表的な製造工程を示す。ここで、S1は素材となる棒鋼製造工程、S2は搬送工程、S3は製品(軟窒化部品)仕上げ工程である。
Next, the manufacturing process of the steel for soft nitriding and parts of this invention is demonstrated.
FIG. 1 shows a typical manufacturing process for manufacturing a soft nitrided part using the soft nitriding steel (bar steel) according to the present invention. Here, S1 is a steel bar manufacturing process as a raw material, S2 is a conveying process, and S3 is a product (soft-nitriding component) finishing process.

まず、棒鋼製造工程(S1)で鋼塊を熱間圧延して棒鋼とし、品質検査後、出荷する。
そして、搬送(S2)後、製品(軟窒化部品)仕上げ工程(S3)で、該棒鋼を所定の寸法に切断し、熱間鍛造あるいは冷間鍛造を行い、必要に応じてドリル穿孔や旋削等の切削加工で所望の形状(例えば、ギア製品やシャフト部品)としたのち、軟窒化処理を行って、製品とする。
また、熱間圧延材をそのまま旋削やドリル穿孔等の切削加工で所望の形状に仕上げ、その後軟窒化処理を行い製品とすることもある。なお、熱間鍛造の場合、熱間鍛造後に冷間矯正が行われる場合がある。また、最終製品にペンキやメッキ等の皮膜処理がなされる場合もある。
First, the steel ingot is hot-rolled into a steel bar in the steel bar manufacturing process (S1), shipped after quality inspection.
Then, after the transfer (S2), in the product (soft-nitriding part) finishing step (S3), the steel bar is cut into a predetermined dimension, hot forging or cold forging is performed, and drilling or turning is performed as necessary. After cutting into a desired shape (for example, gear product or shaft part), soft nitriding is performed to obtain a product.
In addition, the hot rolled material may be finished as it is by a cutting process such as turning or drilling, and then subjected to soft nitriding to obtain a product. In the case of hot forging, cold correction may be performed after hot forging. In addition, the final product may be subjected to a coating treatment such as paint or plating.

本発明の軟窒化用鋼の製造方法では、軟窒化処理直前の熱間加工工程において、熱間加工時の加熱温度、加工温度を特定の条件とすることにより、前述したようなベイナイト相主体の組織とし、VおよびNb析出物の生成を抑制する。
ここに、熱間加工とは、主に熱間圧延、熱間鍛造を意味するが、熱間圧延後さらに熱間鍛造を行ってもよい。また、熱間圧延後、冷間鍛造を行ってもよいのは言うまでもない。
ここで、軟窒化処理直前の熱間加工工程が熱間圧延工程である場合、すなわち熱間圧延後に熱間鍛造を行わない場合は、熱間圧延工程において以下に示す条件を満足させる。
In the method for producing nitrocarburizing steel of the present invention, in the hot working step immediately before the soft nitriding treatment, the heating temperature at the hot working and the working temperature are set to specific conditions, so that the bainite phase main component as described above is used. The structure suppresses the formation of V and Nb precipitates.
Here, hot working mainly means hot rolling and hot forging, but hot forging may be further performed after hot rolling. Needless to say, cold forging may be performed after hot rolling.
Here, when the hot working process immediately before the soft nitriding treatment is a hot rolling process, that is, when hot forging is not performed after hot rolling, the following conditions are satisfied in the hot rolling process.

圧延加熱温度:950〜1250℃
熱間圧延工程では、圧延材(冷間鍛造および/または切削加工による部品の素材となる棒鋼)に微細析出物が析出し鍛造性を損なわないよう、溶解時から残存する炭化物を固溶させる。
ここで、圧延加熱温度が950℃に満たないと、溶解時から残存する炭化物が固溶し難くなる。一方、1250℃を超えると、結晶粒が粗大化して鍛造性が悪化しやすくなる。このため、圧延加熱温度は950℃〜1250℃の範囲とする。
Rolling heating temperature: 950-1250 ° C
In the hot rolling process, carbides remaining from the time of dissolution are dissolved so that fine precipitates are not deposited on the rolled material (bar steel used as a component material by cold forging and / or cutting) and forgeability is not impaired.
Here, if the rolling heating temperature is less than 950 ° C., the remaining carbides from the time of melting are hardly dissolved. On the other hand, if it exceeds 1250 ° C., the crystal grains become coarse and the forgeability tends to deteriorate. For this reason, rolling heating temperature shall be the range of 950 degreeC-1250 degreeC.

