JPH07286257A - Production of nitriding steel member excellent in cold forgeability and fatigue strength - Google Patents

Production of nitriding steel member excellent in cold forgeability and fatigue strength

Info

Publication number
JPH07286257A
JPH07286257A JP8158894A JP8158894A JPH07286257A JP H07286257 A JPH07286257 A JP H07286257A JP 8158894 A JP8158894 A JP 8158894A JP 8158894 A JP8158894 A JP 8158894A JP H07286257 A JPH07286257 A JP H07286257A
Authority
JP
Japan
Prior art keywords
nitriding
treatment
fatigue strength
less
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8158894A
Other languages
Japanese (ja)
Other versions
JP2906996B2 (en
Inventor
Nobuyuki Ishikawa
信行 石川
Tetsuo Shiragami
哲夫 白神
Moriyuki Ishiguro
守幸 石黒
Hitoshi Kabasawa
均 椛澤
Yoshihiro Kuwabara
美博 桑原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NAGAOKA DENSHI KK
Nihon Techno KK
JFE Engineering Corp
Original Assignee
NAGAOKA DENSHI KK
Nihon Techno KK
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NAGAOKA DENSHI KK, Nihon Techno KK, NKK Corp, Nippon Kokan Ltd filed Critical NAGAOKA DENSHI KK
Priority to JP8158894A priority Critical patent/JP2906996B2/en
Publication of JPH07286257A publication Critical patent/JPH07286257A/en
Application granted granted Critical
Publication of JP2906996B2 publication Critical patent/JP2906996B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

PURPOSE:To produce a nitriding steel member excellent in cold forgeability and having high fatigue strength, at the time of subjecting a steel having a specified compsn. to gaseous nitriding treatment, by prescribing the starting temp. and finishing temp. of the nitriding treatment to specified temp. ranges and furthermore continuously raising the temp. therebetween. CONSTITUTION:A steel contg., by weight, 0.10 to 0.30% C, <0.35% Si, <1.0% Mn, <0.05% S, 0.5 to 1.5% Cr, 0.1 to 0.5% Al and 0.1 to 0.5% V or furthermore contg. one or two kinds among <0.1% Ni, <1.0% Cu and <0.2% Mo is charged to a gaseous nitriding furnace having an N2-NH3-CO2 atmosphere, is heated and is subjected to nitriding treatment. The nitriding treatment is executed in such a manner that the starting temp. is regulated to 480 to 550 deg.C and the finishing temp. to 560 to 630 deg.C and its temp. is continuously raised therebetween, by which the nitriding steel member excellent in cold forgeability and having high fatigue strength can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は優れた冷間鍛造性及び疲
労強度が要求される歯車等の機械構造部品に適した、冷
間鍛造性及び疲労特性に優れた窒化鋼部材の製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a nitrided steel member having excellent cold forgeability and fatigue characteristics, which is suitable for mechanical structural parts such as gears which are required to have excellent cold forgeability and fatigue strength. .

【0002】[0002]

【従来の技術】機械構造用鋼の疲労強度向上のための表
面硬化処理方法の一つとしてガス窒化処理がある。この
ガス窒化処理は、同じ表面硬化処理方法である高周波焼
入や浸炭焼入に比べて熱処理歪が小さいため、寸法精度
が要求される機械構造部品の表面硬化処理方法として有
効な手段である。
2. Description of the Related Art Gas nitriding is one of the surface hardening treatment methods for improving the fatigue strength of machine structural steel. This gas nitriding treatment is effective as a surface hardening treatment method for machine structural parts that require dimensional accuracy, because the heat treatment strain is smaller than that of the same surface hardening treatment methods such as induction hardening and carburizing hardening.

【0003】窒化処理用鋼材としては、従来からJIS
SACM645や、JIS SCM435等が使用さ
れている。しかし、SACM645は表面硬度がHv1
000程度と硬すぎる上、表面に脆い化合物層が形成さ
れるため、高い疲労強度は得られない。また、SCM4
35も十分な硬化層深さが得られないため、やはり高い
疲労強度は得られない。また、どちらの鋼も素材硬度が
高いことから冷間鍛造性、被削性に劣る等の問題があ
る。
Conventionally, JIS has been used as a steel material for nitriding treatment.
SACM645, JIS SCM435, etc. are used. However, SACM645 has a surface hardness of Hv1.
Since it is too hard as about 000 and a brittle compound layer is formed on the surface, high fatigue strength cannot be obtained. In addition, SCM4
No. 35 also cannot obtain a sufficient hardened layer depth, so that high fatigue strength cannot be obtained. Further, since both steels have high material hardness, they have problems such as poor cold forgeability and machinability.

【0004】そこで、疲労強度の改善を目的として、特
開平4−45244号公報、特開平4−66646号公
報、特開平5−25538号公報等において、Cr−M
o−V鋼を基本とした高疲労強度の窒化用鋼又は軟窒化
鋼が提案されている。一方、冷間加工性を改善するため
に、特開平5−171347号公報にはSiまたはMn
量を規制し、Cr,Vを複合添加した軟窒化鋼が提案さ
れている。
Therefore, in order to improve the fatigue strength, Cr-M is disclosed in JP-A-4-45244, JP-A-4-66646, JP-A-5-25538 and the like.
High-fatigue strength nitriding steel or soft nitriding steel based on o-V steel has been proposed. On the other hand, in order to improve the cold workability, JP-A-5-171347 discloses Si or Mn.
There has been proposed soft nitrided steel in which the amount is regulated and Cr and V are added together.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、特開平
4−45244号公報、特開平4−66646号公報、
特開平5−25538号公報等に開示されている窒化用
鋼又は軟窒化鋼は、Cr,Mo,Vの複合添加により疲
労強度が高まるが、Moを多量に含有しているために素
材硬さが高すぎ、冷間鍛造性及び被削性が著しく劣る。
However, Japanese Patent Laid-Open Nos. 4-45244 and 4-66646,
The nitriding steel or the soft nitriding steel disclosed in Japanese Patent Laid-Open No. 25538/1993 has an increased fatigue strength due to the combined addition of Cr, Mo, and V, but since it contains a large amount of Mo, the material hardness is high. Is too high, and cold forgeability and machinability are extremely poor.

【0006】また、特開平5−171347号公報に開
示されている軟窒化用鋼は、素材硬さがHv200以下
となるため冷間鍛造性は良好であるものの、窒化処理後
の表面硬さが低い上、従来の窒化方法を採用しても大き
な硬化層深さが得られず、疲労強度は十分とはいえな
い。本発明は、かかる事情に鑑みてなされたものであっ
て、優れた疲労特性と冷間鍛造性とを兼備した窒化鋼部
材の製造方法を提供することを目的とする。
The steel for soft nitriding disclosed in Japanese Patent Laid-Open No. 5-171347 has a material hardness of Hv 200 or less and thus has good cold forgeability, but has a surface hardness after nitriding treatment. Moreover, even if the conventional nitriding method is adopted, a large hardened layer depth cannot be obtained, and the fatigue strength cannot be said to be sufficient. The present invention has been made in view of the above circumstances, and an object thereof is to provide a method for manufacturing a nitrided steel member having both excellent fatigue properties and cold forgeability.

【0007】[0007]

【課題を解決するための手段及び作用】本願発明者ら
は、先ず疲労強度に及ぼす化学成分、組成及び窒化条件
の影響を詳細に検討した結果、以下の2つの知見を得る
に至った。第1に、歯車のように応力集中を受ける部品
での疲労強度を高めるためには、窒化処理後の表面硬度
をHv700以上にし、十分な硬化深さを有することが
必要である。表面硬度を高めるためには0.1%以上の
Alの添加が必須であり、さらにCrを複合添加するこ
とにより十分な表面硬度が得られ、Vの添加により大き
な硬化層深さを得ることができる。
Means and Actions for Solving the Problems The inventors of the present application first studied in detail the effects of chemical components, composition, and nitriding conditions on fatigue strength, and as a result, obtained the following two findings. First, in order to increase the fatigue strength of a component such as a gear that is subjected to stress concentration, it is necessary that the surface hardness after nitriding treatment be Hv 700 or more and that the hardening depth be sufficient. In order to increase the surface hardness, it is essential to add 0.1% or more of Al, and by further adding Cr in combination, sufficient surface hardness can be obtained, and by adding V, a large hardened layer depth can be obtained. it can.

【0008】第2に、ガス窒化により部品の表面部分に
生成する化合物層は非常に脆く、その厚さが厚すぎる場
合には容易に剥離し、疲労強度の低下を招く。このよう
な化合物層の生成を抑制する窒化処理方法として従来か
ら2段窒化法が採用されているが、2段窒化法では十分
な硬化層深さが得られず、また疲労強度も十分ではなか
った。これに対し、処理開始温度及び処理終了温度をあ
る特定の温度範囲に規定し、その間を連続的に昇温する
方法を適用すれば、化合物が形成されてもすぐに昇温さ
れて化合物層が消滅しやすく化合物層の生成が抑制さ
れ、また大きな硬化深さが得られるため、著しく疲労強
度が向上される。
Secondly, the compound layer formed on the surface portion of the component by gas nitriding is very brittle, and when the thickness is too thick, it is easily peeled off, resulting in a decrease in fatigue strength. A two-step nitriding method has been conventionally used as a nitriding method for suppressing the formation of such a compound layer. However, the two-step nitriding method cannot provide a sufficient hardened layer depth and also has an insufficient fatigue strength. It was On the other hand, by defining the treatment start temperature and the treatment end temperature in a certain specific temperature range and applying a method of continuously raising the temperature during that period, even if a compound is formed, the temperature is raised immediately to form a compound layer. Fatigue strength is remarkably improved because it easily disappears and the formation of a compound layer is suppressed, and a large hardening depth is obtained.

【0009】そして、さらに優れた冷間鍛造性を得るた
めにさらに検討を重ねた結果、C,Si,Mn及びCr
の添加量を調整し、焼きならし後の素材硬さをHv22
0以下にすることで、優れた疲労特性を維持しつつ、必
要な冷間鍛造性を確保し得ることを見出した。
Then, as a result of further studies to obtain further excellent cold forgeability, C, Si, Mn and Cr were obtained.
Adjust the amount of addition of Hv22
It was found that by setting it to 0 or less, the required cold forgeability can be secured while maintaining excellent fatigue properties.