圧延仕上げ温度:800℃以上
圧延仕上げ温度が800℃未満の場合、フェライト相が生成するため、軟窒化処理前に組織全体に対する面積率で50%超を満足するベイナイト相を生成させる上で不利となる。また、圧延負荷も高くなる。従って、圧延仕上げ温度は800℃以上とする。なお、上限値については、1100℃程度とすることが好ましい。
Rolling finish temperature: 800 ° C or more When the rolling finish temperature is less than 800 ° C, a ferrite phase is generated, which is disadvantageous in generating a bainite phase that satisfies more than 50% of the area ratio of the entire structure before soft nitriding. Become. Also, the rolling load is increased. Therefore, the rolling finishing temperature is 800 ° C. or higher. The upper limit is preferably about 1100 ° C.

圧延後の少なくとも700〜550℃の温度域における冷却速度:0.4℃/s超
所望形状への仕上げ加工前に微細析出物が析出し、加工性を損なわないようにするため、微細析出物の析出温度範囲である少なくとも700〜550℃の温度域においては、圧延後の冷却速度を、微細析出物が得られる限界冷却速度である0.4℃/sを超える速度とする。なお、上限値については、200℃/s程度とすることが好ましい。
Cooling rate in a temperature range of at least 700 to 550 ° C. after rolling: More than 0.4 ° C./s Precipitation of fine precipitates so that fine precipitates are deposited before finishing to the desired shape and workability is not impaired. In the temperature range of at least 700 to 550 ° C., which is the temperature range, the cooling rate after rolling is set to a rate exceeding 0.4 ° C./s, which is the critical cooling rate for obtaining fine precipitates. The upper limit is preferably about 200 ° C./s.

また、窒化処理直前の熱間加工工程が熱間鍛造工程である場合、すなわち熱間鍛造のみを行う場合または熱間圧延後に熱間鍛造を行う場合は、熱間鍛造工程において以下に示す条件を満足させる。
なお、熱間鍛造前に熱間圧延を行う場合には、熱間圧延条件として必ずしも上記した条件を満足していなくてもよい。
In addition, when the hot working process immediately before nitriding is a hot forging process, that is, when only hot forging is performed or when hot forging is performed after hot rolling, the conditions shown below in the hot forging process are as follows: Satisfy.
In addition, when hot rolling is performed before hot forging, the above-described conditions may not necessarily be satisfied as the hot rolling conditions.

熱間鍛造条件
この熱間鍛造では、ベイナイト相を組織全体に対する面積率で50%超とするため、および熱間鍛造後の冷間矯正や被削性の観点から微細析出物が析出しないようにするため、熱間鍛造時の加熱温度を950〜1250℃、鍛造仕上げ温度を800℃以上、鍛造後の冷却速度を少なくとも700〜550℃の温度域において0.4℃/s超とする。なお、上限値については、200℃/s程度とすることが好ましい。
Hot forging conditions In this hot forging, in order to make the bainite phase more than 50% in terms of the area ratio with respect to the entire structure, and from the viewpoint of cold straightening and machinability after hot forging, fine precipitates should not be precipitated. Therefore, the heating temperature during hot forging is set to 950 to 1250 ° C., the forging finishing temperature is set to 800 ° C. or more, and the cooling rate after forging is set to exceed 0.4 ° C./s in a temperature range of at least 700 to 550 ° C. The upper limit is preferably about 200 ° C./s.

ついで、得られた圧延材または鍛造材に対して切削加工等を施して部品形状とし、その後、以下の条件で軟窒化処理を行う。   Next, the obtained rolled material or forged material is subjected to cutting or the like to obtain a part shape, and then soft nitriding is performed under the following conditions.