【0010】本発明は、このような知見に基づいてなさ
れたものであって、第1に、C:0.10〜0.30w
t%、Si:0.35wt%以下、Mn:1.0wt%
以下、S:0.05wt%以下、Cr:0.5〜1.5
wt%、Al:0.1〜0.5wt%、V:0.1〜
0.5wt%を含有する鋼に対し、処理開始温度が48
0〜550℃、処理終了温度が560〜630℃の範囲
であり、処理開始から処理終了までを連続的に昇温させ
る窒化処理を施すことを特徴とする、冷間鍛造性及び疲
労特性に優れた窒化鋼部材の製造方法を提供するもので
ある。
The present invention was made on the basis of such findings, and firstly, C: 0.10 to 0.30w.
t%, Si: 0.35 wt% or less, Mn: 1.0 wt%
Hereinafter, S: 0.05 wt% or less, Cr: 0.5 to 1.5
wt%, Al: 0.1 to 0.5 wt%, V: 0.1
For steel containing 0.5 wt%, the treatment start temperature is 48
Excellent cold forgeability and fatigue characteristics, characterized by performing a nitriding treatment in which the temperature is 0 to 550 ° C., the treatment end temperature is 560 to 630 ° C., and the temperature is continuously raised from the treatment start to the treatment end. And a method for manufacturing a nitrided steel member.

【0011】第2に、C:0.10〜0.30wt%、
Si:0.35wt%以下、Mn:1.0wt%以下、
S:0.05wt%以下、Cr:0.5〜1.5wt
%、Al:0.1〜0.5wt%、V:0.1〜0.5
wt%を含有し、さらにNi:1.0wt%以下、C
u:1.0wt%以下、Mo:0.2wt以下の1種ま
たは2種以上を含有する鋼に対し、処理開始温度が48
0〜550℃、処理終了温度が560〜630℃の範囲
であり、処理開始から処理終了までを連続的に昇温させ
る窒化処理を施すことを特徴とする、冷間鍛造性及び疲
労特性に優れた窒化鋼部材の製造方法を提供するもので
ある。
Secondly, C: 0.10 to 0.30 wt%,
Si: 0.35 wt% or less, Mn: 1.0 wt% or less,
S: 0.05 wt% or less, Cr: 0.5 to 1.5 wt
%, Al: 0.1 to 0.5 wt%, V: 0.1 to 0.5
wt%, Ni: 1.0 wt% or less, C
u: 1.0 wt% or less, Mo: 0.2 wt% or less steel containing one or more, the treatment start temperature is 48
Excellent cold forgeability and fatigue characteristics, characterized by performing a nitriding treatment in which the temperature is 0 to 550 ° C., the treatment end temperature is 560 to 630 ° C., and the temperature is continuously raised from the treatment start to the treatment end. And a method for manufacturing a nitrided steel member.

【0012】以下、本発明の限定理由について説明す
る。先ず化学成分の限定理由について示す。 (1)C:0.10〜0.30wt% Cは強度確保のため必要な元素である。しかし、その量
が0.1wt%未満では芯部強度が低くなり過ぎるため
に十分な硬化層深さが得られず、必要な疲労強度が得ら
れない。一方、0.3wt%を超えると素材強度が高く
なりすぎ靭性が劣化し、さらに切削性ないし冷間鍛造性
も著しく低下する。従ってC量を0.10〜0.30w
t%の範囲とした。
The reasons for limitation of the present invention will be described below. First, the reasons for limiting the chemical components will be shown. (1) C: 0.10 to 0.30 wt% C is an element necessary for securing strength. However, if the amount is less than 0.1 wt%, the strength of the core portion becomes too low, so that a sufficient hardened layer depth cannot be obtained and the required fatigue strength cannot be obtained. On the other hand, if it exceeds 0.3 wt%, the material strength becomes too high, the toughness deteriorates, and the machinability or cold forgeability also remarkably decreases. Therefore, the C content is 0.10 to 0.30w
The range was t%.

【0013】(2)Si:0.35wt%以下 Siは脱酸材として必要であるが、フェライトに固溶し
冷間鍛造性を劣化させるため、0.35wt%以下とし
た。
(2) Si: 0.35 wt% or less Si is necessary as a deoxidizing material, but since it forms a solid solution in ferrite and deteriorates cold forgeability, it is set to 0.35 wt% or less.

【0014】(3)Mn:1.0wt%以下 Mnは脱酸材として添加され、また強度確保のために必
要である。しかし、1.0wt%を超えるとSiと同様
に冷間鍛造性を劣化させるため、1.0wt%以下とし
た。
(3) Mn: 1.0 wt% or less Mn is added as a deoxidizer and is necessary for ensuring strength. However, if it exceeds 1.0 wt%, the cold forgeability deteriorates like Si, so the content was made 1.0 wt% or less.

【0015】(4)S:0.05wt%以下 Sは被削性を向上させる元素であるが、0.05wt%
を超えると硫化物系の介在物が多くなりすぎ、冷間鍛造
時の割れの原因となるばかりでなく、疲労強度の低下に
つながる。従って、その上限を0.05wt%とした。
(4) S: 0.05 wt% or less S is an element that improves machinability, but 0.05 wt%
If it exceeds, the amount of sulfide-based inclusions increases too much, which not only causes cracking during cold forging, but also leads to a decrease in fatigue strength. Therefore, the upper limit is set to 0.05 wt%.

【0016】(5)Cr:0.5〜1.5wt% Crは窒化処理後の表面硬さを上昇させ及び硬化層深さ
を増加させる元素である。しかし、その量が0.5wt
%未満ではその効果が小さく、1.5wt%を超えると
硬化層深さが逆に低下し、また素材硬さが高くなりすぎ
冷間鍛造性を劣化させる。従ってCr含有量を0.5〜
1.5wt%とする。
(5) Cr: 0.5 to 1.5 wt% Cr is an element that increases the surface hardness after nitriding and increases the depth of the hardened layer. However, the amount is 0.5 wt
If it is less than 0.1%, the effect is small, and if it exceeds 1.5% by weight, the depth of the hardened layer is decreased conversely, and the material hardness becomes too high, which deteriorates cold forgeability. Therefore, the Cr content is 0.5 to
It is set to 1.5 wt%.

【0017】(6)Al:0.1〜0.5wt% Alは窒化処理後の表面硬さを上昇させる元素である。
しかし、その量が0.1wt%未満では必要な表面硬さ
が得られず、0.5wt%を超えると硬化層深さに悪影
響を及ぼす。従ってAl量を0.1〜0.5wt%の範
囲とした。
(6) Al: 0.1 to 0.5 wt% Al is an element that increases the surface hardness after nitriding treatment.
However, if the amount is less than 0.1 wt%, the required surface hardness cannot be obtained, and if it exceeds 0.5 wt%, the hardened layer depth is adversely affected. Therefore, the Al amount is set to the range of 0.1 to 0.5 wt%.

【0018】(7)V:0.1〜0.5wt% Vは窒化処理後の硬化層深さを向上させる元素である。
しかし、その量が0.1wt%未満ではその効果が不十
分であり、0.5wt%を超えて添加してもその効果が
飽和すると共にコスト的にも不利になる。従ってV量を
0.1〜0.5wt%の範囲とした。
(7) V: 0.1 to 0.5 wt% V is an element that improves the depth of the hardened layer after nitriding.
However, if the amount is less than 0.1 wt%, the effect is insufficient, and if added in excess of 0.5 wt%, the effect is saturated and the cost becomes disadvantageous. Therefore, the amount of V is set to the range of 0.1 to 0.5 wt%.

【0019】また、素材の強度及び靭性を高めることを
主目的として、以下のNi,Cu,Moの1種又は2種
以上を含有させることもできる。 (8)Ni:1.0wt%以下 Niは冷間鍛造性を低下させることなく素材の靭性を向
上させる元素である。しかし、1.0wt%を超えて添
加すると硬度が上昇し冷間鍛造性に悪影響を及ぼすだけ
でなく、非常に高価な元素であるためコスト的にも不利
になる。従ってその上限を1.0wt%とした。
Further, one or more of the following Ni, Cu and Mo may be contained for the main purpose of enhancing the strength and toughness of the material. (8) Ni: 1.0 wt% or less Ni is an element that improves the toughness of the material without reducing the cold forgeability. However, if added in excess of 1.0 wt%, not only the hardness increases and the cold forgeability is adversely affected, but also it is a very expensive element, which is disadvantageous in terms of cost. Therefore, the upper limit is set to 1.0 wt%.

【0020】(9)Cu:1.0wt%以下 Cuは窒化処理中に析出硬化し窒化処理材の芯部の強度
を向上させる元素である。しかし、1.0wt%を超え
て添加すると靭性の低下を招くので、その上限を1.0
wt%とした。
(9) Cu: 1.0 wt% or less Cu is an element that precipitates and hardens during the nitriding treatment and improves the strength of the core of the nitriding material. However, if added in excess of 1.0 wt%, the toughness decreases, so the upper limit is 1.0
It was set to wt%.

【0021】(10)Mo:0.2wt%以下 Moは素材の強度を高めると同時に、窒化処理後の硬化
層深さを増加させる元素である。しかし、0.2wt%
を超えて添加すると硬度が上昇し、冷間鍛造性が著しく
劣化するため、その上限を0.2wt%とした。
(10) Mo: 0.2 wt% or less Mo is an element that increases the strength of the material and at the same time increases the depth of the hardened layer after the nitriding treatment. However, 0.2 wt%
If added in excess of 0.1%, the hardness increases and the cold forgeability remarkably deteriorates, so the upper limit was made 0.2 wt%.