軟窒化処理(析出処理)条件
軟窒化処理は、微細析出物を析出させるように、処理温度:550〜700℃、処理時間:10分以上の条件で行う。ここに、軟窒化処理温度を550〜700℃の範囲とするのは、550℃に満たないと十分な量の析出物が得られず、一方700℃を超えるとオーステナイト域となり軟窒化が困難となるからである。より好ましくは550〜630℃の範囲である。
Soft nitriding treatment (precipitation treatment) conditions The soft nitriding treatment is performed under conditions of a treatment temperature of 550 to 700 ° C. and a treatment time of 10 minutes or more so as to precipitate fine precipitates. Here, if the soft nitriding temperature is in the range of 550 to 700 ° C., a sufficient amount of precipitates cannot be obtained unless the temperature is lower than 550 ° C., whereas if it exceeds 700 ° C., it becomes an austenitic region and soft nitriding is difficult. Because it becomes. More preferably, it is the range of 550-630 degreeC.

なお、軟窒化処理では、NとCを同時に浸入・拡散させるので、NH3やN2といった浸窒性ガスと、CO2やCOといった浸炭性ガスの混合雰囲気、例えばNH3:N2:CO2=50:45:5の雰囲気で軟窒化処理を行えばよい。 In the soft nitriding treatment, N and C are simultaneously infiltrated and diffused, so a mixed atmosphere of a nitriding gas such as NH 3 and N 2 and a carburizing gas such as CO 2 and CO, for example, NH 3 : N 2 : CO Soft nitriding may be performed in an atmosphere of 2 = 50: 45: 5.

以下、本発明の実施例について具体的に説明する。
表1に示す成分組成の鋼(鋼種A〜Y)を150kg真空溶解炉にて溶製し、1150℃加熱後、圧延仕上げ温度:970℃の条件で熱間圧延し、その後0.9℃/sの速度で室温まで冷却し、50mmφの棒鋼とした。なお、鋼種YはJIS SCr420に相当する鋼である。
これらの素材をさらに、表2に示す加熱温度に加熱後、表2に示す仕上げ温度で熱間鍛造して30mmφの棒鋼とし、その後、700〜550℃の範囲を表2に示す冷却速度として、室温まで冷却した。なお、一部については、比較のため700〜550℃の範囲を0.1℃/sの速度として、室温まで冷却した。
Examples of the present invention will be specifically described below.
Steels with the composition shown in Table 1 (steel types A to Y) were melted in a 150 kg vacuum melting furnace, heated at 1150 ° C, hot-rolled at a rolling finish temperature of 970 ° C, and then 0.9 ° C / s. The steel was cooled to room temperature at a speed to obtain a 50 mmφ steel bar. Steel type Y is steel corresponding to JIS SCr420.
These materials were further heated to the heating temperatures shown in Table 2 and then hot forged at the finishing temperatures shown in Table 2 to form 30 mmφ bar steel, and then the range of 700 to 550 ° C. as the cooling rate shown in Table 2, Cooled to room temperature. In addition, for a part, it cooled to room temperature by making the range of 700-550 degreeC into the speed of 0.1 degree-C / s for the comparison.

かくして得られた熱間鍛造材について、被削性、特にドリル加工性をドリル切削試験により評価した。熱間鍛造材を20mm厚に切断したものを試験材として、JIS高速度工具鋼SKH51の6mmφのストレートドリルで、送り:0.15mm/rev、回転数:795rpmの条件で、1断面当たり5箇所の貫通穴を開け、ドリルが切削不能になるまでの総穴数で評価した。
また、上記した熱間鍛造材について、組織観察および硬度測定を行った。組織観察では、前述した方法により、相の種類を同定するとともに、各相の面積率を求めた。
硬度測定では、ビッカース硬度計を用い、JIS Z 2244に準拠して芯部の硬さを2.94N(300gf)の試験荷重で5点(棒鋼断面における中心位置1点、表面から径方向にD/4(Dは棒鋼の直径)を、周方向に90°間隔で4点)測定し、その平均値を硬さHVとした。
The hot forged material thus obtained was evaluated for machinability, particularly drillability, by a drill cutting test. A hot forged material cut to 20 mm thickness was used as a test material, a JIS high-speed tool steel SKH51 6 mmφ straight drill, feed: 0.15 mm / rev, rotation speed: 795 rpm, 5 locations per section Through holes were drilled, and the total number of holes until the drill became uncut was evaluated.
Moreover, about said hot forging material, structure | tissue observation and hardness measurement were performed. In the structure observation, the type of phase was identified and the area ratio of each phase was determined by the method described above.
For hardness measurement, a Vickers hardness tester was used, and the hardness of the core was 5 points with a test load of 2.94N (300gf) in accordance with JIS Z 2244 (one center position on the steel bar cross section, D / D from the surface in the radial direction). 4 (D is the diameter of the steel bar) was measured at four points at intervals of 90 ° in the circumferential direction, and the average value was defined as the hardness HV.