【0022】次に、窒化処理条件の限定理由について示
す。 (1)処理開始温度:480〜550℃ 処理開始温度が480℃未満では窒化反応が遅いため有
効な硬化深さが得られず、一方、550℃を超えると化
合物層厚さが大きくなり、疲労強度に悪影響を及ぼす。
従って窒化処理開始温度を480℃〜550℃の範囲と
した。
Next, the reasons for limiting the nitriding conditions will be described. (1) Treatment start temperature: 480 to 550 ° C. If the treatment start temperature is less than 480 ° C., an effective hardening depth cannot be obtained because the nitriding reaction is slow, while if it exceeds 550 ° C., the compound layer thickness becomes large and fatigue occurs. It adversely affects strength.
Therefore, the nitriding treatment start temperature is set in the range of 480 ° C to 550 ° C.

【0023】(2)処理終了温度:560〜630℃ 処理終了温度が560℃未満では窒素の拡散が遅いため
有効な硬化深さが得られず、一方、630℃を超えると
窒素がより内部まで拡散するため表面硬さが低下し疲労
強度が劣化する。従って窒化処理終了温度を560〜6
30℃の範囲とした。
(2) Treatment end temperature: 560 to 630 ° C. When the treatment end temperature is less than 560 ° C., effective diffusion depth cannot be obtained because nitrogen diffusion is slow, while when it exceeds 630 ° C., nitrogen is more deep inside. The diffusion reduces the surface hardness and deteriorates the fatigue strength. Therefore, the nitriding treatment end temperature is set to 560 to 6
The range was 30 ° C.

【0024】(3)処理開始から処理終了までを連続的
に昇温 上述したように、処理開始から終了まで連続的に昇温す
ることにより、低温で化合物が形成されてもすぐに昇温
されて化合物層が消滅しやすく、結果として化合物層の
生成が抑制され、また大きな硬化深さが得られるため、
著しく疲労強度が向上されるからである。なお、本発明
では処理開始から処理終了までを連続的に昇温させる限
りその態様は限定されないが、直線的に昇温することが
好ましい。
(3) Continuously raising the temperature from the start to the end of the treatment As described above, by continuously raising the temperature from the start to the end of the treatment, even if the compound is formed at a low temperature, the temperature is immediately raised. As a result, the compound layer easily disappears, and as a result, the formation of the compound layer is suppressed, and a large curing depth can be obtained.
This is because the fatigue strength is remarkably improved. In the present invention, the mode is not limited as long as the temperature is continuously raised from the start to the end of the treatment, but it is preferable to raise the temperature linearly.

【0025】[0025]

【実施例】以下、本発明の実施例について説明する。 (実施例1)表1の組成を有する鋼150kgを真空溶
解により溶製し、熱間圧延により厚さ30mmの板にし
た後、900℃×1時間の焼ならし処理を行い素材とし
た。素材の硬さを測定した後、切欠き係数1.8の切欠
きを有する小野式回転曲げ疲労試験片に加工した。その
後、表1のNo.1〜14の供試材に対して窒化処理を
施した。窒化処理はN2 −NH3 −CO2 雰囲気のガス
窒化炉を用い、図1に示した温度パターンの中で連続的
に昇温する方法(傾斜窒化法)にて行った。なお、窒化
処理は、処理開始温度:510℃、処理終了温度:62
0℃、処理時間:20時間の条件にて行った。
EXAMPLES Examples of the present invention will be described below. (Example 1) 150 kg of steel having the composition shown in Table 1 was melted by vacuum melting, hot rolled into a plate having a thickness of 30 mm, and a normalizing treatment at 900 ° C x 1 hour was performed to obtain a material. After measuring the hardness of the material, it was processed into an Ono-type rotary bending fatigue test piece having a notch with a notch coefficient of 1.8. Then, No. 1 in Table 1 was used. The sample materials 1 to 14 were subjected to a nitriding treatment. The nitriding treatment was performed using a gas nitriding furnace in an N 2 —NH 3 —CO 2 atmosphere by a method (gradient nitriding method) of continuously raising the temperature in the temperature pattern shown in FIG. The nitriding treatment is performed at a treatment start temperature of 510 ° C. and a treatment end temperature of 62.
It was carried out under the conditions of 0 ° C. and treatment time: 20 hours.

【0026】このように窒化処理を施した供試材を用い
て小野式回転曲げ疲労試験を行い、繰返し数107 回で
の応力値を疲労強度として求めた。また、窒化処理後の
表面硬さ(表面から0.05mm位置の硬さ)及び硬化
層深さ(Hvが420になる距離)の測定も行った。こ
れらの結果を表2に示す。なお、表1及び表2におい
て、供試材No.1〜11は本発明例であり、No.1
2〜21は比較例である。
An Ono-type rotary bending fatigue test was conducted using the test material thus nitrided, and the stress value at the number of repetitions of 10 7 was determined as the fatigue strength. Further, the surface hardness after nitriding (hardness at a position of 0.05 mm from the surface) and the depth of the hardened layer (distance at which Hv becomes 420) were also measured. The results are shown in Table 2. In Tables 1 and 2, the test material No. Nos. 1 to 11 are examples of the present invention. 1
2 to 21 are comparative examples.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】表2から明らかなように、本発明例である
No.1〜11はいずれも素材硬さがHv220以下で
あり冷間鍛造性に優れ、また窒化処理後の表面硬さがH
v700以上、硬化層深さが0.4mm以上となるため
に高い疲労強度が得られていることが確認された。
As is apparent from Table 2, No. 1 which is an example of the present invention. All of 1 to 11 have a material hardness of Hv220 or less and are excellent in cold forgeability, and the surface hardness after nitriding treatment is Hv.
It was confirmed that high fatigue strength was obtained because v700 or more and the hardened layer depth was 0.4 mm or more.