ついで、鋼種A〜Xについては、上記の熱間鍛造後、さらに軟窒化処理を施した。一方、鋼種Yの熱間鍛造材については、比較のため、浸炭処理を施した。
軟窒化処理は、NH3:N2:CO2=50:45:5の雰囲気で570〜600℃に加熱し、3.5時間保持することによって行った。
一方、浸炭処理は、930℃で3時間浸炭し、850℃に40分保持後、油冷し、さらに170℃、1時間焼戻すことにより行った。
Next, for steel types A to X, after the hot forging described above, soft nitriding treatment was further performed. On the other hand, the hot forging material of steel type Y was carburized for comparison.
The soft nitriding treatment was performed by heating to 570 to 600 ° C. in an atmosphere of NH 3 : N 2 : CO 2 = 50: 45: 5 and maintaining for 3.5 hours.
On the other hand, the carburizing treatment was performed by carburizing at 930 ° C. for 3 hours, holding at 850 ° C. for 40 minutes, oil cooling, and tempering at 170 ° C. for 1 hour.

かくして得られた熱処理材について、組織観察、硬度測定および疲労特性の評価を行った。
ここで、組織観察では、軟窒化処理前と同様、前述した方法により、相の種類を同定するとともに、各相の面積率を求めた。
硬度測定では、上記熱処理材の表面硬さおよび芯部硬さをそれぞれ測定した。ここで、表面硬さおよび芯部硬さの測定はいずれも、ビッカース硬度計を用い、JIS Z 2244に準拠して2.94N(300gf)の試験荷重で測定した。表面硬さは表面から0.05mm深さの位置を棒鋼の周方向に60°間隔で6点、芯部硬さは棒鋼断面における中心位置1点および表面から径方向にD/4深さ位置(Dは棒鋼の直径)を周方向に90°間隔で4点の計5点にて測定し、それぞれの平均値を表面硬さHV、芯部硬さHVとした。さらに、有効硬化層深さは、HV400となる表面からの深さと定義して、測定した。
The heat-treated material thus obtained was subjected to structure observation, hardness measurement, and fatigue property evaluation.
Here, in the structure observation, the type of phase was identified and the area ratio of each phase was determined by the method described above, as before soft nitriding.
In the hardness measurement, the surface hardness and core hardness of the heat-treated material were measured. Here, both the surface hardness and the core hardness were measured with a test load of 2.94 N (300 gf) in accordance with JIS Z 2244 using a Vickers hardness tester. The surface hardness is 0.05 mm from the surface at 6 points at 60 ° intervals in the circumferential direction of the steel bar, and the core hardness is 1 center point on the steel bar cross section and the D / 4 depth position from the surface in the radial direction ( D is the diameter of the steel bar) measured at a total of 5 points, 4 points at 90 ° intervals in the circumferential direction, and the average value of each was defined as the surface hardness HV and the core hardness HV. Furthermore, the effective hardened layer depth was measured by defining the depth from the surface to be HV400.

また、軟窒化材ならびに浸炭材の芯部から、透過電子顕微鏡観察用の試料を、ツインジェット法を用いた電解研磨法により作製し、得られた試料について、加速電圧を200Vとした透過電子顕微鏡を用いて析出物の観察を行った。さらに観察される析出物の組成をエネルギー分散型X線分光装置(EDX)により求めた。   In addition, a sample for observation with a transmission electron microscope was prepared from the core of a soft nitrided material and a carburized material by an electrolytic polishing method using a twin jet method, and the obtained sample was subjected to a transmission electron microscope with an acceleration voltage of 200V. Was used to observe the precipitate. Further, the composition of the observed precipitate was determined by an energy dispersive X-ray spectrometer (EDX).

疲労特性評価は、小野式回転曲げ疲労試験により行い、107回で未破断の疲労強度(疲労限)を求めた。疲労試験は、上記熱間鍛造材より切欠き付き試験片(ノッチR:1.0mm、ノッチ径:8mm、応力集中係数:1.8)を採取し、この試験片に対して上記した軟窒化処理あるいは浸炭処理を施した熱処理材を用いて行った。
表2に試験結果を示す。No.1〜10、26が発明例、No.11〜24が比較例、No.25がJIS SCr420相当鋼に浸炭処理を施した従来例である。
Fatigue characteristics were evaluated by the Ono-type rotating bending fatigue test, and the unruptured fatigue strength (fatigue limit) was determined 10 7 times. For the fatigue test, a notched specimen (notch R: 1.0 mm, notch diameter: 8 mm, stress concentration factor: 1.8) is sampled from the hot forged material, and the soft nitriding treatment or carburization described above is performed on the specimen. It performed using the heat processing material which processed.
Table 2 shows the test results. Nos. 1 to 10 and 26 are invention examples, Nos. 11 to 24 are comparative examples, and No. 25 is a conventional example obtained by carburizing JIS SCr420 equivalent steel.

Figure 2016056450
Figure 2016056450

Figure 2016056450
Figure 2016056450

表2から明らかなように、発明例No.1〜10、26はいずれも、浸炭処理を施した従来例No.25に比べて、疲労強度が優れている。また、No.1〜10、26の軟窒化処理前のドリル加工性については、従来例No.25と実用上同等レベルかそれ以上である。   As is apparent from Table 2, all of Invention Examples No. 1 to 10 and 26 are superior in fatigue strength to Conventional Example No. 25 subjected to carburizing treatment. Moreover, the drill workability before soft nitriding of Nos. 1 to 10 and 26 is practically equivalent to or higher than that of the conventional example No. 25.

さらに、透過電子顕微鏡による析出物の観察およびエネルギー分散型X線分光装置(EDX)による析出物組成の調査の結果、No.1〜10、26の軟窒化処理材には、ベイナイト相中にV、Nbを含む粒径:10nm未満の微細な析出物が1μm2当たり500個以上分散析出していることが確認できた。この結果から、本発明に従う軟窒化処理材は、上記の微細析出物による析出強化により、高い疲労強度を示したものと考えられる。 Furthermore, as a result of observation of precipitates with a transmission electron microscope and investigation of precipitate compositions with an energy dispersive X-ray spectrometer (EDX), the nitrocarburized materials Nos. 1 to 10 and 26 contained V in the bainite phase. It was confirmed that 500 or more fine precipitates having a particle size of less than 10 nm and containing Nb were dispersed and deposited per 1 μm 2 . From this result, it is considered that the nitrocarburized material according to the present invention exhibited high fatigue strength due to precipitation strengthening by the fine precipitate.