【0030】一方、比較例であるNo.12はV量が本
発明で規定する範囲よりも低いために硬化層深さが小さ
く疲労強度が低かった。またNo.13はAlが本発明
で規定する範囲よりも低いために表面硬度が低く疲労強
度も低くなった。No.14はAl量が本発明で規定す
る範囲よりも高いために硬化層深さが小さく疲労強度が
低かった。No.15、16はそれぞれCr量、C量が
本発明で規定する範囲よりも低いために硬化層深さが小
さく疲労強度が低かった。また、No.17、18、1
9、20はそれぞれCr量、Mn量、Si量、C量が本
発明で規定する範囲よりも高いため、疲労強度は高い
が、素材硬さが高く冷間鍛造性が劣っていた。さらにN
o.21はS量が本発明で規定する範囲よりも高いた
め、表面硬さ、硬化層深さが適正範囲内であるのにもか
かわらず疲労強度が低かった。
On the other hand, No. which is a comparative example. In No. 12, the V content was lower than the range specified in the present invention, so that the hardened layer depth was small and the fatigue strength was low. In addition, No. No. 13 had a lower surface hardness and a lower fatigue strength because Al was lower than the range specified in the present invention. No. In No. 14, the amount of Al was higher than the range specified in the present invention, so the depth of the hardened layer was small and the fatigue strength was low. No. In Nos. 15 and 16, the amounts of Cr and C were lower than the ranges specified in the present invention, so the hardened layer depth was small and the fatigue strength was low. In addition, No. 17, 18, 1
In Nos. 9 and 20, the Cr content, Mn content, Si content, and C content were higher than the ranges specified in the present invention, so the fatigue strength was high, but the material hardness was high and the cold forgeability was poor. Furthermore N
o. In No. 21, the S content was higher than the range specified in the present invention, so the fatigue strength was low even though the surface hardness and the depth of the hardened layer were within the proper ranges.

【0031】(実施例2)次に、No.1の組成を有す
る鋼を用いて実施例1と同様に切欠き係数1.8の切欠
きを有する小野式回転曲げ疲労試験片に加工し、図1に
示す3つの温度パターンを用い、表3に示す条件で処理
時間20時間の窒化処理を施した。そして、これら供試
材について疲労試験を行った。この際の窒化処理後の表
面硬さ、硬化層深さ、化合物層厚さ(表面に形成された
窒化物層の厚さ)、及び疲労強度を併せて表3に示す。
なお、記号A〜Dは本発明例であり、記号E〜Lは本発
明の窒化処理条件から外れる比較例である。
(Embodiment 2) Next, No. The steel having the composition of No. 1 was processed into an Ono-type rotary bending fatigue test piece having a notch with a notch coefficient of 1.8 as in Example 1, and three temperature patterns shown in FIG. The nitriding treatment was performed for 20 hours under the conditions shown in. Then, a fatigue test was conducted on these test materials. Table 3 also shows the surface hardness after nitriding, the depth of the hardened layer, the thickness of the compound layer (the thickness of the nitride layer formed on the surface), and the fatigue strength.
The symbols A to D are examples of the present invention, and the symbols E to L are comparative examples that deviate from the nitriding treatment conditions of the present invention.

【0032】[0032]

【表3】 [Table 3]

【0033】表3から明らかなように、本発明例である
記号A〜Dはいずれも、表面硬さ、表面層深さが大き
く、化合物層厚さが小さいために高い疲労強度を有して
いることが確認された。
As is clear from Table 3, all of the symbols A to D of the present invention have high fatigue strength because of their large surface hardness, large surface layer depth and small compound layer thickness. Was confirmed.

【0034】これに対して、記号E〜Hは傾斜窒化法を
採用してはいるが、処理開始温度又は処理終了温度が本
発明の範囲から外れており、表面硬さ、硬化層深さ又は
化合物層厚さのいずれかが不十分であった。
On the other hand, although the symbols E to H employ the gradient nitriding method, the treatment starting temperature or the treatment ending temperature is out of the range of the present invention, and the surface hardness, the depth of the hardened layer or Either of the compound layer thicknesses was insufficient.

【0035】記号I,Jは二段窒化法を採用したもので
あり、化合物層厚さは小さいが、硬化層深さが小さいた
め、疲労強度が低かった。記号K,Lは最も一般的な一
段の窒化方法を採用したものであり、硬化層深さが十分
ではなく、また化合物層厚さが厚すぎるため、疲労強度
が低かった。
The symbols I and J adopt the two-stage nitriding method, and although the compound layer thickness is small, the hardened layer depth is small, so that the fatigue strength was low. The symbols K and L adopted the most general one-step nitriding method, and the depth of the hardened layer was not sufficient, and the compound layer was too thick, so the fatigue strength was low.