これに対し、比較例No.11〜24は成分組成あるいは得られた鋼組織が本発明範囲外であったため、疲労強度あるいはドリル加工性に劣っている。
すなわち、No.11は、熱間鍛造後の冷却速度が遅いため、適正量のベイナイト相が得られず、また軟窒化処理による微細析出物の生成量が少ないため、析出強化が不足し、発明例に比べ疲労強度が低い。
No.12は、Cが適正範囲を超えているため、軟窒化処理前の熱間鍛造材の硬さが増加し、ドリル加工性が低下している。
No.13は、Si量が適正範囲を超えているため、窒化処理前の熱間鍛造材の硬さが増加し、ドリル加工性が低下している。
No.14は、Mn量が適正範囲を超えているため、軟窒化処理前の熱間鍛造材の鋼組織がマルテンサイト相主体となっている。このため、軟窒化処理前の硬さが増加し、ドリル加工性が低下している。
No.15は、Cu量が適正範囲に満たないため、時効硬化能に乏しく、十分な芯部硬さが得られていない。このため、従来鋼No.25に比べて疲労強度が低い。
No.16は、Cu量が適正範囲を超えているため、軟窒化処理前の熱間鍛造材の硬さが増加し、ドリル加工性が低下している。
No.17は、Ni量が適正範囲を超えているため、軟窒化処理前の熱間鍛造材の硬さが増加し、ドリル加工性が低下している。
No.18は、Cr量が適正範囲に満たないため、軟窒化処理前の熱間鍛造材の鋼組織がフェライト相−パーライト相主体となっている。このため、組織中にVおよびNb析出物が析出して軟窒化処理前の硬さが増加し、ドリル加工性が低下している。
No.19は、Mo量が適正範囲に満たないため、軟窒化処理後の微細析出物の生成量が少なく、十分な芯部硬さが得られていない。このため、従来例No.25に比べて疲労強度が低い。
No.20は、V量が適正範囲に満たないため、軟窒化処理後の微細析出物の生成量が少なく、十分な芯部硬さが得られていない。このため、従来鋼No.25に比べて疲労強度が低い。
No.21は、Nb量が適正範囲に満たないため、軟窒化処理後の微細析出物の生成量が少なく、十分な芯部硬さが得られていない。このため、従来鋼No.25に比べて疲労強度が低い。
No.22および23は、Al量が適正範囲に満たないため、十分な軟窒化処理後の表面硬さおよび有効硬化層深さが得られず、従来鋼No.25に比べて疲労強度が低い。
No.24は、本発明では不純物成分であるTiを多量に含むため、軟窒化処理後の微細析出物の生成量が少なく、十分な芯部硬さが得られていない。このため、従来鋼No.25に比べて疲労強度が低い。
On the other hand, Comparative Examples No. 11 to 24 are inferior in fatigue strength or drill workability because the component composition or the obtained steel structure was outside the scope of the present invention.
That is, No. 11 has a slow cooling rate after hot forging, so that an appropriate amount of bainite phase cannot be obtained, and since the amount of fine precipitates produced by soft nitriding is small, precipitation strengthening is insufficient. Fatigue strength is low compared to the examples.
In No. 12, since C exceeds the appropriate range, the hardness of the hot forged material before the soft nitriding treatment is increased and the drill workability is lowered.
In No. 13, since the Si amount exceeds the appropriate range, the hardness of the hot forged material before the nitriding treatment is increased and the drill workability is decreased.
In No. 14, since the Mn content exceeds the appropriate range, the steel structure of the hot forged material before the soft nitriding treatment is mainly composed of the martensite phase. For this reason, the hardness before the nitrocarburizing treatment is increased and the drill workability is reduced.
In No. 15, the amount of Cu is less than the appropriate range, so the age hardening ability is poor and sufficient core hardness is not obtained. For this reason, fatigue strength is low compared with conventional steel No.25.
In No. 16, since the amount of Cu exceeds the appropriate range, the hardness of the hot forged material before the soft nitriding treatment is increased and the drill workability is lowered.
In No. 17, since the Ni content exceeds the appropriate range, the hardness of the hot forged material before the soft nitriding treatment is increased, and the drill workability is reduced.
In No. 18, since the Cr content is less than the proper range, the steel structure of the hot forged material before the soft nitriding treatment is mainly composed of a ferrite phase and a pearlite phase. For this reason, V and Nb precipitates are precipitated in the structure, the hardness before the soft nitriding treatment is increased, and drill workability is lowered.
In No. 19, since the amount of Mo is less than the proper range, the amount of fine precipitates produced after soft nitriding is small, and sufficient core hardness is not obtained. For this reason, fatigue strength is low compared with the conventional example No.25.
In No. 20, the amount of V is less than the appropriate range, so the amount of fine precipitates produced after soft nitriding is small, and sufficient core hardness is not obtained. For this reason, fatigue strength is low compared with conventional steel No.25.
In No. 21, the amount of Nb is less than the appropriate range, so the amount of fine precipitates produced after soft nitriding is small, and sufficient core hardness is not obtained. For this reason, fatigue strength is low compared with conventional steel No.25.
No.22 and No.23 have less Al than the proper range, so sufficient surface hardness and effective hardened layer depth after soft nitriding cannot be obtained, and fatigue strength is lower than conventional steel No.25 .
No. 24 contains a large amount of Ti, which is an impurity component in the present invention, so that the amount of fine precipitates produced after soft nitriding is small and sufficient core hardness is not obtained. For this reason, fatigue strength is low compared with conventional steel No.25.

Claims (5)

成分組成が、質量%で、C:0.10〜0.20%未満、Si:1.0%以下、Mn:0.5超〜3.0%、Cu:0.10〜1.0%、Ni:0.05〜1.0%、Cr:0.3〜3.0%、Mo:0.005〜0.4%、V:0.02〜0.5%、Nb:0.003〜0.15%、Al:0.020超〜0.2%、N:0.0200%以下、P:0.02%以下およびS:0.06%以下を含有し、残部はFeおよび不可避的不純物からなり、ベイナイト相が組織全体に対する面積率で50%超を満足する組織を有することを特徴とする軟窒化用鋼。   Component composition is mass%, C: 0.10 to less than 0.20%, Si: 1.0% or less, Mn: more than 0.5 to 3.0%, Cu: 0.10 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.3 to 3.0% , Mo: 0.005 to 0.4%, V: 0.02 to 0.5%, Nb: 0.003 to 0.15%, Al: more than 0.020 to 0.2%, N: 0.0200% or less, P: 0.02% or less, and S: 0.06% or less The balance is made of Fe and inevitable impurities, and the bainite phase has a structure satisfying an area ratio of more than 50% with respect to the entire structure. 請求項1に記載の成分組成および組織からなる芯部と、該芯部の成分組成に対して窒素および炭素の含有量が高い成分組成からなる表層部とを有することを特徴とする部品。   A component comprising: a core portion comprising the component composition and structure according to claim 1; and a surface layer portion comprising a component composition having a high nitrogen and carbon content relative to the component composition of the core portion. 前記部品は、前記ベイナイト相中にVおよびNbを含む析出物が分散析出していることを特徴とする請求項2記載の部品。   The component according to claim 2, wherein a precipitate containing V and Nb is dispersed and precipitated in the bainite phase. 質量%で、C:0.10〜0.20%未満、Si:1.0%以下、Mn:0.5超〜3.0%、Cu:0.10〜1.0%、Ni:0.05〜1.0%、Cr:0.3〜3.0%、Mo:0.005〜0.4%、V:0.02〜0.5%、Nb:0.003〜0.15%、Al:0.020超〜0.2%、N:0.0200%以下、P:0.02%以下およびS:0.06%以下を含有し、残部はFeおよび不可避的不純物からなる鋼材を、加熱温度:950〜1250℃、仕上温度:800℃以上の条件で熱間加工し、加工後、少なくとも700〜550℃の温度域について0.4℃/s超の速度で冷却することを特徴とする軟窒化用鋼の製造方法。   In mass%, C: 0.10 to less than 0.20%, Si: 1.0% or less, Mn: more than 0.5 to 3.0%, Cu: 0.10 to 1.0%, Ni: 0.05 to 1.0%, Cr: 0.3 to 3.0%, Mo: 0.005 -0.4%, V: 0.02-0.5%, Nb: 0.003-0.15%, Al: more than 0.020-0.2%, N: 0.0200% or less, P: 0.02% or less and S: 0.06% or less, the balance being Fe And steel material consisting of inevitable impurities is hot-worked under the conditions of heating temperature: 950-1250 ° C, finishing temperature: 800 ° C or higher, and after processing, at a rate of more than 0.4 ° C / s in the temperature range of at least 700-550 ° C A method for producing a soft nitriding steel, characterized by cooling at a temperature. 請求項4に記載の製造方法にて得られた軟窒化用鋼を、所望の形状に仕上げたのち、処理温度:550〜700℃、処理時間:10分以上の条件で軟窒化処理を施すことを特徴とする部品の製造方法。   The soft nitriding steel obtained by the production method according to claim 4 is finished into a desired shape, and then subjected to soft nitriding under conditions of processing temperature: 550 to 700 ° C. and processing time: 10 minutes or more. A method of manufacturing a component characterized by the above.
JP2015175803A 2014-09-05 2015-09-07 Soft nitriding steel and parts, and methods for producing them Active JP6225965B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014181492 2014-09-05
JP2014181492 2014-09-05

Publications (2)

Publication Number Publication Date
JP2016056450A true JP2016056450A (en) 2016-04-21
JP6225965B2 JP6225965B2 (en) 2017-11-08

Family

ID=55757587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175803A Active JP6225965B2 (en) 2014-09-05 2015-09-07 Soft nitriding steel and parts, and methods for producing them

Country Status (1)