【0036】[0036]

【発明の効果】以上のように本発明によれば、特定の組
成の鋼材に対し、処理開始温度と処理終了温度とを特定
温度範囲に規定すると共にその間を連続的に昇温するの
で、冷間鍛造性に優れ、かつ高い疲労強度を有する窒化
鋼部材を得ることができる。
As described above, according to the present invention, for a steel material having a specific composition, the processing start temperature and the processing end temperature are regulated within a specific temperature range, and the temperature is continuously raised between them, so that the cooling is performed. It is possible to obtain a nitrided steel member that is excellent in hot forgeability and has high fatigue strength.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び比較例における窒化処理の温度パタ
ーンを示す図。
FIG. 1 is a diagram showing a temperature pattern of nitriding treatment in the present invention and a comparative example.

フロントページの続き (72)発明者 白神 哲夫 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 石黒 守幸 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 椛澤 均 埼玉県蓮田市大字閏戸2358番地の1 株式 会社日本テクノ内 (72)発明者 桑原 美博 新潟県長岡市下条町777番地 長岡電子株 式会社内Front Page Continuation (72) Inventor Tetsuo Shirakami 1-2 1-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd. (72) Inventor Moriyuki Ishiguro 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Pipe Co., Ltd. (72) Inventor Hitoshi Kabazawa, 1-share company, 2358, Hashido, Hasuda City, Saitama, Japan Techno Co., Ltd. (72) Inventor, Mihiro Kuwahara, 777 Shimojo, Nagaoka, Niigata Nagaoka Electronics Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 C:0.10〜0.30wt%、Si:
0.35wt%以下、Mn:1.0wt%以下、S:
0.05wt%以下、Cr:0.5〜1.5wt%、A
l:0.1〜0.5wt%、V:0.1〜0.5wt%
を含有する鋼に対し、処理開始温度が480〜550
℃、処理終了温度が560〜630℃の範囲であり、処
理開始から処理終了までを連続的に昇温させる窒化処理
を施すことを特徴とする、冷間鍛造性及び疲労特性に優
れた窒化鋼部材の製造方法。
1. C: 0.10 to 0.30 wt%, Si:
0.35 wt% or less, Mn: 1.0 wt% or less, S:
0.05 wt% or less, Cr: 0.5 to 1.5 wt%, A
1: 0.1-0.5 wt%, V: 0.1-0.5 wt%
For steel containing 480 to 550
Nitriding steel having excellent cold forgeability and fatigue properties, characterized by being subjected to a nitriding treatment for continuously raising the temperature from the start of treatment to the end of treatment in the range of 560 to 630 ° C. A method of manufacturing a member.
【請求項2】 C:0.10〜0.30wt%、Si:
0.35wt%以下、Mn:1.0wt%以下、S:
0.05wt%以下、Cr:0.5〜1.5wt%、A
l:0.1〜0.5wt%、V:0.1〜0.5wt%
を含有し、さらにNi:1.0wt%以下、Cu:1.
0wt%以下、Mo:0.2wt以下の1種または2種
以上を含有する鋼に対し、処理開始温度が480〜55
0℃、処理終了温度が560〜630℃の範囲であり、
処理開始から処理終了までを連続的に昇温させる窒化処
理を施すことを特徴とする、冷間鍛造性及び疲労特性に
優れた窒化鋼部材の製造方法。
2. C: 0.10 to 0.30 wt%, Si:
0.35 wt% or less, Mn: 1.0 wt% or less, S:
0.05 wt% or less, Cr: 0.5 to 1.5 wt%, A
1: 0.1-0.5 wt%, V: 0.1-0.5 wt%
In addition, Ni: 1.0 wt% or less, Cu: 1.
The treatment start temperature is 480 to 55 for steel containing one or more of 0 wt% or less and Mo: 0.2 wt or less.
0 ° C, the treatment end temperature is in the range of 560 to 630 ° C,
A method for producing a nitrided steel member excellent in cold forgeability and fatigue characteristics, which comprises performing a nitriding treatment for continuously raising the temperature from the start of treatment to the end of treatment.
JP8158894A 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics Expired - Fee Related JP2906996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8158894A JP2906996B2 (en) 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8158894A JP2906996B2 (en) 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics

Publications (2)

Publication Number Publication Date
JPH07286257A true JPH07286257A (en) 1995-10-31
JP2906996B2 JP2906996B2 (en) 1999-06-21

Family

ID=13750484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8158894A Expired - Fee Related JP2906996B2 (en) 1994-04-20 1994-04-20 Method for producing nitrided steel member excellent in cold forgeability and fatigue characteristics

Country Status (1)