Country Link
JP (1) JP6225965B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003076A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Steel for soft nitriding and components, and manufacturing method therefor
JP6525115B1 (en) * 2018-06-27 2019-06-05 日本製鉄株式会社 Nitriding bars and machine parts
JP2019527292A (en) * 2016-06-30 2019-09-26 ウッデホルムズ アーベー Steel for tool holder
WO2020090739A1 (en) * 2018-10-31 2020-05-07 Jfeスチール株式会社 Soft-nitriding steel, soft-nitrided component, and methods for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146232A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Method for producing soft-nitrided machine part made of steel
JP2013019001A (en) * 2011-07-07 2013-01-31 Nippon Steel & Sumitomo Metal Corp Steel material for cold forging and nitriding
WO2013121794A1 (en) * 2012-02-15 2013-08-22 Jfe条鋼株式会社 Soft-nitriding steel and soft-nitrided component using steel as material
WO2014017074A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Nitrocarburizable steel, nitrocarburized part, and methods for producing said nitrocarburizable steel and said nitrocarburized part

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146232A (en) * 2005-11-28 2007-06-14 Nippon Steel Corp Method for producing soft-nitrided machine part made of steel
JP2013019001A (en) * 2011-07-07 2013-01-31 Nippon Steel & Sumitomo Metal Corp Steel material for cold forging and nitriding
WO2013121794A1 (en) * 2012-02-15 2013-08-22 Jfe条鋼株式会社 Soft-nitriding steel and soft-nitrided component using steel as material
WO2014017074A1 (en) * 2012-07-26 2014-01-30 Jfeスチール株式会社 Nitrocarburizable steel, nitrocarburized part, and methods for producing said nitrocarburizable steel and said nitrocarburized part

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003076A (en) * 2016-06-30 2018-01-11 Jfeスチール株式会社 Steel for soft nitriding and components, and manufacturing method therefor
JP2019527292A (en) * 2016-06-30 2019-09-26 ウッデホルムズ アーベー Steel for tool holder
US11085108B2 (en) 2016-06-30 2021-08-10 Uddeholms Ab Steel for a tool holder
JP6525115B1 (en) * 2018-06-27 2019-06-05 日本製鉄株式会社 Nitriding bars and machine parts
WO2020003425A1 (en) * 2018-06-27 2020-01-02 日本製鉄株式会社 Reinforcing bar for nitriding, and machine component
WO2020090739A1 (en) * 2018-10-31 2020-05-07 Jfeスチール株式会社 Soft-nitriding steel, soft-nitrided component, and methods for manufacturing same
JP6721141B1 (en) * 2018-10-31 2020-07-08 Jfeスチール株式会社 Steel for soft nitriding, soft nitriding component, and manufacturing method thereof
US11814709B2 (en) 2018-10-31 2023-11-14 Jfe Steel Corporation Steel for nitrocarburizing and nitrocarburized component, and methods of producing same

Also Published As

Publication number Publication date
JP6225965B2 (en) 2017-11-08

Similar Documents

Publication Publication Date Title
JP5567747B2 (en) Soft nitriding steel, soft nitriding component and manufacturing method thereof
JP6610808B2 (en) Soft nitriding steel and parts
JP5449626B1 (en) Soft nitriding steel and soft nitriding parts made from this steel
JP4385019B2 (en) Manufacturing method for steel nitrocarburized machine parts
JP5427418B2 (en) Steel for soft nitriding
US11959177B2 (en) Steel for nitrocarburizing and nitrocarburized component, and methods of producing same
JP2011153364A (en) Crankshaft and method for producing the same
JP5767594B2 (en) Steel for nitriding and nitriding member using the same
JP6225965B2 (en) Soft nitriding steel and parts, and methods for producing them
JP5258458B2 (en) Gears with excellent surface pressure resistance
JP4737601B2 (en) High temperature nitriding steel
JP6431456B2 (en) Soft nitriding steel and parts, and methods for producing them
JP5200552B2 (en) Roughened tempered nitrocarburized crankshaft and tempered nitrocarburized crankshaft
JP6721141B1 (en) Steel for soft nitriding, soft nitriding component, and manufacturing method thereof
JP5272609B2 (en) Carbonitriding parts made of steel
JP6447064B2 (en) Steel parts
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
JP6477614B2 (en) Steel for soft nitriding and parts and method for manufacturing them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170925

R150 Certificate of patent or registration of utility model

Ref document number: 6225965

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250