Country Link
JP (1) JP2906996B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279295A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
EP0867521A1 (en) * 1997-03-26 1998-09-30 Imatra Steel Oy Ab Steel for cold forging and a method using the steel
WO2010147224A1 (en) * 2009-06-17 2010-12-23 新日本製鐵株式会社 Steel for nitriding and nitrided steel components
WO2012053541A1 (en) * 2010-10-20 2012-04-26 住友金属工業株式会社 Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold-forged/nitrided component
CN102925811A (en) * 2012-11-12 2013-02-13 莱芜钢铁集团有限公司 Easy-cutting vanadium-feeding high-aluminum nitriding steel and preparation method thereof
CN103003459A (en) * 2010-11-17 2013-03-27 新日铁住金株式会社 Steel for nitriding purposes, and nitrided member
CN106119705A (en) * 2016-06-22 2016-11-16 陕西法士特齿轮有限责任公司 A kind of Nitriding on Gear steel and manufacture method
KR20170015991A (en) 2014-06-13 2017-02-10 신닛테츠스미킨 카부시키카이샤 Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279295A (en) * 1996-04-16 1997-10-28 Nippon Steel Corp Steel for soft-nitriding excellent in cold forgeability
EP0867521A1 (en) * 1997-03-26 1998-09-30 Imatra Steel Oy Ab Steel for cold forging and a method using the steel
WO2010147224A1 (en) * 2009-06-17 2010-12-23 新日本製鐵株式会社 Steel for nitriding and nitrided steel components
JP4729135B2 (en) * 2009-06-17 2011-07-20 新日本製鐵株式会社 Nitriding steel and nitriding parts
EP2444511A1 (en) * 2009-06-17 2012-04-25 Nippon Steel Corporation Steel for nitriding and nitrided steel components
CN102803542A (en) * 2009-06-17 2012-11-28 新日本制铁株式会社 Steel for nitriding and nitrided steel components
EP2444511A4 (en) * 2009-06-17 2014-03-05 Nippon Steel & Sumitomo Metal Corp Steel for nitriding and nitrided steel components
US9994944B2 (en) 2010-10-20 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold-forged/nitrided component
WO2012053541A1 (en) * 2010-10-20 2012-04-26 住友金属工業株式会社 Steel for cold forging/nitriding, steel material for cold forging/nitriding, and cold-forged/nitrided component
JP2012087361A (en) * 2010-10-20 2012-05-10 Sumitomo Metal Ind Ltd Steel for cold forging/nitriding, steel material for cold forging/nitriding and cold-forged/nitrided component
CN103003459A (en) * 2010-11-17 2013-03-27 新日铁住金株式会社 Steel for nitriding purposes, and nitrided member
US8876988B2 (en) 2010-11-17 2014-11-04 Nippon Steel & Sumitomo Metal Corporation Steel for nitriding and nitrided part
CN102925811A (en) * 2012-11-12 2013-02-13 莱芜钢铁集团有限公司 Easy-cutting vanadium-feeding high-aluminum nitriding steel and preparation method thereof
KR20170015991A (en) 2014-06-13 2017-02-10 신닛테츠스미킨 카부시키카이샤 Soft-nitriding steel sheet, method for manufacturing same, and soft-nitrided steel
US10344371B2 (en) 2014-06-13 2019-07-09 Nippon Steel & Sumitomo Metal Corporation Steel sheet for soft-nitriding treatment, method of manufacturing same, and soft-nitrided steel
CN106119705A (en) * 2016-06-22 2016-11-16 陕西法士特齿轮有限责任公司 A kind of Nitriding on Gear steel and manufacture method

Also Published As

Publication number Publication date
JP2906996B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
JPH05148535A (en) Production of surface hardened parts having decreased heat treating strain and excellent bending fatigue strength
RU2201993C2 (en) Method of manufacturing steel mechanical parts and steel for manufacturing said parts
JPS6043431B2 (en) Manufacturing method of nitrided machine parts for light loads
JPH0953149A (en) Case hardening steel with high strength and high toughness
JPH11124653A (en) Nitriding steel and nitrding treatment therefor
JPH07286257A (en) Production of nitriding steel member excellent in cold forgeability and fatigue strength
JP3381738B2 (en) Manufacturing method of mechanical structural parts with excellent mechanical strength
JPH0971841A (en) Steel for soft-nitriding
JP2549039B2 (en) Carbonitriding heat treatment method for high strength gears with small strain
JP3551573B2 (en) Steel for carburized gear with excellent gear cutting
JPS5916949A (en) Soft-nitriding steel
JP2885061B2 (en) Method for producing nitrided steel member excellent in fatigue characteristics
JPH10226817A (en) Production of steel for soft-nitriding and soft-nitrided parts using this steel
JPS5916948A (en) Soft-nitriding steel
JPH0535203B2 (en)
JP2549038B2 (en) Method for carburizing heat treatment of high-strength gear with small strain and its gear
JP2706940B2 (en) Manufacturing method of non-heat treated steel for nitriding
JPH09279296A (en) Steel for soft-nitriding excellent in cold forgeability
JPH0849058A (en) Production of wear resistant nitrided steel member small in heat treating strain
JPH0447023B2 (en)
JP2600174B2 (en) Low alloy nitrocarburized steel
JPH0754041A (en) Manufacture of steel for cold forging
JPH0227408B2 (en)
JP3109146B2 (en) Manufacturing method of low strain high strength member
JP2907011B2 (en) Method for producing nitrided steel member with less heat treatment distortion

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110402

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120402

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130402

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140402

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees